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Outline of “variational image deblurring”

In this lecture, we will give a brief introduction to the topics:
@ The blurring kernels of motion blur and Gaussian blur.

@ The standard total variation model for variational image deblurring.

The material of this lecture is mainly based on

@ T. F. Chan and C.-K. Wong, Total variation blind deconvolution,
IEEE Transaction on Image Processing, 7 (1998), pp. 370-375.

@ Y. Wang, W. Yin, and Y. Zhang, A fast algorithm for image
deblurring with total variation regularization, CAAM Technical
Report TR 07-10, 2007, Rice University.
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Blurry and noisy image restoration

@ Image restoration (XL E1H): One of the important tasks in
image processing is to recover images from noisy and blurry
observations.

To recover a sharp image from its blurry observation is the problem
known as image deblurring (F213 ZHHH).

@ These blurring artifacts may come from different sources, such
as atmospheric turbulence, diffraction, optical defocusing,
camera shaking, and more.

@ The blurry and noisy observation is generally modeled as
f(x) = (K)(x) +n(x), x€0,

where # is the clean image, 1 is the Gaussian noise, and K is a
blurring operator.

We may assume the image domain is Q) and zero-valued for all
x € R\ Q.
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Linear and shift-invariant blurring operator K

The blurring operator K is typically assumed to be a “linear” and
“shift-invariant” operator, expressed in the convolutional form:

(Ku)(x) :/Qh(x—s)u(s)ds:: (hu)(x), x€Q,

where x denotes the convolution operation and h is the so-called point spread
function (blurring kernel) associated with the linear blurring operator K.
Therefore, the image deblurring is also called the image deconvolution.

@ Kis linear:
(K(au+ po))(x) = /Q h(x — s) (au(s) + po(s))ds
= ...=a(Ku)(x)+ B(Kv)(x), VxeQ.
@ K is shift-invariant: Let g(x) = f(x — ) for T € R%. Then
(K)() = [ hx—s)gs)ds = (i) (x) = (g )
= /]RZ g(x —s)h(s)ds = /]sz(x — T —s)h(s)ds
= (fxh)(x—1)=(Kf)(x—1), VxeQ.
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Creating a 2-D blurring filter H in Matlab

Motion blur:
>> H = fspecial ('motion’, len, theta)

returns a filter to approximate the linear motion of a camera by the
length of 1en pixels of the motion, with an angle of theta degrees in
a counterclockwise direction.

The default 1en is 9 pixels and the default theta is 0 degree.

Examples:

>> H = fspecial ('motion’, 5, 45)

0 0 0 0.0501 0.0304

0 0 0.0519 0.1771 0.0501
H= 0 0.0519 0.1771 0.0519 0
0.0501 0.1771 0.0519 0 0
0.0304 0.0501 0 0 0
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Motion blur (cont’d)

>>

o
Il

fspecial ("motion’, 5, 30)

0 0 0.0268 0.1268 0.1464
H= 0 0.1000 0.2000 0.1000 0
0.1464 0.1268 0.0268 0 0

>> H = fspecial ('motion’, 5, 60)

0 0 0.1464

0 0.1000 0.1268

H = 0.0268 0.2000 0.0268
0.1268 0.1000 0
0.1464 0 0
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A motion filter and blurred image: cameraman

Read image cameraman.png and display it:

>> I = imread(’cameraman.png’);
>> imshow (I);

Create a motion filter and use it to blur the image:

>> H = fspecial ('motion’, 30, 45);
>> motionblur = imfilter (I, H, ’'replicate’);

Display the blurred image:

>> imshow (motion_blur);
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Gaussian blur

>> H = fspecial ('gaussian’, hsize, sigma)

returns a rotationally symmetric Gaussian lowpass filter of size
hsize with standard deviation sigma.

Example:
>> H = fspecial ('gaussian’, 5, 1)
0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
H = 0.0219 0.0983 0.1621 0.0983 0.0219

0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030

Here fspecial creates Gaussian filters using

2 2
—(ny+n
~(n 4 mp) Ho(m 72)
I—I(‘E(n1rn2) = 20 and H(Tl],?’l2) = "7
) Hg
ny 1y
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A Gaussian filter and blurred image: cameraman

Read image cameraman.png and display it:

>> I = imread(’cameraman.png’);
>> imshow (I);

Create a Gaussian filter and use it to blur the image:

>> H = fspecial ('gaussian’, 30, 5);

>> gaussianblur = imfilter (I, H, ’'replicate’);

Display the blurred image:

>> imshow (gaussian-blur);
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Blurry and noisy image restoration

The total variation (TV) regularization has become one of the
standard techniques known for preserving sharp discontinuities such
as edges and object boundaries.

Letf: O C R? — R be a given blurry and noisy image in L2(Q)). The
standard total variation model recovers an image from f by solving
the TV/L2 problem:

min [ (Va(ldv+5 [ ((Ki)(x) (),

where A > 0 is a model parameter, K is a linear blurring operator, u is
the unknown image to be restored, and

|[Vu(x)| := ||Vu(x)||2 = \/(au/ax)z + (u/oy)>.
Here, we assume that (Ku)(x) = (h*u)(x) for all x € ) and the point
spread function £ is given.

If both the blur kernel h and the latent sharp image u are unknown, the
problem is called “blind image deblurring” or “blind image deconvolution.”
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The energy functional

Since the enerqy functional in the TV/L2 problem is convex, u is optimal if
and only if it satisfies the first-order optimality condition. Define the
energy functional

2

Bl = [ [9u)] + 5 (Ki)(x) — £ (x) .

For any smooth function # with 7 = 0 on 0Q), let ®(¢) := E[u + ¢7],
then we have

0 =

© Suh-Yuh Yang (

i _ . E[u+ey] — E[u]
@(0) = dscp(s) =0 lg% e—0

lirnl(/Q |[Vu(x) +eVy(x)| + %((Ku + eKrp) (%) —f(x))zdx

e—0 €
— 19U+ 5 () () = £ ) e

( Vu(x) +eViy(x)
o [Vu(x) +&Vr(x)|

i 12 (elhn) ()" + 2e(K) ) (Ki) ) — £ ).

e—0 €

o Vﬂ(x)dx)
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The Euler-Lagrange equation

Then, by Green’s formula, we obtain

_ Vu(x)
0o = [-v. |W(x)|f7(x) o+ A K (x) ((Kn) () = £ ()
_ Vu(x)
= kY Vo)
(o V) e
= LY ) AR () () () )

for any smooth function # with # = 0 on d(), where K* is the adjoint
operator of K. Therefore, we attain the Euler-Lagrange equation,

7(x) + Ay (x) K™ ((Ku) (x) — (%)) dx

Vu . B
-V <|V |>+/\K (Ku—f)=0 forxeQ,

or equivalently,

Vu N B
V. (W> —AK*(Ku—f)=0 forxeQ,

along with the Neumann boundary condition, du(x)/dn = 0 on 0Q).
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The adjoint operator

Let V be a real (or complex) Hilbert space with inner product (-, -),
e.g., L*(Q)) with the inner product (f,g) := [, fg dQ.

@ Consider a continuous (i.e., bounded) linear operator T: V — V.
Then the adjoint of T is the continuous linear operator
T* : V — V satisfying

(Tx,y) = (x, T"y), Vxyel.

@ Existence and uniqueness of this operator follows from the Riesz
representation theorem.

@ This can be seen as a generalization of the adjoint matrix of a
square matrix , i.e., the conjugate transpose of a square matrix.
For example, let A € R3*3. Then

(Ax,y) =y Ax = (x,Aly), VxyecR>
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What is the adjoint operator K* of K?

Suppose that the linear and shift-invariant blurring operator
K:L2(Q) — L*(Q) is defined as

(Ku)(x) := (hxu)(x) = /(.Zh(x —s)u(s)ds VxeQ,
where £ is the given kernel function.
(Ku,0) 20y = /Q ( /Q h(x — s)u(s)ds Jo(x)dx

= /Qu(s)</0h(x—s)v(x)dx>ds.

Let ii(x) = h(—x) for all x € IR2. Then for all u,v € L2(Q)), we have

(0, K0)p2) = (Ku,v)Lz(Q):/Qu(s)(/nh(s—x)v(x)dx>ds
= <”:E*U>L2(Q)-

Therefore, (K*0)(x) = (h+v)(x).
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Nonlinear PDE based image restoration

Consider the E-L equation with the homogeneous BC, g—z = 0 on 9Q).

V. (ﬂ) — AK*(Ku — ) = 0,

[Vl
where |- |5 := /|- |2 +6%,0 < § < 1, to avoid division by zero.
° Rudm—Osher (1994) used the artificial time marching method:

. u+At{V- <|VV;”§) — AK*(Ku —f)}.

This method is very easy to implement but converges slowly
due to the nonlinearity of the diffusion operator.

@ Vogel-Oman (1996) used a lagged diffusivity procedure to partially
overcome this difficulty by solving the following equation for
u+1) jteratively:

( vu(;wl)

T ‘5) — AK* (Ku™tD) — ) = 0.
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An equivalent constrained convex problem

By introducing a new variable w(x) := Vu(x), we obtain an
equivalent constrained convex minimization problem:

min [ fw(@ldv+5 [ ((Ku)(x) (),

subject to w(x) = Vu(x), x € Q.

Wang-Yin-Zhang (2007) considered the L?>-norm-square penalty
formulation to obtain the unconstrained problem:

min/Q |w(x)|dx + % /Q((Ku)(x) —f(x))2dx+ g /Q(w(x) — Vu(x))zdx,

u,w

where B > 0 is a sufficiently large penalty parameter in order to
approximate the solution of the original problem.
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The discrete form of the unconstrained problem

Suppose that f = [f;] is an N x N digital image. Let us consider the
discrete form of the unconstrained problem:

. N A 2 IB N + 2
min Y il + 5 IKu—=fl[f + 5 Y (@ u)ij — wyll%,
w

=1
where K is the discrete convolution operator, || - || is the Euclidean
norm in R?,i.e., || - || :== || - ||, and || - ||F is the Frobenius norm,
wl']' = < (Z‘]l)l:]: > c ]Rz.
(wZ)zj

Moreover, 7 denotes the forward finite difference operator,

a+u),, Wit i — Ui
a+ J— ( 1 ij ) _ ( i+1, ij ) e ]Rz‘
@) < (0; ) Uij 1 — Ujj
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An alternating method

We will solve the discrete problem by alternately minimizing the
objective function with respect to w while fixing u, and vice versa.

w-subproblem: For a fixed u, we solve
N
min 3~ (Jfw;l| + £l — @ u)]?),
ij=1
which permits a closed-form solution

1 (0" u);i
L ST I [ ] <ii<
w;; = max (H(a u)iill 5 0) @0y 1<4,j,<N,

where we follow the convention that 0 - (0/0) := 0. The computation
complexity is of order O(N?).
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An alternating method (cont’d)

u-subproblem: For a fixed w = (wy,w;) ', we solve the following
problem with a special structure:

A
min 21Ku — £+ £110u — oy + & g u — wal},

where Ku = H » u with a given blurring filter H, 9] u = [(97 u);],
wy = [(wy);], and so on, and all are matrices in RN*N.

Therefore, we can solve a linear least-squares problem in the form:

A
min | [B| u— || |3
w?

where u, f, w1, and w; are vectorization of [u;], [f;j], [w1;], and [wy;],
respectively. However, the linear least-squares solver (by solving the
normal equations, or using the QR decomposition, or using the SVD) has
high complexity, leading to significant costs!
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u-subproblem: an FFT-based algorithm

We can use the FFT to solve the u-subproblem:

@ Since K, af, 8;“ are all discrete convolutions, if we transform the
u-subproblem into the Fourier domain, then these operations
become element-wise products, e.g., F (Hx u) = F(H) o F(u).

@ Since the Fourier transform preserves the Frobenius norm, we
obtain an equivalent problem (set v := B/A):

min || F(H) o F(u) = F(IIF + I F@F) o F(u) - F(w)||f
+7F(03) 0 F(u) — F(ws) |-

@ After solving for F(u) (using first-order optimality condtion),
we obtain the solution to the u-subproblem by

_]_-—1( F(H)* o F(f) + 7 (F (3 )* o F(wi) + F(3;)* o F(w2)) )
- F(H)* o F(H) +(F (3] ) 0 F (0] ) + F (35 )* 0 F(33)) /'

where denotes complex conjugacy and the division is
element-wise. Therefore, it requires two ffts and one ifft per iteration.

/l*//
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Selection of model parameters

@ Noisy level control parameter A: An appropriate A should give
a solution u satisfying

|| Ku —fH2 ~ ||Kii —j"||2 =0? = Var(n).

@ Constraint penalty parameter 3: Parameter 5 cannot be too
small because it would allow Vu = w to be violated excessively.
However, B cannot be too large either because the larger the § is
the less updates applied to w and u, making the algorithm take
more iterations. Therefore, we should choose § in a continuation
way to balance the speed and accuracy.

@ Prescribed maximum value B;;4y: The initial value of 8 is
relatively small (e.g., B = 4). Then B is increased (e.g., doubled)
until a prescribed maximum value By is reached (e,g, 22°).
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Numerical experiments

% creat a blurring filter

>> H = fspecial (‘motion’, 41, 135)

% add Gaussian white noise with mean 0 and variance 103
>> f = imnoise(original, ’‘gaussian’, 0, le-3)

Original image size = 512x512 Blurry image (SNR 5.9065) Blurry and noisy image (SNR 5.6328)




Numerical experiments

% creat a blurring filter

>> H = fspecial ('gaussian’, 41, 10)

% add Gaussian white noise with mean 0 and variance 10~°
>> f = imnoise(original, ’'gaussian’, 0, le-6)

Original image size = 512x512 Blurry image (SNR 6.2267) Blurry and noisy image (SNR 6.2282)

)

\/ U

2 =10000(SNR 9.6682) 2=50000{SNR 10.5387) A =250000{SNR 11.2205)




Total variation blind deconvolution

Chan-Wong (1998) formulated the blind deconvolution problem as

nl},ihn%/g((h*u)(x) —f(x))zdx—i—le/Q|Vu(x)|dx—0—rx2/0|Vh(x)|dx,

where the use of TV regularization for the blurring kernel / is due to
the fact that some blurring kernels can have edges.

The first-order optimality conditions give

u(—x) * ((uxh)(x) —f(x)) —aV- (m&) =0, x€Q,
(x)

h(—x) * ((hxu)(x) —f(x)) —a1V -

which are the associated Euler-Lagrange equations.

A further study is needed!
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