Name:

Student ID number:

(1) (5 pts) Using elimination, we can factor the matrix A into LU, i.e., A = LU,

□ 2 −1 0	0]	[1	0	0	0]	Γ2	-1	0	0]	
-1 2 -1	0	$-\frac{1}{2}$	1	0	0	0	$\frac{3}{2}$	-1	0	
0 -1 2	-1 =		$-\frac{2}{3}$	1	0	0	$\tilde{0}$	$\frac{4}{3}$	-1	•
$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$	2	0	0	$-\frac{3}{4}$	1	0	0	0	$\frac{5}{4}$	

Find the solution of the following linear system Ax = b by solving two triangular systems associated with *L* and *U*:

$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Solution: First, we solve the lower triangular system Lc = b,

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 \\ 0 & -\frac{2}{3} & 1 & 0 \\ 0 & 0 & -\frac{3}{4} & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

By forward substitution, we have

$$c_1 = 1 \Longrightarrow c_2 = \frac{1}{2}c_1 = \frac{1}{2} \Longrightarrow c_3 = \frac{2}{3}c_2 = \frac{1}{3} \Longrightarrow c_4 = 1 + \frac{3}{4}c_3 = \frac{5}{4}.$$

Next, we solve the upper triangular system Ux = c,

$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & 0 \\ 0 & 0 & \frac{4}{3} & -1 \\ 0 & 0 & 0 & \frac{5}{4} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1/2 \\ 1/3 \\ 5/4 \end{bmatrix}.$$

By backward substitution, we have $x_4 = 1 \implies x_3 = 1 \implies x_2 = 1 \implies x_1 = 1$.

- (2) (5 pts) Assume that A^{-1} exists. Show that A^{\top} is invertible and $(A^{\top})^{-1} = (A^{-1})^{\top}$. **Proof:**
 - (i) $\therefore A^{-1}A = I$ $\therefore (A^{-1}A)^{\top} = I^{\top} = I$ $\therefore A^{\top}(A^{-1})^{\top} = I$ (ii) $\therefore AA^{-1} = I$ $\therefore (AA^{-1})^{\top} = I^{\top} = I$ $\therefore (A^{-1})^{\top}A^{\top} = I$
 - By (i) (ii), A^{\top} is invertible and $(A^{\top})^{-1} = (A^{-1})^{\top}$.