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Outline of “alternating direction method of multipliers”

This lecture will briefly introduce the alternating direction
method of multipliers (ADMM) for solving linearly
equality-constrained minimization problems.

The material of this lecture is based on the long review paper:

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
Distributed optimization and statistical learning via the ADMM,
Foundations and Trends in Machine Learning, 3 (2010), pp. 1-122.
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The sparse representation problem

We consider the following minimization problem:

Sparse representation problem: Given a signal vector x ∈ Rm and a
dictionary matrix D ∈ Rm×n with m < n, we seek a sparse coefficient
vector z∗ ∈ Rn for a fixed parameter λ > 0 such that

z∗ = (∈) arg min
z∈Rn

F(z) :=
1
2
∥x − Dz∥2

2 + λ ∥z∥1 . (⋆)

Properties of function F:
F is a continuous function, F(z) ≥ 0 ∀ z ∈ Rn, and F is coercive since
lim∥z∥→∞ F(z) = ∞. Here, ∥ · ∥ can be arbitrary vector norm on Rn due
to the norm-equivalence for the finite dimensional vector space Rn.

Let f (z) := ∥x − Dz∥2
2. Then we have a quadratic function

f (z) = ⟨x − Dz, x − Dz⟩ = z⊤D⊤Dz + 2(−x⊤D)z + ∥x∥2
2,

where A := D⊤D is symmetric and positive semidefinite (A ⪰ 0).
Thus, f is a convex function. Since g(z) := ∥z∥1 is also a convex
function, F(z) = 1

2 f (z) + λg(z) is therefore convex over Rn.
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The existence and uniqueness of solution of problem (⋆)

Existence: Since F is continuous and coercive on Rn, the sparse
representation problem (⋆) has a global minimum point in Rn, and the
set of all global minimizers is convex.

No uniqueness: In general, the solution of problem (⋆) may not be
unique when m < n, even if the matrix D is of full rank. If m < n and
rank(D) = m, then the n × n matrix A := D⊤D is symmetric and
rank(A) = m. Hence, A is not invertible and A ̸≻ 0. As a result, F is
not strictly convex.
Certain additional conditions can guarantee the uniqueness of the
solution to problem (⋆).

Problem (⋆) is also a regression analysis method in statistics and
machine learning. It is the so-called least absolute shrinkage and
selection operator (LASSO).
R. J. Tibshirani, The lasso problem and uniqueness, Electronic Journal of
Statistics, 7 (2013), pp. 1456-1490 ⊕ A. Ali, 13 (2019), pp. 2307-2347.
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Alternating direction method of multipliers

We will use the “alternating direction method of multipliers (ADMM)” to
solve the above ℓ1-norm sparse representation problem.

ADMM is an iterative scheme for solving the following equality
constrained convex/nonconvex optimization problems:

min
z

f (z) subject to Az = b.

ADMM consists of three steps:

(1) adding an auxiliary variable y and a dual variable (multipliers) v
and then scaled as u

(2) separating the new cost function into a sum of f (z) and g(y)
(3) using an iterative method to solve the problem

Then the optimization problem can be re-posed as

min
z, y

(
f (z) + g(y)

)
subject to Az + By = c.
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Derivation of the ADMM: augmented Lagrangian function

First, we formulate the augmented Lagrangian function

Lρ(z, y, v) := f (z) + g(y) + v⊤︸︷︷︸
multipliers

(Az + By − c) +
ρ

2
∥Az + By − c∥2

2︸ ︷︷ ︸
penalty term

,

where ρ > 0 is the penalty parameter. Then the iterative scheme of
the augmented Lagrangian method (ALM) is given by

(z(i+1), y(i+1)) = arg min
z,y

Lρ(z, y, v(i)),

v(i+1) = v(i) + ρ
(
Az(i+1) + By(i+1) − c

)
,

where the second equation is obtained by the dual ascent method.

In ADMM, z and y are updated in an alternating or sequential
fashion, which accounts for the term alternating direction.

z(i+1) = arg min Lρ(z, y(i), v(i)),

y(i+1) = arg min Lρ(z(i+1), y, v(i)),

v(i+1) = v(i) + ρ(Az(i+1) + By(i+1) − c).
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Scaled form of the augmented Lagrangian

The ADMM can be written in a slightly different form, which is often
more convenient, by combining the linear and quadratic terms in the
augmented Lagrangian and scaling the dual variable (multipliers) v.

Define the residual r := Az + By − c. Then

v⊤(Az + By − c) +
ρ

2
∥Az + By − c∥2

2

= v⊤r +
ρ

2
∥r∥2

2 =
ρ

2
∥r +

1
ρ

v∥2
2 −

1
2ρ

∥v∥2
2.

Set u = 1
ρ v. Then Lρ(z, y, v) = Lρ(z, y, u), and

Lρ(z, y, u) = f (z) + g(y) +
ρ

2
∥Az + By − c + u∥2

2 −
ρ

2
∥u∥2

2.
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ADMM: scaled form

The ADMM in the scaled form is given by

z(i+1) = arg min
z

(
f (z) + g(y(i)) +

ρ

2
∥Az + By(i) − c + u(i)∥2

2−
ρ

2
∥u(i)∥2

2

)
,

y(i+1) = arg min
y

(
f (z(i+1)) + g(y) +

ρ

2
∥Az(i+1) + By − c + u(i)∥2

2−
ρ

2
∥u(i)∥2

2

)
,

u(i+1) = u(i) + Az(i+1) + By(i+1) − c,

where ρ > 0 is the penalty parameter which is related to the convergent
rate of the iterations.

Note that the terms in blue can be omitted in practical computations!

Some convergence analysis can be found in the following paper:

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed
optimization and statistical learning via the ADMM,
Foundations and Trends in Machine Learning, 3 (2010), pp. 1-122.
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ADMM for the ℓ1-norm sparse representation problem

For the ℓ1-norm sparse representation problem,

z∗ = arg min
z∈Rn

(1
2
∥x − Dz∥2

2 + λ ∥z∥1

)
, λ > 0, (⋆)

we set
f (z) :=

1
2
∥x − Dz∥2

2,

g(y) := λ∥y∥1,
z − y = 0. (Az + By = c)

The ADMM for the problem is given by

z(i+1) = arg min
z

(1
2
∥x − Dz∥2

2 +
ρ

2
∥z − y(i) + u(i)∥2

2

)
, (P1)

y(i+1) = arg min
y

(
λ∥y∥1 +

ρ

2
∥z(i+1) − y + u(i)∥2

2

)
, (P2)

u(i+1) = u(i) + z(i+1) − y(i+1), (P3)

where ρ > 0 is penalty parameter related to the convergent rate.
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Solving minimization problem (P1)

Define the function

F1(z) :=
1
2
∥x − Dz∥2

2 +
ρ

2
∥z − y(i) + u(i)∥2

2.

Then F1 is a quadratic function in variables z1, z2, · · · , zn and
F1(z) ≥ 0 ∀ z ∈ Rn. To solve “min

z
F1(z)”, first we compute

∇F1(z) = −D⊤(x − Dz) + ρI(z − y(i) + u(i))

= (D⊤D + ρI)z −
(
D⊤x + ρ(y(i) − u(i))

)
.

Letting ∇F1(z) = 0, we have the linear system

(D⊤D + ρI)z =
(
D⊤x + ρ(y(i) − u(i))

)
, (⋆⋆)

and mathematically,

z(i+1) = (D⊤D + ρI)−1(D⊤x + ρ(y(i) − u(i))
)
.

Notice that D⊤D + ρI is SPD and then (⋆⋆) can be numerically solved
efficiently.
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Solving minimization problem (P2)

The solution of problem (P2),

y(i+1) = arg min
y

(
λ∥y∥1 +

ρ

2
∥z(i+1) − y + u(i)∥2

2

)
,

has the closed form (see next few pages):

y(i+1) = Sλ/ρ(z
(i+1) + u(i)),

where the soft-thresholding (軟閾值) function Sλ/ρ, is defined by

Sλ/ρ(v) := sign(v)⊙ max(0, |v| − λ/ρ),

and sign(·), max(·, ·), and | · | are all applied to the input vector v
component-wisely, and ⊙ is the Hadamard product.

Finally, the iterative scheme can be posed as follows:

z(i+1) = (D⊤D + ρI)−1(D⊤x + ρ(y(i) − u(i))
)
,

y(i+1) = Sλ/ρ(z
(i+1) + u(i)),

u(i+1) = u(i) + z(i+1) − y(i+1).
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Details of the solution of problem (P2)

Recall the problem (P2),

y(i+1) = arg min
y

(
λ∥y∥1 +

ρ

2
∥z(i+1) − y + u(i)∥2

2

)
. (P2)

Let v := z(i+1) + u(i) ∈ Rn. Then we have

y(i+1) = arg min
y

(
λ∥y∥1 +

ρ

2
∥v − y∥2

2

)
.

Define a real-valued function F2(y) as follows:

F2(y) = λ∥y∥1 +
ρ

2
∥v − y∥2

2

=
(

λ|y1|+
ρ

2
(v1 − y1)

2
)
+ · · ·+

(
λ|yn|+

ρ

2
(vn − yn)

2
)

:= f1(y1) + · · ·+ fn(yn),

where we define

fj(y) := λ|y|+ ρ

2
(vj − y)2 ∀ j = 1, 2, · · · , n.
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Analysis of functions fj

For simplicity of the presentation, we consider the function

f (y) = λ|y|+ ρ

2
(v − y)2.

Computing the derivative of f (y) for y ̸= 0, we have

f ′(y) =
{

λ − ρ(v − y) ∀ y > 0,
−λ − ρ(v − y) ∀ y < 0.

Let f ′(y) = 0. Then we have

y = v − λ

ρ
for y > 0 and y = v +

λ

ρ
for y < 0.

Therefore, the all critical numbers of f are given by

c = v − λ

ρ
if c > 0, c = v +

λ

ρ
if c < 0, c = 0.

In order to find the minimum of f , we consider the following three cases:

v >
λ

ρ
, v < −λ

ρ
, −λ

ρ
≤ v ≤ λ

ρ
.
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Case 1: v > λ
ρ

In this case, c = v − λ
ρ > 0 is the only critical number and

f (c) = f (v − λ

ρ
) = λ

(
v − λ

ρ

)
+

ρ

2
(
v − (v − λ

ρ
)
)2

=
ρ

2

(
v2 − (v − λ

ρ
)2
)
<

ρ

2
v2 = f (0).

For y ≥ 0, since f is a quadratic polynomial in y with positive leading
coefficient, we can conclude that f (c) ≤ f (y) for all y ≥ 0.

For y < 0, f (y) is monotone decreasing since

f ′(y) = λsign(y)− ρ(v − y) = −λ − ρv + ρy
< −λ − λ + ρy = −2λ + ρy < 0,

which implies f (y) > f (0) for all y < 0.

Therefore, f has a minimum at c = v − λ
ρ > 0.
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Case 2: v < −λ
ρ

In this case, c = v + λ
ρ < 0 is the only critical number and

f (c) = f (v +
λ

ρ
) = −λ(v +

λ

ρ
) +

ρ

2

(
v − (v +

λ

ρ
)
)2

=
ρ

2

(
v2 − (v +

λ

ρ
)2
)
<

ρ

2
v2 = f (0).

For y ≤ 0, since f is a quadratic polynomial in y with positive leading
coefficient, we can conclude that f (c) ≤ f (y) for all y ≤ 0.

For y > 0, f (y) is monotone increasing since

f ′(y) = λsign(y)− ρ(v − y) = λ − ρv + ρy
> λ + λ + ρy = 2λ + ρy > 0,

which implies f (y) > f (0) for all y > 0.

Therefore, f has a minimum at c = v + λ
ρ > 0.
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Case 3: −λ
ρ ≤ v ≤ λ

ρ

In this case, we have no critical number except the non-differentiable
point y = 0.

For y > 0, we have

f ′(y) = λ − ρ(v − y) = λ − ρv + ρy
≥ λ − λ + ρy = ρy > 0.

Thus, f (y) is monotone increasing and then f (y) > f (0) for all y > 0.

For y < 0, we have

f ′(y) = −λ − ρ(v − y) = −λ − ρv + ρy
≤ −λ + λ + ρy = ρy < 0.

Thus, f (y) is monotone decreasing and then f (y) > f (0) for all y < 0.

Therefore, f has a minimum at 0.
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Solution of problem (P2)

By the above discussions, we have

arg min
y

f (y) =


v + λ

ρ , if v < − λ
ρ , (case 2)

0, if |v| ≤ λ
ρ , (case 3)

v − λ
ρ , if v > λ

ρ . (case 1)

In other words, we have

arg min
y

f (y) = Sλ/ρ(v) = sign(v)max(0, |v| − λ/ρ).

Therefore,

y(i+1) = arg min
y

F2(y) = Sλ/ρ(v) = Sλ/ρ(z
(i+1) + u(i)).

where the soft-thresholding function,

Sλ/ρ(v) := sign(v)⊙ max(0, |v| − λ/ρ),

and sign(·), max(·, ·), and | · | are all applied to the input vector v
component-wisely, and ⊙ is the Hadamard product.
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Soft- and hard-thresholding functions

(This figure quoted from “M. Elad, M. A. T. Figueiredo, and Y. Ma, On the
role of sparse and redundant representations in image processing,

Proceedings of the IEEE, 98 (2010), pp. 972-982”)

soft-thresholding function: continuous

hard-thresholding function: discontinuous
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