MA2008B: LINEAR ALGEBRA II Midterm2/May 21, 2020

Please show all your work clearly for full credit! total 100 points

1. (10 pts) Let *A* be an $n \times n$ square matrix. Assume that λ_1 and λ_2 are two distinct eigenvalues of *A*. Let x_1 and x_2 be two eigenvectors of *A* for λ_1 and λ_2 , respectively. Show that x_1 and x_2 are linearly independent.

Proof:

Let $c_1x_1 + c_2x_2 = 0$. We wish to show that $c_1 = c_2 = 0$. ∴ $c_1x_1 + c_2x_2 = 0$ ∴ $A(c_1x_1 + c_2x_2) = A0 = 0$ ∴ $c_1Ax_1 + c_2Ax_2 = 0$ ∴ $c_1\lambda_1x_1 + c_2\lambda_2x_2 = 0$ · · · · · · (*) On the other hand, \therefore $c_1x_1 + c_2x_2 = 0$ \therefore $c_1\lambda_2x_1 + c_2\lambda_2x_2 = 0$ $\cdots \cdots$ (**) $(\star) - (\star \star) \Longrightarrow c_1(\lambda_1 - \lambda_2)x_1 = 0$ ∴ $\lambda_1 - \lambda_2 \neq 0$ and $x_1 \neq 0$ ∴ $c_1 = 0$ \therefore $c_2 x_2 = 0$ \therefore $x_2 \neq 0$ \therefore $c_2 = 0$ $\sqrt{ }$ 2 2 2 1

 $\overline{}$

0 2 0 0 1 3

(2a) (5 pts) Find the eigenvalues of *A*, and for each eigenvalue find its algebraic multiplicity (AM). **Solution:**

 $\overline{1}$

$$
det(A - \lambda I) = det \begin{bmatrix} 2 - \lambda & 2 & 2 \\ 0 & 2 - \lambda & 0 \\ 0 & 1 & 3 - \lambda \end{bmatrix} = (2 - \lambda)^2 (3 - \lambda).
$$

Let det($A - \lambda I$) = 0. Then we have eigenvalues: $\lambda = 2, 2, 3$. ∴ $\lambda = 2$: $AM = 2$, $\lambda = 3$: $AM = 1$.

- (2b) (10 pts) For each eigenvalue of *A*, find its geometric multiplicity (GM). **Solution:**
	- (i) $\lambda = 2$: Solving

2. Let A be the 3 \times 3 real matrix, $A=$

$$
\begin{bmatrix} 2-\lambda & 2 & 2 \\ 0 & 2-\lambda & 0 \\ 0 & 1 & 3-\lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},
$$

we have $x = t$, $y = s$, and $z = -s$ for $t, s \in \mathbb{R}$. Therefore, the eigenvectors are given in the form:

We have two linearly independent eigenvectors that correspond to the eigenvalue $\lambda = 2$. Therefore, $GM = 2$ for $\lambda = 2$.

(ii) $\lambda = 3$: Solving

$$
\begin{bmatrix} 2-\lambda & 2 & 2 \\ 0 & 2-\lambda & 0 \\ 0 & 1 & 3-\lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -1 & 2 & 2 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},
$$

$$
\Leftrightarrow \begin{bmatrix} -1 & 2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},
$$

we have $y = 0$, $z = t$, and $x = 2t$ for $t \in \mathbb{R}$. Therefore, the eigenvectors correspond to the eigenvalue $\lambda = 3$ in the form:

$$
\left[\begin{array}{c} x \\ y \\ z \end{array}\right] = t \left[\begin{array}{c} 2 \\ 0 \\ 1 \end{array}\right].
$$

We have only one linearly independent eigenvector that corresponds to the eigenvalue $\lambda = 3$. Therefore, $GM = 1$ for $\lambda = 3$.

3. Consider the second-order differential equation with two initial values:

$$
\begin{cases} y''(t) = -9y(t), \\ y(0) = 3 \text{ and } y'(0) = 0. \end{cases}
$$

(3a) (5 pts) Let $u(t) = \begin{bmatrix} y(t) \\ y(t) \end{bmatrix}$ $y'(t)$ 1 . Rewrite the above IVP as a vector equation:

$$
\begin{cases}\n u'(t) = Au(t), \\
u(0) = [3,0]^\top.\n\end{cases}
$$

What is the 2 × 2 real matrix *A*?

Solution:

$$
\therefore \frac{dy}{dt} = y'(t) \text{ and } \frac{dy'}{dt} = y''(t) = -9y(t)
$$

\n
$$
\therefore u'(t) = \begin{bmatrix} \frac{dy}{dt} \\ \frac{dy'}{dt} \end{bmatrix} = \begin{bmatrix} y'(t) \\ -9y(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix} \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix} = Au(t) \quad \therefore A = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix}
$$

(3b) (10 pts) Find the solution *u*(*t*) of problem (3a) by using the eigenvalues and eigenvectors of matrix *A*.

Solution:

$$
\therefore \det(A - \lambda I) = \det \begin{bmatrix} 0 - \lambda & 1 \\ -9 & 0 - \lambda \end{bmatrix} = \lambda^2 + 9.
$$

\n
$$
\therefore \text{ eigenvalues of } A \text{ are } \lambda_1 = 3i, \ \lambda_2 = -3i
$$

\n
$$
\lambda_1 = 3i : \begin{bmatrix} -3i & 1 \\ -9 & -3i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{bmatrix} -3i & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
\therefore \text{ eigenvectors of } \lambda_1 \text{ are } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = s \begin{bmatrix} 1 \\ 3i \end{bmatrix}, \forall s. \qquad \text{We take } x_1 = \begin{bmatrix} 1 \\ 3i \end{bmatrix}.
$$

\n
$$
\lambda_2 = -3i : \begin{bmatrix} 3i & 1 \\ -9 & 3i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{bmatrix} 3i & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

\n
$$
\therefore \text{ eigenvectors of } \lambda_2 \text{ are } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = s \begin{bmatrix} 1 \\ -3i \end{bmatrix}, \forall s. \qquad \text{We take } x_2 = \begin{bmatrix} 1 \\ -3i \end{bmatrix}.
$$

\n
$$
\therefore \text{ the complete solution is } u(t) = Ce^{3it} \begin{bmatrix} 1 \\ 3i \end{bmatrix} + De^{-3it} \begin{bmatrix} 1 \\ -3i \end{bmatrix}
$$

\n
$$
\therefore u(0) = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \therefore \begin{bmatrix} C + D = 3 \\ 3iC - 3iD = 0 \end{bmatrix} \therefore C = \frac{3}{2}, D = \frac{3}{2}
$$

4. (15 pts) State without proof the *Principal Axis Theorem.* Find the symmetric diagonalization of

$$
A = \left[\begin{array}{rr} 2 & -1 \\ -1 & 2 \end{array} \right].
$$

Solution:

(5 pts) **Principal Axis Theorem:** Let *A* be an $n \times n$ real symmetric matrix. Then *A* can be factorized as *A* = *Q***Λ***Q*−¹ , where **Λ** is a diagonal matrix with real eigenvalues of *A* and *Q* is an orthogonal matrix, $Q^{\top} Q = I$, with eigenvectors in its columns.

(10 pts) **Symmetric diagonalization:**

$$
\det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{bmatrix} = \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3).
$$

Then the eigenvalues of *A* are $\lambda_1 = 1$ and $\lambda_2 = 3$. $\lambda_1 = 1$:

$$
(A - I)x = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
gives unit eigenvector $x_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
(or $x_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ -1 \end{bmatrix}$).
 $\lambda_2 = 3$:

$$
(A - 3I)x = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
 gives unit eigenvector $x_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
(or $x_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$).

Therefore, we have

$$
\Lambda = \left[\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array} \right] \quad \text{and} \quad Q = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right].
$$

(other choices of *Q* are possible!)

5. (15 pts) Let *A* be an $n \times n$ real symmetric matrix. Prove that if *A* is positive definite (i.e., all eigenvalues of *A* are positive), then $x^{\top}Ax > 0$ for all $x \in \mathbb{R}^n$ and $x \neq 0$. (Hint: use the *Principal Axis Theorem*)

Proof:

∵ *A* is a real symmetric matrix

∴ By the Principal Axis Theorem stated in Problem (4), we have $A = Q \Lambda Q$ [⊤]

 \mathbf{r}

Let $Q = [q_1, q_2, \cdots, q_n].$

- ∵ q_1 , q_2 , \dots , q_n are orthonormal vectors
- ∴ They are a basis of *R n*

Let $x \in \mathbb{R}^n$ and $x \neq 0$.

Then
$$
\mathbf{x} = c_1 \mathbf{q}_1 + c_2 \mathbf{q}_2 + \cdots + c_n \mathbf{q}_n = \mathbf{Q} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} := \mathbf{Q}c
$$
 and $c \neq 0$
\n $\therefore \mathbf{x}^\top A \mathbf{x} = \mathbf{c}^\top \mathbf{Q}^\top \mathbf{Q} \mathbf{A} \mathbf{Q}^\top \mathbf{Q} \mathbf{c} = \mathbf{c}^\top \mathbf{A} \mathbf{c} = \lambda_1 c_1^2 + \lambda_2 c_2^2 + \cdots + \lambda_n c_n^2 > 0$
\n $(\because \mathbf{Q}^\top \mathbf{Q} = \mathbf{I} \text{ and } \lambda_i > 0 \text{ for all } i \text{ and } c_i \neq 0 \text{ for some } i)$

 $\overline{1}$

- 6. Let *M* be an $n \times n$ invertible matrix and $B = M^{-1}AM$.
	- (6a) (5 pts) Show that *A* and *B* have the same characteristic polynomials.
	- (6b) (10 pts) Show that if *x* is an eigenvector of *A*, then $M^{-1}x$ is an eigenvector of *B*.

Proof:

- (6a) \therefore det(M^{-1}) det(M) = 1 \therefore det(*A* − *λ***I**) = det(*M*^{−1}) det(*A* − *λ***I**) det(*M*) = det(*M*^{−1}(*A* − *λ***I**)*M*) $=$ det($M^{-1}AM - \lambda M^{-1}IM$) = det($B - \lambda I$) ∴ *A* and *B* have the same characteristic polynomials. (6b) ∵ *B* = *M*−1*AM* $\therefore A = MBM^{-1}$ Suppose that $x \neq 0$ is an eigenvector of *A* for eigenvalue λ . Then $Ax = \lambda x$. $∴ MBM^{-1}x = \lambda x$ ∴ $BM^{-1}x = M^{-1}\lambda x$ ∴ $B(M^{-1}x) = \lambda(M^{-1}x)$ ∵ $x \neq 0$ ∴ $M^{-1}x \neq 0$ (otherwise $x = 0$) ∴ *M*−¹ *x* is an eigenvector of *B*
- 7. Let *A* be an $n \times n$ real matrix with rank $r < n$ and let *B* be a real matrix similar to *A*.
	- (7a) (5 pts) Explain why the dimension of the nullspace *N*(*A*) is $n r$.
	- (7b) (10 pts) Show that if $\{x_1, x_2, \cdots, x_{n-r}\}$ is a basis of $N(A)$, then $\{M^{-1}x_1, M^{-1}x_2, \cdots, M^{-1}x_{n-r}\}$ is a basis of $N(B)$.

Proof:

(7a) ∵ By the FTLA-part 1, we have $n = \dim C(A^{\top}) + \dim N(A) = r + \dim N(A)$: dim $N(A) = n - r$ (7b) Claim: { $M^{-1}x_1$, $M^{-1}x_2$, ⋅ ⋅ ⋅ , $M^{-1}x_{n-r}$ } is linearly independent Let $c_1 M^{-1}x_1 + c_2 M^{-1}x_2 + \cdots + c_{n-r}M^{-1}x_{n-r} = 0.$ Then $M^{-1}(c_1x_1 + c_2x_2 + \cdots + c_{n-r}x_{n-r}) = 0$ ∴ $c_1x_1 + c_2x_2 + \cdots + c_{n-r}x_{n-r} = 0$ ∵ $\{x_1, x_2, \cdots, x_{n-r}\}\$ is a basis of *N*(*A*) ∴ $c_1 = c_2 = \cdots = c_{n-r} = 0$ Claim: {*M*−¹ *x*1, *M*−¹ *x*2, · · · , *M*−¹ *xn*−*r*} spans *N*(*B*)

Let
$$
x \in N(B)
$$
. Then $Bx = 0$
\n $\therefore Bx = M^{-1}AMx = 0$
\n $\therefore AMx = 0$
\n $\therefore Mx \in N(A)$
\n $\therefore Mx = c_1x_1 + c_2x_2 + \dots + c_{n-r}x_{n-r}$ for some $c_1, c_2, \dots, c_{n-r} \in \mathbb{R}$

∴ $x = c_1 M^{-1}x_1 + c_2 M^{-1}x_2 + \cdots + c_{n-r} M^{-1}x_{n-r}$