
MA2007B: LINEAR ALGEBRA I

Midterm1/October 24, 2019

Please show all your work clearly for full credit!

(1) (15 pts) State the Cauchy-Schwarz-Buniakowsky inequality for vectors in Rn and then use the
Cauchy-Schwarz-Buniakowsky inequality to prove the triangle inequality,

‖v + w‖ ≤ ‖v‖+ ‖w‖, ∀ v, w ∈ Rn.

Solution:

(i). Cauchy-Schwarz-Buniakowsky inequality: Let v, w ∈ Rn. Then |v ·w| ≤ ‖v‖‖w‖.

(ii). Proof: For any v, w ∈ Rn, we have

‖v + w‖2 = (v + w) · (v + w)

= v · v + v ·w + w · v + w ·w
= v · v + 2v ·w + w ·w
= ‖v‖2 + 2v ·w + ‖w‖2.

By the Cauchy-Schwarz-Buniakowsky inequality, we have

‖v + w‖2 ≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2

= (‖v‖+ ‖w‖)2.

Therefore, we obtain ‖v + w‖ ≤ ‖v‖+ ‖w‖. �

(2) (10 pts) Let v and w be two nonzero vectors in R2 and v 6= αw, ∀ α ∈ R. Let θ be the angle
between v and w. Show that 0 < θ < (π/2) if and only if ‖v‖2 + ‖w‖2 > ‖v−w‖2.

Proof: First, we note that

(v−w) · (v−w) = v · v− 2v ·w + w ·w.

By the cosine formula, we have

‖v−w‖2 = ‖v‖2 − 2‖v‖‖w‖ cos θ + ‖w‖2. (?)

(⇒): If 0 < θ < (π/2), then cos θ > 0. By (?), we have ‖v−w‖2 < ‖v‖2 + ‖w‖2

(⇐): If ‖v−w‖2 < ‖v‖2 + ‖w‖2, by (?), we obtain cos θ > 0. Therefore, 0 < θ < (π/2). �

(3) (10 pts) Can four vectors u1, u2, u3, u4 in R2 have ui · uj < 0 for all i 6= j?

Solution:

No, it is impossible!

Suppose that there are four vectors u1, u2, u3, u4 in R2 distributed in counterclockwise such that
ui · uj < 0 for all i 6= j, then ∠u1u2 > π/2, ∠u2u3 > π/2, ∠u3u4 > π/2, and ∠u4u1 > π/2.

∴ The total angle > 4× π/2 = 2π. This is a contradiction!

∴ It is impossible that there are four vectors u1, u2, u3, u4 in R2 such that ui · uj < 0 for all i 6= j.
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(4) (15 pts) Any real-valued function f : Rn → R is called a norm on Rn if it satisfies the following
three conditions: (i) f (v) ≥ 0, ∀ v ∈ Rn; f (v) = 0 if and only if v = 0; (ii) f (αv) = |α| f (v), ∀ v ∈
Rn and α ∈ R; (iii) f (v + w) ≤ f (v) + f (w), ∀ v, w ∈ Rn.

Define
f (v) := ‖v‖1 := |v1|+ |v2|+ · · ·+ |vn|, v = (v1, v2, · · · , vn) ∈ Rn

and
f (v) := ‖v‖∞ := max{|v1|, |v2|, · · · , |vn|}, v = (v1, v2, · · · , vn) ∈ Rn.

Show that both ‖ · ‖1 and ‖ · ‖∞ are norms on Rn.

Proof:

• Claim: ‖ · ‖1 is a norm on Rn:

(i) ∀ v ∈ Rn, we have ‖v‖1 = |v1|+ |v2|+ · · ·+ |vn| ≥ 0, since |vi| ≥ 0 ∀ i.
‖v‖1 = |v1|+ |v2|+ · · ·+ |vn| = 0 if and only if |vi| = 0, 1 ≤ i ≤ n, if and only if v = 0.

(ii) Let v = (v1, v2, · · · , vn) ∈ Rn and α ∈ R. Then αv = (αv1, αv2, · · · , αvn) and

‖αv‖1 = |αv1|+ |αv2|+ · · ·+ |αvn|
= |α|(|v1|+ |v2|+ · · ·+ |vn|) = |α|‖v‖1.

(iii) Let v = (v1, v2, · · · , vn), w = (w1, w2, · · · , wn) ∈ Rn. Then

‖v + w‖1 = ‖(v1, v2, · · · , vn) + (w1, w2, · · · , wn)‖1

= ‖(v1 + w1, v2 + w2, · · · , vn + wn)‖1

= |v1 + w1|+ |v2 + w2|+ · · ·+ |vn + wn|
≤ |v1|+ |w1|+ |v2|+ |w2|+ · · ·+ |vn|+ |wn|
= (|v1|+ |v2|+ · · ·+ |vn|) + (|w1|+ |w2|+ · · ·+ |wn|)
= ‖v‖1 + ‖w‖1.

• Claim: ‖ · ‖∞ is a norm on Rn:

(i) ∀ v ∈ Rn, we have ‖v‖∞ = max{|v1|, |v2|, · · · , |vn|} ≥ 0, since |vi| ≥ 0 ∀ i.
‖v‖∞ = max{|v1|, |v2|, · · · , |vn|} = 0 if and only if |vi| = 0, 1 ≤ i ≤ n, if and only if v = 0.

(ii) Let v = (v1, v2, · · · , vn) ∈ Rn and α ∈ R. Then αv = (αv1, αv2, · · · , αvn) and

‖αv‖∞ = max{|αv1|, |αv2|, · · · , |αvn|}
= max{|α||v1|, |α||v2|, · · · , |α||vn|}
= |α|max{|v1|, |v2|, · · · , |vn|} = |α|‖v‖∞.

(iii) Let v = (v1, v2, · · · , vn), w = (w1, w2, · · · , wn) ∈ Rn. Then

‖v + w‖∞ = ‖(v1, v2, · · · , vn) + (w1, w2, · · · , wn)‖∞

= ‖(v1 + w1, v2 + w2, · · · , vn + wn)‖∞

= max{|v1 + w1|, |v2 + w2|, · · · , |vn + wn|}
≤ max{|v1|+ |w1|, |v2|+ |w2|, · · · , |vn|+ |wn|} (since |vi + wi| ≤ |vi|+ |wi| ∀ i)
≤ max{|v1|, |v2|, · · · , |vn|}+ max{|w1|, |w2|, · · · , |wn|}
= ‖v‖∞ + ‖w‖∞. �
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(5) (10 pts) Is the following matrix C invertible? Please give your reason without using Gaussian
elimination or determinant.

C =


2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2

 .

Consider the linear system Cx = b. Find a condition on b such that the linear system has no
solution.

Solution: No! C is not invertible. Because there exists a nonzero vector x∗ = (1, 1, · · · , 1) ∈ Rn

such that Cx∗ = 0:

Cx∗ =


2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2




1
1
1
1

 =


0
0
0
0

 .

If C is invertible, then x∗ = C−1(Cx∗) = C−10 = 0. This is a contradiction!

Consider the linear system Cx = b. Adding all rows of the linear system, we have

0 = b1 + b2 + b3 + b4.

Therefore, if b1 + b2 + b3 + b4 6= 0, then the linear system Cx = b has no solution.

(6) (15 pts) Let A and B be two n× n matrices. Prove that if the product C = AB is invertible, then A
and B are invertible. Find a formula for A−1 that involves C−1 and B.

Proof:

(i) If the product C = AB is invertible, then CC−1 = (AB)C−1.

∴ I = CC−1 = (AB)C−1 = A(BC−1)

∴ A(BC−1) = I

∴ A is invertible, i.e., A−1 exists.

∴ A−1 = A−1I = A−1A(BC−1) = I(BC−1) = BC−1

(ii) Claim: B is invertible.

∵ A is invertible

∴ A−1 is invertible

∵ C = AB

∴ A−1C = A−1(AB) = (A−1A)B = IB = B

∴ B = A−1C, a product of two invertible matrices A−1 and C

∴ B is invertible �

(7) (10 pts) Consider the 4× 4 matrix,

A =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 .

What three elimination matrices E21, E32, E43 put A into upper triangular form E43E32E21A = U.
Multiply by E−1

43 , E−1
32 and E−1

21 to factor A into LU.
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Solution:
2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 `21=
−1
2−−−−→


2 −1 0 0
0 3

2 −1 0
0 −1 2 −1
0 0 −1 2

 `32=
−2
3−−−−→


2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 −1 2



`43=
−3
4−−−−→


2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 0 5

4

 := U.

Therefore, we have the following three elimination matrices:

E21 =


1 0 0 0
1
2 1 0 0
0 0 1 0
0 0 0 1

 , E32 =


1 0 0 0
0 1 0 0
0 2

3 1 0
0 0 0 1

 , E43 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 3

4 1

 ,

and E43E32E21A = U. The three inverses of E21, E32, E43 are, respectively,

E−1
21 =


1 0 0 0
− 1

2 1 0 0
0 0 1 0
0 0 0 1

 , E−1
32 =


1 0 0 0
0 1 0 0
0 − 2

3 1 0
0 0 0 1

 , E−1
43 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 3

4 1

 ,

and
E−1

21 E−1
32 E−1

43 (E43E32E21A) = E−1
21 E−1

32 E−1
43 U.

Therefore,

A = E−1
21 E−1

32 E−1
43︸ ︷︷ ︸

≡L

U = LU =


1 0 0 0
− 1

2 1 0 0
0 − 2

3 1 0
0 0 − 3

4 1




2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 0 5

4

 .

(8) (15 pts) Find the solution of the following linear system by solving two triangular systems, one
with the lower triangular matrix L and the other with the upper triangular matrix U, both derived
in problem (7): 

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2




x1
x2
x3
x4

 =


1
0
0
1

 .

Solution: From problem (7), we have

L =


1 0 0 0
− 1

2 1 0 0
0 − 2

3 1 0
0 0 − 3

4 1

 , U =


2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 0 5

4

 .

Since A = LU, where L is a lower triangular matrix and U is a upper triangular matrix, we solve
first

Lc = b :=


1
0
0
1

 ,
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and then solve
Ux = c.

• Lc = b: Let

c =


c1
c2
c3
c4

 .

Then we solve 
1 0 0 0
− 1

2 1 0 0
0 − 2

3 1 0
0 0 − 3

4 1




c1
c2
c3
c4

 =


1
0
0
1

 .

By forward substitution, we have

c1 = 1 =⇒ c2 =
1
2

c1 =
1
2
=⇒ c3 =

2
3

c2 =
1
3
=⇒ c4 = 1 +

3
4

c3 =
5
4

.

• Ux = c: 
2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 0 5

4




x1
x2
x3
x4

 =


1

1/2
1/3
5/4


By backward substitution, we have

x4 = 1 =⇒ x3 = 1 =⇒ x2 = 1 =⇒ x1 = 1.
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