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Spatial domain and transform domain

The spatial domain approach and transform domain approach are
two main categories in image processing:

Spatial domain: refers to the image plane itself, and image
processing methods in this category are based on direct
manipulation of pixels in an image.

Transform domain: involves first transforming an image into the
transform domain, doing the processing there, and obtaining the
inverse transform to bring the results back into spatial domain.
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Outline of “intensity transformations & spatial filtering”

In this lecture, we will discuss a number of classical techniques for
two principal categories of spatial domain processing:

Intensity transformations: operate on single pixels of an image for
tasks such as contrast manipulation and image thresholding.

Spatial filtering: performs operations on the neighborhood of
every pixel in an image. Examples of spatial filtering include
image smoothing and sharpening.

The material of this lecture is based on Chapter 3 in [GW2018].
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Spatial domain process

The spatial domain process is generally posed in the form:

g(x, y) = T(f (x, y)),

where f (x, y) is an input image, g(x, y) is the output image, and T is
an operator on f defined over a neighborhood (typically a rectangle)
of point (x, y).

A 3× 3 neighborhood about the point (x0, y0). The neighborhood is
moved from pixel to pixel in the image to generate the output image.
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Spatial filtering and intensity transformation

A smoothing spatial filter T: suppose that the neighborhood is a
square of size 3× 3 and that operator T is defined as compute the
average intensity of the pixels in the neighborhood. Then T is a
smoothing filter.

Consider an arbitrary location in an image f , say (100, 150). Then

g(100, 150) = T
(
f (100, 150)

)
=

1
9

1

∑
i=−1

1

∑
j=−1

f (100− i, 150− j).

(A neighborhood processing technique)

Intensity transformation: The smallest possible neighborhood is
of size 1× 1. T becomes an intensity transformation of the form

g(x, y) =: s = T(r) := T(f (x, y)).

(A point processing technique)
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Intensity transformation functions

Contrast stretching function: “left figure” produces an image of
higher contrast than the original, by darkening the intensity
levels below k and brightening the levels above k.

Thresholding function: In the limiting case shown in “right
figure,” T(r) produces a two level (binary) image.

3.1  Background    121

the value of the output image g at those coordinates is equal to the result of apply-
ing T to the neighborhood with origin at ( , )x y0 0  in f.  For example, suppose that 
the neighborhood is a square of size 3 3×  and that operator T is defined as “com-
pute the average intensity of the pixels in the neighborhood.” Consider an arbitrary 
location in an image, say ( , ).100 150  The result at that location in the output image, 
g( , ),100 150  is the sum of f ( , )100 150  and its 8-neighbors, divided by 9. The center of 
the neighborhood is then moved to the next adjacent location and the procedure 
is repeated to generate the next value of the output image g. Typically, the process 
starts at the top left of the input image and proceeds pixel by pixel in a horizontal 
(vertical) scan, one row (column) at a time. We will discuss this type of neighbor-
hood processing beginning in Section 3.4.

The smallest possible neighborhood is of size 1 1× . In this case, g depends only 
on the value of f at a single point ( , )x y  and T in Eq. (3-1) becomes an intensity (also 
called a gray-level, or mapping) transformation function of the form

 s T r= ( )  (3-2)

where, for simplicity in notation, we use s and r to denote, respectively, the intensity 
of g and f at any point ( , ).x y  For example, if T r( ) has the form in Fig. 3.2(a), the 
result of applying the transformation to every pixel in f to generate the correspond-
ing pixels in g would be to produce an image of higher contrast than the original, by 
darkening the intensity levels below k and brightening the levels above k. In this 
technique, sometimes called contrast stretching (see Section 3.2), values of r lower 
than k reduce (darken) the values of s, toward black. The opposite is true for values 
of r higher than k. Observe how an intensity value r0  is mapped to obtain the cor-
responding value s0. In the limiting case shown in Fig. 3.2(b), T r( ) produces a two-
level (binary) image. A mapping of this form is called a thresholding function. Some 
fairly simple yet powerful processing approaches can be formulated with intensity 
transformation functions. In this chapter, we use intensity transformations princi-
pally for image enhancement. In Chapter 10, we will use them for image segmenta-
tion. Approaches whose results depend only on the intensity at a point sometimes 
are called point processing techniques, as opposed to the neighborhood processing 
techniques discussed in the previous paragraph.

Depending on the size 
of a neighborhood and 
its location, part of the 
neighborhood may lie 
outside the image. There 
are two solutions to this: 
(1) to ignore the values 
outside the image, or 
(2) to pad image, as 
discussed in Section 3.4.  
The second approach is 
preferred.
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Intensity  
transformation 
functions.  
(a) Contrast  
stretching  
function.  
(b) Thresholding 
function.
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g(x, y) =: s = T(r) := T(f (x, y))
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Some examples: g(x, y) =: s = T(r) := T(f (x, y))

Negative transformation: The negative of an image with
intensity levels in the range [0, L− 1] is obtained by
s = L− 1− r.

Log transformation: s = c log(1 + r), where c > 0 is a constant.

Power-law (gamma) transformation: s = crγ or s = c(r + ε)γ,
where c and γ are positive constants.

Piecewise linear transformation
3.2  Some Basic Intensity Transformation Functions    123

Reversing the intensity levels of a digital image in this manner produces the 
equivalent of a photographic negative. This type of processing is used, for example, 
in enhancing white or gray detail embedded in dark regions of an image, especially 
when the black areas are dominant in size. Figure 3.4 shows an example. The origi-
nal image is a digital mammogram showing a small lesion. Despite the fact that the 
visual content is the same in both images, some viewers find it easier to analyze the 
fine details of the breast tissue using the negative image.

Identity

0 L/4 L/2 3L/4 L ! 1
Input intensity levels, r

0

L/4

L/2

3L/4

L ! 1

O
ut

pu
t i

nt
en

si
ty

 le
ve

ls
, s

Log

Negative

nth power

nth root

Inverse log
(exponential)

FIGURE 3.3
Some basic  
intensity  
transformation  
functions. Each 
curve was scaled  
independently so 
that all curves 
would fit in the 
same graph. Our  
interest here is 
on the shapes of 
the curves, not 
on their relative 
values. 
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FIGURE 3.4
(a) A  
digital  
mammogram.  
(b) Negative 
image obtained 
using Eq. (3-3). 
(Image (a)  
Courtesy of 
General Electric 
Medical Systems.)
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3.2  Some Basic Intensity Transformation Functions    125

interval [ , ]0 255  and showing the spectrum in the same 8-bit display. The level of 
detail visible in this image as compared to an unmodified display of the spectrum 
is evident from these two images. Most of the Fourier spectra in image processing 
publications, including this book, have been scaled in this manner.

POWER-LAW (GAMMA) TRANSFORMATIONS
Power-law transformations have the form

 s cr= g  (3-5)

where c and g are positive constants. Sometimes Eq. (3-5) is written as s c r= +( )e g  
to account for offsets (that is, a measurable output when the input is zero). However, 
offsets typically are an issue of display calibration, and as a result they are normally 
ignored in Eq. (3-5). Figure 3.6 shows plots of s as a function of r for various values 
of g. As with log transformations, power-law curves with fractional values of g map 
a narrow range of dark input values into a wider range of output values, with the 
opposite being true for higher values of input levels. Note also in Fig. 3.6 that a fam-
ily of transformations can be obtained simply by varying g. Curves generated with 
values of g > 1 have exactly the opposite effect as those generated with values of 
g < 1. When c = =g 1 Eq. (3-5) reduces to the identity transformation.

The response of many devices used for image capture, printing, and display obey 
a power law. By convention, the exponent in a power-law equation is referred to as 
gamma [hence our use of this symbol in Eq. (3-5)]. The process used to correct these 
power-law response phenomena is called gamma correction or gamma encoding. 
For example, cathode ray tube (CRT) devices have an intensity-to-voltage response 
that is a power function, with exponents varying from approximately 1.8 to 2.5. As 
the curve for g = 2 5.  in Fig. 3.6 shows, such display systems would tend to produce 
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FIGURE 3.6
Plots of the  
gamma equation 
s cr= g  for various 
values of g (c = 1 
in all cases). Each 
curve was scaled  
independently so 
that all curves 
would fit in the 
same graph. Our  
interest here is 
on the shapes of 
the curves, not 
on their relative 
values.
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Contrast Stretching
Low-contrast images can result from poor illumination, lack of dynamic range in the 
imaging sensor, or even the wrong setting of a lens aperture during image acquisi-
tion. Contrast stretching expands the range of intensity levels in an image so that it 
spans the ideal full intensity range of the recording medium or display device.

Figure 3.10(a) shows a typical transformation used for contrast stretching. The 
locations of points ( , )r s1 1  and ( , )r s2 2  control the shape of the transformation function. 
If r s1 1=  and r s2 2=  the transformation is a linear function that produces no changes 
in intensity. If r r1 2= , s1 0= , and s L2 1= −  the transformation becomes a threshold-
ing function that creates a binary image [see Fig. 3.2(b)]. Intermediate values of ( , )r s1 1  
and ( , )s r2 2  produce various degrees of spread in the intensity levels of the output 
image, thus affecting its contrast. In general, r r1 2≤  and s s1 2≤  is assumed so that 
the function is single valued and monotonically increasing. This preserves the order 
of intensity levels, thus preventing the creation of intensity artifacts. Figure 3.10(b) 
shows an 8-bit image with low contrast. Figure 3.10(c) shows the result of contrast 
stretching, obtained by setting ( , ) ( , )minr s r1 1 0=  and ( , ) ( , ),maxr s r L2 2 1= −  where 
rmin and rmax denote the minimum and maximum intensity levels in the input image, 
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FIGURE 3.10
Contrast stretching.  
(a) Piecewise linear 
transformation 
function. (b) A low-
contrast electron 
microscope image 
of pollen, magnified 
700 times.  
(c) Result of  
contrast stretching. 
(d) Result of  
thresholding.  
(Original image 
courtesy of Dr.  
Roger Heady, 
Research School of 
Biological Sciences, 
Australian National 
University,  
Canberra,  
Australia.)
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Negative images and log images

3.2  Some Basic Intensity Transformation Functions    123

Reversing the intensity levels of a digital image in this manner produces the 
equivalent of a photographic negative. This type of processing is used, for example, 
in enhancing white or gray detail embedded in dark regions of an image, especially 
when the black areas are dominant in size. Figure 3.4 shows an example. The origi-
nal image is a digital mammogram showing a small lesion. Despite the fact that the 
visual content is the same in both images, some viewers find it easier to analyze the 
fine details of the breast tissue using the negative image.
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Negative image of a digital mammogram (X-ray)

124    Chapter 3  Intensity Transformations and Spatial Filtering

LOG TRANSFORMATIONS
The general form of the log transformation in Fig. 3.3 is

 s c r= +log( )1  (3-4)

where c is a constant and it is assumed that r ≥ 0. The shape of the log curve in Fig. 3.3 
shows that this transformation maps a narrow range of low intensity values in the 
input into a wider range of output levels. For example, note how input levels in the 
range [ , ]0 4L  map to output levels to the range [ , ].0 3 4L  Conversely, higher values 
of input levels are mapped to a narrower range in the output. We use a transformation 
of this type to expand the values of dark pixels in an image, while compressing the 
higher-level values. The opposite is true of the inverse log (exponential) transformation.

Any curve having the general shape of the log function shown in Fig. 3.3 would 
accomplish this spreading/compressing of intensity levels in an image, but the pow-
er-law transformations discussed in the next section are much more versatile for 
this purpose. The log function has the important characteristic that it compresses 
the dynamic range of pixel values. An example in which pixel values have a large 
dynamic range is the Fourier spectrum, which we will discuss in Chapter 4. It is not 
unusual to encounter spectrum values that range from 0 to 106 or higher. Processing 
numbers such as these presents no problems for a computer, but image displays can-
not reproduce faithfully such a wide range of values. The net effect is that intensity 
detail can be lost in the display of a typical Fourier spectrum.

Figure 3.5(a) shows a Fourier spectrum with values in the range 0 to 1 5 106. .×  
When these values are scaled linearly for display in an 8-bit system, the brightest 
pixels dominate the display, at the expense of lower (and just as important) values 
of the spectrum. The effect of this dominance is illustrated vividly by the relatively 
small area of the image in Fig. 3.5(a) that is not perceived as black. If, instead of 
displaying the values in this manner, we first apply Eq. (3-4) (with c = 1 in this case) 
to the spectrum values, then the range of values of the result becomes 0 to 6.2. Trans-
forming values in this way enables a greater range of intensities to be shown on the 
display. Figure 3.5(b) shows the result of scaling the intensity range linearly to the 

ba
FIGURE 3.5
(a) Fourier  
spectrum  
displayed as a  
grayscale image. 
(b) Result of  
applying the log 
transformation 
in Eq. (3-4) with 
c = 1. Both images 
are scaled to the 
range [0, 255].
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Images of gamma transformation

Many devices used for image capture, printing, and display obey a
power law, e.g., cathode ray tube (陰極射線管)126    Chapter 3  Intensity Transformations and Spatial Filtering

images that are darker than intended. Figure 3.7 illustrates this effect. Figure 3.7(a) 
is an image of an intensity ramp displayed in a monitor with a gamma of 2.5. As 
expected, the output of the monitor appears darker than the input, as Fig. 3.7(b) 
shows.

In this case, gamma correction consists of using the transformation s r r= =1 2 5 0 4. .  
to preprocess the image before inputting it into the monitor. Figure 3.7(c) is the result. 
When input into the same monitor, the gamma-corrected image produces an output 
that is close in appearance to the original image, as Fig. 3.7(d) shows. A similar analysis 
as above would apply to other imaging devices, such as scanners and printers, the dif-
ference being the device-dependent value of gamma (Poynton [1996]).

EXAMPLE 3.1 : Contrast enhancement using power-law intensity transformations.

In addition to gamma correction, power-law transformations are useful for general-purpose contrast 
manipulation. Figure 3.8(a) shows a magnetic resonance image (MRI) of a human upper thoracic spine 
with a fracture dislocation. The fracture is visible in the region highlighted by the circle. Because the 
image is predominantly dark, an expansion of intensity levels is desirable. This can be accomplished 
using a power-law transformation with a fractional exponent. The other images shown in the figure were 
obtained by processing Fig. 3.8(a) with the power-law transformation function of Eq. (3-5). The values 

Sometimes, a higher 
gamma makes the  
displayed image look 
better to viewers than 
the original because of 
an increase in contrast. 
However, the objective 
of gamma correction is to 
produce a faithful display 
of an input image.
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FIGURE 3.7
(a) Intensity ramp 
image. (b) Image 
as viewed on a 
simulated monitor 
with a gamma of 
2.5. (c) Gamma- 
corrected image. 
(d) Corrected 
image as viewed 
on the same 
monitor. Compare 
(d) and (a).

Original image as viewed on a monitor with
a gamma of 2.5

Original image Gamma Correction

Gamma-corrected image Gamma-corrected image as viewed on the
same monitor
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Intensity ramp images with c = 1, γ = 2.5 and correction s = r1/(2.5)
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Gamma transformation: MRI of a fractured human spine
3.2  Some Basic Intensity Transformation Functions    127

of gamma corresponding to images (b) through (d) are 0.6, 0.4, and 0.3, respectively (c = 1 in all cases). 
Observe that as gamma decreased from 0.6 to 0.4, more detail became visible. A further decrease of 
gamma to 0.3 enhanced a little more detail in the background, but began to reduce contrast to the point 
where the image started to have a very slight “washed-out” appearance, especially in the background. 
The best enhancement in terms of contrast and discernible detail was obtained with g = 0 4. . A value of 
g = 0 3.  is an approximate limit below which contrast in this particular image would be reduced to an 
unacceptable level.

EXAMPLE 3.2 : Another illustration of power-law transformations.

Figure 3.9(a) shows the opposite problem of that presented in Fig. 3.8(a). The image to be processed 
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FIGURE 3.8
(a) Magnetic 
resonance  
image (MRI) of a 
fractured human 
spine (the region 
of the fracture is 
enclosed by the 
circle).  
(b)–(d) Results of  
applying the  
transformation  
in Eq. (3-5) 
with c = 1 and 
g = 0 6. , 0.4, and 
0.3, respectively. 
(Original image 
courtesy of Dr. 
David R. Pickens, 
Department of 
Radiology and 
Radiological  
Sciences,  
Vanderbilt  
University  
Medical Center.)
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Region of the fracture is enclosed by the circle: c = 1, γ = 0.6, 0.4, 0.3
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Gamma transformation: aerial images (空空空拍拍拍影影影像像像)
128    Chapter 3  Intensity Transformations and Spatial Filtering
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FIGURE 3.9
(a) Aerial image. 
(b)–(d) Results 
of applying the 
transformation 
in Eq. (3-5) with 
g = 3 0. , 4.0, and 
5.0, respectively. 
(c = 1 in all cases.)  
(Original image 
courtesy of 
NASA.)

now has a washed-out appearance, indicating that a compression of intensity levels is desirable. This can 
be accomplished with Eq. (3-5) using values of g greater than 1. The results of processing Fig. 3.9(a) with 
g = 3 0. , 4.0, and 5.0 are shown in Figs. 3.9(b) through (d), respectively. Suitable results were obtained 
using gamma values of 3.0 and 4.0. The latter result has a slightly more appealing appearance because it 
has higher contrast. This is true also of the result obtained with g = 5 0. . For example, the airport runways 
near the middle of the image appears clearer in Fig. 3.9(d) than in any of the other three images. 

PIECEWISE LINEAR TRANSFORMATION FUNCTIONS
An approach complementary to the methods discussed in the previous three sec-
tions is to use piecewise linear functions. The advantage of these functions over those 
discussed thus far is that the form of piecewise functions can be arbitrarily complex. 
In fact, as you will see shortly, a practical implementation of some important trans-
formations can be formulated only as piecewise linear functions. The main disadvan-
tage of these functions is that their specification requires considerable user input.
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c = 1, γ = 3.0, 4.0, 5.0
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Piecewise linear transformation: contrast stretching

3.2  Some Basic Intensity Transformation Functions    129

Contrast Stretching
Low-contrast images can result from poor illumination, lack of dynamic range in the 
imaging sensor, or even the wrong setting of a lens aperture during image acquisi-
tion. Contrast stretching expands the range of intensity levels in an image so that it 
spans the ideal full intensity range of the recording medium or display device.

Figure 3.10(a) shows a typical transformation used for contrast stretching. The 
locations of points ( , )r s1 1  and ( , )r s2 2  control the shape of the transformation function. 
If r s1 1=  and r s2 2=  the transformation is a linear function that produces no changes 
in intensity. If r r1 2= , s1 0= , and s L2 1= −  the transformation becomes a threshold-
ing function that creates a binary image [see Fig. 3.2(b)]. Intermediate values of ( , )r s1 1  
and ( , )s r2 2  produce various degrees of spread in the intensity levels of the output 
image, thus affecting its contrast. In general, r r1 2≤  and s s1 2≤  is assumed so that 
the function is single valued and monotonically increasing. This preserves the order 
of intensity levels, thus preventing the creation of intensity artifacts. Figure 3.10(b) 
shows an 8-bit image with low contrast. Figure 3.10(c) shows the result of contrast 
stretching, obtained by setting ( , ) ( , )minr s r1 1 0=  and ( , ) ( , ),maxr s r L2 2 1= −  where 
rmin and rmax denote the minimum and maximum intensity levels in the input image, 
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Contrast stretching.  
(a) Piecewise linear 
transformation 
function. (b) A low-
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A low-contrast electron microscope image of pollen; Result of contrast
stretching; Result of thresholding
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3.1  Background    121

the value of the output image g at those coordinates is equal to the result of apply-
ing T to the neighborhood with origin at ( , )x y0 0  in f.  For example, suppose that 
the neighborhood is a square of size 3 3×  and that operator T is defined as “com-
pute the average intensity of the pixels in the neighborhood.” Consider an arbitrary 
location in an image, say ( , ).100 150  The result at that location in the output image, 
g( , ),100 150  is the sum of f ( , )100 150  and its 8-neighbors, divided by 9. The center of 
the neighborhood is then moved to the next adjacent location and the procedure 
is repeated to generate the next value of the output image g. Typically, the process 
starts at the top left of the input image and proceeds pixel by pixel in a horizontal 
(vertical) scan, one row (column) at a time. We will discuss this type of neighbor-
hood processing beginning in Section 3.4.

The smallest possible neighborhood is of size 1 1× . In this case, g depends only 
on the value of f at a single point ( , )x y  and T in Eq. (3-1) becomes an intensity (also 
called a gray-level, or mapping) transformation function of the form

 s T r= ( )  (3-2)

where, for simplicity in notation, we use s and r to denote, respectively, the intensity 
of g and f at any point ( , ).x y  For example, if T r( ) has the form in Fig. 3.2(a), the 
result of applying the transformation to every pixel in f to generate the correspond-
ing pixels in g would be to produce an image of higher contrast than the original, by 
darkening the intensity levels below k and brightening the levels above k. In this 
technique, sometimes called contrast stretching (see Section 3.2), values of r lower 
than k reduce (darken) the values of s, toward black. The opposite is true for values 
of r higher than k. Observe how an intensity value r0  is mapped to obtain the cor-
responding value s0. In the limiting case shown in Fig. 3.2(b), T r( ) produces a two-
level (binary) image. A mapping of this form is called a thresholding function. Some 
fairly simple yet powerful processing approaches can be formulated with intensity 
transformation functions. In this chapter, we use intensity transformations princi-
pally for image enhancement. In Chapter 10, we will use them for image segmenta-
tion. Approaches whose results depend only on the intensity at a point sometimes 
are called point processing techniques, as opposed to the neighborhood processing 
techniques discussed in the previous paragraph.

Depending on the size 
of a neighborhood and 
its location, part of the 
neighborhood may lie 
outside the image. There 
are two solutions to this: 
(1) to ignore the values 
outside the image, or 
(2) to pad image, as 
discussed in Section 3.4.  
The second approach is 
preferred.

ba
FIGURE 3.2
Intensity  
transformation 
functions.  
(a) Contrast  
stretching  
function.  
(b) Thresholding 
function.
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Thresholding function: r1 = r2 = k, s1 = 0, s2 = L− 1
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Intensity-level slicing (強強強度度度準準準位位位切切切片片片)

Intensity-level slicing is to highlight a specific range of intensities in
an image, e.g., enhancing features in satellite imagery such as
masses of water, and enhancing flaws in X-ray images.

One approach is to display in one value (say, white) all the
values in the range of interest and in another (say, black) all
other intensities, i.e., produces a binary image.

The second approach brightens (or darkens) the desired range of
intensities, but leaves all other intensity levels in the image
unchanged.

(L) first approach; (R) second approach
c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Intensity Transformations & Spatial Filtering – 13/41



Examples of the intensity-level slicing

(L) aortic angiogram; (M) first approach; (R) second approach, with the
selected range set near black
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Histogram (直直直方方方圖圖圖)

Let rk, for k = 0, 1, · · · , L− 1, denote the intensities of an L-level
image f (x, y). The unnormalized histogram of f is defined as

h(rk) = nk, k = 0, 1, · · · , L− 1,

where nk is the number of pixels in f with intensity rk.

The normalized histogram (image histogram) of f is defined as

p(rk) =
h(rk)

MN
=

nk
MN

,

where f is an M×N image. That is, p(rk) is the probability of

intensity level rk occurring in an image. Then
L−1

∑
k=0

p(rk) = 1.

Histograms are simple to compute and are also suitable for fast
hardware implementations, thus making histogram-based
techniques a popular tool for real-time image processing.
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Four image types and their corresponding histograms

The horizontal axis of the histograms are values of rk and the vertical axis
are values of p(rk)
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Intensity transformation for histogram

Let the variable r denote the intensities of an image to be processed.
Assume that r ∈ [0, L− 1] with r = 0 representing black and r = L− 1
representing white. We consider the intensity transformation

s = T(r), 0 ≤ r ≤ L− 1.

For a given intensity value r in the input image, T produces an output
intensity value s. We assume that

T(r) is a monotonic increasing function in the interval [0, L− 1].

T(r) ∈ [0, L− 1] for all r ∈ [0, L− 1].

If we need to use the inverse r = T−1(s), s ∈ Range(T), then we
assume T(r) is a strictly monotonic increasing function in [0, L− 1].
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Histogram equalization (HE): g(x, y) =: s = T(r) := T(f (x, y))

We are given a grayscale image f : Ω→ [0, 1]. The cumulative
histogram (cumulative distribution function) T is defined by
considering f as a random variable: for η ∈ [0, 1], we define

T(η) := Prob(f ≤ η)

=
1
|Ω|

∣∣∣{(x, y) ∈ Ω : f (x, y) ≤ η}
∣∣∣.

Then T : [0, 1]→ [0, 1] is a monotonic increasing function.

The histogram equalized image g : Ω→ [0, 1] is obtained by
defining

g(x, y) := T(f (x, y)).
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Histogram equalized image g ∼ U (0, 1) if T is invertible

If T is strictly increasing, then T is invertible and the cumulative
distribution function of the histogram equalized image g is

Prob(g ≤ η) = Prob(T(f ) ≤ η) = Prob(f ≤ T−1(η))

= T(T−1(η)) = η.

Hence, the probability density function of g is

p(t) =
{

1 for 0 ≤ t ≤ 1,
0 elsewhere.

Therefore, g has a uniform distribution, i.e., g ∼ U (0, 1).

Remark: Let X be a random variable and p(t) the probability density
function (pdf) of X. The cumulative distribution function (cdf) of X is

F(η) := Prob(X ≤ η) =
∫ η

−∞
p(t) dt.

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Intensity Transformations & Spatial Filtering – 19/41



Example of histogram equalized image
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Histogram equalization of 400× 600 image: (top) before; (bottom) after; and
the corresponding histograms

Matlab commands: imhist(A), histeq(A)
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Histogram-equalized images
3.3  Histogram Processing    141

FIGURE 3.20 Left column: Images from Fig. 3.16. Center column: Corresponding histogram-equalized images. Right 
column: histograms of the images in the center column (compare with the histograms in Fig. 3.16). 
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Histogram-equalized images and the corresponding normalized histograms
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Histogram-equalized images (cont’d)

3.3  Histogram Processing    141

FIGURE 3.20 Left column: Images from Fig. 3.16. Center column: Corresponding histogram-equalized images. Right 
column: histograms of the images in the center column (compare with the histograms in Fig. 3.16). 
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Histogram-equalized images and the corresponding normalized histograms

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Intensity Transformations & Spatial Filtering – 22/41



Spatial filter (空空空間間間濾濾濾波波波)

Spatial filtering modifies an image by replacing the value of each pixel
by a function of the values of the pixel and its neighbors. (discrete!)

If the operation performed on the image pixels is linear, then the
filter is called a linear spatial filter. Otherwise, the filter is a
nonlinear spatial filter.

A linear spatial filter performs a sum-of-products operation between an
image f and a filter kernel w. The kernel is an array whose size
defines the neighborhood of operation, and whose coefficients
(entries) determine the nature of the filter.

Other terms used to refer to a spatial filter kernel are mask,
template, and window. We use the term “filter kernel” or simply
“kernel.”
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Filter kernel of a linear spatial filter

Linear spatial filtering using a 3× 3 kernel
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Linear spatial filtering

3× 3 kernel: at any point (x, y) in the image f , the response
g(x, y) of the filter is the sum of products of the kernel entries
(coefficients) and the image pixels:

g(x, y) = w(−1,−1)f (x− 1, y− 1) + w(−1, 0)f (x− 1, y) + · · ·
+w(0, 0)f (x, y)︸ ︷︷ ︸+ · · ·+ w(1, 1)f (x + 1, y + 1).

As x and y are varied, the center (origin) of the kernel moves from
pixel to pixel, generating the filtered image g.

m× n kernel: Assume that m = 2a + 1 and n = 2b + 1. Then

g(x, y) =
a

∑
i=−a

b

∑
j=−b

w(i, j)f (x + i, y + j).

This is talking about the (discrete) spatial correlation (空間相關性).

The mechanics of (discrete) spatial convolution (空間卷積, ∗ or ~) are
the same, except that the kernel is rotated by 180◦ counterclockwise.
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Convolution of two functions

Let f and g be two integrable real-valued functions with
compact supports in R. Then the convolution of f and g is
defined as a function in variable t,

(f ∗ g)(t) :=
∫ ∞

−∞
f (τ)g(t− τ) dτ, t ∈ R.

The operation can be described as a weighted average of the input f
according to the weighting (or kernel) g at each point in time t.

Let f and g be two integrable real-valued functions with
compact supports in Rd. Then the convolution of f and g is
defined as a function in variable x,

(f ∗ g)(x) :=
∫

Rd
f (y)g(x− y) dy, x ∈ Rd.

Commutativity: f ∗ g = g ∗ f
Associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h)
Distributivity: f ∗ (g + h) = (f ∗ g) + (f ∗ h)
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Commutativity: f ∗ g = g ∗ f

∵ f and g are two integrable functions with compact supports in R.

∴ ∃ L > 0 such that f (t) = 0 = g(t) for t 6∈ [−L, L].

∴ (f ∗ g)(t) :=
∫ ∞

−∞
f (τ)g(t− τ)dτ =

∫ L

−L
f (τ)g(t− τ)dτ, ∀ t ∈ R

Let η = −(τ − t). Then τ = t− η and dη = −dτ, and we have∫ L

−L
f (τ)g(t− τ)dτ =

∫ t−L

t+L
f (t− η)g(η)(−dη) =

∫ t+L

t−L
f (t− η)g(η)dη.

If t ≥ 0, then
∫ t+L

t−L
f (t− η)g(η)dη =

∫ L

−L
f (t− η)g(η)dη = (g ∗ f )(t).

If t < 0, then
∫ t+L

t−L
f (t− η)g(η)dη =

∫ L

−L
f (t− η)g(η)dη = (g ∗ f )(t).

∴ (f ∗ g)(t) = (g ∗ f )(t), ∀ t ∈ R
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Convolution of two 1-D functions

(f ∗ g)(t) :=
∫ ∞

−∞
f (τ)g(t− τ) dτ, t ∈ R

Wikipedia: https://en.wikipedia.org/wiki/Convolution
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Discrete convolution: 1-D

The discrete convolution of input (signal) f and kernel g is defined by

(f ∗ g)(t) :=
∞

∑
τ=−∞,τ∈Z

f (τ)g(t− τ), t ∈ Z.

When f and g have finite supports, a finite summation may be
used.

f and g can be viewed as piecewise constant functions in each
unit integer interval.
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Correlation vs. convolution: 1-D example
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1-D discrete full convolution

Let u = [u1, · · · , un]> ∈ Rn and v = [v1, · · · , vm]> ∈ Rm. The
convolution of u and v is defined as

u ∗ v :=



u1v1
u1v2 + u2v1

u1v3 + u2v2 + u3v1
...

un−2vm + un−1vm−1 + unvm−2
un−1vm + unvm−1

unvm


∈ Rm+n−1.
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Convolution: 1-D example in MATLAB

u=[1 1 1];
v=[1 1 0 0 0 1 1];
—————-
w1=conv(u,v)
w1=

1 2 2 1 0 1 2 2 1
—————-
w2=conv(u,v,’same’)
w2=

1 0 1
—————-
w3=conv(u,v,’valid’)
w3=

1×0 empty · · ·
—————-
w4=conv(v,u,’valid’)
w4=

2 1 0 1 2
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Correlation vs. convolution: 2-D example
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2-D discrete convolution: conv2(f,K,’valid’)

no padding, stride 1

In MATLAB: conv2(f,K,’valid’)

Full convolution: conv2(f,K) =⇒ (7 + 3− 1)× (7 + 3− 1) matrix!
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Stride (步步步長長長)

(correction: 34 34)

Convolution of a 6× 6 matrix and a 3× 3 filter with stride 3, no padding
=⇒ 2× 2 matrix
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Padding (填填填補補補)

Convolution of a 6× 6 matrix with zero-padding 1
and a 3× 3 filter with stride 1

In MATLAB: conv2(f,K,’same’)
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A Matlab file for convolution and correlation

clear all
clc
m=5;%image size
w=3;%window size of convolution
I=reshape(1:mˆ2,m,m)
K=reshape(1:wˆ2,w,w)
%convolution
conv2 output=conv2(I,K,’valid’)
%manual implementation
C=zeros(m-w+1,m-w+1);
for i=1:m-w+1
for j=1:m-w+1
C(i,j)=sum(sum(I(i:i+w-1,j:j+w-1).∗rot90(K,2)));

end
end
C
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A Matlab file for convolution and correlation (cont’d)

%correlation
corr output=filter2(K,I,’valid’)
% manual implementation
D=zeros(m-w+1,m-w+1);
for i=1:m-w+1
for j=1:m-w+1
D(i,j)=sum(sum(I(i:i+w-1,j:j+w-1).∗K));

end
end
D
—————————————-
% function ‘imfilter’ is provided in the MATLAB toolbox
imfilter conv output=imfilter(I,K,’conv’,’same’)
imfilter corr output=imfilter(I,K,’corr’,’same’)
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Results of the Matlab file
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Convolution operation = spatial filtering

Different kernels reveal a different characteristics of the input image
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Example of edge detection: Sobel operator

The Sobel operator is used for edge detection, which creates an image
that emphasizes edges. Below are two kernels used in the operation:

Sobel X = f ∗

 −1 0 1
−2 0 2
−1 0 1

 Sobel Y = f ∗

 −1 −2 −1
0 0 0
1 2 1


Sobel X

Sobel Y magnitude

original

magnitude(i,j) := ‖(SobelX(i, j), SobelY(i, j))‖2
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