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Outline of “multi-focus image fusion”

In this lecture, we will introduce multi-focus image fusion

using local standard deviations, and

using the variational method with split Bregman iterations.

The material of this lecture is based on

K. He, J. Sun, and X. Tang, Guided image filtering, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35 (2013),
pp. 1397-1409.

F. Li and T. Zeng, Variational image fusion with first and
second-order gradient information, Journal of Computational
Mathematics, 34 (2016), pp. 200-222.

S.-Y. Yang and C.-S. You, A simple and effective multi-focus
image fusion method based on local standard deviations
enhanced by the guided filter, Displays, 72 (2022), article102146.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Multi-Focus Image Fusion – 2/34



Introduction to image fusion

Image fusion aims to integrate two or more source images of the same
scene into a fused image with better visual quality than the source
images.

Due to the limitation of depth-of-field in the imaging device,
images probably cannot focus on all objects and miss partial
details leading to blurring.

Multi-focus image fusion is a technique that extends the depth
of field of optical lenses by generating an all-in-focus image
from a set of partially focused images.

(a) source image f 1 (b) source image f 2 (c) fused image.
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The underlying ideas

The sharper pixels generally should have a comparatively higher local
variance and hence higher local standard deviation, which is the square
root of the local variance.

The Laplacian is a second-order derivative operator, and it highlights
sharp intensity transitions in an image and de-emphasizes regions of
slowly varying intensities.

The sharper parts in the corresponding Laplacian images should
come from the sharper parts in the source images.

It is expected that a well-focused pixel should have a higher
local standard deviation in the corresponding Laplacian image.
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The underlying ideas (cont’d)

The guided filter is an edge-preserving smoothing technique. We use
the guided filter to enhance the local standard deviation estimation.

We then employ the filtered local standard deviation of the
Laplacian image as the focus measure to construct an initial
decision map for pixel selection.

To make the selection more consistent and avoid pixel misclassification,
we further improve the initial decision map using the small region
removal strategy.

Combined with the small region removal strategy, we choose the
pixel with the largest Laplacian-image local standard deviation
from the set of partially focused source images.
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The problem setting

We focus on fusing two grayscale partially focused source
images. For color image fusion, we can employ the decision process for
sharp pixels selection to their grayscale versions.

The pixel values of source and fused images are normalized into
the interval [0, 1].

The image domain is a regular Cartesian grid of size my × nx,
i.e., ΩD = {(i, j) : i = 1, 2, · · · , my, j = 1, 2, · · · , nx}, where (i, j)
denotes a pixel of the image.

Let f 1 and f 2 denote the two partially focused source images (i.e., two
my × nx matrices) of the same scene to be fused.

(a) source image f 1 (b) source image f 2
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The Laplacian images

We introduce the following 3 × 3 Laplace kernel,

KL =

 1 1 1
1 −8 1
1 1 1

 .

Laplacian is a second-order derivative operator, it highlights
sharp intensity transitions in an image and de-emphasizes
regions of slowly varying intensities.

Taking convolution of the 3 × 3 Laplace kernel KL with each
source image f i, we obtain

Li = KL ∗ f i, for i = 1, 2.
We call Li the Laplacian image of the source image f i.

(c) Laplacian image L1 (d) Laplacian image L2
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The local standard deviations

Let L be a Laplacian image and N(i, j) be a given neighborhood
centered at (i, j). The local variance of pixel (i, j) ∈ ΩD in the
neighborhood N(i, j) is defined as

σ2
L(i, j) =

1
|N(i, j)| ∑

(m,n)∈N(i,j)

(
L(m, n)− L(i, j)

)2

and then the local standard deviation of (i, j) is given by σL(i, j).

|N(i, j)| is the number of pixels that N(i, j) contains; L(i, j) is the
local mean of pixel (i, j) in N(i, j):

L(i, j) :=
1

|N(i, j)| ∑
(m,n)∈N(i,j)

L(m, n).

(e) local standard deviation σL1 (f) local standard deviation σL2
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The guided filter

The guided filter is an edge-preserving smoothing operation.

Let p be the image to be filtered (in the context here, p should be the
“image” of local standard deviations, σL1 and σL2 ). We assume that
the relation between the specified guidance image I and the
filtering output q (also denoted as Gp) is locally linear.

Let ωk be a window centered at the pixel (ik, jk) with radius rk,
the local linear models of the guided filter in ωk is given by

q(i, j) = p(i, j)− n(i, j), ∀(i, j) ∈ ωk,
q(i, j) = akI(i, j) + bk, ∀(i, j) ∈ ωk,

where n denotes some unwanted components such as the noise
or textures, ak and bk are the linear coefficients assumed to be
constant within the window ωk.
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The guided filter (cont’d)

The process of solving the filtering result is to minimize the
unwanted noise or textures n in the neighborhood ωk,

n(i, j) = p(i, j)−
(
akI(i, j) + bk

)
, ∀(i, j) ∈ ωk.

The minimization problem with regularization reads:

min
ak,bk

Ek(ak, bk),

where the objective function Ek(ak, bk) is given by

Ek(ak, bk) = ∑
(i,j)∈ωk

((
akI(i, j) + bk − p(i, j)

)2
+ εa2

k

)
and ε > 0 is a regularization parameter.
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The guided filter (cont’d)

The unique solution can be directly attained by setting the
objective function’s gradient to zero,

∂Ek
∂ak

= 0 =
∂Ek
∂bk

.

By direct computations, we have

ak =
( 1
|ωk| ∑

(i,j)∈ωk

I(i, j)p(i, j)− µkpk

)(
σ2

k + ε
)−1,

bk = pk − akµk,

where |ωk| is the total number of pixels, µk and σ2
k are the mean

and variance of the guidance image I, respectively, and pk is the
mean of the filtering input, all of which are calculated in ωk.

We consider all windows ωk disjoint and ΩD = ∪kωk.
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Numerical results

N(i, j) in the calculations of local standard deviation is chosen as
a 5 × 5 pixel array centered at the pixel (i, j).

In the guided filter, we take rk = 2 for all windows ωk, i.e., ωk is
a 5 × 5 pixel array for all k.

The regularization parameter is chosen as ε = 0.1.

(g) guided filtered local standard deviation GσL1 ; (h) guided filtered
local standard deviation GσL2
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The decision maps for pixel selection

For each pixel (i, j) ∈ ΩD, we set

B(i, j) =

{
1, if GσL1(i, j) > GσL2(i, j),

0, otherwise,

where we use the source images f 1 and f 2 as the guidance
images for computing GσL1 and GσL2 , respectively.

We further improve the initial decision map B to BS by the small
region removal strategy: a region which is smaller than an area
threshold R(= 0.01) is reversed in the map B.

The binary decision map BS can be further modified as a
non-binary weight map GBS by using the guided filter one more
time with the guidance image BS itself:

0 ≤ GBS(i, j) ≤ 1, ∀ (i, j) ∈ ΩD.
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LSDGF1 and LSDGF2 multi-focus image fusion

With the help of the decision maps BS and the weight map GBS We
can form a fused image f in two different ways:

LSDGF1:

f (i, j) = BS(i, j)f 1(i, j) +
(
1 − BS(i, j)

)
f 2(i, j), ∀ (i, j) ∈ ΩD.

LSDGF2:

f (i, j) = GBS(i, j)f 1(i, j) +
(
1 − GBS(i, j)

)
f 2(i, j), ∀ (i, j) ∈ ΩD.

The fused image f is a weighted combination of f 1 and f 2.

(i) BS; (j) fused image by LSDGF1; (k) GBS; (l) fused image by LSDGF2.
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Image “Cameraman”

Source images of left half blurred and right half blurred, respectively, by the
Gaussian blur with µ = 0 and σ = 4; fused images by LSDGF1 and

LSDGF2, respectively. The residual is defined as f exact − I + 0.5
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Image “Lena”

Source images of left half blurred and right half blurred, respectively, by the
Gaussian blur with µ = 0 and σ = 4; fused images by LSDGF1 and

LSDGF2, respectively. The residual is defined as f exact − I + 0.5
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Image “Golf”

(a) Source 1 (b) Source 2

(c) DWT (d) DTCWT (e) NSCT (f) GFF

(g) SR (h) ASR (i) MWGF (j) ICA

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Multi-Focus Image Fusion – 17/34



Image “Golf” (cont’d)

(k) NSCT-SR (l) SSSDI (m) Quadtree (n) DSIFT

(o) SRCF (p) GFDF (q) BRW (r) MISF

(s) CNN (t) MADCNN (u) LSDGF1 (v) LSDGF2
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Image “Child”

From left to right: 3 × 3, 5 × 5, 7 × 7, and 9 × 9 for sizes of N(i, j) and ωk, and
R = 0.01; From top to bottom: B, BS, and GBS; Source images f 1 and f 2, and fused

images by LSDGF1 and LSDGF2
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Average running time of different fusion methods

Type Method Time in second
DWT 0.1348
DTCWT 0.5557

Transform NSCT 7.3610
domain SR 164.3228

MWGF 4.5028
NSCT-SR 109.5024
QUADTREE 1.6868

Spatial DSIFT 3.3900
domain GFDF 0.1468

BRW 0.9659
MISF 0.1224
CNN 112.5151

Deep MADCNN* 0.2164
learning DRPL* 0.1530

SESF* 0.7391
GACN* 0.2318

Present LSDGF1 0.1126
LSDGF2 0.1553
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Comparisons with deep learning methods

Image “Child”: (a) source image f 1; (b) source image f 2;
(c)-(h) fused images by different fusion methods
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Comparisons with deep learning methods (cont’d)

Image “Child”: decision maps of different fusion methods
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Image fusion of the 3-focus images (LSDGF2)
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The bounded variation space BV(Ω)

Let Ω be an open subset of R2. The space of functions of bounded variation
BV(Ω) is defined as the space of real-valued function u ∈ L1(Ω) such that the
total variation is finite, i.e.,

BV(Ω) = {u ∈ L1(Ω) : ∥u∥TV(Ω) < ∞},

where

∥u∥TV(Ω) := sup
{ ∫

Ω
u(∇· φ) dx : φ ∈ C1

c (Ω, R2), ∥φ∥(L∞(Ω))2 ≤ 1
}

,

C1
c (Ω, R2) is the space of continuously differentiable vector functions with

compact support in Ω, L1(Ω) and L∞(Ω) are the usual Lp(Ω) space for p = 1
and p = ∞, respectively, equipped with the ∥ · ∥Lp(Ω) norm. For a sufficiently
smooth function u, we have ∥u∥TV(Ω) =

∫
Ω |∇u|dx.

Then BV(Ω) is a Banach space with the norm,

∥u∥BV(Ω) := ∥u∥L1(Ω) + ∥u∥TV(Ω).
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Variational method for multi-focus image fusion

We consider a variational method for multi-focus image fusion which
only uses the first-order gradient information.

Given the gradient information V and the data function u0, we solve the
minimization problem,

min
u∈BV(Ω)∩L2(Ω)

{∫
Ω
|∇u − V| dx +

λ

2

∫
Ω
(u − u0)

2 dx
}

,

where λ > 0 is a model parameter.
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Some remarks on the variational model

In general, the given data function u0 is chosen as one of the source
images or their average (e.g. u0 = (f1 + f2)/2 for 2 source images).

The first term in the model plays a data-fidelity term which
forces the gradient of the fused image u matching with the
feature target V. Therefore, the target gradient information V is
more crucial, needs to be further designed.

The second term acts not only for the data fidelity, but also
somewhat for the regularization which ensures the uniqueness
of the minimizer u of minimization problem.

Theorem [LZ 2016]: Assume that u0 ∈ BV(Ω) ∩ L2(Ω) and V is a
finite vector-valued Radon measure, then the minimization problem
has a unique minimizer u∗ ∈ BV(Ω) ∩ L2(Ω).
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The split Bregman iterative scheme

The minimization problem can be solved efficiently by the split
Bregman iterative scheme.

We reformulate the model as the following constrained
minimization problem:

min
u,d

∫
Ω
|d| dx +

λ

2

∫
Ω
|u − u0|2 dx

subject to d = ∇u − V,

where d is an induced variable related to the iterative scheme.

Given the auxiliary variable b(k), we define the energy functional

Er(u, d) :=
∫

Ω
|d| dx +

λ

2

∫
Ω
|u − u0|2 dx

+
µ

2

∫
Ω
|∇u − V − d + b(k)|2 dx,

where λ > 0 and µ > 0 are two penalty parameters.
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The split Bregman iterative scheme (cont’d)

u-subproblem:

u(k+1) = arg min
u

Er(u, d(k)).

d-subproblem:

d(k+1) = arg min
d

Er(u(k+1), d).

The auxiliary variable b:

b(k+1) = b(k) +∇u(k+1) − V − d(k+1).
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Construction of gradient V

Let f be the fused image by LSDGF1 or LSDGF2, the discrete version
of the first-order gradient V can readily be attained by

V(i, j) = ∇f (i, j), ∀ (i, j) ∈ ΩD,

which is expected to be close to the target image gradient.

The first four are the source images and the fifth is the fused image
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Another feature selection

Suppose that two source images f 1 and f 2 are defined in ΩD.

The corresponding image features are given by

M1(i, j) :=
∂f 1
∂x1

(i, j) and M2(i, j) :=
∂f 2
∂x1

(i, j).

For x, y ∈ ΩD, the feature selection will be operated through a
convolution kernel K which is defined as follows:

K(x, y) =

{
1

|ωx| , if y ∈ ωx,

0, otherwise,

where ωx denotes a bounded neighborhood of the pixel x with
area |ωx| and K is an average kernel that establishes the selection
criterion.
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Feature selection (cont’d)

We take M2
1 and M2

2 as salience measure. The main purpose is to
eliminate the negative sign at the pixel that makes the feature
selection wrong. The convolution K operates as below

B(i, j) =

{
1, if (K ∗ M2

1)(i, j) > (K ∗ M2
2)(i, j),

0, otherwise,

where ∗ is the convolution symbol.

Then we operate the convolution kernel K to B

B̃(i, j) =

{
1, if (K ∗ B)(i, j) > 0.5,
0, otherwise,

where B̃ is a binary mask. The main goal of this step is to eliminate
isolated points.
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Feature selection (cont’d)

When the pixel value of B̃ at (i, j) is 1, it means that the first
source image f 1 has more salience feature than the second
source image f 2 at that pixel (i, j).

The first component of the feature target V = (V1, V2) can be
determined as follows:

V1 = M1 ◦ B̃ + M2 ◦ (1 − B̃),

where ◦ means entrywise product (i.e., Hadamard product).

We do the same procedure for the feature component V2.

The feature selection will go wrong at the blurred edge because the
image feature may contain both blurred and clear pixels.
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Numerical results

(a) shows the CT image in which the structure of bone is better visualized;
(b) is the MR image in which the pathological soft tissues are better

visualized; (e) fused image by the above method;
(c)(d)(f)(g) fused images by other methods.
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Open problems

Image fusion aims to integrate information from several source images into a
fused image with better visual quality than the source images.

Despite the remarkable progress that has been achieved in recent
years, there remain several challenges that need further
improvements:

1 Transition regions between focused and defocused ones.

2 Intersection of defocused regions of the source images is nonempty.

3 Source images are mis-registered.
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