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Outline of “image contrast enhancement”

In this lecture, we will briefly introduce some techniques for image
contrast enhancement, including

® Histogram equalization (HE » BE.J7 [E¥ 1)
@ Automatic color equalization (ACE » H &)%)
@ Simplest color balance (SCB » #xfifj % F-1)

@ A variational method with split Bregman iterations
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The material of this lecture

The material of this lecture is based on the following text and papers:
@ Section 3.3: Histogram Processing in [GW2018], pp. 133-153.

@ P. Getreuer, Automatic color enhancement (ACE) and its fast
implementation, Image Processing On Line, 2 (2012), pp. 266-277.

@ P.-W. Hsieh, P-C. Shao, and S.-Y. Yang, Adaptive variational
model for contrast enhancement of low-light images, SIAM
Journal on Imaging Sciences, 13 (2020), pp. 1-28.

@ N. Limare, J.-L. Lisani, J.-M. Morel, A. B. Petro, and C. Sbert,
Simplest color balance, Image Processing On Line, 1 (2011), pp.
297-315.
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Contrast enhancement

The main purpose of contrast enhancement is to adjust the image
intensity to enhance the quality and features of the image for a better
human visual perception or machine vision identification.

A low-light image and its enhanced result

) Suh-Yuh Yang (15 ) iw Image Ci Enhancement — 4/41



=:s=T(r):=T(f(x,y))

Histogram equalization (HE): g(x,y)

@ We are given a grayscale image f : QO — [0,1]. The cumulative
histogram (cumulative distribution function) T is defined by
considering f as a random variable: for 7 € [0, 1], we define

T(n) = Prob(f <7n)
= <
Kﬂ{xyeﬂ floy) <}
Then T : [0,1] — [0, 1] is a monotonic increasing function.
@ The histogram equalized image ¢ : Q) — [0, 1] is obtained by

defining
8(x,y) :=T(f(x,y)).
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Histogram equalized image ¢ ~ /(0,1) if T is invertible

If T is strictly increasing, then T is invertible and the cumulative
distribution function of the histogram equalized image g is

Prob(g <n) = Prob(T(f) < 1) = Prob(f < T (1))
T(T~ () = 1.
Hence, the probability density function of g is

1 for0<t<1,
p(t) =
0 elsewhere.

Therefore, ¢ has a uniform distribution, i.e., ¢ ~ 2 (0,1).

Recall: Let X be a random variable and p(t) the probability density

function (pdf) of X. The cumulative distribution function (cdf) of X is
U

F(y) := Prob(X < y) = / p(t)dt.

—00
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Example of histogram equalized image

B s
q’h “-m

BEEEEEEEE

Histogram equalization of 400 x 600 image
(top) before; (bottom) after; and the corresponding histograms

Matlab commands: imhist (A), histeq(R)
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Automatic color equalization (ACE)

We are given a grayscale image f : Q — [0, 1]. First, the following
operation is performed

)
0= L Tyl
Sa(t)

, YxeQ.

The slope function s, (t) := min{max{at, —1}, 1}
Then f is rescaled to [0,1] as the ACE image
o) = LM L en
maxf — minf
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ACE images for various «’s and HE image

Input (352 x 480)
sa(?)
1

Q=
—
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Simplest color balance: given a grayscale image f(x)

@ The algorithm simply stretches, as much as it can, the values of
the three channels (R, G, B), so that they occupy the maximal
possible range [0, 255].

@ The simplest way to do so is to apply an affine function
z=ua_z +btoeach channel such that

f(x) AZmin+b = 0,
AZmax +b = 255.

We solve a and b so that the maximal value in the channel
becomes 255 and the minimal value 0.

255 255zmi
4= p= __“--cmin
Zmax — Zmin Zmax — Zmin

That is, the intensity of the resulting image is given by

Fx) = 255 flx) — 255zmin  _ 255 <f(x) - zmin> xen.

Zmax — Zmin Zmax — Zmin

Zmax — Zmin
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Simplest color balance (cont’d)

@ However, many images contain a few aberrant pixels that
already occupy the 0 and 255 values. In such a case, we have

255 _ 255 1 p—_ 255Zmin _ i _
Zmax — Zmin 255 -0 ’ Zmax — Zmin 255

a =

4

which implies Z = z and hence, nothing changes.

@ An often spectacular image color improvement is obtained by
“clipping” a small percentage s% of the pixels with the highest values
to 255 and a small percentage of the pixels with the lowest values to 0,
before applying the affine transform.

@ Notice that this saturation can create flat white regions or flat
black regions that may look unnatural. Thus, the percentage of
saturated pixels must be as small as possible.
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SCB images

original image, SCB images with s% = 0%, 1%, 2%, and 3%
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SCB images

original image, SCB images with s% = 0%, 1%, 2%, and 3%
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Image stitching & PH) with SCB and s% = 0.1%
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A simple variational model

Letf : O — R be a given grayscale image. The Morel-Petro-Sbert
model (IPOL 2014) is given by

L 2 Ay —\2
mumE/Q\Vu—Vf\ dx+§(/0(u—u) dx.

data fidelity regularizer

@ The constant 7 := Hﬁl fQ u dx is the mean value of u over Q).

@ The data fidelity term preserves image details presented in f and
the regularizer reduces the variance of u to eliminate the effect of
nonuniform illumination.

@ The parameter A > 0 balances between detail preservation and
variance reduction.

(© Suh-Yuh Yang ( % Math. Dept., NCU, Taiwan Image Contrast Enhancement — 15/41



Two modified variational models

@ The original model is simple but difficult to solve due to the u
term. Therefore, by assuming that  ~ f := ‘1@ Jof dx, it was
simplified to

. 1 2 )\ 2
mulr1§/0|Vu—Vf| dx+§/0(u—f) dx.

@ Petro-Sbert-Morel (MAA 2014) further improved their model by
using the L! norm to obtain sharper edges:

. A 72
mu1n/Q|Vu—Vf|dx+E/Q(u—f) dx.

Note that requiring the desired image u being close to a pixel-
independent constant f highly contradicts the requirement of Vu being
close to Vf and restrains the parameter A to be very small.
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An adaptive variational model

Hsieh-Shao-Yang (SIIMS 2020) proposed two adaptive functions g
and h to replace f and the original input image f,

. Ar 2
rrbm./Q\Vush\dxwLE/Q(”*g) dx + Xjo,255) (1),

where g and h are devised respectively as

{ af, x ey, hx) = { Bf(x), x€Qy,
flx), xe€Qy, f(x), xeQy,

Qpi={xeQ:f(x) <f}, Qp={xeQ:f(x)>f},
with a brightness parameter « > 0 and a contrast-level parameter
B > 1, and the characteristic function is defined as

0, range(u) C [0,255],
X[o,255}(”) - 00, otherwise.

Generally speaking, (); contains relatively dim elements, while (),
contains relatively bright elements.

g(x) =
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Differentiability of

To ensure the differentiability of 4, in practice we smooth the
coefficients and redefine the adaptive function / as

h(x) = Gx (Bla,(x) + 10,(x))f(x), x€Q,

where the indicator function 14(x) = 1, if x € A, otherwise 14(x) =0,
and G represents suitable Gaussian convolution such that Vi is
well-defined.
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Color RGB images

@ The domain division for color RGB images (fz,fg,fp) is
conducted as follows. First, we define the maximum image as

frnax (%) 1= max{f (), fo (x), fa(x)}, Vx e Q.

o Letf, = ‘1@ Jfmax dx. Then we divide the image domain ()
into two parts
O, = {x € 3fmax(x) Sj?max}’
O, = {xeQ : fmax (%) >fmax}'

@ Example: Consider an element x* € Q with color intensities

(fr(x*),fo(x), fo(x*)) = (25,25,200), then fmax (x*) = 200, a
large value which should be classified into ().
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Domain division for color images
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Adaptive variational model for color images

@ With the help of the maximum image fmax, We can now process
color images channelwise. For every f € {fr,fs,fs}, we solve

. A
min /Q |Vu — Vhe|dx + > /Q(u —g)tdx+ X[0,255) (1),
where the adaptive functions g and 5 are defined as

(x) = { ocf, x e Qy,
T ), ve

and »
Bf(x), xe€Qy,
he(x) :=
f(X), x e Qb'
@ There is no evidence shown that chooses different A, &, and f for

each channel separately can have specific benefit. Therefore, for
simplicity, we fix A, «, and B across channel.
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The bounded variation space BV (Q))

Let Q be an open subset of R?. The space of functions of bounded
variation BV (Q)) is defined as the space of real-valued function
u € L'(Q) such that the total variation is finite, i.e.,

BV(Q) = {u € L'(Q) : [[ullry(q) < oo},
where

ltllrvia = | 1D

=sup{ [ u(V-g)dx:g e CHOR), ol mayp <1},

CH(Q,R?) is the space of continuously differentiable vector functions
with compact support in Q, L' (Q) and L®(Q) are the L7 (Q) space for
p =1and p = oo, respectively, equipped with the || - [[;y(q) norm.

Then BV (Q)) is a Banach space with the norm,
[ullgviq) = lullprq) + lullTva)

For a sufficiently smooth function u, we have [, |Du| = [, |[Vuldx.
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Existence and uniqueness of minimizer

Let Q) C R? be an open bounded domain with Lipschitz boundary and let
h € BV(Q)) be the input image. Then the variational problem

: A 2
mum/Q Vi~ Vhldx+ 5 /Q(u — g)2dx + X[ 255 (1)
admits a unique minimizer in BV(Q) N L2(QY).

Remarks:
® [ |Vu|dx should be realized as the total variation [ |Du|.

@ Letw = u — h, then the energy can be rewritten as the TV
denoising one proposed by Goldstein-Osher (SIIMS 2009).

@ direct method (Lebesgue dominated convergence) — existence.

@ strict convexity — uniqueness.
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The alternating minimization algorithm

@ The discrete gradient of u is defined as Vu;; = (Viu;;, Vyu;;),

Ui —uii)/h, 1<j<N-1,
Vi = { é i1 T Hij) = /
4. (uiyr;—uij)/h, 1< g N-1,
Vy Ujj { 0, i=N,

@ The continuous model can be discretized as
. A 2
mulnz |Vujj— Vhj| + > (uij = 8ij)” + X055 (1)
L]
@ Applying the operator splitting, it is then equivalent to

mmZ (‘d |+ ”l,] gi,j)z) + X[o,255)(0),

w,d,o

subjectto d = Vu — Vh and v = u.
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The Bregman iterations

@ Introducing the penalty parameter v > 0 and J > 0, we arrive at
the following unconstrained minimization problem:

A
mmz (}d”’ + E(ui’j — g,-,]-)z + %’d@]‘ — Vu,*,]' + Vhi,j — b,‘/j|2

u,d,v

0
+5 (03 —uij = Ci,j)2> + X[0,255] (),

where b and c are the variables related to the Bregman iterations.

@ The problem can be solved by alternating the search directions
of u, d, and v, using the Bregman iteration.
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The split Bregman iterations: 3 subproblems + 2 identities

@ u-subproblem:

. A 2
= argmumz <§(u,-,j —g,] + }d (Vu)ij+ (Vh);; — b}
i
)
+§(va — Ui — czj)z).

@ d-subproblem:

dn+1 = argrr}iinz (}diﬂ + %|dl‘,}' - (VunJrl)i,j + (V”l)i,j - blrf] 2).
L]

@ v-subproblem:

"t = argmmZ( (vij — sz*l - CZ]‘)Z) + xs(v).

@ Bregman variables b and c:

bn+1 " + vu' — Vh— dn+1, Cn+1 =" + un+1 _ U"+1.
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u-subproblem

u-subproblem:

2
un+1 — argmlnz ( ul] gl] 7 |d VH)1] (Vh)l,] - b:’f]

)
+§(Ulrf] - Z/li,]' - CZ])Z) .

It can be viewed as the discretization of the minimization problem:
minﬁ/ (u—gPdv+ T [ |d—Vu+Vh—bPax
u 2 Jo 2 Jo
) 2
+§/Q(v—u—c) dx.
The EL equation of the above minimization problem is given by
(A+6)u—yAu = Ag — y(div(d + Vh —b)) + (v —c).

Note: £ _v. (aL a—L)Tzoma, ainﬁ%
Y

5 s auy s ny = 0 on 0Q).
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u-subproblem (cont’d)

We obtain the discrete equations:
(A+8)ul =y (M) = Agij —y(div(d" + Vh—b")),  + (ol —cll).

The discrete operators div and A are defined as follows:

@ Givenp = (p!,p?) with p!, p* € RN*N, we define
(div p)ij = (Vi P )ij+ (Vy P)ij = (pl —plia) + (7 — P )

@ The discrete Laplacian is then defined as the composite of V and
div as Au := div(Vu).

@ Since the discretized problem produces a symmetric and
diagonally dominant linear system, some iterative solvers such
as Jacobi method or Gauss-Seidel method can be employed for
efficiently solving u.
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d-subproblem

d-subproblem:

d"t = arg min ) (’dl-,]-
d i

v 2
iy — (Va4 (V) — B[,

The objective function is strictly convex and it has the following
closed-form solution:

d’?f"l (Vu”“)i,]- — (Vh)l,] + b?,]
& |(VM"+1),‘,]‘ — (Vh)l,] + b?’]

1
X max {‘(Vunﬂ)ij — (Vh);; + b,*f]- — 0}.
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v-subproblem, Bregman variables, and initialization

v-subproblem:
" = arg mlnz ( (vij — Zn]H n])2> + xs(0).

For the v-subproblem, it can be solved by pixel-wise orthogonal
projection of u + ¢ onto the predefined interval S := [s1, 57]

v;j = min { max {ui,j +¢ij, 51 },52}.
Note that we take S = [s1, s3] := [0,255].
Bregman variables b and c:
prtl — +Vu' —Vh— dn+1l L= o + L

Initialization: u = h,v =h,d =0,b =0,c = 0.
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Numerical experiments and comparisons

(T): f, upps, ugg  (B): wycE, UCLAHE, UMLHE—HE
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Numerical experiments and comparisons

(T): uacp(a = 2,4,6) (l>) \daptive(& = 0.8,1.0,1.2 p = 3«

Surprisingly, under the same pammeter setting, the iteration number of our
model is far less than that of the MPS model.
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Numerical experiments and comparisons

:f, umps, UHE
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Numerical experiments and comparisons
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Numerical experiments and comparisons

e L)

(T): f, upps, ugg  (B): wycE, UCLAHE, UMLHE—HE
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Numerical experiments and comparisons

(T): tiace(x = 2,4,6)  (B): Upgaptive (& = 0.8,1.0,1.2), = 3a)

> Suh-Yuh Yang (1% i Image Contrast Enhancement — 36/41



Numerical experiments and comparisons

PP

(T): f, umps, uge  (B): wycE, UCLAHE, UMLHE—HE
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Image Ci Enhancement
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Numerical experiments and comparisons

(T): upacp(a = 2,4,6)  (B): upagaptive(2 = 0.8,1.0,1.2, = 3a)
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Numerical results of the proposed method
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Numerical results of the proposed method
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Summary of the proposed adaptive variational model

We have proposed a simple and efficient adaptive variational
model for image contrast enhancement.

This model is designed for enhancing low-light images by
dividing the image domain into bright and dim parts.

The existence and uniqueness of minimizer for the minimization
problem is established, and a convergent algorithm is provided.

© 06 o ©

The most distinguished feature of our model is that colors are
preserved as close as possible to the original ones.
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