Name:

Student ID number:

Let *A* be the 3 × 3 real matrix,
$$A = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

(1) (2 pts) Find the eigenvalues of A.

Solution:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} 2 - \lambda & 2 & 2\\ 0 & 2 - \lambda & 0\\ 0 & 1 & 3 - \lambda \end{bmatrix} = (2 - \lambda)^2 (3 - \lambda).$$

Let det($A - \lambda I$) = 0. Then we have eigenvalues: $\lambda = 2, 2, 3$.

_

(2) (8 pts) For each eigenvalue of A, find its algebraic multiplicity (AM) and geometric multiplicity (GM). Please show all your work clearly.

Solution:

(i)
$$\lambda = 2$$
: $AM = 2$. Solving

$$\begin{bmatrix} 2-\lambda & 2 & 2\\ 0 & 2-\lambda & 0\\ 0 & 1 & 3-\lambda \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 0 & 2 & 2\\ 0 & 0 & 0\\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix},$$

we have x = t, y = s, and z = -s for $t, s \in \mathbb{R}$. Therefore, the eigenvectors are given in the form:

x		1		0	
y	=t	0	+s	1	
z		0		1	

We have two linearly independent eigenvectors that correspond to the eigenvalue $\lambda = 2$. Therefore, the geometric multiplicity of $\lambda = 2$ is GM = 2.

(ii) $\lambda = 3$: AM = 1. Solving

$$\begin{bmatrix} 2-\lambda & 2 & 2\\ 0 & 2-\lambda & 0\\ 0 & 1 & 3-\lambda \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -1 & 2 & 2\\ 0 & -1 & 0\\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix},$$
$$\Leftrightarrow \begin{bmatrix} -1 & 2 & 2\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix},$$

we have y = 0, z = t, and x = 2t for $t \in \mathbb{R}$. Therefore, the eigenvectors correspond to the eigenvalue $\lambda = 3$ in the form:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

We have only one linearly independent eigenvector that corresponds to the eigenvalue $\lambda = 3$. Therefore, the geometric multiplicity of $\lambda = 3$ is GM = 1.