MA 2007B: Linear Algebra I – Quiz #5

Name:

Student ID number:

Let \mathcal{P}_2 be the set of all real coefficient polynomials of degree less than or equal to 2, i.e.,

$$\mathcal{P}_2 := \{a_0 + a_1 x + a_2 x^2 | a_0, a_1, a_2 \in \mathbb{R}\}.$$

Let $p(x) = a_0 + a_1x + a_2x^2$, $q(x) = b_0 + b_1x + b_2x^2 \in \mathcal{P}_2$ and $c \in \mathbb{R}$. Define two closed operations + and \cdot by

$$p(x) + q(x) := (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 \in \mathcal{P}_2,$$

$$cp(x) := ca_0 + ca_1x + ca_2x^2 \in \mathcal{P}_2.$$

Show that \mathcal{P}_2 is a vector space over \mathbb{R} .

Proof:

We already have two closed operations + and \cdot defined on \mathcal{P}_2 . We check the 8 conditions as follows:

(1)
$$\forall p(x) = a_0 + a_1 x + a_2 x^2$$
, $q(x) = b_0 + b_1 x + b_2 x^2 \in \mathcal{P}_2$, we have

$$p(x) + q(x) = (a_0 + a_1x + a_2x^2) + (b_0 + b_1x + b_2x^2)$$

$$= (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$

$$= (b_0 + a_0) + (b_1 + a_1)x + (b_2 + a_2)x^2$$

$$= (b_0 + b_1x + b_2x^2) + (a_0 + a_1x + a_2x^2) = q(x) + p(x).$$

(2)
$$\forall p(x) = a_0 + a_1x + a_2x^2$$
, $q(x) = b_0 + b_1x + b_2x^2$, $r(x) = c_0 + c_1x + c_2x^2 \in \mathcal{P}_2$, we have

$$p(x) + (q(x) + r(x)) = (a_0 + a_1x + a_2x^2) + ((b_0 + c_0) + (b_1 + c_1)x + (b_2 + c_2)x^2)$$

$$= a_0 + (b_0 + c_0) + (a_1 + (b_1 + c_1))x + (a_2 + (b_2 + c_2))x^2$$

$$= (a_0 + b_0) + c_0 + ((a_1 + b_1) + c_1)x + ((a_2 + b_2) + c_2)x^2$$

$$= ((a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2) + (c_0 + c_1x + c_2x^2)$$

$$= (p(x) + q(x)) + r(x).$$

(3) Let
$$p(x) \equiv 0 \in \mathcal{P}_2$$
. Then $\forall q(x) = b_0 + b_1 x + b_2 x^2 \in \mathcal{P}_2$, we have

$$q(x) + p(x) = (b_0 + 0) + (b_1 + 0)x + (b_2 + 0)x^2 = b_0 + b_1x + b_2x^2 = q(x).$$

Now, assume that $p(x) = a_0 + a_1x + a_2x^2 \in \mathcal{P}_2$ such that p(x) + q(x) = q(x) $\forall q(x) = b_0 + b_1x + b_2x^2 \in \mathcal{P}_2$. Then

$$q(x) + p(x) = (b_0 + a_0) + (b_1 + a_1)x + (b_2 + a_2)x^2 = q(x) = b_0 + b_1x + b_2x^2.$$

We obtain $a_0 = a_1 = a_2 = 0$, that is, $p(x) \equiv 0$.

Therefore $p(x) \equiv 0$ is the unique zero vector!

(4)
$$\forall p(x) = a_0 + a_1x + a_2x^2 \in \mathcal{P}_2$$
, define the vector

$$-p(x) := (-a_0) + (-a_1)x + (-a_2)x^2.$$

Then $-p(x) \in \mathcal{P}_2$ and

$$p(x) + (-p(x)) = (a_0 + (-a_0)) + (a_1 + (-a_1))x + (a_2 + (-a_2))x^2$$

= 0 + 0x + 0x² \equiv 0.

Similar to the proof of (3), one can further show that the -p(x) is unique!

(5)
$$\forall p(x) = a_0 + a_1 x + a_2 x^2 \in \mathcal{P}_2$$
, we have

$$1 \cdot p(x) = 1 \cdot a_0 + 1 \cdot a_1 x + 1 \cdot a_2 x^2 = a_0 + a_1 x + a_2 x^2 = p(x).$$

(6)
$$\forall p(x) = a_0 + a_1 x + a_2 x^2 \in \mathcal{P}_2 \text{ and } c_1, c_2 \in \mathbb{R}$$
, we have

$$c_1(c_2p(x)) = c_1(c_2a_0 + c_2a_1x + c_2a_2x^2) = c_1c_2a_0 + c_1c_2a_1x + c_1c_2a_2x^2$$

= $(c_1c_2)a_0 + (c_1c_2)a_1x + (c_1c_2)a_2x^2 = (c_1c_2)p(x).$

(7)
$$\forall p(x) = a_0 + a_1x + a_2x^2$$
, $q(x) = b_0 + b_1x + b_2x^2 \in \mathcal{P}_2$, $c \in \mathbb{R}$, we have

$$c(p(x) + q(x)) = c((a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2)$$

$$= (ca_0 + cb_0) + (ca_1 + cb_1)x + (ca_2 + cb_2)x^2$$

$$= (ca_0 + ca_1x + ca_2x^2) + (cb_0 + cb_1x + cb_2x^2)$$

$$= cp(x) + cq(x)$$

(8)
$$\forall p(x) = a_0 + a_1 x + a_2 x^2 \in \mathcal{P}_2, c_1, c_2 \in \mathbb{R}$$
, we have

$$(c_1 + c_2)p(x) = (c_1 + c_2)a_0 + (c_1 + c_2)a_1x + (c_1 + c_2)a_2x^2$$

= $(c_1a_0 + c_1a_1x + c_1a_2x^2) + (c_2a_0 + c_2a_1x + c_2a_2x^2)$
= $c_1p(x) + c_2p(x)$.