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A quick review of Calculus

ε-δ definition of limit: Let ∅ ̸= A ⊆ R, c be an accumulation point
of A, and f : A→ R be a real-valued function. Then

lim
x→c

f (x) = L ⇐⇒ ∀ ε > 0 ∃ δ > 0 such that if x ∈ A and

0 < |x− c| < δ then |f (x)− L| < ε.

Exercise: Use ε-δ argument to show that lim
x→3

2x = 6.

Not all functions have limits everywhere.

Example: lim
x→0

|x|
x

does not exist.

∵ lim
x→0+

|x|
x

= 1 ̸= −1 = lim
x→0−

|x|
x
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Intermediate-Value Theorem for continuous functions

Definition (continuity): Let f : A→ R and c ∈ A.
f (x) is said to be continuous at x = c⇐⇒ lim

x→c
f (x) = f (c).

Examples:

(1) f (x) = 2x is continuous at x = 3.

(2) f (x) =
|x|
x

is not continuous at x = 0.
(no matter how it is defined at 0)

Intermediate-Value Theorem: If f is a continuous function on [a, b]
and K is any number between f (a) and f (b) (i.e., f (a) < K < f (b) or
f (b) < K < f (a)), then ∃ c ∈ (a, b) such that f (c) = K.

Bolzano’s Theorem: If f is a continuous function on [a, b] and
f (a)f (b) < 0, then ∃ c ∈ (a, b) such that f (c) = 0.
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Derivative

Definition: Let f : A→ R and c ∈ A. The derivative of f at c is
defined by

f ′(c) = lim
x→c

f (x)− f (c)
x− c

,

if the limit exists. If f ′(c) exists then f is said to be differentiable at c.

Alternative definition:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

.

Theorem: If f is differentiable at c, then f must be continuous at c.

But the converse is not true! For example, f (x) = |x| at x = 0.
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Pseudocode

A pseudocode to compute f ′(x) at x = 0.5 with f (x) = sin(x):

program numerical differentiation
integer parameter n← 10
integer i
real error, h, x, y
x← 0.5
h← 1
for i = 1 to n do

h← 0.25h
y← (sin(x + h)− sin(x))/h
error← | cos(x)− y|
output i, h, y, error

end for
end program numerical differentiation
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Some notations

C(R) or C0(R): the set of all functions that are continuous on the
real line R.

C1(R): the set of all functions for which f ′ is continuous on the
real line R.

Cn(R): the set of all functions for which f (n) is continuous on the
real line R.

C∞(R) ⊂ · · · ⊂ Cn(R) ⊂ C1(R) ⊂ C0(R).

Example: f (x) = ex ∈ C∞(R).

Cn([a, b]): the set of all functions for which f (n) is continuous on
the interval [a, b].
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Taylor’s Theorem with Lagrange remainder

If f ∈ Cn[a, b] and f (n+1) exists on (a, b), then for any points c and x in
[a, b] we have

f (x) = Pn(x) + En(x),

where the n-th Taylor polynomial Pn(x) is given by

Pn(x) =
n

∑
k=0

1
k!

f (k)(c)(x− c)k

and the remainder (error) term En(x) is given by

En(x) =
1

(n + 1)!
f (n+1)(ξ)(x− c)n+1

for some point ξ between c and x (either c < ξ < x or x < ξ < c).
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Some remarks

The Taylor series of f at c is
∞

∑
k=0

1
k!

f (k)(c)(x− c)k.

(c = 0, also called the Maclaurin series)

If En(x)→ 0 as n→ ∞, then Pn(x)→ f (x) as n→ ∞.

i.e., f (x) =
∞

∑
k=0

1
k!

f (k)(c)(x− c)k.

The special case n = 0 of Taylor’s Theorem is the
Mean-Value Theorem: If f ∈ C[a, b] and f ′ exists on (a, b), then for
x, c ∈ [a, b], f (x) = f (c) + f ′(ξ)(x− c) for some ξ between x and c.

A special case of the Mean-Value Theorem is Rolle’s Theorem:
If f is continuous on [a, b], f ′ exists on (a, b), and f (a) = f (b), then
∃ ξ ∈ (a, b) such that f ′(ξ) = 0.
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Example

Find the Taylor polynomial and the remainder term of f (x) = sin(x)
at c = 0 and for which interval we get an error less than 3× 10−4

using 2 terms in the Taylor polynomial.

Solution:

Taylor polynomial =
n

∑
k=0

(−1)k

(2k + 1)!
x2k+1,

Remainder term =
(−1)n+1 cos ξ

(2n + 3)!
x2n+3.

n = 1 : |Remainder term | ≤ |x|2n+3

(2n + 3)!
=
|x|5
5!

< 3× 10−4.

=⇒ |x− 0| < (360× 10−4)
1/5 ≈ 0.514.

=⇒ −0.514 < x < 0.514.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Mathematical Preliminaries – 9/23



Partial sums of the Taylor series for f (x) = sin(x) at c = 0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x−axis

y−
ax

is

Partial sums of the Taylor series for sin(x) at c=0

f(x)=sin(x)
p

1
(x)=x

p
3
(x)=x−x3/6

p
5
(x)=x−x3/6+x5/120

Note: A Taylor series converges rapidly near the point of expansion and
slowly (or not at all) at more remote points.
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Taylor’s Theorem with integral remainder

If f ∈ Cn+1[a, b] then for any points c and x in [a, b] we have

f (x) = Pn(x) + En(x),

where the n-th Taylor polynomial Pn(x) is given by

Pn(x) =
n

∑
k=0

1
k!

f (k)(c)(x− c)k

and the remainder term En(x) is given by

En(x) =
1
n!

∫ x

c
f (n+1)(t)(x− t)ndt.
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Alternative form of Taylor’s Theorem with L. remainder

If f ∈ Cn[a, b] and f (n+1) exists on (a, b), then for any points x and x + h in
[a, b] we have

f (x + h) = Pn(x) + En(h),

where the n-th Taylor polynomial Pn(x) is given by

Pn(x) =
n

∑
k=0

hk

k!
f (k)(x)

and the remainder term En(h) is given by

En(h) =
hn+1

(n + 1)!
f (n+1)(ξ)

for some point ξ between x and x + h.
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Taylor’s Theorem in two variables

If f ∈ Cn+1([a, b]× [c, d]), then for any points (x, y), (x + h, y + k) ∈
[a, b]× [c, d] we have

f (x + h, y + k) =
n

∑
i=0

1
i!
(h

∂

∂x
+ k

∂

∂y
)if (x, y) + En(h, k),

where

En(h, k) =
1

(n + 1)!

(
h

∂

∂x
+ k

∂

∂y

)n+1
f (x + θh, y + θk)

for some 0 < θ < 1.

Exercise: What are the first few terms in the Taylor formula for
f (x, y) = cos(xy)?

For example, Taylor’s formula with n = 1 is

cos
(
x + h)(y + k)

)
= cos(xy)− hy sin(xy)− kx sin(xy) + E1(h, k).

How about n = 2?
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Convergent sequences

In numerical calculations, it often happens that a sequence of
approximate answers is produced and hopefully converges to
the desired solution.

Definition: Let {xn} be a real sequence.

lim
n→∞

xn = L ⇐⇒ ∀ ε > 0 ∃ n0 ∈N s.t. if n > n0 then |xn− L| < ε.

Example: lim
n→∞

n + 1
n

= 1.
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Almost linear convergence

For example, the sequence xn =
(

1+ 1
2n

1− 1
2n

)n
=

(
1 + 2

2n−1

)n

converges to the irrational number e ≈ 2.71828183, lim
n→∞

xn = e,

also the famous sequence yn =
(
1 + 1

n
)n converges to e.

n xn ↓ yn ↑
1 3.00000000 2.00000000

10 2.72055141 2.59374246
30 2.71853357 2.67431878
50 2.71837244 2.69158803

100 2.71830448 2.70481383
1000 2.71828205 2.71692393

{xn} converges faster than {yn}, but both very slow.

The ratio
∣∣∣ xn+1−e

xn−e

∣∣∣→ 1 as n→ ∞ and similarly for {yn}. This
property is worse than linear convergence, we say “almost linear
convergence.”
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Superlinear convergence

An example of a sequence that converges to
√

2 is

xn+1 = xn − (x2
n − 2)

(
xn − xn−1

x2
n − x2

n−1

)
.

Selecting two initial values, we have

x1 = 2.0, x2 = 1.5, x3 = 1.428571,
x4 = 1.414634, x5 = 1.414216, x6 = 1.414214, · · ·

The convergence to
√

2 ≈ 1.41421356237310 is quite rapid.

Using double-precision computations, we find numerical
evidence that

|xn+1 −
√

2|
|xn −

√
2|1.62

≤ 0.77.

We say “superlinear convergence.”
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Rapid convergent sequences

Example:  x1 = 2,

xn+1 =
1
2

xn +
1
xn

(n ≥ 1).

Few elements of this sequence: x1 = 2.000000, x2 = 1.500000,
x3 = 1.416667, x4 = 1.414216.
In fact, we can show that lim

n→∞
xn =

√
2 (≈ 1.41421356237310).

Hint: First, show that {xn} is decreasing and bounded below.
Then limn→∞ xn exists, say x · · · · · · .

We find that
|xn+1 −

√
2|

|xn −
√

2|2
≤ 0.36. We say that this sequence

converges quadratically (quadratic convergence).
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Rate (order) of convergence

Let {xn} be a sequence of real numbers converges to x∗ ∈ R. We say
the rate of convergence is

at least linear: if ∃ 0 < C < 1, ∃ n0 ∈N such that

|xn+1 − x∗| ≤ C|xn − x∗| ∀ n ≥ n0.

at least superlinear: if ∃ {εn} with εn → 0 and ∃ n0 ∈N s.t.

|xn+1 − x∗| ≤ εn|xn − x∗| ∀ n ≥ n0.

at least quadratic: if ∃ C > 0, ∃ n0 ∈N such that

|xn+1 − x∗| ≤ C|xn − x∗|2 ∀ n ≥ n0.

of order α > 1: if ∃ C > 0, ∃ n0 ∈N such that

|xn+1 − x∗| ≤ C|xn − x∗|α ∀ n ≥ n0.
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Big O and little o notation

xn = O(αn) for two sequences {xn} and {αn} if ∃ C > 0 and
∃ n0 ∈N s.t. |xn| ≤ C|αn|, ∀ n ≥ n0.

Example:
n + 1

n2 = O(
1
n
).

xn = o(αn) for two sequences {xn} and {αn} if lim
n→∞

xn

αn
= 0.

(To avoid dividing by zero, sometimes modified as follows: if
∃ {εn}, εn ≥ 0, εn → 0 and ∃ n0 ∈N s.t. |xn| ≤ εn|αn|, ∀ n ≥ n0).

Example: e−n = o(
1
n2 ).

These two notations give a coarse method of comparing two
sequences. They are often used when both sequences converge
to 0. If xn → 0, αn → 0, and xn = O(αn), then xn converges to 0 at
least rapidly as αn. If xn = o(αn), then xn converges to 0 more rapidly
than αn does.
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Big O and little o notation for functions

f (x) = O(g(x)) (x→ ∞) for functions f and g if ∃ C > 0 and
r > 0 s.t. |f (x)| ≤ C|g(x)|, ∀ x ≥ r.

Example:
√

x2 + 1 = O(x) (x→ ∞).

∵
√

x2 + 1 ≤ 2x when x ≥ 1.

f (x) = O(g(x)) (x→ x∗) for functions f and g if ∃ C > 0 and a
neighborhood of x∗ s.t. |f (x)| ≤ C|g(x)|, ∀ x in the neighborhood.

f (x) = o(g(x)) (x→ ∞) for functions f and g if lim
x→∞

f (x)
g(x)

= 0.

f (x) = o(g(x)) (x→ x∗) for functions f and g if lim
x→x∗

f (x)
g(x)

= 0.
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Order of accuracy (order of convergence)

Let u(x) = sin(x) and x̄ = 1. Then u′(1) = cos(1) = 0.5403023 · · ·

D+u(x̄) := (u(x̄ + h)− u(x̄))/h = u′(x̄) +
1
2

hu′′(x̄) +
1
6

h2u′′′(x̄) + O(h3).

Then D+u(x̄) ≈ u′(x̄) as h→ 0+.

From the data in the above table, we have

D+u(x̄)− u′(x̄) ≈ −0.42h. (why and how? see page 23)
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Log-log plot

If the error E(h) behaves like E(h) ≈ Chp, then

log |E(h)| ≈ log |C|+ p log h.
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6 Chapter 1. Finite Difference Approximations
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Figure 1.2. The errors in Du. Nx/ from Table 1.1 plotted against h on a log-log scale.

Recall that Nx is a fixed point so that u00. Nx/; u000. Nx/, etc., are fixed constants independent of
h. They depend on u of course, but the function is also fixed as we vary h.

For h sufficiently small, the error will be dominated by the first term 1
2
hu00. Nx/ and all

the other terms will be negligible compared to this term, so we expect the error to behave
roughly like a constant times h, where the constant has the value 1

2
u00. Nx/.

Note that in Example 1.1, where u.x/ D sin x, we have 1
2
u00.1/ D �0:4207355,

which agrees with the behavior seen in Table 1.1.
Similarly, from (1.5b) we can compute that the error in D�u. Nx/ is

D�u. Nx/ � u0. Nx/ D �
1

2
hu00. Nx/C

1

6
h2u000. Nx/C O.h3/;

which also agrees with our expectations.
Combining (1.5a) and (1.5b) shows that

u. Nx C h/ � u. Nx � h/ D 2hu0. Nx/C
1

3
h3u000. Nx/C O.h5/

so that

D0u. Nx/ � u0. Nx/ D
1

6
h2u000. Nx/C O.h4/: (1.6)

This confirms the second order accuracy of this approximation and again agrees with what
is seen in Table 1.1, since in the context of Example 1.1 we have

1

6
u000. Nx/ D �

1

6
cos.1/ D �0:09005038:

Note that all the odd order terms drop out of the Taylor series expansion (1.6) for D0u. Nx/.
This is typical with centered approximations and typically leads to a higher order approxi-
mation.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Mathematical Preliminaries – 22/23



How to estimate the order of accuracy?

Assume a method is p-th order accurate, i.e., E(h) ≈ Chp for sufficiently small
h. Then for 0 < h2 < h1 small, we expect E(h1) ≈ Chp

1 and E(h2) ≈ Chp
2.

|E(h1)| ≈ |C|h
p
1, |E(h2)| ≈ |C|h

p
2 =⇒ |E(h1)|

|E(h2)|
≈
|C|hp

1

|C|hp
2
=

(
h1
h2

)p

=⇒ log
(
|E(h1)|
|E(h2)|

)
≈ p log

(
h1
h2

)
=⇒ p ≈ log

(
|E(h1)|
|E(h2)|

)
/ log

(
h1
h2

)
For example, for D+u(x̄), we have

log(4.2939e-02/2.1257e-02)/log(1.0e-01/5.0e-02) = 1.0144

log(2.1257e-02/4.2163e-03)/log(5.0e-02/1.0e-02) = 1.0052

log(4.2163e-03/2.1059e-03)/log(1.0e-02/5.0e-03) = 1.0015

log(2.1059e-03/4.2083e-04)/log(5.0e-03/1.0e-03) = 1.0005

p ≈ (1.0144+ 1.0052+ 1.0015+ 1.0005)/4 = 1.0054, first order

If the exact solution is not available, we can use an approximate solution with a very
small h instead of the exact solution to estimate the order of accuracy.
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