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Spatial domain and transform domain

The spatial domain approach and transform domain approach are
two main categories in image processing:

@ Spatial domain: refers to the image plane itself, and image
processing methods in this category are based on direct
manipulation of pixels in an image.

@ Transform domain: involves first transforming an image into the
transform domain, doing the processing there, and obtaining the
inverse transform to bring the results back into spatial domain.

Transformations & Spatial Filtering — 2 /41



Outline of “intensity transformations & spatial filtering”

In this lecture, we will discuss a number of classical techniques for
two principal categories of spatial domain processing;:

@ [ntensity transformations: operate on single pixels of an image for
tasks such as contrast manipulation and image thresholding.

@ Spatial filtering: performs operations on the neighborhood of
every pixel in an image. Examples of spatial filtering include
image smoothing and sharpening.

The material of this lecture is based on Chapter 3 in [GIW2018].
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Spatial domain process

The spatial domain process is generally posed in the form:

g y) =T(f(xy)),

where f(x,y) is an input image, g(x, ) is the output image, and T is
an operator on f defined over a neighborhood (typically a rectangle)
of point (x,y).

Origin N Yo y
ixel [its value'is f(x,, )]
ZS x 3 neighborhood

of point (xy, o)

Image f

A 3 x 3 neighborhood about the point (xg, ¥o). The neighborhood is
moved from pixel to pixel in the image to generate the output image.
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Spatial filtering and intensity transformation

@ A smoothing spatial filter T: suppose that the neighborhood is a
square of size 3 X 3 and that operator T is defined as compute the
average intensity of the pixels in the neighborhood. Then T is a
smoothing filter.

Consider an arbitrary location in an image f, say (100, 150). Then
1 1 1
100,150) = T(£(100,150)) = = (100 — 7,150 — f).
8( (f( =35 1_2_11_2_1 £(100 —i j)

(A neighborhood processing technique)

@ Intensity transformation: The smallest possible neighborhood is
of size 1 x 1. T becomes an intensity transformation of the form

gl y) =5 =T(r) == T(f(x,y))-

(A point processing technique)
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Intensity transformation functions

@ Contrast stretching function: “left figure” produces an image of
higher contrast than the original, by darkening the intensity
levels below k and brightening the levels above k.

@ Thresholding function: In the limiting case shown in “right
figure,” T(r) produces a two level (binary) image.

s =T(r) s=T(r)
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© Suh-Yuh Yang (5 Math. Dept., NCU, Taiwan Intensity Transformations & Spatial Filtering —6/41



Some examples: ¢(x,y) =:s = T(r) := T(f(x,y))

@ Negative transformation: The negative of an image with
intensity levels in the range [0, L — 1] is obtained by
s=L—-1-r

@ Log transformation: s = clog(1 + ), where ¢ > 0 is a constant.

@ Power-law (gamma) transformation: s = cr? ors = c(r +¢)?,
where c and <y are positive constants.

@ Piecewise linear transformation

(r2. 52)

340

L2 ~T() B

Output intensity levels,

Lt -

(r1.s1)

0 L 1 1
L1 0 L/4 L/2 3L/4 L—1
Input intensities, r

Output intensities, s
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Negative images and log images
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Images of gamma transformation

Many devices used for image capture, printing, and display obey a
power law, e.g., cathode ray tube (2 R 5 AR

..

Original image Gamma Correction Original image as viewed on a monitor with
agamma of 2.5

I .

Gamma-corrected image Gamma-corrected image as viewed on the
same monitor

Intensity ramp images with ¢ = 1, v = 2.5 and correction s = r

1/(2.5)
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Gamma transformation: MRI of a fractured human spine
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Gamma transformation: aerial images (Z1#1%)
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Piecewise linear transformation: contrast stretching

A low-contrast electron microscope image of pollen; Result of contrast
stretching; Result of thresholding

s = T(r)
L—1 T === —
(r2,52) |
= |
3L/4[ 7 2 !
- T T~ !
S
RN ~— T - !
gL (r) I :
5 < 1
2 LA — < |
£ a 1
] (r1, 81) 1 r
0 | | |
0 L4 L)2 3L/4 L—1 Dark Light

Input intensitics, 7

Thresholding function: 1y =1y =k, 51 =0,5p =L —1

Suh-Yuh Yan;



Intensity-level slicing (3 E #EAL ] )

@ [ntensity-level slicing is to highlight a specific range of intensities in
an image, e.g., enhancing features in satellite imagery such as
masses of water, and enhancing flaws in X-ray images.

@ One approach is to display in one value (say, white) all the
values in the range of interest and in another (say, black) all
other intensities, i.e., produces a binary image.

@ The second approach brightens (or darkens) the desired range of
intensities, but leaves all other intensity levels in the image
unchanged.

L—1p-———————mmmm oo L—1p=———————mmm e

$ ~— T s i o
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Examples of the intensity-level slicing

(L) aortic angiogram; (M) first approach; (R) second approach, with the
selected range set near black
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Histogram (B J7 &)

@ Letrg, fork=0,1,---,L — 1, denote the intensities of an L-level
image f(x, y). The unnormalized histogram of f is defined as

h(rg) =n,, k=0,1,---,L—1,

where 1y, is the number of pixels in f with intensity ry.

@ The normalized histogram (image histogram) of f is defined as

_h(n) . om
P(rk) - MN - MT],

where f is an M x N image. That is, p(r¢) is the probability of
L-1

intensity level 7, occurring in an image. Then )  p(r) = 1.
k=0
@ Histograms are simple to compute and are also suitable for fast
hardware implementations, thus making histogram-based
techniques a popular tool for real-time image processing.
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Four image types and their corresponding histograms

S

Histogram of | Histogram of Histogram of || Histogram of
dark image light image low-contrast image high-contrast image

The horizontal axis of the histograms are values of ry and the vertical axis
are values of p(ry)
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Intensity transformation for histogram

Let the variable r denote the intensities of an image to be processed.
Assume that r € [0,L — 1] with r = 0 representing blackand r = L — 1
representing white. We consider the intensity transformation

s=T(r), 0<r<L-1.
For a given intensity value r in the input image, T produces an output
intensity value s. We assume that
@ T(r) is a monotonic increasing function in the interval [0,L — 1].
@ T(r)€[0,L—1]forallr € [0,L—1].

@ If we need to use the inverse r = T~1(s), s € Range(T), then we
assume T(r) is a strictly monotonic increasing function in [0, L — 1].

() 7
L—1fm——— . P .
Single ' i
value, s, } () — !
T() —, I I
Single | Sk |
value, s, | B
| i
i H
i i
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== — L r L r
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Multiple Single
values  value
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Histogram equalization (HE): g¢(x,y) =:s =T(r) :== T(f(x,y))

@ We are given a grayscale image f : QO — [0,1]. The cumulative
histogram (cumulative distribution function) T is defined by
considering f as a random variable: for 7 € [0, 1], we define

T(n) = Prob(f <p)
1 _
= Gl eq faw <)
Then T : [0,1] — [0,1] is a monotonic increasing function.
@ The histogram equalized image ¢ : Q) — [0, 1] is obtained by

defining
8(x,y) :=T(f(x,y)).
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Histogram equalized image ¢ ~ /(0,1) if T is invertible

If T is strictly increasing, then T is invertible and the cumulative
distribution function of the histogram equalized image g is

Prob(g <m) = Prob(T(f) <n)=Prob(f < T_l(n))
= T(T'(n) =1

Hence, the probability density function of g is

(1) = 1 for0<t<1,
PU=19 0 elsewhere.

Therefore, ¢ has a uniform distribution, i.e., ¢ ~ 2/ (0,1).

Remark: Let X be a random variable and p(t) the probability density
function (pdf) of X. The cumulative distribution function (cdf) of X is

F(y) :==Prob(X <y) = /.77 p(t)dt.

J —00
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Example of histogram equalized image

Histogram equalization of 400 x 600 image: (top) before; (bottom) after; and
the corresponding histograms

Matlab commands: imhist (A), histeq(A)
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Histogram-equalized images

e

7 6 = \“HHMMMML

Histogram-equalized images and the corresponding normalized histograms
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Histogram-equalized images (cont’d)

sl

Histogram-equalized images and the corresponding normalized histograms
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Spatial filter (%3 )

@ Spatial filtering modifies an image by replacing the value of each pixel
by a function of the values of the pixel and its neighbors. (discrete!)

@ If the operation performed on the image pixels is linear, then the
filter is called a linear spatial filter. Otherwise, the filter is a
nonlinear spatial filter.

@ A linear spatial filter performs a sum-of-products operation between an
image f and a filter kernel w. The kernel is an array whose size
defines the neighborhood of operation, and whose coefficients
(entries) determine the nature of the filter.

@ Other terms used to refer to a spatial filter kernel are mask,
template, and window. We use the term “filter kernel” or simply
“kernel.”
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Filter kernel of a linear spatial filter

Image origin
~N

Kerel origin—|

Magnified view showing filter kernel
and p

in the image

Image pixels /

w(-1-Df w(-1.0)

w©, -1 | w00 | wo1 |Fiter kerel, w(s,0)

wit-n | wao | wan

fe-1y-n| fe-10 |fe-1y =) Kernel coefficients

Fey-n | fwy | feyen

e+ 1y-0| a1 |1y =)

Pixel values under kernel
when it is centered on (¥, y)

Linear spatial filtering using a 3 x 3 kernel
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Linear spatial filtering

@ 3 x 3 kernel: at any point (x,y) in the image f, the response
<(x,y) of the filter is the sum of products of the kernel entries
(coefficients) and the image pixels:

g(xy) = w(-1,-1)f(x—1Ly—1)+w(-1L0)f(x—Ly)+--
+w(0,0)f(x,y)+---+w(l1)f(x+1,y+1).

———————

As x and y are varied, the center (origin) of the kernel moves from
pixel to pixel, generating the filtered image g.

@ m x n kernel: Assume thatm =24+ 1andn = 2b+ 1. Then

a b
gey) = Y Y wiHf(x+iy+j).

i=—aj=-b
This is talking about the (discrete) spatial correlation (<5 [EIFHBA1E).

The mechanics of (discrete) spatial convolution (%5[H45FE, * or ®) are
the same, except that the kernel is rotated by 180° counterclockwise.
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Convolution of two functions

Let f and g be two integrable real-valued functions with
compact supports in R. Then the convolution of f and g is
defined as a function in variable ¢,

/ f(r)g(t—71)dt, teR.

The operation can be described as a weighted average of the input f
according to the weighting (or kernel) g at each point in time t.

Let f and g be two integrable real-valued functions with
compact supports in R?. Then the convolution of f and g is
defined as a function in variable x,

(Fx8)(x) == | f)s(x—y)dy, x € RY.
Commutativity: fxg=g*f
Associativity: (f+g)xh=fx(gxh)
Distributivity: f(g+h) = (f*xg) + (f xh)
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Commutativity: f x g = g*f
" f and g are two integrable functions with compact supports in R.
. 3L > Osuch thatf(t) =0 = g(¢) for t ¢ [-L,L].

00 L
S (frg)(t) = /Wf('f)g(ffr)dr = lLf(r)g(tf T)dr, VteR

Letn = —(t —t). Then T =t — yy and dy = —dt, and we have
t—L t+L
[ rste=ode= [ it ngon-an = [ - pgtnan
t+L
Ift >0 then [ f(t—1n) dﬂ—/ f(t=m)g(m)dn = (g +£)(t).

t+L
14 <0 then [ f(t—1) d;y—/ F(t—m)gn)dy = (g5 F)(8).

s (frg)(t) = (g*f)( ), VteR
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Convolution of two 1-D functions

F+)(0)= [ floglt-1)dr, teR

Wikipedia: https://en.wikipedia.org/wiki/Convolution
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https://en.wikipedia.org/wiki/Convolution

Discrete convolution: 1-D

The discrete convolution of input (signal) f and kernel g is defined by
(Frg)(t) =}, f(r)glt—1), teZ
T=—00,TEZ

@ When f and g have finite supports, a finite summation may be
used.

@ f and g can be viewed as piecewise constant functions in each
unit integer interval.
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Correlation vs. convolution: 1-D example

Correlation Convolution
e Origin f w ,— Origin r w rotated 180°
0001O0O0O00O0 12428 000100O0O0 82421
¥
000100O00O0 0001000O00O0
12428 82421
t Starting position alignment t Starting position alignment
§— Zero paddin ] §— Zero padding —
— e — — —
0000O0O1T00O0OO0OOO 00O0OO0OO0O1TO0OO0OO0OO0OO0OO0
12428 82421
t Starting position Starting position
00000100O0O0O0O0 000001000O0OO0OO0
12428 82421
L Position after 1 shift L Pposition after 1 shift
00000100000O0O0 00000100O0O0OO0OO0
12428 82421
Position after 3 shifts L Position after 3 shifts
000001000O0O0OO0O0 00000100O0O0OO0OO0
12428 82421
Final position — Final position —
Correlation result Convolution result
08242100 01242800
E (full) cor i result Extended (full) convolution result

000824210000 000124280000

aiwan



1-D discrete full convolution

Letu = [uj, - ,uy]’ € R"andv = [v1,--- 0] € R™. The
convolution of # and v is defined as

U101
U107 + U
U103 + Uy + U307
Uk = : e R

Up—20m + Up—10p—1 + UnUp—2
Up—10m + UnUp—1
UnOm
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Convolution: 1-D example in MATLAB

u=[1 1 11;
v=[1100011];

wl=conv (u,Vv)
wl=
122101221

w2=conv (u,v, ' same’)
w2=

101
w3=conv (u,v,"valid’)
w3=

1X0 empty

wid=conv (v,u,’valid’)
wid=
21012
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Correlation vs. convolution: 2-D example

Padded f

0O 0 0 0 0 O0O0
 Origin f 0 0 0 O0O0O0O
00 O0O0O 00 00O 00
0O 0 0 0O w 0 0 o0 0 0o
0O 010 123 000O0O0O0O0
00O0OO0OO0O 456 0O0O0O0O0O0O0
00O0OOO 789 00O0O0O0O0O0

(a) (b)
<~ Initial position for w Correlation result Full correlation result
1 27310 00 0 000O0O0O0O0
4 5 610 0 0 O 0 0 00O 000 O0O0OO0ODO
7.8.9,0 0 0 0 09870 0098700
00 1000 0 6 540 006 5400
0 00 O0O0OGO0ODO 03210 003 2100
000 O0O0OO0ODO 0 0 0 O0O0 00 O0O0OO0OO0OTO O
0O 0 0O0OO0OOo 0O 0 0O 0 0 O0O0
© (@ ()
vRotated w Convolution result Full convolution result
978770 0 0 0 00000O0O0O O
16 5 40 0 0 O 000 OO0 0 0 0 00O
3 371: 00 0O 01230 0012300
0001000 045 6 0 00456 00
00 O0O0O0OO0OO 07 8 90 007 8 9 00
00 O0O0O0OO0OD O 00 O0O0O 0 0 O0O0OO0OO0ODO
000 O0O0OO0ODO 000 O0O0O0OO
® (2 (h)
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2-D discrete convolution: conv2 (£f,K, ’valid’)

oft]a]1]ofolo]

olof1f1]|1]|0]0. 1/4(3[4]|1
olofof[1]1]1]0 1fo]1 1[2]43]3
olololi]rfo]o] = 1 =l1]2]3]4]|1
olof[1]1]ololo]. 101 133|121
olt|1]o]ofo]o 3[3]1]1]o
ol1|ofofolo]o

no padding, stride 1

In MATLAB: conv2 (£f,K,’valid’)

Full convolution: conv2 (£f,K) = (7+3—1) x (7+ 3 — 1) matrix!
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Stride (P )

1/1|/2|0|0]|2
4(3|1(5|2|1
1(2]0
2|(5(1(1|4a]|>s 21
@ [o2[3] =
1/3|/2(|3|1|4a
1012
2|(5(afofo|1
3(ala|1(3|a
1/1|/2|0|0]|2
4(3|1(5|2|1 1270
2|5|1|1|4a|s5 21 |14
® [z —
1/3|2(|3|1|4a
1012
2|(5(afofo0|1
3(ala|1(3|a

(correction: 34 34)

Convolution of a 6 x 6 matrix and a 3 x 3 filter with stride 3, no padding
= 2 X 2 matrix
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Padding (3E )

ofofof[of[o]o]o]0
o[l1[1]2]o]0]2]0 5 (1112|458
0 EBIEEY Yy 0 ol 2 10(14| 5 (10 8 [12
02011400@020 — |14 8 |1a|11|21| 3
ol1(3]2]3]1]a]o0 e

1|0 al15|6 (19|78
ol2/ofafofo]1]0
olalalalzlalalo 12|15 |22 |15 11|12
olo|o|o|o|o|o]o g8 |12(12|2|7]09

Convolution of a 6 x 6 matrix with zero-padding 1
and a 3 x 3 filter with stride 1

In MATLAB: conv2 (f,K, ' same’)
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A Matlab file for convolution and correlation

clear all
clc
m=5; $image size
w=3; $window size of convolution
I=reshape(l:m"2,m,m)
K=reshape (1l:w" 2, w, w)
$convolution
conv2_output=conv2 (I,K,’valid’)
$manual implementation
C=zeros (m-w+1l,m-w+1);
for i=1l:m-w+1l
for j=l:m-w+1l
C(i,j)=sum(sum (I (i:i+w-1,J:j+w-1) .*rot90(K,2)));
end
end
C
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A Matlab file for convolution and correlation (cont’d)

$correlation
corr_output=filter2(K,I,’valid’)
% manual implementation
D=zeros (m-w+1l,m-w+1);
for i=1:m-w+1l
for j=l:m-w+1l
D(i,j)=sum(sum (I (i:i+w-1,j:j+w-1) .*K));
end
end
D

% function ‘imfilter’ is provided in the MATLAB toolbox
imfilter_conv_output=imfilter(I,K,’conv’,’same’)
imfilter_corr_output=imfilter(I,K,’corr’,’ same’)
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Results of the Matlab file

corr_output =

I= 411 636 861
456 681 906
1 6 11 16 21 501 726 951
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24 D =
5 10 15 20 25

411 636 861
456 681 906

K = 501 726 951
1 4 7
2 5 8 imfilter_conv_output =
3 6 9

32 114 249 384 440
68 219 444 669 734

conv2_output = 89 264 489 714 773
110 309 534 759 812
219 444 669 96 252 417 582 600

264 489 714
309 534 759
imfilter_corr_output =

C= 128 276 441 606 320
202 411 636 861 436

219 444 669 241 456 681 906 457
264 489 714 280 501 726 951 478
309 534 759 184 318 453 588 280
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Convolution operation = spatial filtering

o|1]|0
k8141
o 1|0
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Example of edge detection: Sobel operator

The Sobel operator is used for edge detection, which creates an image
that emphasizes edges. Below are two kernels used in the operation:

-1 0 1 -1 -2 -1
Sobel X=f# | —2 0 2 Sobel Y=fx| 0 0 0
-1 0 1 1 2 1

original Sobel X

Math. Dept., NC i ity Transformations & Spatial Filtering — 41/41



