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Introduction

A nonlinear equation:
Let f : ∅ ̸= A ⊆ R→ R be a nonlinear real-valued function in a
single variable x. We are interested in finding the roots (solutions) of
the equation f (x) = 0, i.e., zeros of the function f (x).

A system of nonlinear equations:
Let F : ∅ ̸= A ⊆ Rn → Rn be a nonlinear vector-valued function
in a vector variable X = (x1, x2, · · · , xn)⊤. We are interested in
finding the roots (solutions) of the equation F(X) = 0, i.e., zeros of the
vector-valued function F(X).
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Example: zeros of polynomial

Let us look at three functions (polynomials):
(1) f (x) = x4 − 12x3 + 47x2 − 60x
(2) f (x) = x4 − 12x3 + 47x2 − 60x + 24
(3) f (x) = x4 − 12x3 + 47x2 − 60x + 24.1

Find the zeros of these polynomials is not an easy task.
(1) The first function has real zeros 0, 3, 4, and 5.
(2) The real zeros of the second function are 1 and 0.888 . . . .
(3) The third function has no real zeros at all.
(4) MATLAB: see polyzeros.m

The n roots of a polynomial of degree n depend continuously on the
coefficients. (see Complex Analysis)
(1) This result implies that the eigenvalues of a matrix depend

continuously on the matrix. (see Tyrtyshnikov’s book).
(2) However, the problem of approximating the roots given the

coefficients is ill-conditioned, see Wilkinson’s polynomial.
https://en.wikipedia.org/wiki/Wilkinson%
27s_polynomial
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Objectives

Consider the nonlinear equation f (x) = 0 or F(X) = 0.

The basic questions:

(1) Does the solution exist?
(2) Is the solution unique?
(3) How to find it?

We will mainly focus on the third question and we always
assume that the problem under considered has a solution x∗.

We will study iterative methods for finding the solution: first find an
initial guess x0, then a better guess x1, . . . , in the end we hope
that lim

n→∞
xn = x∗.

Iterative methods: bisection method; Newton’s method; secant
method; fixed-point method; continuation method; special
methods for zeros of polynomials.
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Bisection method (method of interval halving)

An observation: If f (x) is a continuous function on an interval [a, b],
and f (a) and f (b) have different signs such that f (a)f (b) < 0, then
f (x) must have a zero in (a, b), i.e., a root of the equation f (x) = 0.

(ensured by the Intermediate-Value Theorem for continuous functions)

The basic idea: assume that f (a)f (b) < 0.

(1) compute c = 1
2 (a + b) = a + 1

2 (b− a).
(2) if f (a)f (c) = 0, then f (c) = 0 and c is a zero of f (x).
(3) if f (a)f (c) < 0, then the zero is in [a, c]; otherwise the zero is

in [c, b]. In either case, a new interval containing the root is
produced, and the size of the new interval is half of the
original one.

(4) repeat the process until the interval is very small then any
point in the interval can be used as approximations of the
zero.
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What do we need?

We need an initial interval [a, b]. This is often the hardest thing
to find.

We need some stopping criteria: given ε > 0 and δ > 0 are
tolerances, k is the number of iterations.

(1) if |f (c)| < ε, we stop.
(2) if |b− a| < δ, we stop.
(3) if k > M, we stop to avoid infinite loop.
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A pseudocode for the bisection algorithm

input a, b, M, δ, ε
u← f (a), v← f (b), e← b− a
output a, b, u, v
if sign(u) = sign(v) then stop
for k = 1 to M do

e← e/2, c← a + e, w← f (c)
output k, c, w
if |e| < δ or (and) |w| < ε then stop
if sign(w) ̸= sign(u) then

b← c, v← w
else

a← c, u← w
end if

end do
————————————
Note:

sign(w) ̸= sign(u) is better than wu < 0. (why?)
compute midpoint as c = a + b−a

2 rather than c = a+b
2 . (why?)
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An example

Use the bisection method to find the root of ex = sin(x).

A rough plot of f (x) = ex − sin(x) shows there are no positive zeros,
and the first zero to the left of 0 is somewhere in the interval [−4,−3].
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f(x) = exp(x) − sin(x)

see functiongraph1.m

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Nonlinear Equations – 8/58



Numerical results

The output obtained by bisection algorithm running a MATLAB
M-file, bisection.m

Starting with a = −4 and b = −3:

k c f (c)
1 −3.50000000000000 −0.32058584426730
2 −3.25000000000000 −0.06942092669839
3 −3.12500000000000 0.06052882585276
4 −3.18750000000000 −0.00461629388698
...

...
...

13 −3.18298339843750 0.00008284596304
14 −3.18304443359375 0.00001933261037
15 −3.18307495117188 −0.00001242395017
16 −3.18305969238281 0.00000345432045

...
...

...

See the details of the M-file: bisection.m
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Theorem (on bisection method)

Suppose that [a0, b0] := [a, b], [a1, b1], · · · , [an, bn], · · · are the intervals in
the bisection method. Then

(1) lim
n→∞

an and lim
n→∞

bn exist and the limits are equal.

(2) Let r = lim
n→∞

an = lim
n→∞

bn. Then f (r) = 0.

(3) Let cn = an +
1
2 (bn − an). Then lim

n→∞
cn = r and

|r− cn| ≤ 2−(n+1)(b0 − a0).
Proof:
(1) Notice that a0 ≤ a1 ≤ a2 ≤ · · · ≤ b0 and b0 ≥ b1 ≥ b2 ≥ · · · ≥ a0.
∵ {an} is monotonically nondecreasing (i.e., increasing, but may not be strictly
increasing) and bounded above by b0 ∴ lim

n→∞
an exists

∵ {bn} is monotonically nonincreasing (i.e., decreasing, but may not be strictly
decreasing) and bounded below by a0 ∴ lim

n→∞
bn exists

∵ bn+1 − an+1 = 1
2 (bn − an) ∀ n ≥ 0 ∴ bn − an = 2−n(b0 − a0)

∴ lim
n→∞

bn − lim
n→∞

an = lim
n→∞

(bn − an) = (b0 − a0) lim
n→∞

2−n = 0

∴ lim
n→∞

an = lim
n→∞

bn, say lim
n→∞

an = lim
n→∞

bn = r.
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Proof of the theorem

(2)
∵ f (x) is continuous
∴ lim

n→∞
f (an) = f ( lim

n→∞
an) = f (r) and lim

n→∞
f (bn) = f ( lim

n→∞
bn) = f (r)

∵ f (an)f (bn) < 0
∴ 0 ≥ lim

n→∞
f (an)f (bn) = f (r)f (r)

∴ f (r) = 0

(3)
∵ r ∈ [an, bn] and cn = 1

2 (an + bn) = an +
1
2 (bn − an)

∴ |r− cn| ≤ 1
2 (bn − an) = 2−(n+1)(b0 − a0) □

Note: Is it true that |c0 − r| ≥ |c1 − r| ≥ |c2 − r| ≥ . . . ?
Answer: No! ⇒ not linear convergence!

linear: if ∃ 0 < C < 1 and ∃ n0 ∈N s.t. |xn+1 − x∗| ≤ C|xn − x∗|, ∀ n ≥ n0.
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An example

If we start with the initial interval [50, 63], how many steps do we
need in order to have a relative accuracy less than or equal to 10−12?

This is what we want
|r− cn|
|r| ≤ 10−12.

Since we know r ≥ 50, thus it is sufficient to have

|r− cn|
50

≤ 10−12.

Using the above estimate, all we need is

2−(n+1) 63− 50
50

≤ 10−12.

That means n ≥ 37.
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Some major problems with the bisection method

Finding the initial interval is not easy.

Often slow.

Doesn’t work for higher dimensional problems: F(X) = 0.
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Newton’s method

Motivation: we know how to solve f (x) = 0 if f is linear. For
nonlinear f , we can always approximate it with a linear function.

Let x∗ be a root of f (x) = 0 and x an approximation of x∗. Let
x∗ = x + h. Using Taylor’s expansion, we have

0 = f (x∗) = f (x + h) = f (x) + hf ′(x) + O(h2).

If h is small, then we can drop the O(h2) term, 0 ≈ f (x) + hf ′(x),
which means

h ≈ − f (x)
f ′(x)

, provided f ′(x) ̸= 0.

Thus, if x is an approximation of x∗ = x + h, then

x∗ = x + h ≈ x− f (x)
f ′(x)

, provided f ′(x) ̸= 0.

Newton’s method can be defined as follows: for n = 0, 1, · · ·

xn+1 = xn −
f (xn)

f ′(xn)
, provided f ′(xn) ̸= 0.
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An example

Find the root of f (x) = ex − 1.5− tan−1(x).

Note that f (0) = −0.5, lim
x→∞

f (x) = ∞, and lim
x→−∞

f (x) > 0.07.

Therefore, ∃ c+ ∈ (0, ∞) and c− ∈ (−∞, 0) are zeros of f .

Suppose we start with x0 = −7.0, then the results of Newton
iterations are

x0 = −7.0, f (x0) = −0.7× 10−1

x1 = −10.7, f (x1) = −0.2× 10−1

x3 = −14.0, f (x3) = −0.2× 10−3

x4 = −14.1, f (x4) = −0.8× 10−6

The output shows rapid convergence of the iterations.
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Geometrical interpretation

This is an illustration of one iteration of Newton’s method. The
function f is shown in blue and the tangent line is in red. We see
that xn+1 is a better approximation than xn for the root x∗ of the
function f .

What is the geometrical meaning of f ′(xn) = 0?
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Some stopping criteria

Using the residual information f (xn):

(1) if |f (xn)| < ε then stop (absolute residual criterion).
(2) if |f (xn)| < ε|f (x0)| then stop (relative residual criterion).

Using the step size information |xn+1 − xn|:
(1) if |xn+1 − xn| < δ then stop (approximate absolute error

criterion).

(2) if
|xn+1 − xn|
|xn+1|

< δ then stop (approximate relative error

criterion).

Maximum number of iterations M.
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Newton’s algorithm including stopping criteria

input x0, M, ε, δ
v← f (x0)
if |v| < ε then stop
for k = 1 to M do

x1 = x0 − v/f ′(x0)
v← f (x1)
if |x1 − x0| < δ or |v| < ε then stop
x0 ← x1

end do

See the details of the M-file newton.m for f (x) = ex − sin(x)

Note: if f ′(x0) is too small, then 1/f ′(x0) may overflow.
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Convergence analysis

Assume that f ′′ is continuous and x∗ is a simple zero of f , i.e., f (x∗) = 0 and
f ′(x∗) ̸= 0. Define the error as en = xn − x∗. Then

en+1 = xn+1 − x∗ = xn −
f (xn)

f ′(xn)
− x∗

= en −
f (xn)

f ′(xn)
=

enf ′(xn)− f (xn)

f ′(xn)
.

Using Taylor’s expansion,

0 = f (x∗) = f (xn − en) = f (xn)− enf ′(xn) +
1
2

e2
nf ′′(ξn),

for some ξn between xn and x∗. Therefore, we have

(⋆) en+1 =
1
2

f ′′(ξn)

f ′(xn)
e2

n

(
≈ 1

2
f ′′(x∗)
f ′(x∗)

e2
n := Ce2

n, provided xn ≈ x∗
)

.

Define a quantity cδ for δ > 0 by

cδ :=
1
2

(
max
|x−x∗ |≤δ

|f ′′(x)|
)/(

min
|x−x∗ |≤δ

|f ′(x)|
)
≥ 0.

We can select δ > 0 such that ρ := δcδ < 1. (why?)
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Theorem on Newton’s method

Assume that |e0| = |x0 − x∗| < δ. Then |ξ0 − x∗| < δ and we have
1
2 |f ′′(ξ0)/f ′(x0)| ≤ cδ. Therefore,

|x1 − x∗| = |e1| ≤ e2
0cδ = |e0||e0|cδ < |e0|δcδ = |e0|ρ < |e0| < δ.

Repeating this argument, we have

|e1| < ρ|e0|, |e2| < ρ|e1| < ρ2|e0|, · · · , |en| < ρn|e0|.

Since 0 ≤ ρ < 1, we have lim
n→∞

ρn = 0 which implies that lim
n→∞

en = 0.

Finally, since |en| = |xn − x∗| < δ and |ξn − x∗| < δ, we have from (⋆) that

|en+1| =
1
2
|f ′′(ξn)|
|f ′(xn)|

|en|2 ≤
1
2

cδ|en|2 ≤
1
2
(cδ + 1)|en|2 := C|en|2,

which implies the quadratic convergence. □
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Theorem on Newton’s method

Theorem on Newton’s method: Let f ′′ be continuous and let x∗ be a
simple zero of f . Then there exist δ > 0 and C > 0 such that if the initial
guess x0 ∈ N(x∗, δ) (i.e., |x0 − x∗| < δ) then Newton’s method converges
and satisfies

|xn+1 − x∗| ≤ C|xn − x∗|2 (∀ n ≥ 0).

Good: the convergence is quadratic.
Bad: the initial guess x0 has to be close to the solution x∗.
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Example

Find the root of f (x) = α− 1/x, for any given α > 0 (we know the
exact solution is x∗ = 1/α). Using Newton’s method, we have

xn+1 = xn −
α− 1

xn

1/x2
n

,

which is same as

xn+1 = 2xn − αx2
n, n = 0, 1, 2, · · ·

Questions:

Does the sequence x0, x1, x2, . . . converge? (⇐⇒ 0 < x0 < 2
α )

How fast? (quadratic)

Does the convergence depend on the initial guess x0? (Yes)
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Example (cont’d)

Let us define the error en = x∗ − xn = 1
α − xn. Then

en+1 =
1
α
− xn+1 =

1
α
− 2xn + αx2

n = α(
1
α
− xn)

2 = αe2
n.

Thus, if it converges, then the rate is quadratic. We now have

en+1 = αe2
n = α(αe2

n−1)
2 = α3(e2

n−1)
2 =

1
α
(α2e2

n−1)
2 =

1
α
(αen−1)

22

=
1
α
(ααe2

n−2)
22

=
1
α
(α2e2

n−2)
22

=
1
α
(αen−2)

23
= · · · = 1

α
(αe0)

2n+1
,

which implies that

xn converges to x∗ ⇐⇒ lim
n→∞

en = 0⇐⇒ |αe0| < 1⇐⇒ |e0| <
1
α

⇐⇒ | 1
α
− x0| <

1
α
⇐⇒ − 1

α
<

1
α
− x0 <

1
α

⇐⇒ 0 < x0 <
2
α

.
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Some remarks on Newton’s method

Advantages:

The convergence is quadratic.

Newton’s method works for higher dimensional problems.

Disadvantages:

Newton’s method converges only locally; i.e., the initial guess x0
has to be close enough to the solution x∗.

It needs the first derivative of f (x).
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Newton’s method for systems of nonlinear equations

We wish to solve {
f1(x1, x2) = 0,
f2(x1, x2) = 0,

where f1 and f2 are nonlinear functions of x1 and x2.

Assume that (x1 + h1, x2 + h2) is a solution of the nonlinear
system of equations. Applying Taylor’s expansion in two
variables around (x1, x2), we obtain{

0 = f1(x1 + h1, x2 + h2) ≈ f1(x1, x2) + h1
∂f1(x1,x2)

∂x1
+ h2

∂f1(x1,x2)
∂x2

,

0 = f2(x1 + h1, x2 + h2) ≈ f2(x1, x2) + h1
∂f2(x1,x2)

∂x1
+ h2

∂f2(x1,x2)
∂x2

.

Putting it into the matrix form, we have[
0
0

]
≈

[
f1(x1, x2)
f2(x1, x2)

]
+

[
∂f1(x1,x2)

∂x1

∂f1(x1,x2)
∂x2

∂f2(x1,x2)
∂x1

∂f2(x1,x2)
∂x2

] [
h1
h2

]
.
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Newton’s method for systems of nonlinear equations (cont’d)

To simplify the notation we introduce the Jacobian matrix:

J(x1, x2) =

[
∂f1(x1,x2)

∂x1

∂f1(x1,x2)
∂x2

∂f2(x1,x2)
∂x1

∂f2(x1,x2)
∂x2

]
.

Then we have[
0
0

]
≈

[
f1(x1, x2)
f2(x1, x2)

]
+ J(x1, x2)

[
h1
h2

]
.

If J(x1, x2) is nonsingular then we can solve for [h1, h2]
⊤:

J(x1, x2)

[
h1
h2

]
≈ −

[
f1(x1, x2)
f2(x1, x2)

]
.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Nonlinear Equations – 26/58



Newton’s method for systems of nonlinear equations (cont’d)

Newton’s method for the system of nonlinear equations is
defined as follows: for k = 0, 1, · · · ,[

x(k+1)
1

x(k+1)
2

]
=

[
x(k)1
x(k)2

]
+

[
h(k)1
h(k)2

]
with

J(x(k)1 , x(k)2 )

[
h(k)1
h(k)2

]
= −

[
f1(x

(k)
1 , x(k)2 )

f2(x
(k)
1 , x(k)2 )

]
.

Exercise:

Solve the following nonlinear system by using Newton’s
method with the initial guess x(0) = (x(0)1 , x(0)2 )⊤ = (0, 1)⊤.
Perform two iterations.{

4x1
2 − x2

2 = 0,
4x1x2

2 − x1 = 1.
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Newton’s method for higher dimensional problems

In general, we can use Newton’s method for F(X) = 0, where
X = (x1, x2, . . . , xn)⊤ and F = (f1, f2, . . . , fn)⊤.

For higher dimensional problem, the first derivative is defined
as a matrix (the Jacobian matrix)

DF(X) :=


∂f1(X)

∂x1

∂f1(X)
∂x2

· · · ∂f1(X)
∂xn

∂f2(X)
∂x1

∂f2(X)
∂x2

· · · ∂f2(X)
∂xn

...
...

...
...

∂fn(X)
∂x1

∂fn(X)
∂x2

· · · ∂fn(X)
∂xn

 .

Newton’s method: given X(0) = [x(0)1 , · · · , x(0)n ]⊤, define

X(k+1) = X(k) + H(k),

where
DF(X(k))H(k) = −F(X(k)),

which requires the solving of a large linear system of equations
at every iteration.
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Operations involved in Newton’s method

vector operations: not expensive.

function evaluations: can be expensive.

compute the Jacobian: can be expensive.

solving matrix equations (linear system): very expensive – topic
of the next chapter!
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Methods without using derivatives

“Finite difference Newton’s method” and “secant method.”

Basic idea:

x← x− f (x)
f ′(x)

.

If f ′(x) is too hard or too expensive to compute, we can use an
approximation.

Questions: how to obtain an approximation? Do we lose the fast
convergence?

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Nonlinear Equations – 30/58



Finite difference Newton’s method

Let h be a small nonzero parameter, then

a :=
f (xn + h)− f (xn)

h

can be a good approximation of f ′(xn).

FD-Newton’s method:

(1) compute a =
f (xn + h)− f (xn)

h
.

(2) compute xn+1 = xn −
f (xn)

a
.

Remarks:

(1) the method needs an extra parameter h. What shall we use?
(2) the method needs two function evaluations per iteration.
(3) what is the convergence rate?
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Secant method

Since h can be any small number in the FD-Newton’s method,
why don’t we simply use h = xn − xn−1, which may be positive
or negative, but usually not zero.

Secant method:

(1) compute a =
f (xn)− f (xn−1)

xn − xn−1
.

(2) compute xn+1 = xn −
f (xn)

a
.

Remarks:

(1) now we need only one function evaluation per iteration.
(2) xn+1 depends on two previous iterations. For example, to

compute x2, we need both x1 and x0.
(3) how do we obtain x1? We need to use FD-Newton: pick a

small parameter h, compute a0 = (f (x0 + h)− f (x0))/h,
then x1 = x0 − f (x0)/a0.
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Which of the three methods is better?

An example: f (x) = x2 − 1, and we take x0 = 2.0.

Stopping parameters: δ = 10−10, ε = 10−10.

h = 10−7 in FD-Newton method.

Iter. Newton FD-Newton Secant

x0 2.0 2.0 2.0
x1 1.25000000000000 1.25000001709125 1.25000001709125
x2 1.02500000000000 1.02500001222170 1.07692308177740
x3 1.00030487804878 1.00030487955710 1.00826446381851
x4 1.00000004646115 1.00000004647732 1.00030487810437
x5 1.00000000000000 1.00000000000000 1.00000125445212
x6 1.00000000019120
x7 1.00000000000000

See the details of the M-files: comparisonnewton.m,
comparisonFDnewton.m, comparisonsecant.m
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Convergence rates

If |hn| ≤ C|xn − x∗|, then the convergence of FD-Newton is
quadratic.

The convergence of secant method is superlinear (i.e., better than
linear). More precisely, we have (see Textbook, pp. 96-97)

|en+1| ≤ C|en|(1+
√

5)/2, (1 +
√

5)/2 ≈ 1.62 < 2.

Remark: when selecting algorithms for a particular problem,
one should consider not only the rate (order) of convergence,
but also the cost of computing f (xn) and f ′(xn).
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An informal convergence analysis of the secant method

Let en := xn − x∗. Under suitable assumptions, it can be shown that
en+1 ≈ Cenen−1 (Textbook, p. 96) and lim

n→∞
en = 0 (cf. analysis for

Newton’s method).

To discover the order of convergence, we assume that for large n,
|en+1| ≈ λ|en|α. Thus, |en| ≈ λ|en−1|α ⇒ |en−1| ≈ λ−1/α|en|1/α.

∴ λ|en|α ≈ |en+1| ≈ |C||en|λ−1/α|en|1/α

∴ |en|α ≈ |C|λ−1/α−1|en|1+1/α

∴ |en|α−1−1/α ≈ |C|λ−1/α−1

∵ the right side of this relation is a nonzero constant while en → 0

∴ α− 1− 1/α = 0

∴ α2 − α− 1 = 0

∴ α = 1+
√

5
2 ≈ 1.62 > 0 □

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Nonlinear Equations – 35/58



Steffensen’s method – method without using derivative

Steffensen’s method:

xn+1 = xn −
f (xn)

g(xn)
, where g(xn) :=

f (xn + f (xn))− f (xn)

f (xn)
.

Under suitable hypotheses, the method is quadratically convergent
(p. 90, # 4).

An informal convergence analysis: Assume that f ∈ C2. By Taylor
expansion, we have

f (x + f (x)) = f (x) + f (x)f ′(x) +
f (x)2

2
f ′′(ξ),

for some ξ between x and x + f (x). Therefore,

g(x) :=
1

f (x)
{f (x+ f (x))− f (x)} = f ′(x)+

f (x)
2

f ′′(ξ) ≈ f ′(x), if f (x) ≈ 0.

Let en := xn− x∗. Then, en+1 = en−
f (xn)

g(xn)
=

1
g(xn)

{
eng(xn)− f (xn)

}
.
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Steffensen’s method (cont’d)

∵ 0 = f (x∗) = f (xn − en) = f (xn)− enf ′(xn) +
e2

n
2

f ′′(ξn),
for some ξn between xn and xn − en

∴ f (xn)− eng(xn) ≈ −
e2

n
2

f ′′(ξn)

∴ en+1 ≈
e2

n
2

f ′′(ξn)

g(xn)

(
≈ f ′′(x∗)

2f ′(x∗)
e2

n, provided xn ≈ x∗
)

(cf. analysis of Newton’s method). □

Remarks:

Bisection algorithms is global, and all the other Newton-type
algorithms are local.

Local algorithms are often fast, and global algorithms are often
slow.
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Fixed points

A function F : x 7→ F(x) is often called a mapping from x to F(x)
(F takes an input value x and generates an output value F(x)).

If there is a point p, at which the output is the same as the input, then
that point is called a fixed point of F, i.e., p = F(p).

Finding the fixed points of F has many applications. For
example, if

F(x) := x− f (x)
f ′(x)

,

then the fixed point of F is simply the root of f (x) = 0.

“root-finding problem” =⇒ “fixed point problem”
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Fixed point iterations

Fixed point iterations:

xn+1 = F(xn), n = 0, 1, · · ·

Assume that F is continuous and lim
n→∞

xn = p. Then

F(p) = F( lim
n→∞

xn) = lim
n→∞

F(xn) = lim
n→∞

xn+1 = p.

Therefore, p is a fixed point of the function F.

The following three fixed point iterations can be considered for
solving x3 − x− 5 = 0:

xn+1 = F(xn), n = 0, 1, · · · , where

(1) F(x) = x3 − 5.
(2) F(x) = (x + 5)1/3.

(3) F(x) =
5

x2 − 1
.

Do the iterations converge?
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A fixed point theorem

If F ∈ C[a, b] and F(x) ∈ [a, b], ∀ x ∈ [a, b], then F has a fixed point in
[a, b].

If, in addition, F′ exists on (a, b) and ∃ 0 < k < 1 such that
|F′(x)| ≤ k, ∀ x ∈ (a, b), then the fixed point is unique in [a, b].

Then, for any x0 ∈ [a, b] and xn+1 := F(xn), n ≥ 0, the sequence
converges to the unique fixed point p ∈ [a, b] and
(1) |xn − p| ≤ kn max{x0 − a, b− x0}, ∀ n ≥ 1;
(2) |xn − p| ≤ kn

1−k |x1 − x0|, ∀ n ≥ 1.
Proof.

If F(a) = a or F(b) = b then F has a fixed point in [a, b]. Suppose not, then
a < F(a) ≤ b and a ≤ F(b) < b. Define H(x) := F(x)− x. Then H is continuous
on [a, b] and H(a) > 0, H(b) < 0. By the Intermediate Value Theorem, ∃ p ∈ (a, b)
such that H(p) = 0, i.e., F(p) = p. □

Suppose that ∃ p < q ∈ [a, b] are fixed points of F. Then F(p) = p and F(q) = q.
By the Mean Value Theorem, ∃ ξ ∈ (p, q) such that F(q)−F(p)

q−p = F′(ξ) =⇒
|F(q)−F(p)|
|q−p| = |F′(ξ)| ≤ k < 1 =⇒ 1 = |q−p|

|q−p| ≤ k < 1. This is a contradiction.
Therefore, the fixed point is unique. □
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Proof of the fixed point theorem (cont’d)

For n ≥ 1, by the Mean Value Theorem, ∃ ξ ∈ (a, b) such that
0 ≤ |xn − p| = |F(xn−1)− F(p)| = |F′(ξ)||xn−1 − p| ≤ k|xn−1 − p|.
=⇒ 0 ≤ |xn − p| ≤ k|xn−1 − p| ≤ k2|xn−2 − p| ≤ · · · ≤ kn|x0 − p|.
=⇒ lim

n→∞
|xn − p| = 0⇔ lim

n→∞
xn − p = 0⇔ lim

n→∞
xn = p.

(1) ∵ |xn − p| ≤ kn|x0 − p| and p ∈ [a, b]
∴ |xn − p| ≤ kn max{x0 − a, b− x0}, ∀ n ≥ 1

(2) For n ≥ 1,
|xn+1 − xn| = |F(xn)− F(xn−1)| ≤ k|xn − xn−1| ≤ · · · ≤ kn|x1 − x0|.
∴ For m > n ≥ 1, we have

|xm − xn| = |xm − xm−1 + xm−1 − xm−2 + · · ·+ xn+1 − xn|
≤ |xm − xm−1|+ |xm−1 − xm−2|+ · · ·+ |xn+1 − xn|
≤ km−1|x1 − x0|+ km−2|x1 − x0|+ · · ·+ kn|x1 − x0|
= kn(1 + k + · · ·+ km−n−1)|x1 − x0|.

∵ lim
n→∞

xn = p

∴ |p− xn| = lim
m→∞

|xm − xn| ≤ kn|x1 − x0|
∞

∑
i=0

ki = kn|x1 − x0|
1

1− k
(∵ geometric series with 0 < k < 1)

∴ |p− xn| ≤ kn

1−k |x1 − x0| □
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Contractive mappings

Definition: A mapping (function) F is said to be contractive if
∃ 0 < λ < 1 such that |F(x)− F(y)| ≤ λ|x− y|, for all x, y in the
domain of F.

Note: In the above theorem, F is contractive on [a, b].

Example: F(x) = 4 + 1
3 sin(2x) is contractive on R.

|F(x)− F(y)| =
1
3
| sin(2x)− sin(2y)|

=
2
3
| cos(2ξ)||x− y|

≤ 2
3
|x− y|.
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Contraction mapping principle

Let F be a contractive mapping from a complete metric space X ⊆ R into
itself. Then F has a unique fixed point p and the sequence {xn} generated by
xn+1 := F(xn), n ≥ 0, converges to p for any x0 ∈ X.

Proof:

show that {xn} converges;

let lim
n→∞

xn = p. Then F(p) = p;

show that p is unique. □

Note: Let X be a closed subset of R. Then X is a complete metric space.
Example: closed subsets of R: [a, b], R, etc.
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Error analysis

Assume that F′ exists and continuous. Consider the fixed point
iterations,

xn+1 = F(xn), n ≥ 0.

Assume that {xn} converges to p (p is a fixed point). Let
en := xn − p. Then, by MVT, we have

en+1 = xn+1 − p = F(xn)− F(p) = F′(ξn)(xn − p) = F′(ξn)en,

for some ξn between xn and p. The condition |F′(x)| < 1 for all x
ensures that the errors decrease in magnitude. If en is small then
ξn is near p, and F′(ξn) ≈ F′(p).

One would expect rapid convergence if F′(p) is small. Ideally,
F′(p) = 0.
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Error analysis (cont’d)

Assume that F(k)(p) = 0 for 1 ≤ k < r but F(r)(p) ̸= 0. Then

en+1 = xn+1 − p = F(xn)− F(p) = F(p + en)− F(p)

=
{

F(p) + enF′(p) +
e2

n
2

F′′(p) + · · ·+ 1
r!

er
nF(r)(ξn)

}
− F(p)

= enF′(p) +
e2

n
2

F′′(p) + · · ·+ er−1
n

(r− 1)!
F(r−1)(p) +

er
n

r!
F(r)(ξn)

=
er

n
r!

F(r)(ξn).

If we know that the method converges and F(r) is continuous
then

lim
n→∞

|en+1|
|en|r

=
1
r!
|F(r)(p)|

and the method converges with order r.
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Newton’ method

Newton’ method: F(x) = x− f (x)
f ′(x)

, f (p) = 0 and f ′(p) ̸= 0, F(p) = p.

∵ F′(x) = 1− f ′(x)f ′(x)− f (x)f ′′(x)
(f ′(x))2 =

f (x)f ′′(x)
(f ′(x))2

∴ F′(p) = 0

∵

F′′(x) =
(f ′(x))2{f (x)f ′′′(x) + f ′′(x)f ′(x)} − (f (x)f ′′(x))(2f ′(x)f ′′(x))

(f ′(x))4

∴ we usually have F′′(p) =
f ′′(p)
f ′(p)

̸= 0

∴ under suitable assumptions,
the order (rate) of convergence of Newton’s method is 2
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Roots of polynomials

A general polynomial:
p(z) = anzn + an−1zn−1 + · · ·+ a2z2 + a1z1 + a0, where
coefficients ai ∈ C, i = 0, 1, · · · , n. If an ̸= 0 then we say
degree(p) = n.

Fundamental Theorem of Algebra: Every nonconstant polynomial
has at least one root in C.
(⇐⇒ A polynomial of degree n has exactly n roots in C).

If p is a polynomial whose coefficients are all real, ai ∈ R ∀ i,
then its roots may be complex and if w = w1 + iw2 is a complex
root then its conjugate w := w1 − iw2 is also a root.

In what follows, we consider polynomials with real coefficients.
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Horner’s algorithm

Newton’s method: zk+1 := zk −
p(zk)

p′(zk)
, k = 0, 1, 2, . . . .

We need function evaluations p(zk) and p′(zk) in Newton’s method.

Given a polynomial p(z) = anzn + an−1zn−1 + · · ·+ a1z1 + a0 and
z0 ∈ R. Horner’s algorithm will produce the number p(z0) and
the polynomial q(z) such that p(z) = (z− z0)q(z) + p(z0).

Assume that q(z) = bn−1zn−1 + bn−2zn−2 + · · ·+ b1z1 + b0. Then
we have bn−1 = an, bn−2 = an−1 + z0bn−1, · · · , b0 = a1 + z0b1,
p(z0) = p(z)− (z− z0)q(z) = a0 + z0b0.

Synthetic division: (綜合除法)

an an−1 an−2 · · · a0
z0 z0bn−1 z0bn−2 · · · z0b0

bn−1 bn−2 bn−3 · · · b−1 ← p(z0)

We have p(z0) = b−1.
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Example

Let p(z) = z4 − 4z3 + 7z2 − 5z− 2. Evaluate p(3).

1 -4 7 -5 -2
3 3 -3 12 21

1 -1 4 7 19 ← p(3)

∴ p(3) = 19, q(z) = z3 − z2 + 4z + 7, and

p(z) = (z− 3)(z3 − z2 + 4z + 7) + 19.
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Complete Horner’s algorithm

Given p(z) = anzn + an−1zn−1 + · · ·+ a2z2 + a1z1 + a0 and z0 ∈ R.

We wish to find ci, i = 0, 1, · · · , n such that

p(z) = cn(z− z0)
n + cn−1(z− z0)

n−1 + · · ·+ c1(z− z0)
1 + c0.

If so, by Taylor Theorem, we know that ck =
p(k)(z0)

k!
.

∴ p(z0) = c0 and p′(z0) = c1 = q(z0)

∴ We can apply Horner’s algorithm again to q(z) with point z0

Repeat this process, we can obtain ci, i = 0, 1, · · · , n.
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Example

Let p(z) = z4 − 4z3 + 7z2 − 5z− 2 and z0 = 3.

1 -4 7 -5 -2
3 3 -3 12 21

1 -1 4 7 19 ← p(3)
3 3 6 30

1 2 10 37 ← p′(3)
3 3 15

1 5 25
3 3

1 8

∴ p(3) = 19, p′(3) = 37 and

p(z) = 1(z− 3)4 + 8(z− 3)3 + 25(z− 3)2 + 37(z− 3)1 + 19
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Newton’s method with Horner’s algorithm

program horner(n, (ai : 0 ≤ i ≤ n), z0, α, β)
α← an
β← 0
for k = n− 1 : −1 : 0 do

β← α + z0β
α← ak + z0α

end do
output α(= p(z0)), β(= p′(z0))

program newton (n, (ai : 0 ≤ i ≤ n), z0, M, δ)
for k = 1 : 1 : M do

call horner(n, (ai : 0 ≤ i ≤ n), z0, α, β)
z1 ← z0 − α/β
output α, β, z1
if |z1 − z0| < δ then stop
z0 ← z1

end do
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Basic idea of continuation method (延拓法)

The basic idea of the continuation method is to embed the given
problem in a one-parameter family of problems, using a parameter t
that runs over [0, 1], such that for t = 1 we have the original problem,
while for t = 0 we have another problem with known solution.

Below is an example:

Consider a root-finding problem: f (x) = 0. We extend the
problem to a one-parameter family of problems:

h(t, x) = tf (x) + (1− t)g(x),

where t ∈ [0, 1] and g(x) is given and have a known zero, say x0.

Select points 0 = t0 < t1 < · · · < tm−1 < tm = 1. We then solve
each equation h(ti, x) = 0, i = 0, 1, · · · , m. We say each solution
xi, i = 0, 1, · · · , m.

Assume that some iterative method such as Newton’s method is
used to solve h(ti, x) = 0, we use the solution xi−1 of
h(ti−1, x) = 0 as the starting point.
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Homotopy (同倫)

Definition: Let X and Y be two topological spaces and f , g : X→ Y be two
continuous functions. A homotopy between f and g is defined to be a
continuous function h : [0, 1]×X→ Y such that, for all points x ∈ X,
h(0, x) = g(x) and h(1, x) = f (x). If such a map exists, we say that f is
homotopic to g.

A simple example that is often used in continuation method is

h(t, x) = tf (x) + (1− t) (f (x)− f (x0))︸ ︷︷ ︸
:=g(x)

,

where x0 can be any point in X.
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Homotopy continuation method

If h(t, x) = 0 has a unique solution for each t ∈ [0, 1], then the
solution is a function of t, and we write x(t) ∈ X. The set
{x(t) : 0 ≤ t ≤ 1} can be interpreted as a curve in X. The
continuation method attempts to determine this curve by computing
points on it, x(t0), x(t1), · · · , x(tm).

Homotopy continuation method: Assume that x(t) and h(t, x)
are differentiable functions. Then

0 = h(t, x(t)) =⇒ 0 = ht(t, x(t)) + hx(t, x(t))x′(t)

=⇒ x′(t) = −
(

hx(t, x(t))
)−1

ht(t, x(t)).

This is an ODE with a known initial value x(0), it can be solved
using numerical methods (cf. Chapter 8).

If necessary, we can apply Newton’s iteration starting at the
point produced by the homotopy method to approximate the
solution of h(1, x) = 0 one more time.
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Example

Let X = Y = R2 and define

f (x, y) =
[

x2 − 3y2 + 3
xy + 6

]
, (x, y) ∈ R2.

A homotopy is defined by

h(t, (x, y)) = tf (x, y) + (1− t)(f (x, y)− f (1, 1))

= f (x, y) + tf (1, 1)− f (1, 1), t ∈ [0, 1], (x, y) ∈ R2,

hx(t, (x, y)) = Df (x, y) =

[ ∂f1
∂x (x, y) ∂f1

∂y (x, y)
∂f2
∂x (x, y) ∂f2

∂y (x, y)

]
=

[
2x −6y
y x

]
,

ht(t, (x, y)) = f (1, 1) =
[

1
7

]
.
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Example (cont’d)

h−1
x (t, (x, y)) = [Df (x, y)]−1 =

1
2x2 + 6y2

[
x 6y
−y 2x

]
.

The ODE is[
x′(t)
y′(t)

]
= − 1

2x2 + 6y2

[
x 6y
−y 2x

] [
1
7

]
= − 1

2x2 + 6y2

[
x + 42y
14x− y

]
.

with initial condition (x(0), y(0))⊤ = (1, 1)⊤. By the numerical
method for initial-value problem, we have an approximation solution
(−2.961, 1.978)⊤ of (x(1), y(1))⊤. We can use this approximation as
the initial guess in the Newton method:

k (x(k), y(k)) ∥f (x(k), y(k))∥2
0 (-2.96100000000000, 1.97800000000000) 0.14626611680427
1 (-3.00025328131376, 2.00012057060499) 0.00087135657948
2 (-3.00000001019155, 2.00000000338437) 0.00000003679978
3 (-3.00000000000000, 2.00000000000000) 0.00000000000000

See the details of the M-file: homotopynewton.m
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Theorem on continuously differentiable solution

[Ortega and Rheinboldt, 1970]

If f : Rn → Rn is continuously differentiable and if ∥[Df (x)]−1∥ ≤ M on
Rn, then for any x0 ∈ Rn there is a unique curve {x(t) : 0 ≤ t ≤ 1} in Rn

such that f (x(t)) + (t− 1)f (x0) = 0, 0 ≤ t ≤ 1. The function t→ x(t) is
a continuously differentiable solution of the initial-value problem
x′(t) = −[Df (x)]−1f (x0), where x(0) = x0.

Note: tf (x(t)) + (1− t) (f (x(t))− f (x0))︸ ︷︷ ︸
:=g(x(t))

= f (x(t)) + (t− 1)f (x0).
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