

MA3111: Mathematical Image Processing

Intensity Transformations & Spatial Filtering

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 32001, Taiwan

syyang@math.ncu.edu.tw
<http://www.math.ncu.edu.tw/~syyang/>

Spatial domain and transform domain

The spatial domain approach and transform domain approach are two main categories in image processing:

- *Spatial domain*: refers to the image plane itself, and image processing methods in this category are based on direct manipulation of pixels in an image.
- *Transform domain*: involves first transforming an image into the transform domain, doing the processing there, and obtaining the inverse transform to bring the results back into spatial domain.

Outline of “intensity transformations & spatial filtering”

In this lecture, we will discuss a number of classical techniques for two principal categories of spatial domain processing:

- *Intensity transformations*: operate on single pixels of an image for tasks such as contrast manipulation and image thresholding.
- *Spatial filtering*: performs operations on the neighborhood of every pixel in an image. Examples of spatial filtering include image smoothing and sharpening.

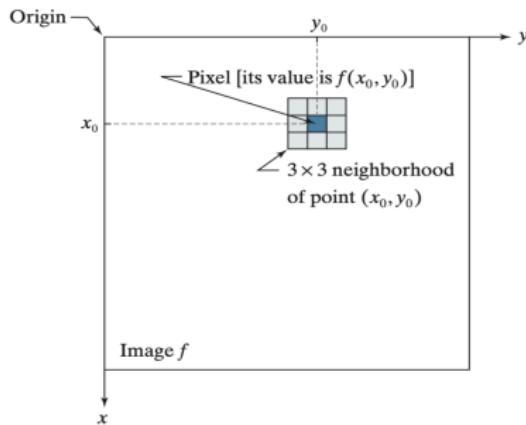
The material of this lecture is based on Chapter 3 in [GW2018].

Spatial domain process

The spatial domain process is generally posed in the form:

$$g(x, y) = T(f(x, y)),$$

where $f(x, y)$ is an input image, $g(x, y)$ is the output image, and T is an operator on f defined over a neighborhood (typically a rectangle) of point (x, y) .



A 3×3 neighborhood about the point (x_0, y_0) . The neighborhood is moved from pixel to pixel in the image to generate the output image.

Spatial filtering and intensity transformation

- **A smoothing spatial filter T :** suppose that the neighborhood is a square of size 3×3 and that operator T is defined as *compute the average intensity of the pixels in the neighborhood. Then T is a smoothing filter.*

Consider an arbitrary location in an image f , say $(100, 150)$. Then

$$g(100, 150) = T(f(100, 150)) = \frac{1}{9} \sum_{i=-1}^1 \sum_{j=-1}^1 f(100 - i, 150 - j).$$

(A neighborhood processing technique)

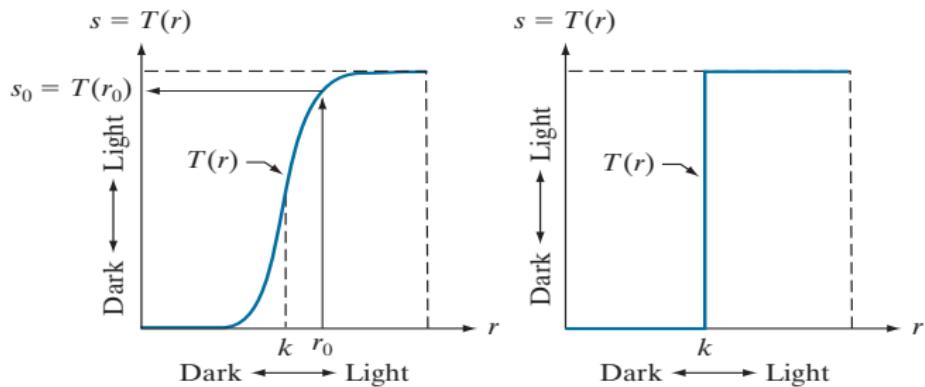
- **Intensity transformation:** The smallest possible neighborhood is of size 1×1 . T becomes an intensity transformation of the form

$$g(x, y) =: s = T(r) := T(f(x, y)).$$

(A point processing technique)

Intensity transformation functions

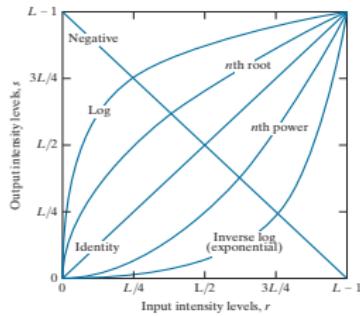
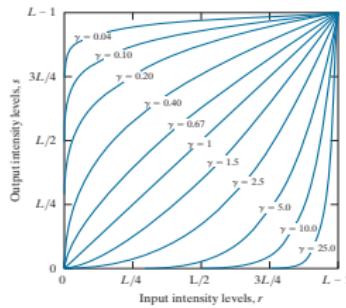
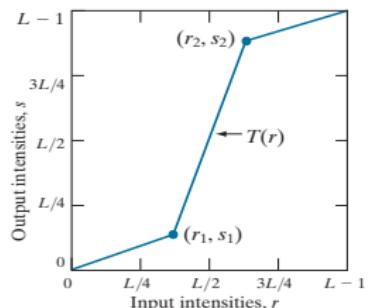
- **Contrast stretching function:** “left figure” produces an image of higher contrast than the original, by darkening the intensity levels below k and brightening the levels above k .
- **Thresholding function:** In the limiting case shown in “right figure,” $T(r)$ produces a two level (binary) image.



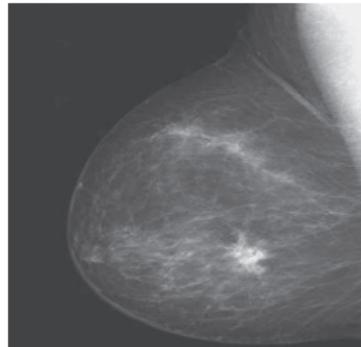
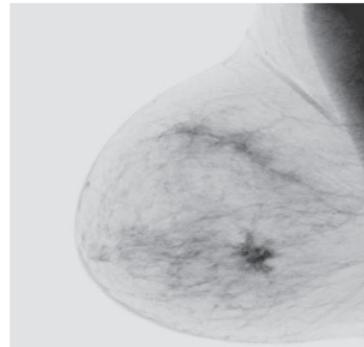
$$g(x, y) =: s = T(r) := T(f(x, y))$$

Some examples: $g(x, y) =: s = T(r) := T(f(x, y))$

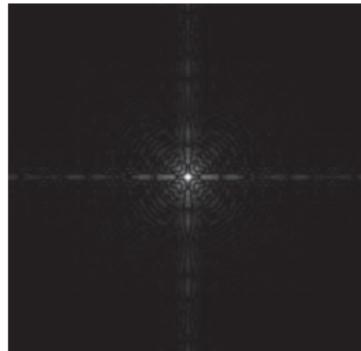
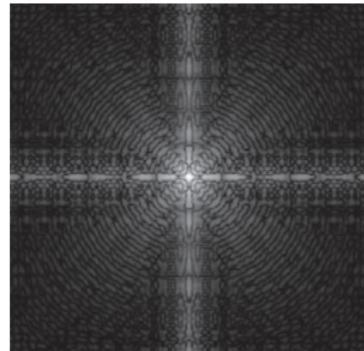
- **Negative transformation:** The negative of an image with intensity levels in the range $[0, L - 1]$ is obtained by $s = L - 1 - r$.
- **Log transformation:** $s = c \log(1 + r)$, where $c > 0$ is a constant.
- **Power-law (gamma) transformation:** $s = cr^\gamma$ or $s = c(r + \varepsilon)^\gamma$, where c and γ are positive constants.
- **Piecewise linear transformation**



Negative images and log images



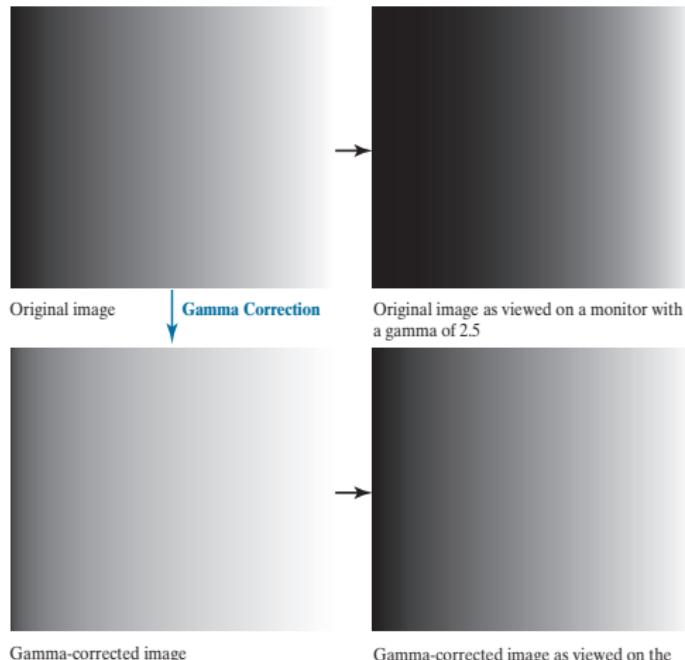
Negative image of a digital mammogram (X-ray)



Log transformation of Fourier spectrum with $c = 1$

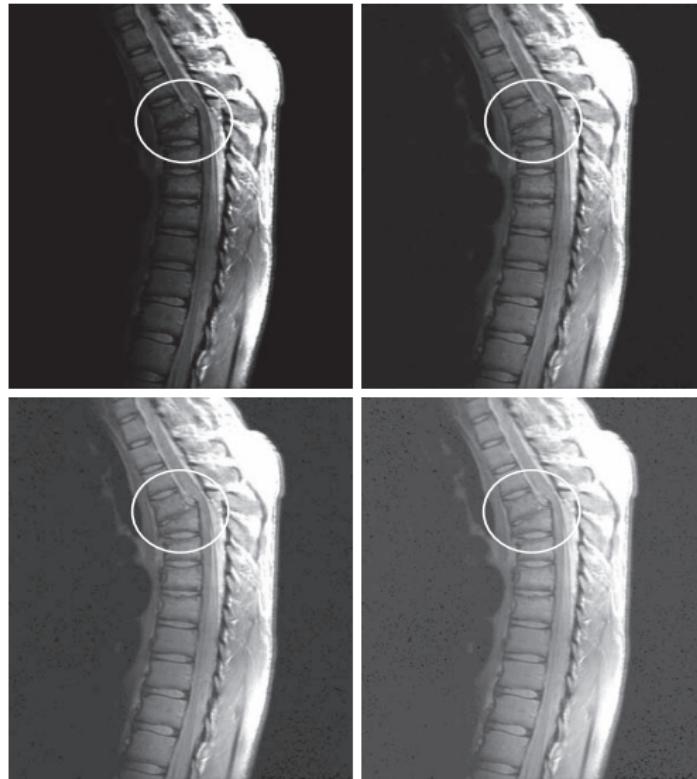
Images of gamma transformation

Many devices used for image capture, printing, and display obey a power law, e.g., cathode ray tube (陰極射線管)



Intensity ramp images with $c = 1$, $\gamma = 2.5$ and correction $s = r^{1/(2.5)}$

Gamma transformation: MRI of a fractured human spine



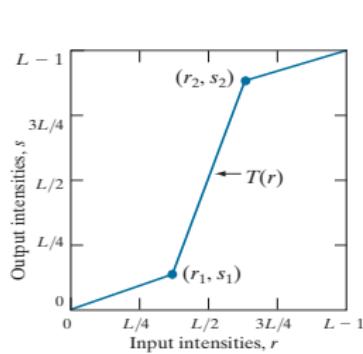
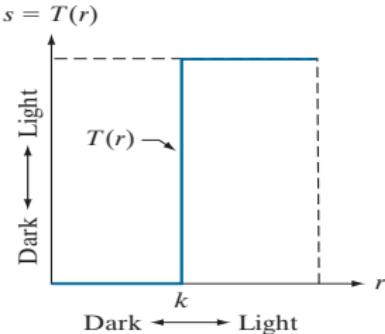
Region of the fracture is enclosed by the circle: $c = 1, \gamma = 0.6, 0.4, 0.3$

Gamma transformation: aerial images (空拍影像)

$$c = 1, \gamma = 3.0, 4.0, 5.0$$

Piecewise linear transformation: contrast stretching

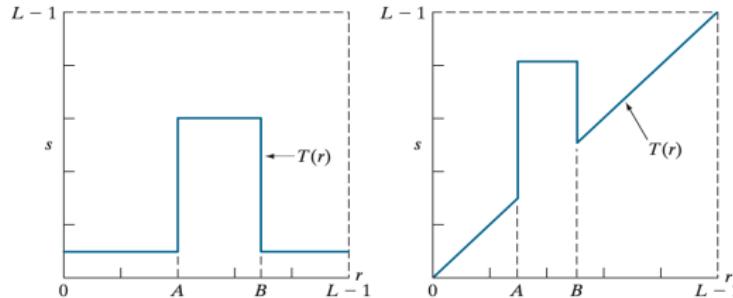
A low-contrast electron microscope image of pollen; Result of contrast stretching; Result of thresholding



Thresholding function: $r_1 = r_2 = k, s_1 = 0, s_2 = L - 1$

Intensity-level slicing (强度準位切片)

- *Intensity-level slicing is to highlight a specific range of intensities in an image*, e.g., enhancing features in satellite imagery such as masses of water, and enhancing flaws in X-ray images.
- One approach is to display in one value (say, white) all the values in the range of interest and in another (say, black) all other intensities, i.e., produces a binary image.
- The second approach brightens (or darkens) the desired range of intensities, but leaves all other intensity levels in the image unchanged.



(L) first approach; (R) second approach

Examples of the intensity-level slicing

(L) aortic angiogram; (M) first approach; (R) second approach, with the selected range set near black

Histogram (直方圖)

- Let r_k , for $k = 0, 1, \dots, L - 1$, denote the intensities of an L -level image $f(x, y)$. The unnormalized histogram of f is defined as

$$h(r_k) = n_k, \quad k = 0, 1, \dots, L - 1,$$

where n_k is the number of pixels in f with intensity r_k .

- The normalized histogram (image histogram) of f is defined as

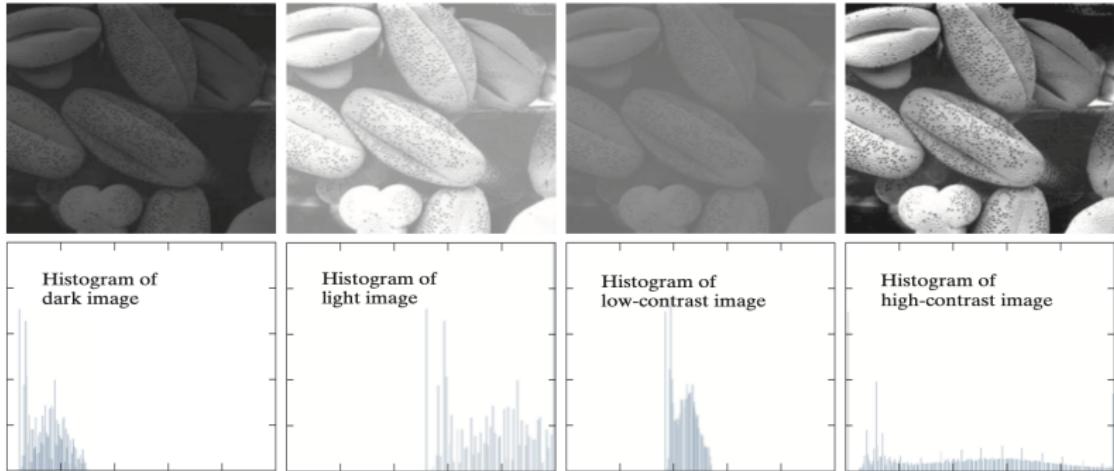
$$p(r_k) = \frac{h(r_k)}{MN} = \frac{n_k}{MN},$$

where f is an $M \times N$ image. That is, $p(r_k)$ is the probability of

intensity level r_k occurring in an image. Then $\sum_{k=0}^{L-1} p(r_k) = 1$.

- Histograms are simple to compute and are also suitable for fast hardware implementations, thus making histogram-based techniques a popular tool for real-time image processing.

Four image types and their corresponding histograms



The horizontal axis of the histograms are values of r_k and the vertical axis are values of $p(r_k)$

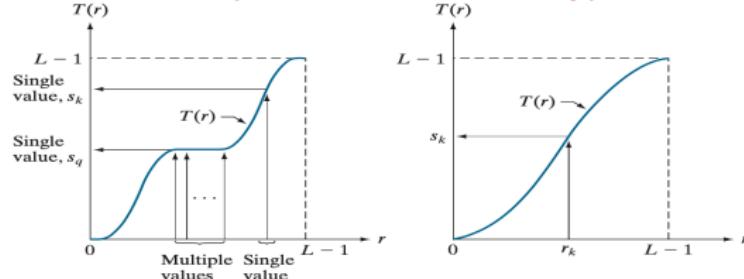
Intensity transformation for histogram

Let the variable r denote the intensities of an image to be processed. Assume that $r \in [0, L - 1]$ with $r = 0$ representing black and $r = L - 1$ representing white. We consider the intensity transformation

$$s = T(r), \quad 0 \leq r \leq L - 1.$$

For a given intensity value r in the input image, T produces an output intensity value s . We assume that

- $T(r)$ is a monotonic increasing function in the interval $[0, L - 1]$.
- $T(r) \in [0, L - 1]$ for all $r \in [0, L - 1]$.
- If we need to use the inverse $r = T^{-1}(s)$, $s \in \text{Range}(T)$, then we assume $T(r)$ is a strictly monotonic increasing function in $[0, L - 1]$.



Histogram equalization (HE): $g(x, y) =: s = T(r) := T(f(x, y))$

- We are given a grayscale image $f : \bar{\Omega} \rightarrow [0, 1]$. The cumulative histogram (*cumulative distribution function*) T is defined by considering f as a random variable: for $\eta \in [0, 1]$, we define

$$\begin{aligned} T(\eta) &:= \text{Prob}(f \leq \eta) \\ &= \frac{1}{|\bar{\Omega}|} \left| \{(x, y) \in \bar{\Omega} : f(x, y) \leq \eta\} \right|. \end{aligned}$$

Then $T : [0, 1] \rightarrow [0, 1]$ is a monotonic increasing function.

- The histogram equalized image $g : \bar{\Omega} \rightarrow [0, 1]$ is obtained by defining

$$g(x, y) := T(f(x, y)).$$

Histogram equalized image $g \sim \mathcal{U}(0, 1)$ if T is invertible

If T is strictly increasing, then T is invertible and the *cumulative distribution function* of the histogram equalized image g is

$$\begin{aligned} \text{Prob}(g \leq \eta) &= \text{Prob}(T(f) \leq \eta) = \text{Prob}(f \leq T^{-1}(\eta)) \\ &= T(T^{-1}(\eta)) = \eta. \end{aligned}$$

Hence, the *probability density function* of g is

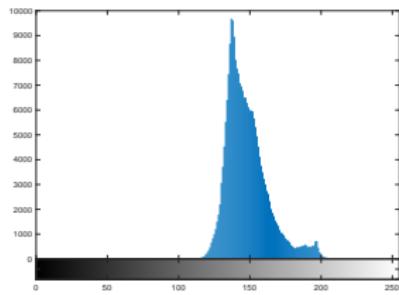
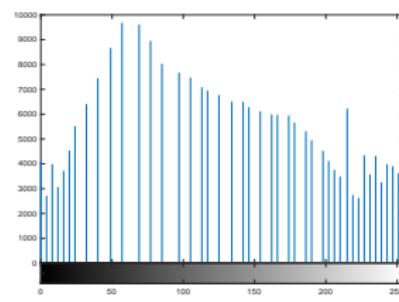
$$p(t) = \begin{cases} 1 & \text{for } 0 \leq t \leq 1, \\ 0 & \text{elsewhere.} \end{cases}$$

Therefore, g has a uniform distribution, i.e., $g \sim \mathcal{U}(0, 1)$.

Remark: Let X be a random variable and $p(t)$ the probability density function (pdf) of X . The cumulative distribution function (cdf) of X is

$$F(\eta) := \text{Prob}(X \leq \eta) = \int_{-\infty}^{\eta} p(t) dt.$$

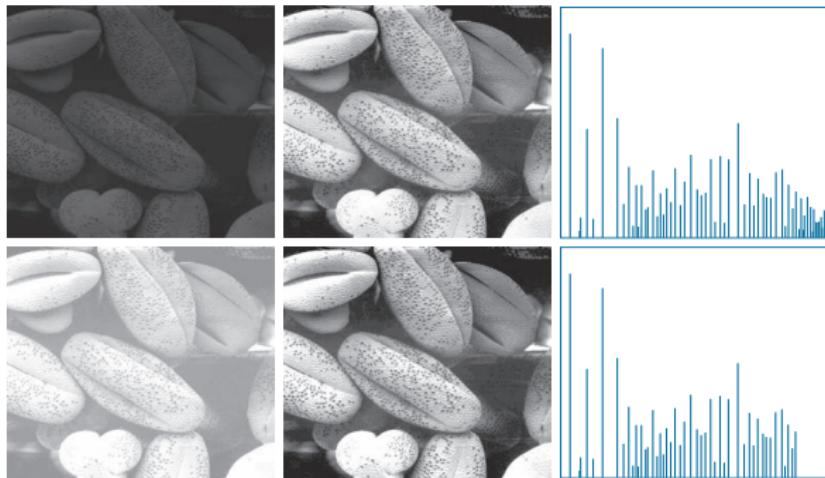
Example of histogram equalized image



Histogram equalization of 400×600 image: (top) before; (bottom) after; and the corresponding histograms

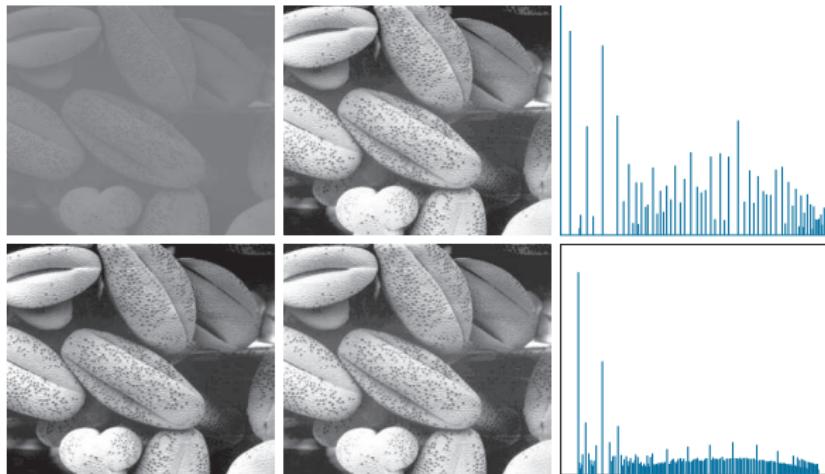
Matlab commands: `imhist (A)`, `histeq (A)`

Histogram-equalized images



Histogram-equalized images and the corresponding normalized histograms

Histogram-equalized images (cont'd)

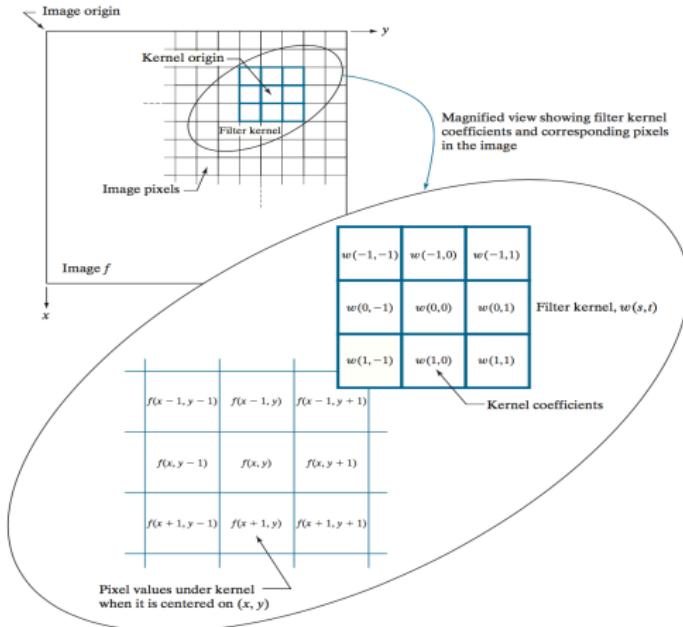


Histogram-equalized images and the corresponding normalized histograms

Spatial filter (空間濾波)

- *Spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbors.* (discrete!)
- If the operation performed on the image pixels is linear, then the filter is called a linear spatial filter. Otherwise, the filter is a nonlinear spatial filter.
- *A linear spatial filter performs a sum-of-products operation between an image f and a filter kernel w .* The kernel is an array whose size defines the neighborhood of operation, and whose coefficients (entries) determine the nature of the filter.
- Other terms used to refer to a spatial filter kernel are *mask*, *template*, and *window*. We use the term “*filter kernel*” or simply “*kernel*.”

Filter kernel of a linear spatial filter



Linear spatial filtering using a 3×3 kernel

Linear spatial filtering

- **3×3 kernel:** at any point (x, y) in the image f , the response $g(x, y)$ of the filter is the sum of products of the kernel entries (coefficients) and the image pixels:

$$g(x, y) = w(-1, -1)f(x-1, y-1) + w(-1, 0)f(x-1, y) + \dots + \underbrace{w(0, 0)f(x, y)}_{\text{center (origin) of the kernel}} + \dots + w(1, 1)f(x+1, y+1).$$

As x and y are varied, the *center (origin) of the kernel* moves from pixel to pixel, generating the filtered image g .

- **$m \times n$ kernel:** Assume that $m = 2a + 1$ and $n = 2b + 1$. Then

$$g(x, y) = \sum_{i=-a}^a \sum_{j=-b}^b w(i, j)f(x+i, y+j).$$

This is talking about the *(discrete) spatial correlation* (空間相關性).

The mechanics of *(discrete) spatial convolution* (空間卷積, $*$ or \circledast) are the same, except that the kernel is rotated by 180° counterclockwise.

Convolution of two functions

- Let f and g be two integrable real-valued functions with compact supports in \mathbb{R} . Then the convolution of f and g is defined as a function in variable t ,

$$(f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau, \quad t \in \mathbb{R}.$$

The operation can be described as *a weighted average of the input f according to the weighting (or kernel) g at each point in time t .*

- Let f and g be two integrable real-valued functions with compact supports in \mathbb{R}^d . Then the convolution of f and g is defined as a function in variable x ,

$$(f * g)(x) := \int_{\mathbb{R}^d} f(\mathbf{y})g(\mathbf{x} - \mathbf{y}) d\mathbf{y}, \quad \mathbf{x} \in \mathbb{R}^d.$$

- Commutativity: $f * g = g * f$

Associativity: $(f * g) * h = f * (g * h)$

Distributivity: $f * (g + h) = (f * g) + (f * h)$

Commutativity: $f * g = g * f$

$\because f$ and g are two integrable functions with compact supports in \mathbb{R} .

$\therefore \exists L > 0$ such that $f(t) = 0 = g(t)$ for $t \notin [-L, L]$.

$$\therefore (f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau = \int_{-L}^L f(\tau)g(t - \tau)d\tau, \quad \forall t \in \mathbb{R}$$

Let $\eta = -(\tau - t)$. Then $\tau = t - \eta$ and $d\eta = -d\tau$, and we have

$$\int_{-L}^L f(\tau)g(t - \tau)d\tau = \int_{t+L}^{t-L} f(t - \eta)g(\eta)(-d\eta) = \int_{t-L}^{t+L} f(t - \eta)g(\eta)d\eta.$$

If $t \geq 0$, then $\int_{t-L}^{t+L} f(t - \eta)g(\eta)d\eta = \int_{-L}^L f(t - \eta)g(\eta)d\eta = (g * f)(t)$.

If $t < 0$, then $\int_{t-L}^{t+L} f(t - \eta)g(\eta)d\eta = \int_{-L}^L f(t - \eta)g(\eta)d\eta = (g * f)(t)$.

$$\therefore (f * g)(t) = (g * f)(t), \quad \forall t \in \mathbb{R}$$

Convolution of two 1-D functions



$$(f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau, \quad t \in \mathbb{R}$$

Wikipedia: <https://en.wikipedia.org/wiki/Convolution>

Discrete convolution: 1-D

The discrete convolution of input (signal) f and kernel g is defined by

$$(f * g)(t) := \sum_{\tau=-\infty, \tau \in \mathbb{Z}}^{\infty} f(\tau)g(t - \tau), \quad t \in \mathbb{Z}.$$

- When f and g have finite supports, a finite summation may be used.
- f and g can be viewed as piecewise constant functions in each unit integer interval.

Correlation vs. convolution: 1-D example

Correlation

$$\begin{array}{ccccccc} \text{Origin} & f & & w & & & \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ & & & & & & \mathbf{1} \ 2 \ 4 \ 2 \ 8 \end{array}$$

$$\begin{array}{ccccccc} & \downarrow & & & & & \\ & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ \mathbf{1} & 2 & 4 & 2 & 8 & & \\ \text{Starting position alignment} & \uparrow & & & & & \end{array}$$

$$\begin{array}{ccccccc} & \downarrow & \text{Zero padding} & \downarrow & & & \\ & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\ & \mathbf{1} & 2 & 4 & 2 & 8 & \\ \text{Starting position} & \uparrow & & & & & \end{array}$$

$$\begin{array}{ccccccc} & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\ & \mathbf{1} & 2 & 4 & 2 & 8 & \\ \text{Position after 1 shift} & \uparrow & & & & & \end{array}$$

$$\begin{array}{ccccccc} & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\ & \mathbf{1} & 2 & 4 & 2 & 8 & \\ \text{Position after 3 shifts} & \uparrow & & & & & \end{array}$$

$$\begin{array}{ccccccc} & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\ & \mathbf{1} & 2 & 4 & 2 & 8 & \\ \text{Final position} & \uparrow & & & & & \end{array}$$

Correlation result

$$0 \ 8 \ 2 \ 4 \ 2 \ 1 \ 0 \ 0$$

Extended (full) correlation result

$$0 \ 0 \ 0 \ 8 \ 2 \ 4 \ 2 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0$$

Convolution

$$\begin{array}{ccccccc} \text{Origin} & f & & w \text{ rotated } 180^\circ & & & \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ & & & & & & \mathbf{8} \ 2 \ 4 \ 2 \ 1 \end{array}$$

$$\begin{array}{ccccccc} & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ \mathbf{8} & 2 & 4 & 2 & 1 & & \\ \text{Starting position alignment} & \uparrow & & & & & \end{array}$$

$$\begin{array}{ccccccc} & \downarrow & \text{Zero padding} & \downarrow & & & \\ & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\ & \mathbf{8} & 2 & 4 & 2 & 1 & \\ \text{Starting position} & \uparrow & & & & & \end{array}$$

$$\begin{array}{ccccccc} & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\ & \mathbf{8} & 2 & 4 & 2 & 1 & \\ \text{Position after 1 shift} & \uparrow & & & & & \end{array}$$

$$\begin{array}{ccccccc} & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\ & \mathbf{8} & 2 & 4 & 2 & 1 & \\ \text{Position after 3 shifts} & \uparrow & & & & & \end{array}$$

$$\begin{array}{ccccccc} & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\ & \mathbf{8} & 2 & 4 & 2 & 1 & \\ \text{Final position} & \uparrow & & & & & \end{array}$$

Convolution result

$$0 \ 1 \ 2 \ 4 \ 2 \ 8 \ 0 \ 0$$

Extended (full) convolution result

$$0 \ 0 \ 0 \ 1 \ 2 \ 4 \ 2 \ 8 \ 0 \ 0 \ 0 \ 0$$

1-D discrete full convolution

Let $u = [u_1, \dots, u_n]^\top \in \mathbb{R}^n$ and $v = [v_1, \dots, v_m]^\top \in \mathbb{R}^m$. The convolution of u and v is defined as

$$u * v := \begin{bmatrix} u_1 v_1 \\ u_1 v_2 + u_2 v_1 \\ u_1 v_3 + u_2 v_2 + u_3 v_1 \\ \vdots \\ u_{n-2} v_m + u_{n-1} v_{m-1} + u_n v_{m-2} \\ u_{n-1} v_m + u_n v_{m-1} \\ u_n v_m \end{bmatrix} \in \mathbb{R}^{m+n-1}.$$

Convolution: 1-D example in MATLAB

```
u=[1 1 1];  
v=[1 1 0 0 0 1 1];  
_____
```

```
w1=conv(u,v)  
w1=  
1 2 2 1 0 1 2 2 1  
_____
```

```
w2=conv(u,v,'same')  
w2=  
1 0 1  
_____
```

```
w3=conv(u,v,'valid')  
w3=  
1×0 empty ...  
_____
```

```
w4=conv(v,u,'valid')  
w4=  
2 1 0 1 2
```

Correlation vs. convolution: 2-D example

		Padded f							
Origin f		0	0	0	0	0	0	0	0
0 0 0 0 0		0	0	0	0	0	0	0	0
0 0 0 0 0		0	0	0	0	0	0	0	0
0 0 1 0 0		0	0	0	1	0	0	0	0
0 0 0 0 0		0	0	0	0	0	0	0	0
0 0 0 0 0		0	0	0	0	0	0	0	0
0 0 0 0 0		0	0	0	0	0	0	0	0
(a)		(b)							
Initial position for w		Correlation result				Full correlation result			
1 2 3		0	0	0	0	0	0	0	0
4 5 6		0	0	0	0	0	0	0	0
7 8 9		0	9	8	7	0	0	0	0
0 0 0 1 0 0 0		0	6	5	4	0	0	0	0
0 0 0 0 0 0 0		0	3	2	1	0	0	0	0
0 0 0 0 0 0 0		0	0	0	0	0	0	0	0
0 0 0 0 0 0 0		0	0	0	0	0	0	0	0
(c)		(d)				(e)			
Rotated w		Convolution result				Full convolution result			
9 8 7		0	0	0	0	0	0	0	0
6 5 4		0	0	0	0	0	0	0	0
3 2 1		0	1	2	3	0	0	0	0
0 0 0 1 0 0 0		0	4	5	6	0	0	0	0
0 0 0 0 0 0 0		0	7	8	9	0	0	0	0
0 0 0 0 0 0		0	0	0	0	0	0	0	0
(f)		(g)				(h)			

2-D discrete convolution: `conv2(f, K, 'valid')`

The diagram illustrates a 2-D discrete convolution operation. On the left, a 7x7 input image is shown with values: 0, 1, 1, 1, 0, 0, 0; 0, 0, 1, 1, 1, 0, 0; 0, 0, 0, 1, 1, 1, 0; 0, 0, 0, 1, 1, 0, 0; 0, 0, 1, 1, 0, 0, 0; 0, 1, 1, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0. A 3x3 kernel is shown in the center with values: 1, 0, 1; 0, 1, 0; 1, 0, 1. The convolution operation is indicated by the symbol '*' between the input and kernel. The resulting output matrix on the right is: 1, 4, 3, 4, 1; 1, 2, 4, 3, 3; 1, 2, 3, 4, 1; 1, 3, 3, 1, 1; 3, 3, 1, 1, 0. The first element of the output matrix (1) is highlighted in orange.

no padding, stride 1

In MATLAB: `conv2(f, K, 'valid')`

Full convolution: `conv2(f, K)` \Rightarrow $(7 + 3 - 1) \times (7 + 3 - 1)$ matrix!

Stride (步長)

1	1	2	0	0	2
4	3	1	5	2	1
2	5	1	1	4	5
1	3	2	3	1	4
2	5	4	0	0	1
3	4	4	1	3	4

1	2	0
0	2	3
1	1	2

21	

1	1	2	0	0	2
4	3	1	5	2	1
2	5	1	1	4	5
1	3	2	3	1	4
2	5	4	0	0	1
3	4	4	1	3	4

1	2	0
0	2	3
1	1	2

21	14

(correction: 34 34)

Convolution of a 6×6 matrix and a 3×3 filter with stride 3, no padding
 $\Rightarrow 2 \times 2$ matrix

Padding (填補)

0	0	0	0	0	0	0	0	0
0	1	1	2	0	0	2	0	
0	4	3	1	2	2	1	0	
0	2	0	1	1	4	0	0	
0	1	3	2	3	1	4	0	
0	2	0	4	0	0	1	0	
0	3	4	4	1	3	4	0	
0	0	0	0	0	0	0	0	

⊗

1	0	2
0	2	0
1	1	0

==

5	11	12	4	5	8
10	14	5	10	8	12
14	8	14	11	21	3
4	15	6	19	7	8
12	15	22	15	11	12
8	12	12	2	7	9

Convolution of a 6×6 matrix with zero-padding 1 and a 3×3 filter with stride 1

In MATLAB: `conv2(f, K, 'same')`

A Matlab file for convolution and correlation

```
clear all
clc
m=5;%image size
w=3;%window size of convolution
I=reshape(1:m^2,m,m)
K=reshape(1:w^2,w,w)
%convolution
conv2_output=conv2(I,K,'valid')
%manual implementation
C=zeros(m-w+1,m-w+1);
for i=1:m-w+1
    for j=1:m-w+1
        C(i,j)=sum(sum(I(i:i+w-1,j:j+w-1).*rot90(K,2)));
    end
end
C
```

A Matlab file for convolution and correlation (cont'd)

```
%correlation
corr_output=filter2(K,I,'valid')
% manual implementation
D=zeros(m-w+1,m-w+1);
for i=1:m-w+1
    for j=1:m-w+1
        D(i,j)=sum(sum(I(i:i+w-1,j:j+w-1).*K));
    end
end
D
```

```
% function 'imfilter' is provided in the MATLAB toolbox
imfilter_conv_output=imfilter(I,K,'conv','same')
imfilter_corr_output=imfilter(I,K,'corr','same')
```

Results of the Matlab file

```
corr_output =  
  
I =  
      1   6   11   16   21   411   636   861  
      2   7   12   17   22   456   681   906  
      3   8   13   18   23   501   726   951  
      4   9   14   19   24   D =  
      5  10   15   20   25   411   636   861  
                           456   681   906  
K =  
      1   4   7   501   726   951  
      2   5   8   411   636   861  
      3   6   9   456   681   906  
                           501   726   951  
  
imfilter_conv_output =  
  
conv2_output =  
      219   444   669   32   114   249   384   440  
      264   489   714   68   219   444   669   734  
      309   534   759   89   264   489   714   773  
                           110   309   534   759   812  
                           96   252   417   582   600  
  
imfilter_corr_output =  
  
C =  
      219   444   669   128   276   441   606   320  
      264   489   714   202   411   636   861   436  
      309   534   759   241   456   681   906   457  
                           280   501   726   951   478  
                           184   318   453   588   280
```

Convolution operation = spatial filtering

$$\ast^{1/8}$$

0	1	0
1	4	1
0	1	0

$$\ast$$

0	-1	0
-1	4	-1
0	-1	0

$$\ast$$

1	0	-1
2	0	-2
1	0	-1

Different kernels reveal a different characteristics of the input image

Example of edge detection: Sobel operator

The Sobel operator is used for edge detection, which creates an image that emphasizes edges. Below are two kernels used in the operation:

$$\text{Sobel } X = f * \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

original

$$\text{Sobel } Y = f * \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Sobel X

Sobel Y

magnitude

$$\text{magnitude}(i,j) := \|(SobelX(i,j), SobelY(i,j))\|_2$$