MA 8019: Numerical Analysis I Mathematical Preliminaries

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: May 2, 2018 Last updated: September 25, 2024

A quick review of Calculus

• ε - δ definition of limit: Let $\varnothing \neq A \subseteq \mathbb{R}$, c be an accumulation point of A, and $f: A \to \mathbb{R}$ be a real-valued function. Then

$$\lim_{x \to c} f(x) = L \iff \forall \ \varepsilon > 0 \ \exists \ \delta > 0 \ \text{such that if} \ x \in A \ \text{and}$$
$$0 < |x - c| < \delta \ \text{then} \ |f(x) - L| < \varepsilon.$$

Exercise: Use ε - δ argument to show that $\lim 2x = 6$.

• Not all functions have limits everywhere.

Example: $\lim_{x\to 0} \frac{|x|}{x}$ does not exist. $\therefore \lim_{x\to 0^+} \frac{|x|}{x} = 1 \neq -1 = \lim_{x\to 0^-} \frac{|x|}{x}$

$$\therefore \lim_{x \to 0^+} \frac{|x|}{x} = 1 \neq -1 = \lim_{x \to 0^-} \frac{|x|}{x}$$

Intermediate-Value Theorem for continuous functions

- **Definition (continuity):** Let $f: A \to \mathbb{R}$ and $c \in A$. f(x) is said to be continuous at $x = c \iff \lim_{x \to c} f(x) = f(c)$.
- Examples:
 - (1) f(x) = 2x is continuous at x = 3.
 - (2) $f(x) = \frac{|x|}{x}$ is not continuous at x = 0. (no matter how it is defined at 0)
- **Intermediate-Value Theorem:** *If f is a continuous function on* [a,b] *and K is any number between* f(a) *and* f(b) *(i.e.,* f(a) < K < f(b) *or* f(b) < K < f(a), then $\exists c \in (a,b)$ such that f(c) = K.
- **Bolzano's Theorem:** *If f is a continuous function on* [a,b] *and* f(a)f(b) < 0, then $\exists c \in (a,b)$ such that f(c) = 0.

Derivative

• Definition: Let $f: A \to \mathbb{R}$ and $c \in A$. The derivative of f at c is defined by

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c},$$

if the limit exists. If f'(c) exists then f is said to be differentiable at c.

• Alternative definition:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

• **Theorem:** *If f is differentiable at c, then f must be continuous at c.*

But the converse is not true! For example, f(x) = |x| at x = 0.

Pseudocode

A pseudocode to compute f'(x) at x = 0.5 with $f(x) = \sin(x)$:

```
program numerical differentiation
    integer parameter n \leftarrow 10
    integer i
    real error, h, x, y
    x \leftarrow 0.5
   h \leftarrow 1
    for i = 1 to n do
        h \leftarrow 0.25h
        y \leftarrow (\sin(x+h) - \sin(x))/h
        error \leftarrow |\cos(x) - y|
        output i, h, y, error
    end for
end program numerical differentiation
```

Some notations

- $C(\mathbb{R})$ or $C^0(\mathbb{R})$: the set of all functions that are continuous on the real line \mathbb{R} .
- $C^1(\mathbb{R})$: the set of all functions for which f' is continuous on the real line \mathbb{R} .
- $C^n(\mathbb{R})$: the set of all functions for which $f^{(n)}$ is continuous on the real line \mathbb{R} .
- $C^{\infty}(\mathbb{R}) \subset \cdots \subset C^n(\mathbb{R}) \subset C^1(\mathbb{R}) \subset C^0(\mathbb{R})$.
 - **Example:** $f(x) = e^x \in C^{\infty}(\mathbb{R})$.
- $C^n([a,b])$: the set of all functions for which $f^{(n)}$ is continuous on the interval [a,b].

Taylor's Theorem with Lagrange remainder

If $f \in C^n[a,b]$ and $f^{(n+1)}$ exists on (a,b), then for any points c and x in [a,b] we have

$$f(x) = P_n(x) + E_n(x),$$

where the n-th Taylor polynomial $P_n(x)$ is given by

$$P_n(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c) (x - c)^k$$

and the remainder (error) term $E_n(x)$ is given by

$$E_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x-c)^{n+1}$$

for some point ξ between c and x (either $c < \xi < x$ or $x < \xi < c$).

Some remarks

- The Taylor series of f at c is $\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(c) (x-c)^k$. (c=0, also called the Maclaurin series)
- If $E_n(x) \to 0$ as $n \to \infty$, then $P_n(x) \to f(x)$ as $n \to \infty$. i.e., $f(x) = \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(c) (x-c)^k$.
- The special case n = 0 of Taylor's Theorem is the **Mean-Value Theorem:** *If* $f \in C[a,b]$ *and* f' *exists on* (a,b), *then for* $x,c \in [a,b], f(x) = f(c) + f'(\xi)(x-c)$ *for some* ξ *between* x *and* c.
- A special case of the Mean-Value Theorem is **Rolle's Theorem**: *If f is continuous on* [a,b], f' exists on (a,b), and f(a) = f(b), then $\exists \ \xi \in (a,b)$ such that $f'(\xi) = 0$.

Example

Find the Taylor polynomial and the remainder term of $f(x) = \sin(x)$ at c = 0 and for which interval we get an error less than 3×10^{-4} using 2 terms in the Taylor polynomial.

Solution:

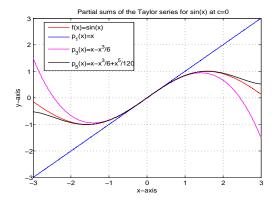
Taylor polynomial
$$= \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1},$$
 Remainder term
$$= \frac{(-1)^{n+1} \cos \xi}{(2n+3)!} x^{2n+3}.$$

$$n = 1: \quad |\text{Remainder term}| \le \frac{|x|^{2n+3}}{(2n+3)!} = \frac{|x|^5}{5!} < 3 \times 10^{-4}.$$

$$\implies |x-0| < (360 \times 10^{-4})^{1/5} \approx 0.514.$$

$$\implies -0.514 < x < 0.514.$$

Partial sums of the Taylor series for $f(x) = \sin(x)$ **at** c = 0



Note: A Taylor series converges rapidly near the point of expansion and slowly (or not at all) at more remote points.

Taylor's Theorem with integral remainder

If $f \in C^{n+1}[a,b]$ then for any points c and x in [a,b] we have

$$f(x) = P_n(x) + E_n(x),$$

where the n-th Taylor polynomial $P_n(x)$ is given by

$$P_n(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c) (x - c)^k$$

and the remainder term $E_n(x)$ is given by

$$E_n(x) = \frac{1}{n!} \int_c^x f^{(n+1)}(t) (x-t)^n dt.$$

Alternative form of Taylor's Theorem with L. remainder

If $f \in C^n[a,b]$ and $f^{(n+1)}$ exists on (a,b), then for any points x and x+h in [a,b] we have

$$f(x+h) = P_n(x) + E_n(h),$$

where the n-th Taylor polynomial $P_n(x)$ is given by

$$P_n(x) = \sum_{k=0}^n \frac{h^k}{k!} f^{(k)}(x)$$

and the remainder term $E_n(h)$ is given by

$$E_n(h) = \frac{h^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$

for some point ξ between x and x + h.

Taylor's Theorem in two variables

If $f \in C^{n+1}([a,b] \times [c,d])$, then for any points (x,y), $(x+h,y+k) \in [a,b] \times [c,d]$ we have

$$f(x+h,y+k) = \sum_{i=0}^{n} \frac{1}{i!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right)^{i} f(x,y) + E_{n}(h,k),$$

where

$$E_n(h,k) = \frac{1}{(n+1)!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n+1} f(x + \theta h, y + \theta k)$$

for some $0 < \theta < 1$.

Exercise: What are the first few terms in the Taylor formula for $f(x,y) = \cos(xy)$?

For example, Taylor's formula with n = 1 is

$$\cos(x+h)(y+k)) = \cos(xy) - hy\sin(xy) - kx\sin(xy) + E_1(h,k).$$

How about n = 2?

Convergent sequences

- In numerical calculations, it often happens that a sequence of approximate answers is produced and hopefully converges to the desired solution.
- **Definition:** Let $\{x_n\}$ be a real sequence.

$$\lim_{n\to\infty} x_n = L \iff \forall \, \varepsilon > 0 \, \exists \, n_0 \in \mathbb{N} \, s.t. \, \text{if } n > n_0 \, \text{then } |x_n - L| < \varepsilon.$$

• Example: $\lim_{n\to\infty} \frac{n+1}{n} = 1$.

Almost linear convergence

• For example, the sequence $x_n = \left(\frac{1+\frac{1}{2n}}{1-\frac{1}{2n}}\right)^n = \left(1+\frac{2}{2n-1}\right)^n$ converges to the irrational number $e \approx 2.71828183$, $\lim_{n \to \infty} x_n = e$, also the famous sequence $y_n = \left(1+\frac{1}{n}\right)^n$ converges to e.

n	$x_n \downarrow$	$y_n \uparrow$	
1	3.00000000	2.00000000	
10	2.72055141	2.59374246	
30	2.71853357	2.67431878	
50	2.71837244	2.69158803	
100	2.71830448	2.70481383	
1000	2.71828205	2.71692393	

- $\{x_n\}$ converges faster than $\{y_n\}$, but both very slow.
- The ratio $\left|\frac{x_{n+1}-e}{x_n-e}\right| \to 1$ as $n \to \infty$ and similarly for $\{y_n\}$. This property is worse than linear convergence, we say "almost linear convergence."

Superlinear convergence

• An example of a sequence that converges to $\sqrt{2}$ is

$$x_{n+1} = x_n - (x_n^2 - 2) \left(\frac{x_n - x_{n-1}}{x_n^2 - x_{n-1}^2} \right).$$

• Selecting two initial values, we have

$$x_1 = 2.0$$
, $x_2 = 1.5$, $x_3 = 1.428571$, $x_4 = 1.414634$, $x_5 = 1.414216$, $x_6 = 1.414214$, ...

The convergence to $\sqrt{2} \approx 1.41421356237310$ is quite rapid.

 Using double-precision computations, we find numerical evidence that

$$\frac{|x_{n+1} - \sqrt{2}|}{|x_n - \sqrt{2}|^{1.62}} \le 0.77.$$

We say "superlinear convergence."

Rapid convergent sequences

• Example:

$$\begin{cases} x_1 = 2, \\ x_{n+1} = \frac{1}{2}x_n + \frac{1}{x_n} & (n \ge 1). \end{cases}$$

Few elements of this sequence: $x_1 = 2.000000$, $x_2 = 1.500000$, $x_3 = 1.416667$, $x_4 = 1.414216$.

In fact, we can show that $\lim_{n\to\infty} x_n = \sqrt{2}$ (≈ 1.41421356237310).

Hint: First, show that $\{x_n\}$ is decreasing and bounded below. Then $\lim_{n\to\infty} x_n$ exists, say $x \cdot \cdot \cdot \cdot$.

• We find that $\frac{|x_{n+1} - \sqrt{2}|}{|x_n - \sqrt{2}|^2} \le 0.36$. We say that this sequence converges quadratically (*quadratic convergence*).

Rate (order) of convergence

Let $\{x_n\}$ be a sequence of real numbers converges to $x^* \in \mathbb{R}$. We say the rate of convergence is

• at least linear: if $\exists \ 0 < C < 1$, $\exists \ n_0 \in \mathbb{N}$ such that

$$|x_{n+1}-x^*| \le C|x_n-x^*| \qquad \forall \ n \ge n_0.$$

• at least superlinear: if $\exists \{\varepsilon_n\}$ with $\varepsilon_n \to 0$ and $\exists n_0 \in \mathbb{N}$ s.t.

$$|x_{n+1}-x^*|\leq \varepsilon_n|x_n-x^*| \qquad \forall \ n\geq n_0.$$

• at least quadratic: if $\exists C > 0$, $\exists n_0 \in \mathbb{N}$ such that

$$|x_{n+1} - x^*| \le C|x_n - x^*|^2 \quad \forall n \ge n_0.$$

• of order $\alpha > 1$: if $\exists C > 0$, $\exists n_0 \in \mathbb{N}$ such that

$$|x_{n+1} - x^*| \le C|x_n - x^*|^{\alpha} \quad \forall n \ge n_0.$$

Big O and little o notation

• $x_n = O(\alpha_n)$ for two sequences $\{x_n\}$ and $\{\alpha_n\}$ if $\exists C > 0$ and $\exists n_0 \in \mathbb{N} \text{ s.t. } |x_n| \le C|\alpha_n|, \forall n \ge n_0.$

Example: $\frac{n+1}{n^2} = O(\frac{1}{n})$.

• $x_n = o(\alpha_n)$ for two sequences $\{x_n\}$ and $\{\alpha_n\}$ if $\lim_{n \to \infty} \frac{x_n}{\alpha_n} = 0$.

(To avoid dividing by zero, sometimes modified as follows: if $\exists \{\varepsilon_n\}, \varepsilon_n \geq 0, \varepsilon_n \to 0 \text{ and } \exists n_0 \in \mathbb{N} \text{ s.t. } |x_n| \leq \varepsilon_n |\alpha_n|, \forall n \geq n_0$).

Example: $e^{-n} = o(\frac{1}{n^2}).$

• These two notations give a coarse method of comparing two sequences. They are often used when both sequences converge to 0. If $x_n \to 0$, $\alpha_n \to 0$, and $x_n = O(\alpha_n)$, then x_n converges to 0 at least rapidly as α_n . If $x_n = o(\alpha_n)$, then x_n converges to 0 more rapidly than α_n does.

Big O and little o notation for functions

• f(x) = O(g(x)) $(x \to \infty)$ for functions f and g if $\exists C > 0$ and r > 0 s.t. $|f(x)| \le C|g(x)|, \forall x \ge r$.

Example:
$$\sqrt{x^2 + 1} = O(x) \ (x \to \infty)$$
.

- $\therefore \sqrt{x^2 + 1} \le 2x \text{ when } x \ge 1.$
- f(x) = O(g(x)) $(x \to x^*)$ for functions f and g if $\exists C > 0$ and a neighborhood of x^* s.t. $|f(x)| \le C|g(x)|$, $\forall x$ in the neighborhood.
- f(x) = o(g(x)) $(x \to \infty)$ for functions f and g if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$.
- f(x) = o(g(x)) $(x \to x^*)$ for functions f and g if $\lim_{x \to x^*} \frac{f(x)}{g(x)} = 0$.

Order of accuracy (order of convergence)

Let
$$u(x) = \sin(x)$$
 and $\bar{x} = 1$. Then $u'(1) = \cos(1) = 0.5403023 \cdots$

$$D_{+}u(\bar{x}):=(u(\bar{x}+h)-u(\bar{x}))/h=u'(\bar{x})+\frac{1}{2}hu''(\bar{x})+\frac{1}{6}h^{2}u'''(\bar{x})+O(h^{3}).$$

Then $D_+u(\bar{x})\approx u'(\bar{x})$ as $h\to 0^+$.

Table 1.1. Errors in various finite difference approximations to $u'(\bar{x})$.

h	$D_+u(\bar{x})$	$D_{-}u(\bar{x})$	$D_0u(\bar{x})$	$D_3u(\bar{x})$
1.0e-01	-4.2939e-02	4.1138e-02	-9.0005e-04	6.8207e-05
5.0e-02	-2.1257e-02	2.0807e-02	-2.2510e-04	8.6491e-06
1.0e-02	-4.2163e-03	4.1983e-03	-9.0050e-06	6.9941e-08
5.0e-03	-2.1059e-03	2.1014e-03	-2.2513e-06	8.7540e-09
1.0e-03	-4.2083e-04	4.2065e-04	-9.0050e-08	6.9979e-11

From the data in the above table, we have

$$D_+u(\bar{x})-u'(\bar{x})\approx -0.42h.$$
 (why and how? see page 23)

Log-log plot

If the error E(h) behaves like $E(h) \approx Ch^p$, then

$$\log |E(h)| \approx \log |C| + p \log h.$$

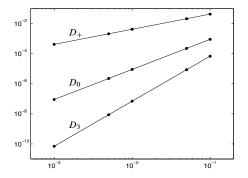


Figure 1.2. The errors in $Du(\bar{x})$ from Table 1.1 plotted against h on a log-log scale.

How to estimate the order of accuracy?

Assume a method is p-th order accurate, i.e., $E(h) \approx Ch^p$ for sufficiently small h. Then for $0 < h_2 < h_1$ small, we expect $E(h_1) \approx Ch_1^p$ and $E(h_2) \approx Ch_2^p$.

$$\begin{split} |E(h_1)| &\approx |C|h_1^p, \quad |E(h_2)| \approx |C|h_2^p \Longrightarrow \frac{|E(h_1)|}{|E(h_2)|} \approx \frac{|C|h_1^p}{|C|h_2^p} = \left(\frac{h_1}{h_2}\right)^p \\ &\Longrightarrow \log\left(\frac{|E(h_1)|}{|E(h_2)|}\right) \approx p\log\left(\frac{h_1}{h_2}\right) \Longrightarrow \boxed{p \approx \log\left(\frac{|E(h_1)|}{|E(h_2)|}\right) / \log\left(\frac{h_1}{h_2}\right)} \end{split}$$

For example, for $D_+u(\bar{x})$, we have

$$\begin{split} \log (4.2939e-02/2.1257e-02) &/ \log (1.0e-01/5.0e-02) = 1.0144 \\ \log (2.1257e-02/4.2163e-03) &/ \log (5.0e-02/1.0e-02) = 1.0052 \\ \log (4.2163e-03/2.1059e-03) &/ \log (1.0e-02/5.0e-03) = 1.0015 \\ \log (2.1059e-03/4.2083e-04) &/ \log (5.0e-03/1.0e-03) = 1.0005 \\ p &\approx (1.0144+1.0052+1.0015+1.0005) &/ 4 = 1.0054, & \text{first order} \end{split}$$

If the exact solution is not available, we can use an approximate solution with a very small h instead of the exact solution to estimate the order of accuracy.