
MA2008B: LINEAR ALGEBRA II

Midterm2/May 21, 2020

Please show all your work clearly for full credit! total 100 points

1. (10 pts) Let A be an n× n square matrix. Assume that λ1 and λ2 are two distinct eigenvalues of
A. Let x1 and x2 be two eigenvectors of A for λ1 and λ2, respectively. Show that x1 and x2 are
linearly independent.

Proof:

Let c1x1 + c2x2 = 0. We wish to show that c1 = c2 = 0.

∵ c1x1 + c2x2 = 0 ∴ A(c1x1 + c2x2) = A0 = 0

∴ c1 Ax1 + c2Ax2 = 0 ∴ c1λ1x1 + c2λ2x2 = 0 · · · · · · (?)

On the other hand, ∵ c1x1 + c2x2 = 0 ∴ c1λ2x1 + c2λ2x2 = 0 · · · · · · (??)

(?) − (??) =⇒ c1(λ1 − λ2)x1 = 0 ∵ λ1 − λ2 6= 0 and x1 6= 0 ∴ c1 = 0

∴ c2x2 = 0 ∵ x2 6= 0 ∴ c2 = 0

2. Let A be the 3× 3 real matrix, A =

 2 2 2
0 2 0
0 1 3


(2a) (5 pts) Find the eigenvalues of A, and for each eigenvalue find its algebraic multiplicity (AM).

Solution:

det(A− λI) = det

 2− λ 2 2
0 2− λ 0
0 1 3− λ

 = (2− λ)2(3− λ).

Let det(A− λI) = 0. Then we have eigenvalues: λ = 2, 2, 3.
∴ λ = 2: AM = 2, λ = 3: AM = 1.

(2b) (10 pts) For each eigenvalue of A, find its geometric multiplicity (GM).
Solution:

(i) λ = 2: Solving 2− λ 2 2
0 2− λ 0
0 1 3− λ

 x
y
z

 =

 0
0
0

 ⇔
 0 2 2

0 0 0
0 1 1

 x
y
z

 =

 0
0
0

 ,

we have x = t, y = s, and z = −s for t, s ∈ R. Therefore, the eigenvectors are given in
the form:  x

y
z

 = t

 1
0
0

+ s

 0
1
−1

 .

We have two linearly independent eigenvectors that correspond to the eigenvalue λ = 2.
Therefore, GM = 2 for λ = 2.

(ii) λ = 3: Solving 2− λ 2 2
0 2− λ 0
0 1 3− λ

 x
y
z

 =

 0
0
0

 ⇔
 −1 2 2

0 −1 0
0 1 0

 x
y
z

 =

 0
0
0

 ,
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⇔

 −1 2 2
0 1 0
0 0 0

 x
y
z

 =

 0
0
0

 ,

we have y = 0, z = t, and x = 2t for t ∈ R. Therefore, the eigenvectors correspond to
the eigenvalue λ = 3 in the form:  x

y
z

 = t

 2
0
1

 .

We have only one linearly independent eigenvector that corresponds to the eigenvalue
λ = 3. Therefore, GM = 1 for λ = 3.

3. Consider the second-order differential equation with two initial values:{
y′′(t) = −9y(t),
y(0) = 3 and y′(0) = 0.

(3a) (5 pts) Let u(t) =
[

y(t)
y′(t)

]
. Rewrite the above IVP as a vector equation:

{
u′(t) = Au(t),
u(0) = [3, 0]>.

What is the 2× 2 real matrix A?
Solution:

∵
dy
dt

= y′(t) and
dy′

dt
= y′′(t) = −9y(t)

∴ u′(t) =

 dy
dt
dy′

dt

 =

[
y′(t)
−9y(t)

]
=

[
0 1
−9 0

] [
y(t)
y′(t)

]
= Au(t) ∴ A =

[
0 1
−9 0

]
(3b) (10 pts) Find the solution u(t) of problem (3a) by using the eigenvalues and eigenvectors of

matrix A.
Solution:

∵ det(A− λI) = det
[

0− λ 1
−9 0− λ

]
= λ2 + 9.

∴ eigenvalues of A are λ1 = 3i, λ2 = −3i

λ1 = 3i :
[
−3i 1
−9 −3i

] [
x1
x2

]
=

[
0
0

]
⇐⇒

[
−3i 1

0 0

] [
x1
x2

]
=

[
0
0

]
∴ eigenvectors of λ1 are

[
x1
x2

]
= s

[
1
3i

]
, ∀ s. We take x1 =

[
1
3i

]
.

λ2 = −3i :
[

3i 1
−9 3i

] [
x1
x2

]
=

[
0
0

]
⇐⇒

[
3i 1
0 0

] [
x1
x2

]
=

[
0
0

]
∴ eigenvectors of λ2 are

[
x1
x2

]
= s

[
1
−3i

]
, ∀ s. We take x2 =

[
1
−3i

]
.

∴ the complete solution is u(t) = Ce3it
[

1
3i

]
+ De−3it

[
1
−3i

]
∵ u(0) =

[
3
0

]
∴
{

C + D = 3
3iC− 3iD = 0

∴ C =
3
2

, D =
3
2

∴ u(t) =
3
2

e3it
[

1
3i

]
+

3
2

e−3it
[

1
−3i

]
=

[
3 cos(3t)
−9 sin(3t)

]
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4. (15 pts) State without proof the Principal Axis Theorem. Find the symmetric diagonalization of

A =

[
2 −1
−1 2

]
.

Solution:

(5 pts) Principal Axis Theorem: Let A be an n× n real symmetric matrix. Then A can be factorized
as A = QΛQ−1, where Λ is a diagonal matrix with real eigenvalues of A and Q is an orthogonal
matrix, Q>Q = I, with eigenvectors in its columns.

(10 pts) Symmetric diagonalization:

det(A− λI) = det
[

2− λ −1
−1 2− λ

]
= λ2 − 4λ + 3 = (λ− 1)(λ− 3).

Then the eigenvalues of A are λ1 = 1 and λ2 = 3.

λ1 = 1:

(A− I)x =

[
1 −1
−1 1

] [
x
y

]
=

[
0
0

]
gives unit eigenvector x1 =

1√
2

[
1
1

]

(or x1 =
1√
2

[
−1
−1

]
).

λ2 = 3:

(A− 3I)x =

[
−1 −1
−1 −1

] [
x
y

]
=

[
0
0

]
gives unit eigenvector x2 =

1√
2

[
1
−1

]

(or x2 =
1√
2

[
−1

1

]
).

Therefore, we have

Λ =

[
1 0
0 3

]
and Q =

1√
2

[
1 1
1 −1

]
.

(other choices of Q are possible!)

5. (15 pts) Let A be an n × n real symmetric matrix. Prove that if A is positive definite ( i.e., all
eigenvalues of A are positive), then x>Ax > 0 for all x ∈ Rn and x 6= 0. (Hint: use the Principal
Axis Theorem)

Proof:

∵ A is a real symmetric matrix

∴ By the Principal Axis Theorem stated in Problem (4), we have A = QΛQ>

Let Q = [q1, q2, · · · , qn].

∵ q1, q2, · · · , qn are orthonormal vectors

∴ They are a basis of Rn

Let x ∈ Rn and x 6= 0.

Then x = c1q1 + c2q2 + · · ·+ cnqn = Q


c1
c2
...

cn

 := Qc and c 6= 0

∴ x>Ax = c>Q>QΛQ>Qc = c>Λc = λ1c2
1 + λ2c2

2 + · · ·+ λnc2
n > 0

(∵ Q>Q = I and λi > 0 for all i and ci 6= 0 for some i)
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6. Let M be an n× n invertible matrix and B = M−1AM.

(6a) (5 pts) Show that A and B have the same characteristic polynomials.

(6b) (10 pts) Show that if x is an eigenvector of A, then M−1x is an eigenvector of B.

Proof:

(6a) ∵ det(M−1)det(M) = 1
∴ det(A− λI) = det(M−1)det(A− λI)det(M) = det(M−1(A− λI)M)

= det(M−1AM − λM−1IM) = det(B− λI)
∴ A and B have the same characteristic polynomials.

(6b) ∵ B = M−1AM
∴ A = MBM−1

Suppose that x 6= 0 is an eigenvector of A for eigenvalue λ.
Then Ax = λx.
∴ MBM−1x = λx
∴ BM−1x = M−1λx
∴ B(M−1x) = λ(M−1x)
∵ x 6= 0 ∴ M−1x 6= 0 (otherwise x = 0)
∴ M−1x is an eigenvector of B

7. Let A be an n× n real matrix with rank r < n and let B be a real matrix similar to A.

(7a) (5 pts) Explain why the dimension of the nullspace N(A) is n− r.

(7b) (10 pts) Show that if {x1, x2, · · · , xn−r} is a basis of N(A), then {M−1x1, M−1x2, · · · , M−1xn−r}
is a basis of N(B).

Proof:

(7a) ∵ By the FTLA-part 1, we have n = dim C(A>) + dim N(A) = r + dim N(A)

∴ dim N(A) = n− r

(7b) Claim: {M−1x1, M−1x2, · · · , M−1xn−r} is linearly independent
Let c1M−1x1 + c2M−1x2 + · · ·+ cn−r M−1xn−r = 0.
Then M−1(c1x1 + c2x2 + · · ·+ cn−rxn−r) = 0
∴ c1x1 + c2x2 + · · ·+ cn−rxn−r = 0
∵ {x1, x2, · · · , xn−r} is a basis of N(A)

∴ c1 = c2 = · · · = cn−r = 0

Claim: {M−1x1, M−1x2, · · · , M−1xn−r} spans N(B)
Let x ∈ N(B). Then Bx = 0
∴ Bx = M−1AMx = 0
∴ AMx = 0
∴ Mx ∈ N(A)

∴ Mx = c1x1 + c2x2 + · · ·+ cn−rxn−r for some c1, c2, · · · , cn−r ∈ R

∴ x = c1M−1x1 + c2M−1x2 + · · ·+ cn−r M−1xn−r
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