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Polynomial interpolation

We are going to solve the following problem: given a table of
n + 1 data points (xi, yi),

x x0 x1 x2 · · · xn
y y0 y1 y2 · · · yn

we seek a polynomial pn of lowest possible degree for which

pn(xi) = yi (0 ≤ i ≤ n).

Such a polynomial pn(x) is said to interpolate the data.
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Theorem on polynomial interpolation

If x0, x1, · · · , xn are n + 1 distinct real (or complex) numbers, then for
arbitrary n + 1 values y0, y1, · · · yn, there exists a unique polynomial pn of
degree at most n such that

pn(xi) = yi (0 ≤ i ≤ n).

Proof: (uniqueness)

Suppose there were two such polynomials pn and qn.
Then (pn − qn)(xi) = 0 for 0 ≤ i ≤ n.

Since the degree of pn − qn can be at most n, this polynomial can have
at most n zeros if it is not the 0 polynomial.

Since the xi are distinct, pn − qn has n + 1 zeros.
Therefore , it must be 0, namely, pn ≡ qn. □
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Theorem on polynomial interpolation (cont’d)

Proof: (existence) We will use the mathematical induction on n.

For n = 0, we take p0 ≡ y0. Then p0(x0) = y0.

Suppose that it is true for n = k − 1, i.e., ∃ a polynomial pk−1 of
degree ≤ k − 1 with pk−1(xi) = yi for 0 ≤ i ≤ k − 1. We wish to
prove that it is true for n = k.
(i) We try to construct pk in the form

pk(x) = pk−1(x) + c(x − x0)(x − x1) · · · (x − xk−1),

where c need to be determined.
(ii) Note that deg(pk) ≤ k and pk(xi) = pk−1(xi) = yi for
0 ≤ i ≤ k − 1. We can determine c from the condition
pk(xk) = yk, i.e.,

yk = pk−1(xk) + c(xk − x0)(xk − x1) · · · (xk − xk−1).

Therefore, we have
c =

yk − pk−1(xk)

(xk − x0)(xk − x1) · · · (xk − xk−1)
.

That is, it is still true for n = k. □
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Newton form of the interpolation polynomial

We attempt to translate the constructive existence proof into an
algorithm suitable for a computer program.

Consider the first few cases:
p0(x) = c0 = y0,
p1(x) = c0︸︷︷︸

p0(x)

+c1(x − x0),

p2(x) = c0 + c1(x − x0)︸ ︷︷ ︸
p1(x)

+c2(x − x0)(x − x1),

...
In general, we have

pk(x) = pk−1(x) + ck(x − x0)(x − x1) · · · (x − xk−1).

Thus, we can solve for the coefficients:

ck =
yk − pk−1(xk)

(xk − x0)(xk − x1) · · · (xk − xk−1)
.
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Newton form of the interpolation polynomial (cont’d)

Notice that each pk is obtained simply by adding a single term to
pk−1 and pk has the form (the interpolation polynomials in
Newton’s form),

pk(x) = c0 + c1(x − x0) + c2(x − x0)(x − x1) + · · ·
+ck(x − x0)(x − x1) · · · (x − xk−1),

or expressed in more compact form,

pk(x) =
k

∑
i=0

ci

i−1

∏
j=0

(x − xj),

where
i−1

∏
j=0

(x − xj) := 1 if i − 1 = −1 and

ck =
yk − pk−1(xk)

(xk − x0)(xk − x1) · · · (xk − xk−1)
, k ≥ 1.
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Example

Consider the polynomial

f (x) = 4x3 + 35x2 − 84x − 954.

Some values of this function are given by

x 5 −7 −6 0
y 1 −23 −54 −954

The coefficients computed using the above algorithm are:

c0 = y0 = 1, c1 = 2, c2 = 3 and c3 = 4 =⇒
p3(x) = 1 + 2(x − 5) + 3(x − 5)(x + 7) + 4(x − 5)(x + 7)(x + 6),

which is the Newton form of f (x) = 4x3 + 35x2 − 84x − 954.

Note that p3 ≡ f .

An alternative method is to use divided differences to compute the
coefficients (see next section later).
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Lagrange form of the interpolation polynomial

Consider the alternative form expressing p

pn(x) = y0ℓ0(x) + y1ℓ1(x) + · · ·+ ynℓn(x) =
n

∑
k=0

ykℓk(x),

where ℓ0, ℓ1, · · · ℓn are polynomials that depend on the nodes
x0, x1, · · · , xn, but not on the ordinates y0, y1, · · · , yn.

ℓ0, ℓ1, . . . ℓn are cardinal functions with property:

ℓi(xj) = δij.

Recall that the Kronecker delta is defined by

δij =

{
1 if i = j,
0 if i ̸= j.
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Lagrange form of the interpolation polynomial (cont’d)

Let’s consider ℓ0. It is a polynomial of degree n that takes the
value 0 at x1, x2, · · · , xn and the value 1 at x0. It must be of the
form:

ℓ0(x) = c(x − x1)(x − x2) · · · (x − xn) = c
n

∏
j=1

(x − xj).

Setting x = x0 =⇒ 1 = c
n

∏
j=1

(x0 − xj) or c =
n

∏
j=1

(x0 − xj)
−1.

So, we have

ℓ0(x) =
n

∏
j=1

x − xj

x0 − xj
.

Each ℓi is obtained by similar reasoning:

ℓi(x) =
n

∏
j=0,j ̸=i

x − xj

xi − xj
, 0 ≤ i ≤ n.
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Example

x 5 −7 −6 0
y 1 −23 −54 −954

The nodes are 5, −7, −6, 0. So we have

ℓ0(x) =
(x + 7)(x + 6)x
(5 + 7)(5 + 6)5

=
1

660
x(x + 6)(x + 7),

ℓ1(x) =
(x − 5)(x + 6)x

(−7 − 5)(−7 + 6)(−7)
=

−1
84

x(x − 5)(x + 6),

ℓ2(x) =
(x − 5)(x + 7)x

(−6 − 5)(−6 + 7)(−6)
=

−1
66

x(x − 5)(x + 7),

ℓ3(x) =
(x − 5)(x + 7)(x + 6)
(0 − 5)(0 + 7)(0 + 6)

=
−1
210

(x − 5)(x + 6)(x + 7).

Thus, the interpolating polynomial is:

p3(x) = 1ℓ0(x)− 23ℓ1(x)− 54ℓ2(x)− 954ℓ3(x).
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Other method

Assume that

pn(x) = a0 + a1x + a2x2 + · · ·+ anxn.

The interpolation conditions, pn(xi) = yi for 0 ≤ i ≤ n, lead to a
system of n + 1 linear equations for determining a0, a1, · · · , an:

1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...

...
...

. . .
...

1 xn x2
n · · · xn

n


︸ ︷︷ ︸

X


a0
a1
a2
...

an

 =


y0
y1
y2
...

yn

 .

The coefficient matrix X is called the Vandermonde matrix. It is
nonsingular with det X = ∏0≤i<j≤n(xj − xi) ̸= 0, but is often ill
conditioned. Therefore, this approach is not recommended.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Approximating Functions – 11/83



Homework #1

Recall the Vandermonde matrix X in the previous page, and define

Vn(x) = det


1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
. . .

...
1 xn−1 x2

n−1 · · · xn
n−1

1 x x2 · · · xn

 .

Then obviously we have det X = Vn(xn).

(1) Show that Vn(x) is a polynomial of degree n and its roots are
x0, x1, · · · , xn−1 by deriving the formula

Vn(x) = Vn−1(xn−1)(x − x0)(x − x1) · · · (x − xn−1).

Hint: expand the last row of Vn(x) by minors to show Vn(x) is a
polynomial of degree n and to find the coefficient of the term xn.

(2) Show that
det X = Vn(xn) = ∏

0≤i<j≤n
(xj − xi).
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Theorem on polynomial interpolation error

Let f be a given real-valued function in Cn+1[a, b], and let pn be the
polynomial of degree at most n that interpolates the function f at n + 1
distinct points (nodes) x0, x1, · · · , xn in the interval [a, b]. To each x in [a, b]
there corresponds a point ξx ∈ (a, b) such that

f (x)− pn(x) =
1

(n + 1)!
f (n+1)(ξx)

n

∏
i=0

(x − xi).

Proof: Let x ∈ [a, b] be any point other than xi, i = 0, 1, · · · , n. Define

w(t) =
n

∏
i=0

(t − xi) (polynomial in t),

φ(t) = f (t)− pn(t)− λw(t) (function in t),

λ =
f (x)− pn(x)

w(x)
(a constant that makes φ(x) = 0).

Then φ ∈ Cn+1[a, b] and φ vanishes at the n + 2 points x, x0, x1, · · · , xn.
By Rolle’s Theorem, φ′ has at least n + 1 distinct zeros in (a, b).
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Theorem on polynomial interpolation error (cont’d)

Proof: (continued)

Repeating this process, we conclude eventually that φ(n+1) has at
least one zero ξx ∈ (a, b).

φ(n+1)(t) = f (n+1)(t)− p(n+1)
n (t)− λw(n+1)(t)

= f (n+1)(t)− (n + 1)!λ.

Hence, we have

0 = φ(n+1)(ξx) = f (n+1)(ξx)− (n + 1)!λ

= f (n+1)(ξx)− (n + 1)!
f (x)− pn(x)

w(x)
.

This completes the proof. □
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Example

If f (x) = sin x is approximated by a polynomial of degree 9 that
interpolates f at 10 points in the interval [0, 1], how large is the error
on this interval?

Since

|f (10)(ξx)| ≤ 1 and
9

∏
i=0

|x − xi| ≤ 1,

we have for all x in [0, 1],∣∣∣sin x − p9(x)
∣∣∣ ≤ 1

10!
< 2.8 × 10−7.
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Chebyshev polynomials

The Chebyshev polynomials (of the first kind) are defined
recursively as follows: T0(x) = 1,

T1(x) = x,
Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1.

The explicit forms of the next few Tn are:

T2(x) = 2x2 − 1,
T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,
T5(x) = 16x5 − 20x3 + 5x,

T6(x) = 32x6 − 48x4 + 18x2 − 1.

These polynomials arose when Chebyshev was studying the
motion of linkages in a steam locomotive.
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Some Chebyshev polynomials: T0, T1, · · · , T5

(quoted from wikipedia.org)
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Properties of the Chebyshev polynomials

Theorem: For x in the interval [−1, 1],

Tn(x) = cos(n cos−1 x) for n ≥ 0.

Proof: Recall the addition formula for the cosine:

cos(n + 1)θ = cos θ cos nθ − sin θ sin nθ,
cos(n − 1)θ = cos θ cos nθ + sin θ sin nθ.

Thus, we have cos(n + 1)θ = 2 cos θ cos nθ − cos(n − 1)θ. (⋆)

Let θ = cos−1 x. Then x = cos θ. Define

fn(x) = cos(n cos−1 x) = cos(nθ).

From (⋆), we have f0(x) = 1,
f1(x) = x,

fn+1(x) = 2xfn(x)− fn−1(x) for n ≥ 1.

Therefore, fn = Tn for all n ≥ 0. □
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Properties of the Chebyshev polynomials (cont’d)

|Tn(x)| ≤ 1 for −1 ≤ x ≤ 1.

Tn(cos iπ
n ) = (−1)i for 0 ≤ i ≤ n, where xi = cos iπ

n are the
location of absolute extreme points of Tn on [−1, 1].

Tn(cos 2i−1
2n π) = 0 for 1 ≤ i ≤ n, where xi = cos 2i−1

2n π are the
location of zero roots of Tn on [−1, 1] (in fact, on R).
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Monic polynomials

A monic polynomial is one in which the term of highest degree
has a coefficient of unity.

From the definition of the Chebyshev polynomials, we see that
in Tn(x) the term of highest degree is 2n−1xn for n ≥ 1.
Therefore, 21−nTn is a monic polynomial for n ≥ 1.

Theorem: If p is a monic polynomial of degree n, then

∥p∥∞ := max
−1≤x≤1

|p(x)| ≥ 21−n.

Proof: Suppose that |p(x)| < 21−n for −1 ≤ x ≤ 1. Let q(x) = 21−nTn(x) and
xi = cos( iπ

n ), 0 ≤ i ≤ n. Then q is a monic polynomial of degree n. We have

(−1)ip(xi) ≤ |p(xi)| < 21−n = (−1)iq(xi)

=⇒ (−1)i(q(xi)− p(xi)) > 0, for 0 ≤ i ≤ n.

This shows that q − p oscillates in sign at least n + 1 times on [−1, 1].
Therefore, q − p have at least n roots in (−1, 1).
This is a contradiction since q − p has degree at most n − 1

(Note that xn will not appear in q − p). □
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Choosing the nodes

Theorem: If the nodes xi are the roots of the Chebyshev polynomial Tn+1,
then the error formula for the interpolation polynomial pn yields

|f (x)− pn(x)| ≤
1

2n(n + 1)!
max
|t|≤1

|f (n+1)(t)|, −1 ≤ x ≤ 1.

Proof: By the error formula of the polynomial interpolation pn of f ,

max
|x|≤1

|f (x)− pn(x)| ≤
1

(n + 1)!
max
|t|≤1

∣∣∣f (n+1)(t)
∣∣∣max
|x|≤1

∣∣∣∣∣ n

∏
i=0

(x − xi)

∣∣∣∣∣ .

By the theorem on the previous page, we have

max
|x|≤1

∣∣∣∣∣ n

∏
i=0

(x − xi)

∣∣∣∣∣ ≥ 2−n.

Let xi = cos
(

2i + 1
2n + 2

π

)
for 0 ≤ i ≤ n, the roots of Tn+1. Then we can show that

2−nTn+1(x) = ∏n
i=0(x − xi). Since |Tn(x)| ≤ 1 for −1 ≤ x ≤ 1, we have

max
|x|≤1

∣∣∣∣∣ n

∏
i=0

(x − xi)

∣∣∣∣∣ = max
|x|≤1

|2−nTn+1(x)| ≤ 2−n. □

(cf. pp. 221-229, E. Isaacson and H. B. Keller, Analysis of Numerical Methods, 1966)
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The convergence of interpolating polynomials

Assume that f ∈ C[a, b], and if interpolating polynomials pn of higher
and higher degree are constructed for f , then the natural expectation is
that these polynomials will converge to f uniformly on [a, b]. i.e.,

∥f − pn∥∞ := max
a≤x≤b

|f (x)− pn(x)| → 0 as n → ∞.

This is true for f (x) = sin x on [0, 1] for any given nodes (p.15).

Runge example: f (x) =
1

1 + x2 on [−5, 5]. If interpolating

polynomials pn are constructed using equally spaced nodes in
[−5, 5], the sequence {an := ∥f − pn∥∞} is not bounded.

Faber’s Theorem: For any prescribed, a ≤ x(n)0 < · · · < x(n)n ≤ b,
n ≥ 0, ∃ f ∈ C[a, b] s.t. the interpolating polynomials for f using these
nodes fail to converge uniformly to f .

Theorem on convergence of interpolants: If f ∈ C[a, b], then ∃
a ≤ x(n)0 < x(n)1 < · · · < x(n)n ≤ b, n ≥ 0, s.t. the interpolating
polynomials pn for f using these nodes satisfy lim

n→∞
∥f − pn∥∞ = 0.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Approximating Functions – 22/83



Polynomial interpolants with different sets of nodes

Consider the function f (x) =
1

1 + x2 for x ∈ [−5, 5].

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

Polynomial interpolant with nine equally spaced nodes

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

Polynomial interpolant with nine Cheybyshev nodes

The technique for choosing points to minimize the interpolating error
can be extended to a general closed interval [a, b] by using the change
of variables,

x̃ =
1
2
((b − a)x + a + b) ,

to shift the numbers xi in [−1, 1] into the corresponding numbers x̃i.
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Divided differences (均差)

Let f be a function whose values are given at points (nodes)
x0, x1, · · · xn.

We assume that these nodes are distinct, but they need not be
ordered.

We know there is a unique polynomial pn of degree at most n
such that

p(xi) = f (xi) for 0 ≤ i ≤ n.

pn can be constructed as a linear combination of 1, x, x2, · · · , xn.
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Divided differences (cont’d)

Instead, we use the Newton form of the interpolating polynomial. Let

q0(x) = 1,
q1(x) = (x − x0),
q2(x) = (x − x0)(x − x1),
q3(x) = (x − x0)(x − x1)(x − x2),

...
qn(x) = (x − x0)(x − x1)(x − x2) · · · (x − xn−1).

Then we have

pn(x) =
n

∑
j=0

cjqj(x)

for some cj given on page 6.
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Divided differences (cont’d)

The interpolation conditions give rise to a linear system of
equations Ac = f for the unknown coefficients cj’s:

n

∑
j=0

cjqj(xi) = f (xi) for 0 ≤ i ≤ n.

The elements of the coefficient matrix A = (aij) are

aij = qj(xi) for 0 ≤ i, j ≤ n.

The (n + 1)× (n + 1) matrix A is lower triangular because

qj(x) =
j−1

∏
k=0

(x − xk)

=⇒ aij = qj(xi) =
j−1

∏
k=0

(xi − xk) = 0 if i ≤ j − 1.
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Divided differences (cont’d)

For example, consider the case of three nodes with

p2(x) = c0q0(x) + c1q1(x) + c2q2(x)
= c0 + c1(x − x0) + c2(x − x0)(x − x1).

Setting x = x0, x = x1, and x = x2, we have a lower triangular
system 1 0 0

1 (x1 − x0) 0
1 (x2 − x0) (x2 − x0)(x2 − x1)

 c0
c1
c2

 =

 f (x0)
f (x1)
f (x2)

 .

Thus, cn depends on f at x0, x1, · · · , xn, and define the notation

cn := f [x0, x1, · · · , xn],

which is called a divided difference of f .

f [x0, x1, · · · , xn] is the coefficient of qn when
n

∑
k=0

ckqk interpolates

f at x0, x1, · · · , xn.
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Divided differences (cont’d)

Note that

f [x0] = f (x0), f [x0, x1] =
f (x1)− f (x0)

x1 − x0
.

Theorem on higher-order divided differences (均差): In general,
divided differences satisfy the equation:

f [x0, x1, · · · , xn] =
f [x1, x2, · · · , xn]− f [x0, x1, · · · , xn−1]

xn − x0
.

Proof: Denote pk the polynomial of degree ≤ k that interpolates f at x0, x1, · · · , xk.
Let q denote the polynomial of degree ≤ n − 1 that interpolates f at x1, x2, · · · , xn.
Then we can check that

pn(x) = q(x) +
x − xn

xn − x0

(
q(x)− pn−1(x)

)
.

This is because that the both sides of the equality have the same values at x0, x1,
· · · , xn and same degree ≤ n. Examining the coefficient of xn on the both sides,
we arrive at the assertion. □
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Table of divided differences

If a table of function values (xi, f (xi)) is given, we can construct
from it a table of divided differences as follows:

x0 f [x0] f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]

x1 f [x1] f [x1, x2] f [x1, x2, x3]

x2 f [x2] f [x2, x3]

x3 f [x3]

Note that the Newton interpolating polynomial can be written
in the form

pn(x) =
n

∑
k=0

f [x0, x1, · · · , xk]
k−1

∏
j=0

(x − xj).

The coefficients required in the Newton interpolating
polynomial occupy the top row in the divided difference table.
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Example

Compute a divided difference table from

xi 3 1 5 6
yi = f (xi) 1 −3 2 4

Solution:

3 1 2 − 3
8

7
40

1 −3 5
4

3
20

5 2 2

6 4

The Newton interpolating polynomial can be written as

p3(x) = 1+ 2(x− 3)− 3
8
(x− 3)(x− 1) +

7
40

(x− 3)(x− 1)(x− 5).
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Properties of divided differences

Theorem A: If (z0, z1, · · · zn) is a permutation of (x0, x1, · · · xn), then

f [z0, z1, · · · , zn] = f [x0, x1, · · · , xn].

Theorem B (Theorem on the interpolation error): Let pn be the
polynomial of degree ≤ n that interpolates f at n + 1 distinct nodes
x0, x1, · · · , xn. If t ̸= xi, i = 0, 1 · · · , n, then

f (t)− pn(t) = f [x0, x1, · · · , xn, t]
n

∏
j=0

(t − xj).

Theorem C (Theorem on derivatives and divided differences):
If f ∈ Cn[a, b] and x0, x1, · · · , xn are distinct points in [a, b], there
exists a point ξ ∈ (a, b) such that

f [x0, x1, · · · , xn] =
1
n!

f (n)(ξ).
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Proof of Theorem A

f [z0, z1, · · · , zn] is the coefficient of xn in the polynomial of
degree ≤ n that interpolates f at the nodes z0, z1, · · · , zn.

f [x0, x1, · · · , xn] is the coefficient of xn in the polynomial of
degree ≤ n that interpolates f at the nodes x0, x1, · · · , xn.

These two polynomials are the same. This leads to the conclusion. □
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Proof of Theorem B

Let q be the polynomial of degree ≤ n + 1 that interpolates f at the
nodes x0, x1, · · · , xn, t. Then

q(x) = pn(x) + f [x0, x1, · · · , xn, t]
n

∏
j=0

(x − xj).

Since q(t) = f (t), we obtain

f (t) = q(t) = pn(t) + f [x0, x1, · · · , xn, t]
n

∏
j=0

(t − xj).

Therefore,

f (t)− pn(t) = f [x0, x1, · · · , xn, t]
n

∏
j=0

(t − xj).

□
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Proof of Theorem C

Let pn−1 be the polynomial of degree ≤ n − 1 that interpolates f at
x0, x1, · · · , xn−1. By the Theorem on Polynomial Interpolation Error on
page 13, ∃ ξ ∈ (a, b) such that

f (xn)− pn−1(xn) =
1
n!

f (n)(ξ)
n−1

∏
j=0

(xn − xj).

On the other hand, by Theorem B with t = xn, we have

f (xn)− pn−1(xn) = f [x0, x1, · · · , xn]
n−1

∏
j=0

(xn − xj).

Therefore, we have

f [x0, x1, · · · , xn] =
1
n!

f (n)(ξ). □
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Bilinear interpolation

Assume that the function values of f are given at four points:
Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1), and Q22 = (x2, y2).

(cited from “omni calculator”)

Then by the Lagrange linear interpolation, we have

f (x, y1) ≈ x − x2

x1 − x2
f (Q11) +

x − x1

x2 − x1
f (Q21),

f (x, y2) ≈ x − x2

x1 − x2
f (Q12) +

x − x1

x2 − x1
f (Q22).
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Bilinear interpolation (cont’d)

Let P = (x, y) be a given point in the rectangular region enclosed by
Q11, Q12, Q21, and Q22. By the Lagrange linear interpolation again,

f (x, y) ≈ p11(x, y) =
y − y2

y1 − y2
f (x, y1) +

y − y1

y2 − y1
f (x, y2)

=
y − y2

y1 − y2

(
x − x2

x1 − x2
f (Q11) +

x − x1

x2 − x1
f (Q21)

)
+

y − y1

y2 − y1

(
x − x2

x1 − x2
f (Q12) +

x − x1

x2 − x1
f (Q22)

)
=

1
(x1 − x2)(y1 − y2)

(
(f (Q11)(x − x2)(y − y2)

+f (Q21)(x − x1)(y2 − y) + f (Q12)(x2 − x)(y − y1)

+f (Q22)(x − x1)(y − y1)
)

=
1

(x1 − x2)(y1 − y2)

[
x2 − x
x − x1

]⊤ [f (Q11) f (Q12)
f (Q21) f (Q22)

] [
y2 − y
y − y1

]
.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Approximating Functions – 36/83



A direct approach: bilinear and bicubic interpolations

For bilinear interpolation, a direct approach is given by

f (x, y) ≈ p11(x, y) = a + bx + cy + dxy,

where the four coefficients are determined from the four
equations in four unknowns a, b, c, d:

f (Q11) = a + bx1 + cy1 + dx1y1,
f (Q12) = a + bx1 + cy2 + dx1y2,
f (Q21) = a + bx2 + cy1 + dx2y1,
f (Q22) = a + bx2 + cy2 + dx2y2.

For bicubic interpolation, a direct approach is given by

f (x, y) ≈ p33(x, y) =
3

∑
i=0

3

∑
j=0

aijxiyj,

where the 16 coefficients aij, 0 ≤ i, j ≤ 3 are determined from the
16 equations with 16 unknowns, using the function values of the
16 nearest neighboring points in the rectangular region.
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Hermite interpolation

Regular interpolation (Lagrange interpolation) refers to the
interpolation of a function at a set of nodes:

f (xi), i = 0, 1, · · · , n, are given.

Hermite interpolation refers to the interpolation of a function
and some of its derivatives at a set of nodes:

f (xi), i = 0, 1, · · · , n, are given,

and
some of f ′(xi), i = 0, 1, · · · , n, are given.
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Basic concepts

Given f and its derivative f ′ at two distinct points, say x0 and x1,
find a polynomial with the lowest degree such that

p(xi) = f (xi) and p′(xi) = f ′(xi) for i = 0, 1.

What degree? Since there are four conditions, a polynomial of
degree 3 seems reasonable; i.e., find a, b, c, d such that

p(x) = a + bx + cx2 + dx3

satisfies all the four conditions. Notice that

p′(x) = b + 2cx + 3dx2.

(a, b, c, d) is the solution of the following system:

p(x0) = a + bx0 + cx2
0 + dx3

0 = f (x0),

p(x1) = a + bx1 + cx2
1 + dx3

1 = f (x1),

p′(x0) = b + 2cx0 + 3dx2
0 = f ′(x0),

p′(x1) = b + 2cx1 + 3dx2
1 = f ′(x1).

Does this have a solution? Unique? How to solve it?
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Basic concepts (cont’d)

A better form of a polynomial of degree 3

p(x) = a + b(x − x0) + c(x − x0)
2 + d(x − x0)

2(x − x1)

and

p′(x) = b + 2c(x − x0) + 2d(x − x0)(x − x1) + d(x − x0)
2.

The four conditions on p can now be written in the form

f (x0) = a,
f ′(x0) = b,

f (x1) = a + bh + ch2,

f ′(x1) = b + 2ch + dh2,

where h := x1 − x0.
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Some difficulties

How general is this linear system approach?

An example: find a polynomial p that assumes these values:
p(0) = 0, p(1) = 1, p′( 1

2 ) = 2.

p(x) = a + bx + cx2.

(1) p(0) = 0 leads to a = 0.
(2) the other two conditions lead to

1 = p(1) = b + c,

2 = p′(
1
2
) = b + c.

It doesn’t work!
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Birkhoff interpolation

Let us try a cubic polynomial

p(x) = a + bx + cx2 + dx3.

We discover that a solution exists but not unique.

(1) notice that a = 0 (∵ p(0) = 0).
(2) the remaining conditions are

1 = b + c + d (∵ p(1) = 1),

2 = b + c +
3
4

d (∵ p′(
1
2
) = 2).

The solution of this system is d = −4 and b + c = 5 (infinitely
many solution).

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Approximating Functions – 42/83



Hermite interpolation

In a Hermite interpolation, it is assumed that whenever a
derivative p(j)(xi) is prescribed at note xi, then p(j−1)(xi),
p(j−2)(xi), · · · , p′(xi) and p(xi) will also be prescribed.

That is at node xi, ki := j + 1 interpolation conditions are
prescribed. Notice that ki may vary with i.

Let nodes be x0, x1, · · · , xn. Suppose that at node xi these
interpolation conditions are given:

p(j)(xi) = cij for 0 ≤ j ≤ ki − 1 and 0 ≤ i ≤ n.

The total number of conditions on p denoted by m + 1, i.e.,

m + 1 := k0 + k1 + · · ·+ kn.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Approximating Functions – 43/83



Theorem on Hermite interpolation

There exists a unique polynomial p ∈ Πm fulfilling the Hermite
interpolation conditions, where Πm is the space containing all polynomials
of degree less than or equal to m.

Sketch of the proof:

From the interpolation conditions, we have an associated linear
system problem, say Ax = b, where A is an (m + 1)× (m + 1) matrix.

To prove that A is nonsingular, it suffices to prove that Ax = 0 has
only the 0 solution.

That is, we need to show that if p ∈ Πm such that

p(j)(xi) = 0 for 0 ≤ j ≤ ki − 1 and 0 ≤ i ≤ n,

then p(x) ≡ 0. Such polynomial has a zero of multiplicity ki at xi for
0 ≤ i ≤ n. Therefore, p must be a multiple of q(x) := ∏n

i=0(x − xi)
ki .

Since degree(q) = ∑n
i=0 ki = m + 1, we have p(x) ≡ 0. □
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Remark

What happens in Hermite interpolation when there is only one node?
In this case, we require a polynomial p of degree k, for which

p(j)(x0) = c0j for 0 ≤ j ≤ k.

The solution is the Taylor polynomial:

p(x) = c00 + c01(x − x0) +
c02

2!
(x − x0)

2 + · · ·+ c0k
k!

(x − x0)
k.
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Newton form of Hermite interpolation

Suppose that we are going to find a quadratic polynomial of the form

p(x) = c0 + c1(x − x0) + c2(x − x0)
2,

which satisfies the requirements:

p(x0) = f (x0), p′(x0) = f ′(x0) and p(x1) = f (x1).

Then
p′(x) = c1 + 2c2(x − x0)

and we have a lower triangular system 1 0 0
0 1 0
1 (x1 − x0) (x1 − x0)

2

 c0
c1
c2

 =

 f (x0)
f ′(x0)
f (x1)

 .

Thus, c0 = f (x0) = f [x0], c1 depends on f ′(x0), and c2 depends on
f (x0), f ′(x0), and f (x1).
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Newton form of Hermite interpolation (cont’d)

Since limx→x0 f [x0, x] = limx→x0
f (x)−f (x0)

x−x0
= f ′(x0), we define

f [x0, x0] := f ′(x0).

Then c1 = f ′(x0) = f [x0, x0]. From

f [x0, x1] =
f (x1)− f (x0)

x1 − x0
,

we have

f [x0, x0, x1] =
f [x0, x1]− f [x0, x0]

x1 − x0
=

f (x1)− f (x0)

(x1 − x0)2 − c1

x1 − x0
= c2.

We can check that

p(x) = f (x0) + f [x0, x0](x − x0) + f [x0, x0, x1](x − x0)
2.

(see Problem 6.3.5)
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Remarks

We write the divided difference table in this form:

x0 f [x0] f [x0, x0] ?
x0 f [x0] ?
x1 f [x1]

The question marks stand for entries that are not yet computed.
Observe that x0 appears twice and the prescribed value of
f ′(x0)(= f [x0, x0]) has been placed in the column of first-order
divided differences.

From Theorem C (page 31),

f [x0, x1, · · · , xk] =
1
k!

f (k)(ξ),

where ξ belongs to the open interval containing x0, x1, · · · , xk.
Hence, we define

f [x0, x0, · · · , x0] :=
1
k!

f (k)(x0).

Notice that when k ≥ 2 need to include 1/k! in the table.
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Example

Use the extended Newton divided difference algorithm to
determine a polynomial that that takes these values:

p(1) = 2, p′(1) = 3, p(2) = 6, p′(2) = 7, and p′′(2) = 8.

1 2 3 ? ? ?
1 2 ? ? ?
2 6 7 8/2
2 6
2 6

1 2 3 1 2 −1
1 2 4 3 1
2 6 7 4
2 6
2 6

The interpolating polynomial is

p(x) = 2+ 3(x− 1)+ (x− 1)2 + 2(x− 1)2(x− 2)− (x− 1)2(x− 2)2.
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Lagrange form of Hermite interpolation

Let us try to satisfy

p(xi) = ci0 and p′(xi) = ci1, 0 ≤ i ≤ n

by a polynomial of the form

p(x) =
n

∑
i=0

ci0Ai(x) +
n

∑
i=0

ci1Bi(x).

Similar to the Lagrange formula, we wish the following properties:{
Ai(xj) = δij,
A′

i(xj) = 0;

{
Bi(xj) = 0,
B′

i(xj) = δij.

Recall the notation
ℓi(x) =

n

∏
j=0,j ̸=i

x − xj

xi − xj
.

Then, Ai and Bi can be defined as follows{
Ai(x) = [1 − 2(x − xi)ℓ

′
i(xi)]ℓ

2
i (x) 0 ≤ i ≤ n,

Bi(x) = (x − xi)ℓ
2
i (x) 0 ≤ i ≤ n.
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Lagrange form of Hermite interpolation (cont’d)

Take a two-point case:

p(x) = f (x0)A0(x) + f (x1)A1(x) + f ′(x0)B0(x) + f ′(x1)B1(x),

where
A0(x) =

(
1 − 2(x − x0)ℓ

′
0(x0)

)
ℓ2

0(x),

A1(x) =
(
1 − 2(x − x1)ℓ

′
1(x1)

)
ℓ2

1(x),

B0(x) = (x − x0)ℓ
2
0(x),

B1(x) = (x − x1)ℓ
2
1(x),

and
ℓ0(x) =

x − x1

x0 − x1
,

ℓ1(x) =
x − x0

x1 − x0
,

ℓ′0(x) =
1

x0 − x1
,

ℓ′1(x) =
1

x1 − x0
.
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Theorem on Hermite interpolation error estimate

Let x0, x1, · · · , xn be distinct nodes in [a, b] and let f ∈ C2n+2[a, b]. If p2n+1
is the polynomial of degree at most 2n + 1 such that

p2n+1(xi) = f (xi), p′2n+1(xi) = f ′(xi) for 0 ≤ i ≤ n,

then to each x in [a, b] there corresponds a point ξ in (a, b) such that

f (x)− p2n+1(x) =
f (2n+2)(ξ)

(2n + 2)!

n

∏
i=0

(x − xi)
2.

Sketch of the proof: The proof is similar to the proof of Theorem on
Lagrange interpolation error estimate, pp. 13-14.

Let x ∈ [a, b] be any point other than xi, i = 0, 1, · · · , n. Define

w(t) =
n

∏
i=0

(t − xi)
2 (polynomial in t),

φ(t) = f (t)− p2n+1(t)− λw(t) (function in t),

λ =
f (x)− p2n+1(x)

w(x)
(a constant that makes φ(x) = 0). □
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Spline interpolation (樣條插值)

A spline function consists of polynomial pieces on subintervals
joined together with certain continuity conditions. Formally,
suppose that n + 1 points (knots) t0, t1, · · · , tn have been
specified and satisfy t0 < t1 < · · · < tn.

A spline function of degree k is a function S such that

(1) on each interval [ti−1, ti), S is a polynomial of degree ≤ k.
(2) S has a continuous (k − 1)st derivative on [t0, tn].

Example: A spline of degree 0 is a piecewise constant function.
A spline of degree 0 can be given explicitly in the form:

S(x) =


S0(x) = c0 x ∈ [t0, t1),
S1(x) = c1 x ∈ [t1, t2),
...

...
Sn−1(x) = cn−1 x ∈ [tn−1, tn].
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A spline of degree 1

A spline function of degree 1 takes the following form:

S(x) =


S0(x) = a0x + b0 x ∈ [t0, t1),
S1(x) = a1x + b1 x ∈ [t1, t2),
...

...
Sn−1(x) = an−1x + bn−1 x ∈ [tn−1, tn].

Note that when k = 1, the k − 1 derivative has to be continuous,
i.e., S(x) has to be continuous on [t0, tn].

The pieces are not independent. They have to satisfy the
conditions

Si(ti+1) = Si+1(ti+1) for i = 0, 1, · · · , n − 2.
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Cubic splines (k = 3)

Cubic splines are most famous and often used in practice.

We assume that a table of value has been given

x t0 t1 · · · tn
y y0 y1 · · · yn

On each interval [t0, t1], [t1, t2], ·, [tn−1, tn], S is given by a
different cubic polynomial.

Let Si be the cubic polynomial that represent S on [ti, ti+1]. Thus,

S(x) =


S0(x) x ∈ [t0, t1],
S1(x) x ∈ [t1, t2],
...

...
Sn−1(x) x ∈ [tn−1, tn].
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Cubic splines (cont’d)

The polynomials Si−1 and Si interpolate the same value at the
point ti and therefore

Si−1(ti) = yi = Si(ti) for 1 ≤ i ≤ n − 1.

This implies that S(x) is continuous.

Now, since k = 3, we also need to have both S′(x) and S′′(x) to
be continuous.

How do we satisfy these conditions?

(1) we have 4n coefficients for n cubic polynomials.
(2) on each subinterval [ti, ti+1], we have 2 interpolation

conditions: S(ti) = yi and S(ti+1) = yi+1 =⇒ 2n conditions.
(3) continuity of S′ =⇒ one condition at each knot:

S′
i−1(ti) = S′

i(ti) =⇒ n − 1 conditions.
(4) similarly for S′′ =⇒ n − 1 conditions.
(5) total: 4n − 2 conditions, 4n coefficients. =⇒ two degrees of

freedom.
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Derive the equation for Si(x) on [ti, ti+1]

Let zi := S′′(ti) for 0 ≤ i ≤ n. S′′(x) is continuous everywhere
including the nodes

lim
x↓ti

S′′(x) = zi = lim
x↑ti

S′′(x) for 1 ≤ i ≤ n − 1.

Since Si is a cubic polynomial on [ti, ti+1], S′′
i (x) is a degree 1

polynomial (linear function) satisfying S′′
i (ti) = zi and

S′′
i (ti+1) = zi+1. Then

S′′
i (x) =

zi
hi
(ti+1 − x) +

zi+1

hi
(x − ti),

where hi = ti+1 − ti.

Taking the integral twice to obtain Si itself,

Si(x) =
zi

6hi
(ti+1 − x)3 +

zi+1

6hi
(x − ti)

3 + C(x − ti) + D(ti+1 − x),

where C and D are integration constants.
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Derive the equation for Si(x) on [ti, ti+1] (cont’d)

We need to use other conditions to determine C and D.

Using the interpolation conditions

Si(ti) = yi and Si(ti+1) = yi+1,

we obtain

Si(x) =
zi

6hi
(ti+1 − x)3 +

zi+1

6hi
(x − ti)

3

+ (
yi+1

hi
− zi+1hi

6
)(x − ti) + (

yi
hi

− zihi
6

)(ti+1 − x).

Note: We still do not know the values of zi and zi+1.
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Derive the equation for Si(x) on [ti, ti+1] (cont’d)

Let us use the condition that S′ is continuous. This means

S′
i−1(ti) = S′

i(ti),

S′
i(ti) = −hi

3
zi −

hi
6

zi+1 −
yi
hi

+
yi+1

hi
,

S′
i−1(ti) =

hi−1

6
zi−1 +

hi−1

3
zi −

yi−1

hi−1
+

yi
hi−1

.

Hence, we have

hi−1zi−1 + 2(hi + hi−1)zi + hizi+1 =
6
hi
(yi+1 − yi)−

6
hi−1

(yi − yi−1),

where zi−1, zi and zi+1 are the unknowns, everything else is
known.

The above equation is valid only for points t1, t2, · · · , tn−1. Why?

Boundary conditions: For z0 and zn, we can pick any values.
natural cubic spline: z0 = zn = 0.
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A linear system

Putting all the conditions togethers, for i = 1, 2, · · · , n − 1, we
have

u1 h1
h1 u2 h2

h2 u3 h3
. . . . . . . . .

hn−1 un−2 hn−2
hn−2 un−1





z1
z2
z3
...

zn−2
zn−1


=



v1
v2
v3
...

vn−2
vn−1


,

where

hi = ti+1 − ti, ui = 2(hi + hi−1),

bi =
6
hi
(yi+1 − yi), vi = bi − bi−1.

The matrix is strictly diagonally dominant, therefore it is
nonsingular!
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Smoothness properties

Theorem on optimality of natural cubic splines: If f ′′ is
continuous in [a, b], then∫ b

a
(S′′(x))2dx ≤

∫ b

a
(f ′′(x))2dx.

Proof: See Textbook, page 355. □

Recall, the curvature of a smooth function f : R → R is

|f ′′(x)|(1 + (f ′(x))2)−3/2 ≈ |f ′′(x)| if f ′(x) is small.

The natural cubic spline function has a curvature “smaller” than
that of f over an interval [a, b].
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A classical problem in best approximation

Problem: A continuous function f is defined on an interval [a, b].
For a fixed n, we ask for a polynomial p of degree at most n such
that

max
a≤x≤b

|f (x)− p(x)| is minimized.

Remarks:

Interpolations use pointwise values, e.g., Lagrange
interpolation: p(xi) = f (xi).
Approximations use global information.
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Some backgrounds

Consider a normed linear space (E, ∥ · ∥) and a subspace G in E.

For any f ∈ E, the distance from f to G is defined as

dist(f , G) = inf
g∈G

∥f − g∥.

If an element g∗ ∈ G has the property

∥f − g∗∥ = dist(f , G) = inf
g∈G

∥f − g∥,

then g∗ achieves this minimum deviation. It is a best
approximation of f from G.

The meaning of best approximation thus depends on the norm
chosen for the problem.
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Some backgrounds (cont’d)

In the classic problem mentioned on page 59, the normed space
is E := C[a, b], the space of all continuous functions defined on
[a, b], and the norm is defined by

∥f∥∞ := max
a≤x≤b

|f (x)| for f ∈ C[a, b].

The subspace G is the space Πn of all polynomials of degree ≤ n.

In general, best approximations are not unique. For example, let
f (x) = cos x on [0, π/2]. Then f ∈ C[0, π/2]. Let G = span{x},
then G is a finite-dimensional subspace of C[0, π/2]. Then
g(x) = λx are best approximations for all 0 ≤ λ ≤ 2/π in ∥ · ∥∞.

Solution: By definition, we have

dist(f , G) = inf
g∈G

∥f − g∥∞ = inf
g∈G

max
0≤x≤π/2

|f (x)− g(x)|

= inf
λ∈R

max
0≤x≤π/2

| cos x − λx| = 1,

and ∥f − λx∥∞ = 1, ∀ 0 ≤ λ ≤ 2/π.
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Theorem on existence of best approximation

If G is a finite-dimensional subspace in a normed linear space E, then each
point of E possesses at least one best approximation in G.

Sketch of the proof:

Let f ∈ E. If g ∈ G is a best approximation of f , then
∥f − g∥ ≤ ∥f − 0∥ = ∥f∥ (since 0 ∈ G).

Define K = {h ∈ G : ∥f − h∥ ≤ ∥f∥}. Then K is closed and bounded.

Since G is a finite-dimensional space and K ⊆ G, K is compact.

(Note: A normed linear space is finite-dimensional if and only if
every bounded subset is “relatively compact”)

∵ The function F : G → R defined by F(h) := ∥f − h∥ is continuous.

∴ F attains minimum on the compact set K.

∴ ∃ g ∈ K such that ∥f − g∥ = minh∈K ∥f − h∥( =︸︷︷︸
(why?)

infh∈G ∥f − h∥). □
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Inner product spaces

A real inner product space is a real linear space E with an inner
product ⟨·, ·⟩ : E × E → R satisfying the following properties:
for any f , g ∈ E,

(1) ⟨f , f ⟩ ≥ 0 and ⟨f , f ⟩ = 0 if and only if f = 0.
(2) ⟨f , h⟩ = ⟨h, f ⟩.
(3) ⟨f , αh + βg⟩ = α⟨f , h⟩+ β⟨f , g⟩, for any α, β ∈ R.

A natural norm associated with the inner product is defined as
∥f∥ =

√
⟨f , f ⟩.

We write f⊥g if ⟨f , g⟩ = 0. We write f⊥G if f⊥g for all g ∈ G.
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Examples

Two important inner-product spaces are

Rn with

⟨x, y⟩ =
n

∑
i=1

xiyi.

Cw[a, b], the space of continuous functions on [a, b], with

⟨f , g⟩ =
∫ b

a
f (x)g(x)w(x)dx,

where w(x) is a fixed continuous positive function (for example,
w(x) ≡ 1).
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Lemma on inner product space properties

In an inner product space, we have〈
n

∑
i=1

aifi, g

〉
=

n

∑
i=1

ai ⟨fi, g⟩.

∥f + g∥2 = ∥f∥2 + 2⟨f , g⟩+ ∥g∥2.

If f⊥g, then ∥f + g∥2 = ∥f∥2 + ∥g∥2 (Pythagorean law).

|⟨f , g⟩| ≤ ∥f∥∥g∥ (Schwarz inequality).

∥f + g∥2 + ∥f − g∥2 = 2∥f∥2 + 2∥g∥2.

Proof: see Textbook, page 395. □
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Theorem on characterizing best approximation

Let G be a subspace in an inner product space E. For f ∈ E and g ∈ G, the
following two properties are equivalent:

1 g is a best approximation to f in G.
2 (f − g)⊥G.

Proof: (2) ⇒ (1): If f − g⊥G, then for any h ∈ G we have, by the
Pythagorean law,

∥f − h∥2 = ∥(f − g) + (g − h)∥2 = ∥f − g∥2 + ∥g − h∥2 ≥ ∥f − g∥2.

∴ we have (1).
(1) ⇒ (2): Let h ∈ G and λ > 0. Then

0 ≤ ∥f − g + λh∥2 − ∥f − g∥2

= ∥f − g∥2 + 2λ⟨f − g, h⟩+ λ2∥h∥2 − ∥f − g∥2

= λ{2⟨f − g, h⟩+ λ∥h∥2}.

Letting λ → 0+, we obtain ⟨f − g, h⟩ ≥ 0. Replacing h by −h, we have
⟨f − g,−h⟩ ≥ 0. Therefore ⟨f − g, h⟩ = 0. Since h is arbitrary in G,
(f − g)⊥G. □
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Example

Determine the best approximation of the function f (x) = sin x
by a polynomial g(x) = c1x + c2x3 + c3x5 on the interval [−1, 1]
using the inner product:

⟨f , g⟩ :=
∫ 1

−1
f (x)g(x)dx, ∀ f , g ∈ L2(−1, 1).

The optimal function g has the property (f − g)⊥G. G is the
space generated by g1(x) = x, g2(x) = x3, and g3(x) = x5. Thus,
⟨g − f , gi⟩ = 0 is required for i = 1, 2, 3.

c1⟨g1, gi⟩+ c2⟨g2, gi⟩+ c3⟨g3, gi⟩ = ⟨f , gi⟩ for i = 1, 2, 3.

These are called the normal equations.
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Example (cont’d)

Putting in the details, we have
c1
∫ 1
−1 x2dx + c2

∫ 1
−1 x4dx + c3

∫ 1
−1 x6dx =

∫ 1
−1 x sin xdx,

c1
∫ 1
−1 x4dx + c2

∫ 1
−1 x6dx + c3

∫ 1
−1 x8dx =

∫ 1
−1 x3 sin xdx,

c1
∫ 1
−1 x6dx + c2

∫ 1
−1 x8dx + c3

∫ 1
−1 x10dx =

∫ 1
−1 x5 sin xdx.

Results in a 3 × 3 linear system: 1
3

1
5

1
7

1
5

1
7

1
9

1
7

1
9

1
11

 c1
c2
c3

 =

 α − β
−3α + 5β

65α − 101β

 ,

where α = sin 1 and β = cos 1. Solving this system, we obtain
c1 ≈ −0.99998, c2 ≈ −0.16652, and c3 ≈ 0.00802.

This coefficient matrix is an example of the ill-conditioned
Hilbert matrix.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Approximating Functions – 71/83



The Gram matrix

Let {u1, u2, · · · , un} be any basis for a subspace U. In order that
an element u ∈ U be the best approximation to f , it is necessary
and sufficient that u − f ⊥ U by the Theorem on characterizing best
approximation (cf. page 66).

An equivalent condition is that ⟨u − f , ui⟩ = 0 for 1 ≤ i ≤ n.
Setting u = ∑n

j=1 cjuj, we find

n

∑
j=1

cj⟨uj, ui⟩ = ⟨f , ui⟩ for 1 ≤ i ≤ n.

These are the normal equations: n linear equations in the n
unknowns c1, c2, · · · , cn. The coefficient matrix G is called a
Gram matrix, where Gij = ⟨ui, uj⟩ = ⟨uj, ui⟩.

Lemma on Gram matrix: If {u1, u2, · · · , un} is linearly
independent, then its Gram matrix is nonsingular (see page 403).
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Orthonormal systems

A sequence of vectors f1, f2, · · · in an inner product space is
(1) orthogonal if ⟨fi, fj⟩ = 0 for i ̸= j.
(2) orthonormal if ⟨fi, fj⟩ = δij for all i, j.

Theorem on constructing best approximation: Let {g1, · · · , gn}
be an orthonormal system in an inner product space E. The best
approximation of f by an element ∑n

i=1 cigi is obtained if and only if
ci = ⟨f , gi⟩.

Proof: Let G = span{g1, g2, · · · , gn}. Then
n

∑
i=1

cigi is a best approximation of f in G

⇐⇒ (f −
n

∑
i=1

cigi) ⊥ G ⇐⇒ (f −
n

∑
i=1

cigi) ⊥ gj for j = 1, 2, · · · , n.

⇐⇒ 0 =

〈
f −

n

∑
i=1

cigi, gj

〉
= ⟨f , gj⟩ −

n

∑
i=1

ci⟨gi, gj⟩ = ⟨f , gj⟩ − cj. □
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Example

We reconsider the previous example: sin x ≈ c1x + c2x3 + c3x5.
It is known that an orthonormal basis for our three-dimensional
subspace is provided by three Legendre polynomials as follows:

g1(x) =
x√
2/3

,

g2(x) =
5x3 − 3x
2
√

2/7
,

g3(x) =
63x5 − 70x3 + 15x

8
√

2/11
.
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Example (cont’d)

The solution is then the polynomial ∑3
i=1 cigi, where ci = ⟨f , gi⟩.

c1 =
√

3/2
∫ 1

−1
x sin xdx = 2

√
3/2(α − β),

c2 =
1
2

√
7/2

∫ 1

−1
sin x(5x3 − 3x)dx =

√
7/2(−18α + 28β),

c3 =
1
8

√
11/2

∫ 1

−1
sin x(63x5 − 70x3 + 15x)dx

=
1
4

√
11/2(4320α − 6728β),

where α = sin 1 and β = cos 1. The approximate solution is
c1 ≈ 0.738, c2 ≈ −3.37 × 10−2, and c3 ≈ 4.34 × 10−4.
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Theorem on Gram-Schmidt process

Let {v1, v2, · · · , vn} be a basis for a subspace U in an inner-product space.
Define recursively

ui =

∥∥∥∥∥vi −
i−1

∑
j=1

⟨vi, uj⟩uj

∥∥∥∥∥
−1(

vi −
i−1

∑
j=1

⟨vi, uj⟩uj

)
for i = 1, 2, · · · , n.

Then {u1, u2, · · · , un} is an orthonormal base for U.

Proof: see Textbook, page 399. □
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Theorem on orthogonal polynomials

The sequence of polynomial defined inductively as following is orthogonal:

pn(x) = (x − an)pn−1(x)− bnpn−2(x) for n ≥ 2,

with p0(x) = 1, p1(x) = x − a1, and

an = ⟨xpn−1, pn−1⟩/⟨pn−1, pn−1⟩ for n ≥ 1,
bn = ⟨xpn−1, pn−2⟩/⟨pn−2, pn−2⟩ for n ≥ 2,

where ⟨·, ·⟩ is any inner product provided it has the property:
⟨fg, h⟩ = ⟨f , gh⟩, e.g., ⟨f , g⟩ =

∫ b
a f (x)g(x)w(x)dx.

Proof: Since each pi is a monic polynomial of degree i, ⟨pi, pi⟩ ̸= 0 for
all i. We show by induction on n that

⟨pn, pi⟩ = 0, for i = 0, 1, · · · , n − 1.

n = 1 : ⟨p1, p0⟩ = ⟨(x − a1)p0, p0⟩ = ⟨xp0, p0⟩ − a1⟨p0, p0⟩ = 0.
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Proof of the theorem on orthogonal polynomials (cont’d)

Suppose that the assertion holds for n − 1. We wish to prove that it is
still true for n.

⟨pn, pn−1⟩ = ⟨xpn−1, pn−1⟩ − an⟨pn−1, pn−1⟩ − bn⟨pn−2, pn−1⟩ = 0,
⟨pn, pn−2⟩ = ⟨xpn−1, pn−2⟩ − an⟨pn−1, pn−2⟩ − bn⟨pn−2, pn−2⟩ = 0.

For i = 0, 1, · · · , n − 3, we have

⟨pn, pi⟩ = ⟨xpn−1, pi⟩ − an⟨pn−1, pi⟩ − bn⟨pn−2, pi⟩ = ⟨pn−1, xpi⟩
= ⟨pn−1, pi+1 + ai+1pi + bi+1pi−1⟩ = 0.
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Legendre polynomials

Combining the inner product ⟨f , g⟩ :=
∫ 1
−1 f (x)g(x)dx with the

theorem above, we have the Legendre polynomials:

p0(x) = 1.

a1 = ⟨xp0, p0⟩/⟨p0, p0⟩ = 0.

p1(x) = x.

a2 = ⟨xp1, p1⟩/⟨p1, p1⟩ = 0.

b2 = ⟨xp1, p0⟩/⟨p0, p0⟩ = 1
3 .

p2(x) = x2 − 1
3 .

Similarly, we have

p3(x) = x3 − 3
5 x.

p4(x) = x4 − 6
7 x2 + 3

35 .

p5(x) = x5 − 10
9 x3 + 5

21 x.
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Chebyshev polynomials

The Chebyshev polynomials form an orthogonal system on [−1, 1]
using the following inner product:

⟨f , g⟩ :=
∫ 1

−1
f (x)g(x)

dx√
1 − x2

.

Solution: Changing of variable x = cos θ, we have

⟨f , g⟩ :=
∫ π

0
f (cos θ)g(cos θ)dθ.

Since Tn(x) = cos(n cos−1 x), we have for n ̸= m,

⟨Tn, Tm⟩ =
∫ π

0
cos(nθ) cos(mθ)dθ =

1
2

∫ π

0
cos(n + m)θ + cos(n − m)θdθ

=
1
2

[ sin(n + m)θ

n + m
+

sin(n − m)θ

n − m

]π

0
= 0.
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Least squares problems

Given a data set {(xi, fi), i = 1, 2, · · · , m}. We would like to
approximate the data set using functions in the following space:
F = span{ϕ1(x), ϕ2(x), · · · , ϕn(x)}, where ϕ1(x), ϕ2(x), · · · , ϕn(x)
are the basis functions. In general, m ≫ n.
Functions in F take the form ϕ(x) = c1ϕ1(x) + · · ·+ cnϕn(x).

Question: can we find a ϕ(x) ∈ F, such as all conditions in the
data set are satisfied:

ϕ(xi) = fi, i = 1, 2, · · · , m,

which is the same as saying the following

c1ϕ1(x1) + c2ϕ2(x1) + · · ·+ cnϕn(x1) = f1,
c1ϕ1(x2) + c2ϕ2(x2) + · · ·+ cnϕn(x2) = f2,

· · ·
c1ϕ1(xm) + c2ϕ2(xm) + · · ·+ cnϕn(xm) = fm.

This is not a square system, and usually has no solution.
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Least squares problems (cont’d)

No solution in the classical sense, but we can define a least
squares solution.

Define di = fi − (c1ϕ1(xi) + c2ϕ2(xi) + · · ·+ cnϕn(xi)),
i = 1, 2, · · · , m.

If we can’t make all di = 0, can we make all of them small?

Define a vector d = (d1, d2, · · · , dm)⊤, and

min ∥d∥2.

Using the 2-norm, we have

min(d2
1 + d2

2 + · · ·+ d2
m).
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Least squares problems (cont’d)

Define

Ψ(c1, c2, · · · , cn) := ∥d∥2
2 =

m

∑
i=1

(
fi −

n

∑
j=1

cjϕj(xi)
)2

.

Want to find c1, c2, · · · , cn such that Ψ(c1, c2, · · · , cn) is
minimized.

∂Ψ
∂cℓ

= 0, for ℓ = 1, 2, · · · , n.

This leads to a linear system problem:

Gc = b.

Here G is an n × n Gram matrix.
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