MA2008B: LINEAR ALGEBRA II Midterm2/May 21, 2020

Please show all your work clearly for full credit! total 100 points

1. (10 pts) Let *A* be an $n \times n$ square matrix. Assume that λ_1 and λ_2 are two distinct eigenvalues of *A*. Let x_1 and x_2 be two eigenvectors of *A* for λ_1 and λ_2 , respectively. Show that x_1 and x_2 are linearly independent.

Proof:

Let $c_1 x_1 + c_2 x_2 = 0$. We wish to show that $c_1 = c_2 = 0$. $\therefore c_1 x_1 + c_2 x_2 = 0$ $\therefore A(c_1 x_1 + c_2 x_2) = A0 = 0$ $\therefore c_1 A x_1 + c_2 A x_2 = 0$ $\therefore c_1 \lambda_1 x_1 + c_2 \lambda_2 x_2 = 0$ $\dots (*)$ On the other hand, $\therefore c_1 x_1 + c_2 x_2 = 0$ $\therefore c_1 \lambda_2 x_1 + c_2 \lambda_2 x_2 = 0$ $\dots (**)$ $(*) - (**) \Longrightarrow c_1 (\lambda_1 - \lambda_2) x_1 = 0$ $\therefore \lambda_1 - \lambda_2 \neq 0$ and $x_1 \neq 0$ $\therefore c_1 = 0$ $\therefore c_2 x_2 = 0$ $\therefore x_2 \neq 0$ $\therefore c_2 = 0$ 2. Let *A* be the 3 × 3 real matrix, $A = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}$

(2a) (5 pts) Find the eigenvalues of *A*, and for each eigenvalue find its algebraic multiplicity (AM). **Solution:**

$$\det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 2 & 2\\ 0 & 2 - \lambda & 0\\ 0 & 1 & 3 - \lambda \end{bmatrix} = (2 - \lambda)^2 (3 - \lambda).$$

Let det $(A - \lambda I) = 0$. Then we have eigenvalues: $\lambda = 2, 2, 3$. $\therefore \lambda = 2$: AM = 2, $\lambda = 3$: AM = 1.

- (2b) (10 pts) For each eigenvalue of *A*, find its geometric multiplicity (GM). **Solution:**
 - (i) $\lambda = 2$: Solving

$$\begin{bmatrix} 2-\lambda & 2 & 2\\ 0 & 2-\lambda & 0\\ 0 & 1 & 3-\lambda \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 0 & 2 & 2\\ 0 & 0 & 0\\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix},$$

we have x = t, y = s, and z = -s for $t, s \in \mathbb{R}$. Therefore, the eigenvectors are given in the form:

	x		1		0	
	y	= t	0	+s	1	
	z	= t	0		-1	
•		•		•		

We have two linearly independent eigenvectors that correspond to the eigenvalue $\lambda = 2$. Therefore, GM = 2 for $\lambda = 2$.

(ii) $\lambda = 3$: Solving

$$\begin{bmatrix} 2-\lambda & 2 & 2\\ 0 & 2-\lambda & 0\\ 0 & 1 & 3-\lambda \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -1 & 2 & 2\\ 0 & -1 & 0\\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix},$$

$$\Leftrightarrow \left[\begin{array}{ccc} -1 & 2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right],$$

we have y = 0, z = t, and x = 2t for $t \in \mathbb{R}$. Therefore, the eigenvectors correspond to the eigenvalue $\lambda = 3$ in the form:

$$\left[\begin{array}{c} x\\ y\\ z \end{array}\right] = t \left[\begin{array}{c} 2\\ 0\\ 1 \end{array}\right].$$

We have only one linearly independent eigenvector that corresponds to the eigenvalue $\lambda = 3$. Therefore, GM = 1 for $\lambda = 3$.

3. Consider the second-order differential equation with two initial values:

$$\begin{cases} y''(t) = -9y(t), \\ y(0) = 3 \text{ and } y'(0) = 0. \end{cases}$$

(3a) (5 pts) Let $u(t) = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}$. Rewrite the above IVP as a vector equation:

$$\begin{cases} \mathbf{u}'(t) = A\mathbf{u}(t), \\ \mathbf{u}(0) = [3, 0]^{\top}. \end{cases}$$

What is the 2×2 real matrix *A*?

Solution:

$$\therefore \frac{dy}{dt} = y'(t) \text{ and } \frac{dy'}{dt} = y''(t) = -9y(t)$$

$$\therefore u'(t) = \begin{bmatrix} \frac{dy}{dt} \\ \frac{dy'}{dt} \end{bmatrix} = \begin{bmatrix} y'(t) \\ -9y(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix} \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix} = Au(t) \quad \therefore A = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix}$$

(3b) (10 pts) Find the solution u(t) of problem (3a) by using the eigenvalues and eigenvectors of matrix A.

Solution:

$$\begin{array}{l} \because \text{ det}(A - \lambda I) = \text{det} \begin{bmatrix} 0 - \lambda & 1 \\ -9 & 0 - \lambda \end{bmatrix} = \lambda^2 + 9. \\ \therefore \text{ eigenvalues of } A \text{ are } \lambda_1 = 3i, \ \lambda_2 = -3i \\ \lambda_1 = 3i : \begin{bmatrix} -3i & 1 \\ -9 & -3i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{bmatrix} -3i & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ \therefore \text{ eigenvectors of } \lambda_1 \text{ are } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = s \begin{bmatrix} 1 \\ 3i \end{bmatrix}, \forall s. \quad \text{We take } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 3i \end{bmatrix}. \\ \lambda_2 = -3i : \begin{bmatrix} 3i & 1 \\ -9 & 3i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{bmatrix} 3i & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ \therefore \text{ eigenvectors of } \lambda_2 \text{ are } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = s \begin{bmatrix} 1 \\ -3i \end{bmatrix}, \forall s. \quad \text{We take } \mathbf{x}_2 = \begin{bmatrix} 1 \\ -3i \end{bmatrix}. \\ \therefore \text{ the complete solution is } \mathbf{u}(t) = Ce^{3it} \begin{bmatrix} 1 \\ 3i \end{bmatrix} + De^{-3it} \begin{bmatrix} 1 \\ -3i \end{bmatrix} \\ \therefore \mathbf{u}(0) = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \qquad \therefore \begin{cases} C + D = 3 \\ 3iC - 3iD = 0 \end{bmatrix} \qquad \therefore C = \frac{3}{2}, D = \frac{3}{2} \\ \therefore \mathbf{u}(t) = \frac{3}{2}e^{3it} \begin{bmatrix} 1 \\ 3i \end{bmatrix} + \frac{3}{2}e^{-3it} \begin{bmatrix} 1 \\ -3i \end{bmatrix} = \begin{bmatrix} 3\cos(3t) \\ -9\sin(3t) \end{bmatrix}$$

4. (15 pts) State without proof the Principal Axis Theorem. Find the symmetric diagonalization of

$$A = \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right].$$

Solution:

(5 pts) **Principal Axis Theorem:** Let *A* be an $n \times n$ real symmetric matrix. Then *A* can be factorized as $A = Q\Lambda Q^{-1}$, where Λ is a diagonal matrix with real eigenvalues of *A* and *Q* is an orthogonal matrix, $Q^{\top}Q = I$, with eigenvectors in its columns.

(10 pts) Symmetric diagonalization:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{bmatrix} = \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3)$$

Then the eigenvalues of *A* are $\lambda_1 = 1$ and $\lambda_2 = 3$. $\lambda_1 = 1$:

$$(A - I)x = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ gives unit eigenvector } x_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$(\text{or } x_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ -1 \end{bmatrix}).$$
$$\lambda_2 = 3:$$

$$(A - 3I)x = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ gives unit eigenvector } x_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$(\text{or } x_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}).$$

Therefore, we have

$$\mathbf{\Lambda} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{Q} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

(other choices of *Q* are possible!)

5. (15 pts) Let *A* be an $n \times n$ real symmetric matrix. Prove that if *A* is positive definite (i.e., all eigenvalues of *A* are positive), then $x^{\top}Ax > 0$ for all $x \in \mathbb{R}^n$ and $x \neq 0$. (Hint: use the *Principal Axis Theorem*)

Proof:

 \therefore *A* is a real symmetric matrix

 \therefore By the Principal Axis Theorem stated in Problem (4), we have $A = Q \Lambda Q^{\top}$

Let $Q = [q_1, q_2, \cdots, q_n].$

- \therefore q_1, q_2, \cdots, q_n are orthonormal vectors
- \therefore They are a basis of \mathbf{R}^n

Let $x \in \mathbb{R}^n$ and $x \neq 0$.

Then
$$\mathbf{x} = c_1 \mathbf{q}_1 + c_2 \mathbf{q}_2 + \dots + c_n \mathbf{q}_n = \mathbf{Q} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} := \mathbf{Q}\mathbf{c} \text{ and } \mathbf{c} \neq 0$$

$$\therefore \mathbf{x}^\top \mathbf{A}\mathbf{x} = \mathbf{c}^\top \mathbf{Q}^\top \mathbf{Q} \mathbf{A} \mathbf{Q}^\top \mathbf{Q} \mathbf{c} = \mathbf{c}^\top \mathbf{A} \mathbf{c} = \lambda_1 c_1^2 + \lambda_2 c_2^2 + \dots + \lambda_n c_n^2 > 0$$
$$(\because \mathbf{Q}^\top \mathbf{Q} = \mathbf{I} \text{ and } \lambda_i > 0 \text{ for all } i \text{ and } c_i \neq 0 \text{ for some } i)$$

-

E.

- 6. Let *M* be an $n \times n$ invertible matrix and $B = M^{-1}AM$.
 - (6a) (5 pts) Show that *A* and *B* have the same characteristic polynomials.
 - (6b) (10 pts) Show that if *x* is an eigenvector of *A*, then $M^{-1}x$ is an eigenvector of *B*.

Proof:

- (6a) $\because \det(M^{-1}) \det(M) = 1$ $\therefore \det(A - \lambda I) = \det(M^{-1}) \det(A - \lambda I) \det(M) = \det(M^{-1}(A - \lambda I)M)$ $= \det(M^{-1}AM - \lambda M^{-1}IM) = \det(B - \lambda I)$ $\therefore A \text{ and } B \text{ have the same characteristic polynomials.}$ (6b) $\because B = M^{-1}AM$ $\therefore A = MBM^{-1}$ Suppose that $x \neq 0$ is an eigenvector of A for eigenvalue λ . Then $Ax = \lambda x$. $\therefore MBM^{-1}x = \lambda x$ $\therefore BM^{-1}x = M^{-1}\lambda x$ $\therefore B(M^{-1}x) = \lambda(M^{-1}x)$ $\therefore x \neq 0$ $\therefore M^{-1}x \neq 0$ (otherwise x = 0) $\therefore M^{-1}x$ is an eigenvector of B
- 7. Let *A* be an $n \times n$ real matrix with rank r < n and let *B* be a real matrix similar to *A*.
 - (7a) (5 pts) Explain why the dimension of the nullspace N(A) is n r.
 - (7b) (10 pts) Show that if $\{x_1, x_2, \dots, x_{n-r}\}$ is a basis of N(A), then $\{M^{-1}x_1, M^{-1}x_2, \dots, M^{-1}x_{n-r}\}$ is a basis of N(B).

Proof:

(7a) \because By the FTLA-part 1, we have $n = \dim C(A^{\top}) + \dim N(A) = r + \dim N(A)$ $\therefore \dim N(A) = n - r$ (7b) Claim: $\{M^{-1}x_1, M^{-1}x_2, \dots, M^{-1}x_{n-r}\}$ is linearly independent Let $c_1M^{-1}x_1 + c_2M^{-1}x_2 + \dots + c_{n-r}M^{-1}x_{n-r} = 0$. Then $M^{-1}(c_1x_1 + c_2x_2 + \dots + c_{n-r}x_{n-r}) = 0$ $\therefore c_1x_1 + c_2x_2 + \dots + c_{n-r}x_{n-r} = 0$ $\because \{x_1, x_2, \dots, x_{n-r}\}$ is a basis of N(A) $\therefore c_1 = c_2 = \dots = c_{n-r} = 0$

Claim:
$$\{M^{-1}x_1, M^{-1}x_2, \cdots, M^{-1}x_{n-r}\}$$
 spans $N(B)$
Let $x \in N(B)$. Then $Bx = 0$
 $\therefore Bx = M^{-1}AMx = 0$
 $\therefore AMx = 0$
 $\therefore Mx \in N(A)$
 $\therefore Mx = c_1x_1 + c_2x_2 + \cdots + c_{n-r}x_{n-r}$ for some $c_1, c_2, \cdots, c_{n-r} \in \mathbb{R}$
 $\therefore x = c_1M^{-1}x_1 + c_2M^{-1}x_2 + \cdots + c_{n-r}M^{-1}x_{n-r}$