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Polynomial interpolation

@ We are going to solve the following problem: given a table of
n + 1 data points (x;,y;),

x| xo | x| x| o | X
vivolw | - |

we seek a polynomial p, of lowest possible degree for which
pu(x;) =y (0<i<n).

® Such a polynomial py,(x) is said to interpolate the data.
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Theorem on polynomial interpolation

Ifxo,x1, -+, xn are n + 1 distinct real (or complex) numbers, then for
arbitrary n + 1 values yo,y1, - - - Yn, there exists a unique polynomial p,, of
degree at most n such that

pu(xi) =yi (0 <i<n).
Proof: (uniqueness)
Suppose there were two such polynomials p;, and g;.

Then (p, —gn)(x;) =0for 0 <i <n.

Since the degree of p, — g, can be at most #, this polynomial can have
at most n zeros if it is not the 0 polynomial.

Since the x; are distinct, p, — g, has n 4 1 zeros.
Therefore , it must be 0, namely, p, =¢q,. U
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Theorem on polynomial interpolation (cont’d)

Proof: (existence) We will use the mathematical induction on .

@ Forn =0, we take pg = yo. Then po(xo) = yo.

@ Suppose that it is true for n = k — 1, i.e., 3 a polynomial p;_4 of
degree < k — 1 with py_1(x;) =y; for 0 <i < k — 1. We wish to
prove that it is true for n = k.

(i) We try to construct py in the form

Pr(x) = pr1(x) +e(x —x0) (x —x1) -+ (x — X, 1),
where ¢ need to be determined.
(ii) Note that deg(px) < k and py(x;) = pr_1(x;) = y; for
0 <i<k—1. We can determine ¢ from the condition
pr(xk) = yx, ie,

Yk = pr—1(xx) +c(oxg — x0) (0 — x1) -+ (¥ — X5—1)-

Therefore, we have

. Yk — Pr—1(xk)

(2 — x0) (xx — x1) -+ (3k — X4—1)
That is, it is still true forn = k. O
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Newton form of the interpolation polynomial

@ We attempt to translate the constructive existence proof into an
algorithm suitable for a computer program.

@ Consider the first few cases:
Po (.X' ) = €0 = Yo,

pi(x) = co +ec(x—xp),
~—
po(x)
p2(x) = co+c1(x —xp)+ca(x —x0)(x —x1),
(%)
p1(x

In general, we have
Pe(x) = pr—1(x) + e (x —x0) (x — x1) -+ - (x — x_1).
Thus, we can solve for the coefficients:

Y — Pr—1(xx)
(x — x0) (g —x1) - -+ (0 — X3—1)

Ci =
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Newton form of the interpolation polynomial (cont’d)

@ Notice that each py is obtained simply by adding a single term to
Pr—1 and py has the form (the interpolation polynomials in
Newton’s form),

pr(x) = co+er(x —xo) +ea(x —x0)(x —x1) + -
+e(x —x0) (x —x1) -+ (x = x1),

or expressed in more compact form,

k i—1
=Y o] [(x—x),
i=0 j=0
i—1
where [ [(x—xj) :=1ifi—1= —1and
=0
Yi — Pr1 (%)
Cr = 7 k Z 1
C7 (o —x0) (g —x1) -+ (3 — x_1)
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Example

@ Consider the polynomial
f(x) = 40> + 35x% — 84x — 954.
Some values of this function are given by

x||5] 7] 6] 0
y|[T] 23] —54 | —954

@ The coefficients computed using the above algorithm are:
co=Y =1c=2c=3andcz =4—=
p3(x) =14+2(x=5)+3(x—=5)(x+7) +4(x —5)(x+7)(x+6),
which is the Newton form of f(x) = 4x> + 35x? — 84x — 954.
Note that p3 = f.

@ An alternative method is to use divided differences to compute the
coefficients (see next section later).
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Lagrange form of the interpolation polynomial

@ Consider the alternative form expressing p

p(x) = Yobo(®) + Y01 (X) + - - + Yuba(x) = kzo vl ),

where £y, {1, - - - £, are polynomials that depend on the nodes
X0,X1,**+ , Xz, but not on the ordinates o, y1, - , Y-

@ /oy, ¢y,... 1, are cardinal functions with property:
ti(xj) = djj.

Recall that the Kronecker delta is defined by

s 1 ifi=j,
P10 ifi#j
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Lagrange form of the interpolation polynomial (cont’d)

@ Let’s consider ¢j. It is a polynomial of degree n that takes the
value 0 at x1,x», - - - , x;, and the value 1 at xj. It must be of the
form:

Lo(x) =c(x—x1)(x —x2) - (x —xp) = cﬁ(x —Xj).
j=

n n
@ Settingx =xg = 1= Cn(xo —xj)orc= H(xo - xj)fl-
= =1
So, we have
L

box) =11

j=1

Xg — x]' '
@ Each /; is obtained by similar reasoning:

n X
X x]
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Example

x|5] 7] —6|] 0
y | 1] —23 | —54 | —954
The nodes are 5, —7, —6, 0. So we have
(x+7)(x+6)x 1
l(x) = G766 @x(x+6)(x+7),
f(x) = = 7( 5)()(;12? 7)—g—4x(x—5)(x+6),
b(x) = = 6( 5)()(21235 5= g—6x(x—5)(x+7),

_ (=5 +7N)(x+6) -1,
66 = om0+ 7016 ~ 2i0F T HVEFOEET).
Thus, the interpolating polynomial is:

p3(x) = 1ly(x) — 2301 (x) — 5445 (x) — 95445(x).
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Other method

@ Assume that
pu(x) = ag +a1x + apx? + - - + apx".

@ The interpolation conditions, p,(x;) = y; for 0 < i < n,lead to a
system of n + 1 linear equations for determining ag, a1, - - - , ax:

2
1 X0 xo s Xg ap yo
1 x x% Xl m Y1
1 x x Xy a | = | Y2
1 x, x2 ... X" a
n n n n Yn
X

@ The coefficient matrix X is called the Vandermonde matrix. It is
nonsingular with det X = TTo<;<j<u(xj — x;) # 0, but is often ill
conditioned. Therefore, this approach is not recommended.
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Homework #1

Recall the Vandermonde matrix X in the previous page, and define

2 n
1 xp x8 Xy
n
1 x X] ceeX
Vn (X) = det : E
2 n
I xy X1 0 Xy
1 «x x% x"

Then obviously we have det X = V,,(xy,).

(1) Show that V,(x) is a polynomial of degree n and its roots are
X0,X1,**+ ,X,—1 by deriving the formula

Vn(x) = Vi (xnfl)(x - xO)(x - xl) U (x - xnfl)'
Hint: expand the last row of V,,(x) by minors to show V,(x) is a
polynomial of degree n and to find the coefficient of the term x".

(2) Show that

detX =V,(x,) = [] (x—x).
0<i<j<n
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Theorem on polynomial interpolation error

Let f be a given real-valued function in C"*1[a,b], and let p,, be the
polynomial of degree at most n that interpolates the function f at n + 1
distinct points (nodes) xo, x1, - - - , X in the interval [a,b]. To each x in [a, b]
there corresponds a point &y € (a,b) such that

1 n

_ +1 4
f0) = pul) = Gy "V @G0 [ =),
Proof: Let x € [a, b] be any point other than x;, i = 0,1, - - - ,n. Define
n
wt) = JJt—x) (polynomial in t),
i=0

o(t) = f(t)—pa(t) — Aw(t)  (functioninf),

A= f(x)w_(f)"(x) (a constant that makes ¢(x) = 0).

Then ¢ € crtl [a,b] and ¢ vanishes at the n + 2 points x, xg, x1, - - - , Xp.
By Rolle’s Theorem, ¢’ has at least n + 1 distinct zeros in (a, b).
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Theorem on polynomial interpolation error (cont’d)

Proof: (continued)

Repeating this process, we conclude eventually that ¢("*1) has at
least one zero {x € (a,b).

g = frD () = p (1) = Al (1)
= ) — (n+ 1)
Hence, we have

0=¢"(&) = (@) - (n+1)1A
= () — (np L),

w(x)

This completes the proof. [J
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Example

If f(x) = sinx is approximated by a polynomial of degree 9 that
interpolates f at 10 points in the interval [0, 1], how large is the error
on this interval?

Since
9

[f(lo)(cfx)| <1 and H|x—xi| <1,
i=0

we have for all x in [0, 1],

’sinx —po(x)| < 1%)' <28x1077.
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Chebyshev polynomials

@ The Chebyshev polynomials (of the first kind) are defined

recursively as follows:
To(x) =
Ty(x) =
Tpt(x) =

1,
X,
2xTy(x) — Ty_1(x) forn > 1.

@ The explicit forms of the next few T}, are:

=
SEREER
2rRrR22

=

2% —1,
4x3 — 3x,
8x*t —8x% +1,

16x° — 2023 + 5%,
32x% — 48x* +18x% — 1.

@ These polynomials arose when Chebyshev was studying the
motion of linkages in a steam locomotive.
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Some Chebyshev polynomials: To, Ty, - -, T5

1.0

0.5 F

Tn(x)
2

-0.5F

-1.0L

© Suh-Yuh Yang (5
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E n=0 E
b n=1 E
: x ), / / ;
E n=2 E
E n=3 ::
F n=>5 g
P - n P - P - P - P n - P - n P -
-1.0 -0.5 0.0 0.5 1.0

X

(quoted from wikipedia.org)
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Properties of the Chebyshev polynomials

@ Theorem: For x in the interval [—1,1],
Tu(x) = cos(ncos tx) forn > 0.
Proof: Recall the addition formula for the cosine:
cos(n+1)0 = cosfcosnf —sinfsinnb,
cos(n—1)80 = cos@cosnf + sin 6 sinnb.
Thus, we have cos(n +1)0 = 2cosf cosnf — cos(n —1)0. ()
Let 8 = cos~! x. Then x = cos f. Define
fu(x) = cos(ncos ! x) = cos(nf).
From (x), we have

folx) =1,

filx) = x

fin(®) = 2u(x)—fia(x) forn>1.
Therefore, f, = T, foralln > 0. O
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Properties of the Chebyshev polynomials (cont’d)

° [Ty(x)|<lfor—1<x<1.

® T,(cos %) = (—1)" for 0 < i < n, where x; = cos & are the
location of absolute extreme points of T, on [—1, 1]

® Ty(cos % 7 —17) =0for1 < i< n, where x; = cos 21

location of zero roots of T, on [—1,1] (in fact, on R).

2i—1

7T are the

T T T T T T T T T T T T T T
n=0

NN )

ISP Y SO U AU PO PO PO O IO RO AU SO RO RO
=0.5 0.5

-
S
o
~
S
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Monic polynomials

A monic polynomial is one in which the term of highest degree
has a coefficient of unity.

From the definition of the Chebyshev polynomials, we see that
in T (x) the term of highest degree is 2"~ !x" for n > 1.
Therefore, 21~"T,, is a monic polynomial for n > 1.

Theorem: If p is a monic polynomial of degree n, then

- = > 21717.
il _max [p(x)] =

Proof: Suppose that [p(x)| < 217" for —1 < x < 1. Let g(x) = 217"T, (x) and
x; = cos(Z), 0 < i < n. Then g is a monic polynomial of degree 1. We have
(=1'p(x;) < p(x)| <27 = (=1)'q(x;)
= (-1)'(g(x) —p(x;)) >0, for0<i<n.
This shows that g — p oscillates in sign at least n + 1 times on [—1, 1].

Therefore, g — p have at least n roots in (—1,1).
This is a contradiction since g — p has degree at most n — 1

(Note that x" will not appearing —p). O

Math. Dept., NC Approximating Functions —20/83



Choosing the nodes

Theorem: If the nodes x; are the roots of the Chebyshev polynomial T, 44,
then the error formula for the interpolation polynomial py, yields

1
X) —pp ()| € ———— max|[ftD()], —1<x<1.
) = pu)| < gy max ()], 1<
Proof: By the error formula of the polynomial interpolation p, of f,

n

TTx—x)|-

i=0

max
[x[<1

max |f(x) — pu(x #max (n+1)
) =pul)| < gy )

[x|<1

By the theorem on the previous page, we have

n

H(xfxi)

i=0

max >27"

|x|<1

2i+1
Let x; =
et x; cos<2n_~_2

27Ty 11 (x) =TT (x — x;). Since [T, (x)| < 1for —1 < x < 1, we have

n) for 0 < i < n, the roots of T),;1. Then we can show that

ﬁ(x —Xxi)
Py

max

max =max 27T, (x)| <27 O

|x|<1

(cf. pp. 221-229, E. Isaacson and H. B. Keller, Analysis of Numerical Methods, 1966)
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The convergence of interpolating polynomials

Assume that f € C[a, b], and if interpolating polynomials p,, of higher
and higher degree are constructed for f, then the natural expectation is
that these polynomials will converge to f uniformly on [4, b]. i.e.,

If — Pnlloo := max |[f(x) —pu(x)| = 0asn — oo.
a<x<b

@ This is true for f(x) = sinx on [0, 1] for any given nodes (p.15).

1—&7352 on [—5,5]. If interpolating
polynomials p,, are constructed using equally spaced nodes in

[—5, 5], the sequence {a,, := ||f — pPnlle } is not bounded.

@ Runge example: f(x) =

@ Faber’s Theorem: For any prescribed, a < xé”) < < xf,”) < b,
n>0,3f € Cla,b] s.t. the interpolating polynomials for f using these
nodes fail to converge uniformly to f.

@ Theorem on convergence of interpolants: If f € C|a, b], then 3

a< x(()”) < xgn) < e < xﬁl”) <b,n>0,s.t. the interpolating
polynomials p, for f using these nodes satisfy nlgn IIf —Pnllec = 0.
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Polynomial interpolants with different sets of nodes

Consider the function f(x) = b for x € [-5,5].
1+x2

Polynomial interpolant with nine equally spaced nodes Polynomial interpolant with nine Cheybyshev nodes.

1 e

-2

-3

s 4 a2 1 o 1 2 3 7 5 5 4 a3 2 o 1 2 3 7 5

The technique for choosing points to minimize the interpolating error
can be extended to a general closed interval [a, b] by using the change

of variables,

~ 1
X = 5((b—a)x+u—|—b),

to shift the numbers x; in [—1, 1] into the corresponding numbers ¥;.
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Divided differences (157)

@ Let f be a function whose values are given at points (nodes)
X0, X1, Xn-

@ We assume that these nodes are distinct, but they need not be
ordered.

@ We know there is a unique polynomial p,, of degree at most
such that

p(x;)) =f(x;) for0<i<n.

@ py, can be constructed as a linear combination of 1, x, x2

n
S, X0
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Divided differences (cont’d)

Instead, we use the Newton form of the interpolating polynomial. Let

qo(x) 1,

n(x) = (x=x),

2(x) = (x—x0)(x—x1),

g3(x) = (x—x0)(x —x1)(x —x2),

gn(x) = (x—xo)(x—x1)(x—2x2) -+ (x —x,-1).
Then we have

o) = ¥ ()
=0

for some ¢; given on page 6.
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Divided differences (cont’d)

@ The interpolation conditions give rise to a linear system of
equations Ac = f for the unknown coefficients ¢;’s:

iJCfo(Xf) =f(x;) for0<i<n.
=

@ The elements of the coefficient matrix A = (a;) are

a;j = qj(xl-) for0 <i,j<n.

@ The (n+1) x (n + 1) matrix A is lower triangular because

j—1
gi(x) = ] [(x —xx)
k=0
j—1
= a4 =qj(x;) = [J(xi ) =0 fi<j-1.
k=0
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Divided differences (cont’d)

@ For example, consider the case of three nodes with
p2(x) = coqo(x) + c1q1(x) + cag2(x)
= co+a(x—x) +ca(x —xo)(x — x1).

Setting x = xg, x = x1, and x = xp, we have a lower triangular

system
1 0 0 co f(xo)
1 (x1—xp) 0 e | = | flx1)
1 (x2—x0) (x2—x0)(x2—x1) ) flx2)

@ Thus, ¢, depends on f at x¢, x1, - - - ,x;;, and define the notation

cn = flxo, X1, -+, Xn],
which is called a divided difference of f.

n
® f[xo,x1,- -+, Xu] is the coefficient of g, when ) _ ¢, interpolates
k=0
fatxo,xy, -, Xn.
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Divided differences (cont’d)

@ Note that

flwo] = fxo)s  flxo ] = LU =F(x0),

X1 —Xo

@ Theorem on higher-order divided differences (X372): In general,
divided differences satisfy the equation:

X1,X2, - ,Xnl — X0, X1, " , Xy
f[xO/xll"',xn}:f[ 1, X2, , n}]{nf[xoo, 1, , Xy 1].

Proof: Denote py the polynomial of degree < k that interpolates f at xq, xq, - - - , X.
Let g denote the polynomial of degree < n — 1 that interpolates f at x1,x2, - - -, Xp.
Then we can check that

X — Xy
Xn — X0

pu(x) = q(x) + (966 = puar ().

This is because that the both sides of the equality have the same values at xo, x1,
-+, x and same degree < n. Examining the coefficient of x"* on the both sides,

we arrive at the assertion. [J
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Table of divided differences

@ If a table of function values (x;,f(x;)) is given, we can construct
from it a table of divided differences as follows:

xo flxo] | flxo,x1]  flxo,x1,x2]  flxo, %1, %2, x3]
x1 flal | flxxe]  flxn, xo, x5

xy  flxa] | flx2, x5

x3 _flxs]
@ Note that the Newton interpolating polynomial can be written
in the form
n k—1
pn(x) = Zf[xorxh x| (e — xj).
k=0 j=0

@ The coefficients required in the Newton interpolating
polynomial occupy the top row in the divided difference table.
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Example

@ Compute a divided difference table from

xz | 3] \5
i) || 1 2

| 6
vi=f 4

Solution:

5 2|2
6 4|

@ The Newton interpolating polynomial can be written as

pa(x) = 142(x—3) — S (x—3)(x — 1) + 1 (x—3)(x ~1)(x —5).
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Properties of divided differences

@ Theorem A: If (zg,z1, - - - zn) is a permutation of (xo,x1, - - - Xy ), then

f[ZO/le' o /Zi’l] :f[x()/xl/' t /x}"l}'

@ Theorem B (Theorem on the interpolation error): Let p;, be the
polynomial of degree < n that interpolates f at n + 1 distinct nodes
X0, X1, Xp Ift #x,i=0,1---,n, then

n

f(8) =pu(t) = flxo, 21, 2, 8] T J(E—x)).
j=0
@ Theorem C (Theorem on derivatives and divided differences):
Iff € C"[a,b] and xo,x1, - - - , Xy are distinct points in [a, b], there
exists a point & € (a,b) such that

f[XOrxlr' o rxn] = %f(n)(é)
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Proof of Theorem A

® f[zo,21,- - ,zn] is the coefficient of x" in the polynomial of
degree < n that interpolates f at the nodes zg, z1, - - - , zp.

@ flxg,x1,- -, Xy is the coefficient of x”* in the polynomial of
degree < n that interpolates f at the nodes xg, x1, - - - , x5

@ These two polynomials are the same. This leads to the conclusion. [J
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Proof of Theorem B

Let g be the polynomial of degree < n 4 1 that interpolates f at the
nodes xg, X1, - -+, X5, t. Then

1) = pal®) + flxo,x1, - 3 ] (=)
=0
Since q(t) = f(t), we obtain
F0 =900 = plt) oo 1+ 50 AT T ).
L

Therefore,

f(t) —pn(t) = flxo,x1, -+, xn, t] ﬁ(t - x])
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Proof of Theorem C

Let p,_1 be the polynomial of degree < n — 1 that interpolates f at
X0,X1,** ,Xy—1. By the Theorem on Polynomial Interpolation Error on
page 13,3 ¢ € (a,b) such that

fln) = pu1(xn) = f(n) H - x]
On the other hand, by Theorem B with t = x;,, we have
f(xn) = pu—1(xn) = flxo, x1,- - -, H n— Xj).

Therefore, we have

f[x0/x1/' e /xn] = *'f(n) ((:) U

© Suh-Yuh Yang (#57fi#%), Math. Dept., NCU, Taiwan Approximating Functions —34/83



Bilinear interpolation

Assume that the function values of f are given at four points:
Qu = (x1,11), Q2 = (x1,42), Qa1 = (x2,y1), and Qa2 = (x2,2)-

" Qr2 Qxn
@
y P
10n Qa1
n
X1 X X2

(cited from “omni calculator”)
Then by the Lagrange linear interpolation, we have

flom) ~ x‘”f@u> - ﬂQm)

X1

l

%

Fx12) ;‘”ﬂgg - ﬂ@ﬂ
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Bilinear interpolation (cont’d)

Let P = (x,y) be a given point in the rectangular region enclosed by
Q11, Q12, Q21, and Qyp. By the Lagrange linear interpolation again,

Foy) ~ pnny) = 2L xm) + =L f(x, )

n-ye w—m

- B (Inpg) s I Tygy)
+yyziyy11 @xzf@m S (0n)

T ) 2)(V(Qll)(x—xz)(y—yz)

) y
+f(Qa1) (x = x1) (y2 —y) +f(Qu2) (22 — %) (y —y1)
+(Q) (x = x1)(y — 1))

B (x1 xz)l(yl —12) [ iZ:XT r B‘[ESZ; ;ESZH B2_yﬂ '
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A direct approach: bilinear and bicubic interpolations

@ For bilinear interpolation, a direct approach is given by

flx,y) = pu(xy) =a+bx+cy+dxy,

where the four coefficients are determined from the four
equations in four unknowns 4, b, ¢, 4

f(Qu) = a+bxy+cyr +dxay,
f(Qu) = a+bx;+cys+dxiya,
f(Q21) = a+bxy+cyr +dxoys,
f(Qxn) = a+bxy+cyr + dxays.

@ For bicubic interpolation, a direct approach is given by

fxy) = pss(xy) = ZZaqxu
i=0j=0
where the 16 coefficients a5, 0 < i,j < 3 are determined from the
16 equations with 16 unknowns, using the function values of the
16 nearest neighboring points in the rectangular region.

© Suh-Yuh Yang (5 Math. Dept., NCU, Taiwan Approximating Functions —37/83



Hermite interpolation

@ Regular interpolation (Lagrange interpolation) refers to the
interpolation of a function at a set of nodes:

f(xi),i=0,1,---,n, aregiven.

@ Hermite interpolation refers to the interpolation of a function
and some of its derivatives at a set of nodes:

f(x;),i=0,1,---,n, aregiven,

and
someof f'(x;),i=0,1,--- ,n, are given.
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Basic concepts

@ Given f and its derivative f’ at two distinct points, say x and x1,
find a polynomial with the lowest degree such that

p(xi) =f(x;) and p'(x;) =f'(x;) fori=0,1.

@ What degree? Since there are four conditions, a polynomial of
degree 3 seems reasonable; i.e., find a, b, ¢, d such that

p(x) = a+ bx + cx? 4 dx®
satisfies all the four conditions. Notice that
p'(x) = b+ 2cx + 3dx>.

@ (a,b,c,d) is the solution of the following system:
p(xg) = a+bxg+cxd+dxd =f(x),
p(x1) = a+bx+cd+de=f

p(x0) = b+2cxg+3dx3 =f (%
pl(x1) = b+2cx; +3dx3 = f(x1).

@ Does this have a solution? Unique? How to solve it?
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Basic concepts (cont’d)

@ A better form of a polynomial of degree 3
p(x) = a+b(x —xg) +c(x —x0)* +d(x — x0)*(x — x7)
and
p'(x) = b+ 2c(x — xq) + 2d(x — x0) (x — x1) + d(x — x)*%.

@ The four conditions on p can now be written in the form

f(xo) a,
fl(xo) = b,
f(x1) = a+bh+tch?
f'(x1) = b+2ch+dH?,

where I := x; — xp.
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Some difficulties

@ How general is this linear system approach?

@ An example: find a polynomial p that assumes these values:

p(0) =0,p(1) =1,p'(3) =2
p(x) = a+ bx + cx?.

(1) p(0) =0leads toa = 0.
(2) the other two conditions lead to

1 = p(d)=b+g
2 = p’(%):b+c.

@ It doesn't work!
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Birkhoff interpolation

@ Let us try a cubic polynomial
p(x) = a+bx + cx® +dx>.

We discover that a solution exists but not unique.

(1) notice thata =10 (.- p(0) =0).
(2) the remaining conditions are

1 = b+c+d (-p(1)=1),
2 = b+c+2d (- P(3)=2).

@ The solution of this system is d = —4 and b + ¢ = 5 (infinitely
many solution).
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Hermite interpolation

@ In a Hermite interpolation, it is assumed that whenever a
derivative pU) (x;) is prescribed at note x;, then pU=1) (x;),
pU=2(x;), - -, p'(x;) and p(x;) will also be prescribed.

That is at node x;, k; := j + 1 interpolation conditions are
prescribed. Notice that k; may vary with i.

@ Letnodes be xg,x1, - - -, 4. Suppose that at node x; these
interpolation conditions are given:

P (x)) =cy for0<j<k—land0<i<n.

@ The total number of conditions on p denoted by m + 1, i.e.,

m+1:=ky+k +---+k.
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Theorem on Hermite interpolation

There exists a unique polynomial p € 11y, fulfilling the Hermite
interpolation conditions, where 11, is the space containing all polynomials
of degree less than or equal to m.

Sketch of the proof:

From the interpolation conditions, we have an associated linear
system problem, say Ax = b, where A is an (m + 1) x (m + 1) matrix.

To prove that A is nonsingular, it suffices to prove that Ax = 0 has
only the 0 solution.

That is, we need to show that if p € I, such that
p(j)(xi) =0 for0<j<k—1and0<i<n,

then p(x) = 0. Such polynomial has a zero of multiplicity k; at x; for
0 < i < n. Therefore, p must be a multiple of g(x) := [T"y(x — x;)k.

Since degree(q) = Y.! oki =m+1, wehavep(x) =0. O
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Remark

What happens in Hermite interpolation when there is only one node?
In this case, we require a polynomial p of degree k, for which

p") (x9) = coj for0<j<k
The solution is the Taylor polynomial:

¢
(x —x0)2 + -+ X (x —xp).

€02
T k!

p(x) = Coo + Co1 (x — xo) 1
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Newton form of Hermite interpolation

Suppose that we are going to find a quadratic polynomial of the form
p(x) = co +c1(x — x0) + c2(x —x0)?,
which satisfies the requirements:

p(xo) = f(x0), pP'(x0) =f'(x0) and p(x1) = f(x1).

Then
P (x) = 1+ 2c2(x — x0)

and we have a lower triangular system

1 0 0 co f(xo)
0 1 0 ][q]:{f’(xo)].
1 (X1 — XO) (x1 — X())z (%) f(xl)

Thus, ¢g = f(x0) = f[xo0], c1 depends on f'(xp), and ¢, depends on
f(x0), f(x0), and f(x1).
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Newton form of Hermite interpolation (cont’d)

@ Since limy_,y, f[xg, x] = limy_, % = f(xp), we define

flxo, x0] := f'(x0)-
Then ¢; = f'(x¢) = f[x0, X0]. From

flxo,x1] = JM’

X1 — Xo
we have

f[xo,xolxl] _ f[XO,X-;l] —];EXOIXO] _ f(;;ll)__i(o()xz()) _ o Cj o = 0».

@ We can check that

p(x) = f(x0) + f[x0, Xo] (x — xo) + f[x0, %0, 1] (x — x0)*.
(see Problem 6.3.5)
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Remarks

@ We write the divided difference table in this form:

xo  flxo] | flxo,x0] ?
X0 f[XO] ?

xp flx]

The question marks stand for entries that are not yet computed.
Observe that xg appears twice and the prescribed value of
f'(x0) (= f[x0, x0]) has been placed in the column of first-order
divided differences.
@ From Theorem C (page 31),
1
f[x(erl/ o rxk} = Efﬂc) (é)/
where ¢ belongs to the open interval containing xg, x1, - - - , .
Hence, we define
1
flxo,x0, -+, x0] 1= ﬁf(k) (x0)-

Notice that when k > 2 need to include 1/k! in the table.
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Example

@ Use the extended Newton divided difference algorithm to
determine a polynomial that that takes these values:

p(1)=2, p'(1)=3, pR)=6, p'(2)=7 and p"(2)=8.

1 213 72 22 1 213 1 2 -1
1 2|7 ? ? 1 214 3 1
2 6|7 8/2 2 6|7 4

2 6 2 6

2 6 2 6

@ The interpolating polynomial is

p(x) =243(x—1)+ (x—1)2 +2(x —1)%(x —2) — (x —1)*(x —2)%.
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Lagrange form of Hermite interpolation

Let us try to satisfy

pxi)=ci and p'(x)=cy, 0<i<n
by a polynomial of the form

Z CloA + Z Ci1 B
Similar to the Lagrange formula, we w1sh the following properties:
{ Ai(xj) = 0y, { Bi(xj)) = 0,
A;(x]) = 0 Bf(xj) = 51]
Recall the notation "
X — X;
li(x) = —L
j=0j#i ¥ ]
Then, A; and B; can be defined as follows
Ai(x) = [1=2(x—x)li(x;)]3(x) 0<i<m,
Bi(x) = (x—x)f(x) 0<i<n.

© Suh-Yuh Yang ( ), Math. Dept., NCU, Taiwan Approximating Functions — 50/83



Lagrange form of Hermite interpolation (cont’d)

Take a two-point case:
p(x) = f(x0)Ao(x) +f(x1) A1 (x) +f'(x0)Bo(x) +f'(x1)B1 (x),

where

Ao(x) = (1-20x—x0)h(x0)) B(x),
Ai(x) = (1—=2(x—x1)0)(x1))3(x),
Bo(x) = (x—x0)f5(x),
Bi(x) = (x— xl)é% (x),
and ey
b(x) = xo—xll’
b(x) = o ;0,
lo(x) = xo —x1”
( 0
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Theorem on Hermite interpolation error estimate

Let xo,x1,- -+ , X be distinct nodes in [a,b] and let f € C*"*2[a,b]. If ppp1
is the polynomial of degree at most 2n + 1 such that

pons1(xi) =f(xi),  Phua(xi) =f'(x;) for0<i<nm,
then to each x in [a, b] there corresponds a point & in (a,b) such that

_ e
f(x) = pans1(x) = W z‘:o(x - xi)z‘

Sketch of the proof: The proof is similar to the proof of Theorem on
Lagrange interpolation error estimate, pp. 13-14.
Let x € [a,b] be any point other than x;,i = 0,1, - - ,n. Define

w(t) = lﬁl(tfxi)2 (polynomial in f),
i=0
p(t) = F()—paa(t) ~ Aw(t)  (Functionint),

A= W (a constant that makes ¢(x) = 0). O
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Spline interpolation ({1 {E)

@ A spline function consists of polynomial pieces on subintervals
joined together with certain continuity conditions. Formally,
suppose that nn + 1 points (knots) tg,t1, - - - ,t, have been
specified and satisfy tg < t; < --- < ty.

@ A spline function of degree k is a function S such that

(1) oneachinterval [t;_1,t;), S is a polynomial of degree < k.
(2) Shasa continuous (k — 1)st derivative on [fg, t,].

@ Example: A spline of degree 0 is a piecewise constant function.
A spline of degree 0 can be given explicitly in the form:

)=¢ x € [to, 1),
51 (x) =0 X € [ﬁ,tz),

o

Sn—l(x) = Cn—1 x e [tn—l/tn]~
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A spline of degree 1

A spline function of degree 1 takes the following form:

So(x) = apx + by x € [to, h),
Sl(x) =mx—+b X € [l’l,l’z),
S(x) = . )

Snfl(x) =ay,1x+b, 1 X e [l’n,1, tn}-

@ Note that when k = 1, the k — 1 derivative has to be continuous,
i.e., S(x) has to be continuous on [ty, t,].

@ The pieces are not independent. They have to satisfy the
conditions

Si(tiv1) = Siza(tis1) fori=0,1,---,n—2.
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Cubic splines (k = 3)

@ Cubic splines are most famous and often used in practice.

@ We assume that a table of value has been given

i’o‘

x| | | b
vyl

51
A ‘ ‘ Yn

On each interval [ty, 1], [t1, t2], -, [ty—1, tn], S is given by a
different cubic polynomial.

@ Let S; be the cubic polynomial that represent S on [t;, t;+1]. Thus,

So(x) X € [to,tl],
Sl(x) X € [tl,tz],

Snfl(x) x e [tnflrtn]-
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Cubic splines (cont’d)

@ The polynomials S;_; and §; interpolate the same value at the
point ¢; and therefore

Sia(ti) =yi=Si(t;) for1<i<n-—1
This implies that S(x) is continuous.

@ Now), since k = 3, we also need to have both S’(x) and S§” (x) to
be continuous.

@ How do we satisfy these conditions?

(1) we have 4n coefficients for n cubic polynomials.

(2) on each subinterval [t;, t; 1], we have 2 interpolation
conditions: S(t;) = y; and S(t;11) = y;1 1 = 2n conditions.

(3) continuity of " = one condition at each knot:
St (t;) = Si(t;) = n — 1 conditions.

(4) similarly for S” = n — 1 conditions.

(5) total: 4n — 2 conditions, 4n coefficients. = two degrees of
freedom.
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Derive the equation for S;(x) on [t;, ;1]

@ Letz; :=S5"(t;) for 0 <i < n. §”(x) is continuous everywhere
including the nodes
limS”(x) =z, =limS"(x) for1<i<n-—1.
X\L[,' XTL‘[‘
@ Since S; is a cubic polynomial on [t;, 1], S (x) is a degree 1
polynomial (linear function) satisfying S/ (t;) = z; and
S!(ti+1) = zit1. Then

Z; 4
S (x) = h%(h‘ﬂ —x)+ lhﬂ (x—t;),
1 1

where h; = tj 1 —t;.
@ Taking the integral twice to obtain S; itself,

Z; Z;i
Si(x) = 76;1‘ (tisg —x)° + —6’;1 (x — t;)® 4+ C(x — t;) + D(tiyq — x),
1 1

where C and D are integration constants.
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Derive the equation for S;(x) on [t;,t;,1] (cont’d)

@ We need to use other conditions to determine C and D.

@ Using the interpolation conditions

Si(ti) =yi and  Si(tiy1) = yir1,

we obtain
zZi zZi
Si(x) = 67;(ti+1 —x)° + 6%;(3( —t)°
Vivr  Zigahiy, o Yioozihiy,,

@ Note: We still do not know the values of z; and z; 1.
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Derive the equation for S;(x) on [t;,t;,1] (cont’d)

@ Let us use the condition that S’ is continuous. This means

ia(t) = Si(t),

h; h; Vi
Si(t) = —glzz 6Zl+1 - % + J};lf
i i
h: h: . .
/ £ _ i—1 . i-1_ - VYi-1 Yi )
171( ) 6 z 3 Zj hifl + hifl

@ Hence, we have
6 6
hiazioy +2(hi+hio)zi+hizin = 3 (Vi1 —¥i) = . (yi —Yi-1),
i _
where z;_1, z; and z; 1 are the unknowns, everything else is
known.

@ The above equation is valid only for points t1, 3, - - ,t,_1. Why?

@ Boundary conditions: For zy and z,, we can pick any values.
natural cubic spline: zy = z, = 0.
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A linear system

@ Putting all the conditions togethers, fori =1,2,--- ,n —1, we

have
i IZ5] h1 1T 21 1 i 01 1
h uy hy k5) (%)
hy us  h3 z3 U3
. - . 7
hy—1 tp—p hy_p Zp—2 Up—2
L hy—2  uy_q 1 L Zn—-1 | L 9n—1 |
where

hi =ti1 —ti, up=2(hi+hi_1),

6
bi = o= (Yir1 — vi), v =Db;—bi_1.
1

@ The matrix is strictly diagonally dominant, therefore it is
nonsingular!
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Smoothness properties

@ Theorem on optimality of natural cubic splines: If f" is
continuous in [a, b], then

b
/ (8" (x))2dx < / (F" (x))dx.
a
Proof: See Textbook, page 355. U

@ Recall, the curvature of a smooth functionf : R — R is
()1 + (' (x)?) 32 ~ |f"(x)| i f(x) is small.

@ The natural cubic spline function has a curvature “smaller” than
that of f over an interval [a, b].
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A classical problem in best approximation

@ Problem: A continuous function f is defined on an interval [a, b].
For a fixed n, we ask for a polynomial p of degree at most n such
that

- s minimized.
argggxb [f(x) —p(x)| is minimize

@ Remarks:

o Interpolations use pointwise values, e.g., Lagrange
interpolation: p(x;) = f(x;).
e Approximations use global information.
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Some backgrounds

Consider a normed linear space (E, || - ||) and a subspace G in E.

@ For any f € E, the distance from f to G is defined as

dist(f,G) = inf ||f — ¢||.
ist(f, G) ;gc\lf gll

@ If an element ¢* € G has the property
If =87l = dist(f, G) = inf |[f —gll,
geG

then ¢* achieves this minimum deviation. It is a best
approximation of f from G.

The meaning of best approximation thus depends on the norm
chosen for the problem.
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Some backgrounds (cont’d)

@ In the classic problem mentioned on page 59, the normed space
is E := Cla, b], the space of all continuous functions defined on
[a,b], and the norm is defined by

[flleo == Jmax [f(x)| forf € Cla,b].

The subspace G is the space I1,, of all polynomials of degree < n.
@ In general, best approximations are not unique. For example, let

f(x) =cosxon [0, 7t/2]. Thenf € C[0, t/2]. Let G = span{x},

then G is a finite-dimensional subspace of C[0, 7r/2]. Then

g(x) = Ax are best approximations forall 0 < A <2/7min || - ||eo

Solution: By definition, we have

dist(f,G) = inf w0 = inf
ist(f, G) inf [lf = 8llo = Inf  max 1f(x) = g(x)|

= 1nf max |cosx —Ax| =1,
AER 0<x<7m/2

and ||f —Ax[[eo =1, V0 <A <2/m.
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Theorem on existence of best approximation

If G is a finite-dimensional subspace in a normed linear space E, then each
point of E possesses at least one best approximation in G.

Sketch of the proof:

Letf € E. If g € G is a best approximation of f, then
If =gl < IIf = Ol = [If[| (since 0 € G).
DefineK={h € G: |f —h| < |f]|}. Then K is closed and bounded.

Since G is a finite-dimensional space and K C G, K is compact.

(Note: A normed linear space is finite-dimensional if and only if
every bounded subset is “relatively compact”)

" The function F : G — R defined by F(h) := ||f — k|| is continuous.
.. F attains minimum on the compact set K.

. 3g € Ksuch that ||f — g|| = minye ||f —hl|(_= infyeq |If = h]|). O

Ny
(why?)
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Inner product spaces

@ A real inner product space is a real linear space E with an inner
product (-, -) : E x E — R satisfying the following properties:
foranyf,g € E,

(1) (f.f) > 0and (f,f) = 0if and only if f = 0.
) (f,h) = (I f).
(3) (f,ah+ Bg) = a(f,h) + B(f,g), forany o, p € R.

@ A natural norm associated with the inner product is defined as

Il = v F.f)-

@ We write f Lgif (f,g) =0. Wewritef 1LGifflgforallg € G.
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Examples

Two important inner-product spaces are
o R" with

n
(x,y) = inyi-
i=1
@ Cyla, b], the space of continuous functions on [4, b], with

f.0) = [ Festomto

where w(x) is a fixed continuous positive function (for example,
w(x) =1).
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Lemma on inner product space properties

In an inner product space, we have

° <i”ifi/g> = iai {fi.8)

i=1

o |If +glI> = IIFI*+2(f.8) + llgll>
o Iff g, then ||f +¢|?> = |Ifl> + llgl|*> (Pythagorean law).

o [(f,9) < IIflllgll (Schwarz inequality).

o |If+3gl?+IIf — gl =2IIfI1* +2llglI*.
Proof: see Textbook, page 395. U
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Theorem on characterizing best approximation

Let G be a subspace in an inner product space E. For f € Eand g € G, the
following two properties are equivalent:

Q ¢ is a best approximation to f in G.

Q (f—g)LlG
Proof: (2) = (1):If f — g LG, then for any i € G we have, by the
Pythagorean law,

If =12 = 11(f = &) + (g = mI* = If = &lI* + llg = 11> > IIf —glI*

. we have (1).
(1) = (2): Leth € Gand A > 0. Then

0 < [If —g+An*—Ilf — gl
= IIf = gl* +2A4f — g, by + A% |l1]> = |If — gII?
= M2(f —g 1)+ Alln|*}.

Letting A — 0T, we obtain (f — ¢,h) > 0. Replacing h by —h, we have
(f —g,—h) > 0. Therefore (f — g,h) = 0. Since h is arbitrary in G,
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Example

@ Determine the best approximation of the function f(x) = sinx
by a polynomial ¢(x) = c1x + cx® + c3x° on the interval [—1, 1]
using the inner product:

(.9) = [ fstdy vfger(-11)

@ The optimal function g has the property (f — g) LG. G is the
space generated by g1 (x) = x, g2(x) = ¥, and g3(x) = x°. Thus,
(¢ —f,8i) = 0isrequired fori =1,2,3.

c1(81,8i) + ¢2(82,8i) + ¢3(g3,8i) = (f, &) fori=1,2,3.

@ These are called the normal equations.
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Example (cont’d)

@ Putting in the details, we have

1 2 1 4 1 6 o 1 .
0 fqlx dx + ¢ f711x dx + c3 filx dx = lexsmxdx,
o [Lyxtdx+op [C x%dx+ o3 [T x%dx = [T x®sinxdx,
1 1 1 1 .
o [ xX8dx+cop [T xBdx+ ez [T x%x = [ x°sinxdx.

@ Resultsina 3 x 3 linear system:

PEETe ] e
5 7 % o | =] -3x+58 |,
7 5 1 c3 65« — 101

where # = sin1 and 8 = cos 1. Solving this system, we obtain
c1 ~ —0.99998, c; ~ —0.16652, and c3 ~ 0.00802.

@ This coefficient matrix is an example of the ill-conditioned
Hilbert matrix.
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The Gram matrix

@ Let {uy,uy,---,u,} be any basis for a subspace U. In order that
an element u € U be the best approximation to f, it is necessary
and sufficient that u — f | U by the Theorem on characterizing best
approximation (cf. page 66).

@ An equivalent condition is that (1 — f,u;) = 0for1 <i <n.
Setting u = 2;7:1 cjuj, we find

n

Y ciujui) = (fou) for1 <i<n.

j=1

@ These are the normal equations: n linear equations in the #
unknowns ¢y, ¢, - - - , . The coefficient matrix G is called a
Gram matrix, where G;; = (u;, u;) = (u;j, ;).

@ Lemma on Gram matrix: If {uq,up,- - ,uy,} is linearly
independent, then its Gram matrix is nonsingular (see page 403).
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Orthonormal systems

@ A sequence of vectors fi, fp, - - - in an inner product space is
(1) orthogonalif (f;,f;) =0 fori#j.
(2) orthonormalif (f;,f;) = d;; foralli,;j.

@ Theorem on constructing best approximation: Let {g1, -+ ,9n}
be an orthonormal system in an inner product space E. The best
approximation of f by an element Y c;g; is obtained if and only if

Ci = <f/gi>~
Proof: Let G = span{g1,82,- -+ ,gn}- Then

n
Z c;gi 1s a best approximation of f in G
i=1

= (f-) cg) LG (f—) cgi) Lgjforj=12-,n.
i=1 i=1

= 0= <f— icigir8j> ={f.gj) — icxgi,gﬁ ={f,g)—¢. O

=1
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Example

We reconsider the previous example: sinx ~ c1x + cox® + c3x°.

It is known that an orthonormal basis for our three-dimensional
subspace is provided by three Legendre polynomials as follows:

X
gi(x) = 75
(x) - 5x3 — 3x
2% = a7
63x° — 70x3 + 15x
g3(x) = Wi .
V2/11
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Example (cont’d)

The solution is then the polynomial Y3 _; ¢;g;, where ¢; = {f,g;).
0 = M/jl xsinxdx = 2\/%(0( - B),
o = %\/m'/_ll sinx(5x% — 3x)dx = V/7/2(—18a + 28B),
3 = %\/ﬁ /j1 sin x(63x> — 70x> 4 15x)dx

1
= ;V11/2(43200 — 6728p),

where &« = sinl and = cos 1. The approximate solution is
c1 ~ 0.738,cp ~ —3.37 x 1072, and c3 ~ 4.34 x 1074,
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Theorem on Gram-Schmidt process

Let {v1,vy,- -+ ,vn} be a basis for a subspace U in an inner-product space.
Define recursively

-1 i-1

—1
Z UZ/u/ Ui-E(Ui,uj>M]' fori:]lzl... n
j=1

j=1

Then {uq,uy,- - ,un} is an orthonormal base for U.

Proof: see Textbook, page 399. [
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Theorem on orthogonal polynomials

The sequence of polynomial defined inductively as following is orthogonal:
Pux) = (x = a)pu_1(x) — bupy_2(x) forn >2,
with po(x) =1, p1(x) = x —ay, and

an = (Xpu-1,Pn-1)/Pn-1,Pn—1) forn=>1,
b, = <xpn—1/pn72>/<f7n72/pn72> fOVHZZ,

where (-, -) is any inner product provided it has the property:
b
{fg,h) = {f.8h), eg., (f,8) = J, f(x)g(x)w(x)dx.

Proof: Since each p; is a monic polynomial of degree i, (p;, p;) # 0 for
all i. We show by induction on n that

<Pn,Pl‘> =0, fori=0,1,---,n—1.

n=1: (p1,po) = ((x —a1)po,po) = (xpo,po) — a1{po,po) = 0.
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Proof of the theorem on orthogonal polynomials (cont’d)

Suppose that the assertion holds for n — 1. We wish to prove that it is
still true for n.

PrsPn—1) = (Pu-1,Pn-1) — a(Pu-1,Pn-1) — bun(Pu—2,pn-1) =0,
<Pn/]9;172> = <xPn71/Pn—2> —dp <Pnflrpn72> — by <Pn72/pn72> =0.
Fori=0,1,--- ,n— 3, we have

(pnpi) = (Pu—1,0i) — anPn-1,Pi) — bu(pn—2,pi) = (Pn—1,%pi)
= (Pn—1,Pit1 + ai1pi + biyapi—1) = 0.
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Legendre polynomials

Combining the inner product (f,g) := f}l f(x)g(x)dx with the
theorem above, we have the Legendre polynomials:

po(x) = 1.
ay = {xpo, po)/ (po,po) = 0.
p1(x) = x.

ay = (xp1,p1)/{p1,p1) = 0.

by = (xp1,po)/ {po, po) = 3.

p2(x) =% — 3.

Similarly, we have

p3(x) = X — %x.

pa(x) = x* — §x% + .
ps(x) = 2° — P + Zx.
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Chebyshev polynomials

The Chebyshev polynomials form an orthogonal system on [—1, 1]
using the following inner product:

/f 1—x.

Solution: Changing of variable x = cos , we have

s
)= / f(cos8)g(cos 6)de.
0
Since T, (x) = cos(ncos™! x), we have for n # m,

(T, Ton)

7T 1 7T
/ cos(n6) cos(mf)do = 3 / cos(n + m)6 + cos(n — m)0d6
0 0

l[sin(n—l—m)G n sin(n — m)(‘)}’T B
2L n+m n—m lo
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Least squares problems

@ Given a dataset {(x;,f;),i=1,2,--- ,m}. We would like to
approximate the data set using functions in the following space:

F = span{¢1(x), ¢2(x), - -, pu(x) }, where ¢y (x), $a(x), - -+, Pn(x)

are the basis functions. In general, m >> n.
Functions in F take the form ¢(x) = c1¢1(x) + - - - + cupn(x).

@ Question: can we find a ¢(x) € F, such as all conditions in the
data set are satisfied:

(P(xl) :,flll - 1/2/' ce,m,
which is the same as saying the following

adr(x1) +eapa(x1) + - tenpn(x1) = f1,
11 (XZ) + CZQDZ(XZ) + -+ Cn(Pn(XZ) = er

11 (xm) + copo(xXm) + - -+ cnpn(Xm) = f-

@ This is not a square system, and usually has no solution.
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Least squares problems (cont’d)

@ No solution in the classical sense, but we can define a least
squares solution.

@ Defined; = fi — (c1¢1 (%) + coa(xi) + - - - + cupu(xi)),
i=12,---,m.

@ If we can’t make all d; = 0, can we make all of them small?

@ Define a vectord = (dy,dp,- -+ ,dy) ", and
min ||d||?.
Using the 2-norm, we have

min(d? +d5 + - +d3,).
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Least squares problems (cont’d)

@ Define

m n

lerer, - en) o= B = 1o (i~ L egi(x)

i=1 j=1

@ Want to find ¢1,¢p, - - -, ¢y such that ¥(c1,cp,- -+, cn) is
minimized. -
8765 =0, for{=12,---,n.

This leads to a linear system problem:

Gec =b.

Here G is an n x n Gram matrix.
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