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A system of linear equations

We are interested in solving systems of linear equations having the

form:

a11xy + a12xp + a13x3 + -
Ap1X1 + axpXy + aAx3xz + - - -
Aa31X1 + a3aXxp +az3xz + - - -

A1 X1 + appXo + ap3xs + - - -

+ A1nXn
+ a2nXn
+ azpXxn

+ AnnXn

b1,
by,
b3,

by.

This is a system of n equations in the n unknowns, x1,x2, - - - , x4. The
elements ajj and b; are assumed to be prescribed real numbers.
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Ax=10b

We can rewrite this system of linear equations in a matrix form:

aip dip a3 - Ay X1 by
Ay axp a3 - Ay X2 by
a1 azx 4z v a3 x3 | — | b3
Ayl Ap2 a3 - Oun Xn by,

We can denote these matrices by A, x, and b, giving the simpler
equation:
Ax =b.
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Matrix

A matrix is a rectangular array of numbers such as

3.0 1.1 -0.12

3.2
6.2 0.0 0.15 1
06 —40 13|/ L3 6 7 -17] ’()41?
9.3 2.1 8.2 ’
4 x 3 matrix 1 X 4 matrix 3 x 1 matrix
a row vector a column vector
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Matrix properties

@ If A is a matrix, the notation a;;, (A);;, or A(i,]) is used to denote
the element at the intersection of the ith row and the jth column.
For example, let A be the first matrix on the previous slide. Then
asp = (A)SZ = A(3, 2) = —4.0.

@ The transpose of a matrix is denoted by AT and is the matrix
defined by (AT)Z-]- = aj;. The transpose of the matrix A is:

30 62 06 93
Al = 11 00 —-40 21
—0.12 015 1.3 82

@ If A= A", wesay that matrix A is symmetric.

@ The n x n matrix 10 --- 0
01 --- 0

I:=1,:= 1,y := A :

00 --- 1

is called an identity matrix. Notice that JA = A = Al for any
1 X 7 matrix A
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Algebraic operations

@ Scalar * Matrix: If A is a matrix and A is a scalar, then AA is
defined by ()LA)l] = )\Lli]'.

@ Matrix + Matrix: If A = (a;;) and B = (b;;) are m x n matrices,
then A + B is defined by (A + B);; = a;; + bjj.

@ Matrix * Matrix: If A is an m X p matrix and B is a p X n matrix,
then AB is an m X n matrix defined by:

p
(AB)l] = 2 aikbk]‘, 1 S i S m, 1 S] S n.
k=1

What is the cost of AB?

Answer: mnp multiplications and mn(p — 1) additions.
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Right inverse and left inverse

If A and B are two matrices such that AB = I, then we say that Bis a
right inverse of A and that A is a left inverse of B. For example,

1 0
1 0 0 1 0
B Om 1“0 0] ha wpem

P
{é?g}{ég}—[é?]—bxz, Va, B € R.

Notice that right inverse and left inverse may not unique.

@ Theorem: A square matrix can possess at most one right inverse.

n -
Proof: Let AB = I. Then E b]-kA(/) = I(k>, 1 < k < n. So, the columns of A form a
j=1
basis for R". Therefore, the coefficients by above are uniquely determined. U
© Theorem: If A and B are square matrices such that AB = I, then
BA =1
Proof: Let C = BA—1+B. Then AC=ABA—-AI+AB=A—-A+I1=1
Since right inverse for square matrix is at most one, B = C.
Hence, C=BA—-I1+B=BA—-1+C,ie,BA=1. O
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Inverse

@ If a square matrix A has a right inverse B, then B is unique and
BA = AB = I. We then call B the inverse of A and say that A is
invertible or nonsingular. We denote B = A~ L.

© Example:

© If Aisinvertible, then the system of equations Ax = b has the
solution x = A~ 1b. If A~ is not available, then in general, A1
should not be computed solely for the purpose of obtaining x.

© How do we get this A 1?
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Equivalent systems

@ Let two linear systems be given, each consisting of n equations
with 7 unknowns:

Ax=0b and Bx =d.

If the two systems have precisely the same solutions, we call
them equivalent systems.

© Note that A and B can be very different.

© Thus, to solve a linear system of equations, we can instead solve
any equivalent system. This simple idea is at the heart of our
numerical procedures.
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Elementary operations

@ Let & denote the i-th equation in the system Ax = b. The
following are the elementary operations which can be
performed:

o Interchanging two equations in the system: &; <+ &;;

e Multiplying an equation by a nonzero number: A&; — &;;

o Adding to an equation a multiple of some other equation:
51‘ + )L(c:] — & i

© Theorem on equivalent systems: If one system of equations is
obtained from another by a finite sequence of elementary operations,
then the two systems are equivalent.
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Elementary operations (cont’d)

@ An elementary matrix is defined to be an n x n matrix that arises
when an elementary operation is applied to the n X n identity
matrix.

@ Let A; be the i-th row of matrix A. The elementary operations
expressed in terms of the rows of matrix A are:

o The interchange of two rows in A: A; <+ Aj;
e Multiplying one row by a nonzero constant: AA; — Aj;
o Adding to one row a multiple of another: A; + AA; — A;.

© Each elementary row operation on A can be accomplished by
multiplying A on the left by an elementary matrix.
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Examples

1
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ail 412 M3
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a2 a13
a az3
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Invertible matrix

@ If matrix A is invertible, then there exists a sequence of
elementary row operations can be applied to A, reducing it to I,

EnEp_1---EdEiA=1.
@ This gives us an equation for computing the inverse of a matrix:
Ail =EmEp-—1---E2E1 = EnEyp1--- E2EqlL

Remark: This is not a practical method to compute A~1.
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Eigenvalue and eigenvector

Definition: Let A € C"*" be a square matrix. If there exists a nonzero
vector x € C" and a scalar A € C such that

Ax = Ax,

then A is called an eigenvalue of A and x is called the corresponding
eigenvector of A.

Remark: Computing A and x is a major task in numerical linear
algebra, see Chapter 5.
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Theorem on nonsingular matrix properties

For an n x n real matrix A, the following properties are equivalent:
@ The inverse of A exists; that is, A is nonsingular

The determinant of A is nonzero

The rows of A form a basis for IR”

The columns of A form a basis for R”

As amap from R" to R”, A is injective (one to one)

As amap from R" to R”, A is surjective (onto)

The equation Ax = 0 implies x = 0

©000000O0

For each b € R”, there is exactly one x € R" such that Ax = b
@ Ais a product of elementary matrices
@ 0is not an eigenvalue of A

Note: We can view an n X n real matrix A as a linear transformation
A :R" — R". Then by the rank-nullity theorem, we have

dim(kernel(A)) + dim(image(A)) = dim(R") = n.
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Positive definiteness (review)

@ Let A € C"*" be a square matrix and x,yy € C". Define x* := X',

(x,y) := y*x € C. Then (Ax,x) = x*Ax is called a quadratic form.
@ Definition: Let A € C"*".
A is positive definite <= (Ax,x) >0, VO0#xeC".

o Notel: A= A*(:=A' ) <= (Ax,x) € R,V x € C".

@ Note 2: If A € C"*" is positive definite, then A = A*. (by Note 1)
@ Note 3: Let A € R"*". A is positive definite
~— A=A"T and (Ax,x) >0,V0 # x € R".
Proof: (=) Trivial!
(«<)Let0 # x:=x1 +ix; € C". Thenx; # 0orxp # 0.
(A(x1 + ixz), (x1 + ixz)) = (Axl,xl) - i(AXl,Xz) + i(sz,xl) + (AXQ,XQ)
—i(Axy, xp) = —i(x1, A*xp) = —i(x, ATx) = —i(x1, Axy) = —i(Axp, x1)
S (A( +ixg), (v +ix2)) = (Axy,x1) + (Axz,x2) > 0
@ Note 4: Let A € C"*" and A = A*. Then A is positive definite
<= all of its eigenvalues are real and positive.
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Proof of Note 1
(=) (Ax,x) = x*Ax = (Ax)*x = (x, Ax) = (Ax,x),Vx € C"
. (Ax,x) eR,VxeC"

(<) Vx,yeC" wehave
R > (x+y)*A(x +y) = x*Ax + y* Ay + x* Ay + y*Ax.
XAy +ytAx € R
® Letx=¢ € R",y = ¢ € R". Then R > x" Ay + y*Ax = aj + ay;
Im(a]k) = —Im(ak])
.. @jg :=a+ biand ay; := ¢ — bi for some a,b,c € R

@ Letx=i¢; € C",y = ¢ € R". Then

R 3 x"Ay +y*Ax = —iay +ia; = (—ia+b) + (ci+b) = (c —a)i+2b.

. c=a.Thenay :=a+bi=a—bi =0

A=A —aA*
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Example

The following 2 X 2 real matrix
21
1 2
is positive definite since A = AT and

2 1
x T Ax =[x, x7] [ 1 2 ] [ 2 ] = (1 4+x)?+x3+x5>0,

Vo0 75 (xl,xz)T S IRZ.
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Partitioned matrices

Let A, B, C be matrices that have been partitioned into submatrices:

[ A A - A Bi1 Bz -+ Bk
A Ay Axp oo Apy B Byy By -+ By
L A A2 0 A Bui Buwx -+ By
[ Chi Ciz - Ci
Cn Cp -+ Cy
C= . . .
L le Cm?. o ka

n
If each product A;sBg; can be formed and C;; = Z AjsBsj, then C = AB.
s=1

(see pp.146-147 for the proof)
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Partitioned matrices - an example

1 0 1 2 1
(1 2]  [1 -1 0 1] el {01}
-1 1 1 0 -1 1
1 0 1 1 2
0 1 -1 1 0 1
-1 1 0 0 1
1 -1 0 0 1 0
1 0 1 2 1 0 2 10 -2 1
0 1 1 -1 1
[1 2 7] [2 5]
-3 1 3 0 2
= -3 3 2 -2 1
4 0 -1 0 1
2 3 2 1 6
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Some easy-to-solve systems

Diagonal Structure:

aiq 0 te 0 X1 bl

0 ary - 0 X2 bz
We consider . . . . . =

0 0 - au Xy b,

The solution is: (provided a;; # 0 foralli=1,2,--- ,n)

7 7 7
a1 a2 Ann

(o, f2 . byt

@ If a; = 0 for some index i, and if b; = 0 also, then x; can be any
real number. The number of solutions is infinity.

@ Ifg; = 0 and b; # 0, no solution of the system exists.

@ What is the complexity of the method? n divisions.
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Lower triangular systems

an 0 s 0 X1 b]
. ap axp -+ 0 X2 by

We consider . . ) . . =
Ayl Ap2 -+ Opn Xn by

@ Ifay; # 0, then we have x1 = by /aq11. Once we have x1, we can
simplify the second equation, x, = (b — ap1x1) /a0, provided
that apy # 0. Similarly, we can continue this process.

@ In general, to find the solution to this system, we use forward
substitution (assume that a; # 0 for all 7):

input n, (a;), b = (by, by, -+ ,by) "
fori =1tondo

i—1
Xi < (bi — Z Cli]'x]‘) /aii
=1

end do
output x = (x1,xp,- -+ ,x,) "
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Lower triangular systems (continued)

@ Complexity of forward substitution:

e n divisions; n subtractions;

o the number of multiplications: 0 for x1, 1 for x,, 2 for x3, - - -
0+1424+ - +m—-1)=1+2+---+n=(n+1)n/2,
.. total = O(n?).

o the number of additions: same as multiplications = O(n?).

@ The complexity of an algorithm is often measured using the unit
called flop:

one flop = one addition -+ one multiplication.

@ Forward substitution is an O(n?) algorithm.

@ Remark: forward substitution is a sequential algorithm (not
parallel at all).
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Upper triangular systems

apn ap 413 e A1, X1 by
0 ap axn a2y X2 by
0 0 axp - a3 x3 | — | b3
0 0 0 - au Xn b,

The formal algorithm to solve for x is called backward substitution. It
is also an O(n?) algorithm. Assume that a;; # 0 for all i:

input n, (a;), b = (by, by, - - b)) T

fori=n:-1:1do

n
Xj < (bl — Z ai]-xj) /ﬂii
j=i+1
end do

output x = (x1,xp, - - ,xn)T
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Another simple systems

For example, consider the following linear system:

a;p7 app 0 X1 by
ax; axp a3 X2 | = | b
asy 0 0 X3 b3

If we reorder these equations, we can get a lower triangular system:

asq 0 0 X1 173
app a0 X | =| h
ay; axp a3 x3 by
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Another Simple Systems (continued)

How do we solve Ax = b if A is a permuted lower or upper triangular
matrix?

Assuming that the permutation vector (p1,p2, - - -, pn) is known, we
modify the forward substitution algorithm for a permuted lower
triangular system:

input n, (aij)’ b = (bll bZI e Ibn)Tr (PLPZ/ te ;Pn)

fori=1tondo
i—1

Xi (bPi - Zapifx]') /i
=1

end do
output x = (x1,x2,- -+, Xp)
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LU decomposition (factorization)

@ Suppose that A can be factored into the product of a lower
triangular matrix L and an upper triangular matrix U:

A=1LU.

@ Then,
Ax = LUx = L(Ux).

Thus, to solve the system of equations Ax = b, it is enough to
solve this problem in two stages:

Lz = b solvefor z,
Ux = =z solvefor x.
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LU decomposition (continued)

@ We begin with an n x n matrix A and search for matrices:

by 0 - 0 Uy Uy o Uy

by lp -+ 0 0 up - Uy
L= ] . . , U=

b i oo Ly 0 0 o Upp

such that A = LU. When this is possible, we say that A has an
LU decomposition.

@ It turns out if we compare A = LU, we have more unknowns
n? + n than equations n>. Hence, L and U are not uniquely
determined by A = LU.

@ One simple choice is to make L unit lower triangular (¢; = 1 for
each 7). Another obvious choice is to make U unit upper
triangular (u;; = 1 for each 7).
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LU decomposition (continued)

Using the formula for matrix multiplication, we have

min(i,)

ajj = Z 615”51 = Z 615”5] (*)

Notice that /;; = 0 for s > iand ug = 0 fors > j. At each new step k,
we know rows 1,2, - -, (k—1) for U and columns 1,2, - - , (k— 1) for
L. We wish to know formulas at k by settingi =j =k, i =k, andj =k
in (*), respectively. We obtain

k—1
age = Y Ustige + L, specify b = 1 or ugge = 1 = obtain L and ugy

s=1

k—1
ag = ) st + Ly, k+1 < j < n = obtain uy

s=1

k—1
Aje = z Z,-Susk + gikukk/ k+1<i<n= obtain gik

s=1
Note: (i and uy = uy; forj =k+1,k+2,--- ,n (kth row of U)

= by fori=k+1,k+2, - ,n (kth column of L)
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LU decomposition (continued)

@ This algorithm is known as Doolittle’s decomposition when L is
a unit lower triangular and as Crout’s decomposition when U is
a unit upper triangular.

@ When U =L", so that £;; = u;; for 1 <i < n, the algorithm is
called Cholesky’s decomposition (will be discussed later).

@ Homework: find the Doolittle, Crout, and Cholesky
decompositions of the matrix
2
e

1
A=,
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LU decomposition (continued)

The algorithm for the general LU decomposition is as follows:

input 1, (a;;)
fork =1tondo
specify a nonzero value for either
Uiy or uy, and compute the other from
Ccttge = Be — o1 Upstsi
forj=k+1tondo
. . k—1 .
Ugj < (ak] — Y1 Eks“s;) /
end do
fori=k+1tondo
Ui < (ﬂik - fz'susk> / g
end do
end do
output ({;), (1)
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Operation counts (cf. the algorithm)

@ Consider the number of multiplications (=~ additions),
k=1: 0+ ((n—1)%0)x
k=2: 14+ ((n—2)%1)%2,
k=i: (—-1)4+((n—i)=*(i—-1))*2,
k=n: (n—1)+((n—n)x(n—1))=2.

(i—-1) +22n—1 (i—-1) = 21—1—2271—1 * 1

=1

= Zz+2n21—221 2n+1)Zi—22i2
i=1 i=1

= (2n—|—1)n(n+1)/2—2n(n+1)(2n+1)/6

- %n(n—l— 1)(2n+1) = O(%rﬁ).

@ The number of subtractions = the number of divisions =
n+214+24 -+ (n—1)) =21 +2+---+n) = O0(n?).

Total =

= HMS
—_
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Basic steps for solving a linear system

@ Want to solve
Ax = b.

@ Obtain a LU decomposition,

A=1LU.

@ Solve a lower triangular system

Lz =0.

@ Solve an upper triangular system

Ux = z.
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Total cost

@ In the LU decomposition phase, the cost is O(1>).

@ In solving triangular systems phases, the cost is O(1?).
@ Total cost is O(1®) or more precisely

1

0(3

n3) 4+ 0(n?).

@ Remark: Once L and U are obtained, A is no longer needed. One
can over-write A with L and U.
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Theorem on LU decomposition

If all n leading principal submatrices of the n x n matrix A are nonsingular,
then A has an LU-decomposition, where L is unit lower triangular.

Proof is omitted. See the textbook, pp. 156-157 (by induction).

Recall that the kth leading principal submatrix of the matrix A is the

matrix:
apy axp - Ay
a daxp - Ay
Ak = .
k1 k2 - Ak
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Cholesky Theorem on LL " decomposition

If A is a real, symmetric and positive definite matrix, then it has a unique
factorization, A = LLT, in which L is a lower triangular matrix with
positive diagonal.

Proof: Some key steps:

@ Prove that A has an LU-decomposition (L unit lower triangular)
by showing that all leading principal submatrices of A are SPD.

(-x"Ax >0forallx = (x1,--x,0,---,0)" #0 ... Ay is SPD)
@ Show that A = LDL" by considering LU = A = AT =Uu'L’

— ULy ' =L7'U" (p.158,#1) = IDst. D =ULT) "

H,—-/
upperA lowerA

= DL"=U=A=LU=LDL".
@ '~ A=LU=LDL" and L is nonsingular

.. D is SPD (cf. p. 160, #26) s di > 0foralli

" A=LDLT = LD D3LT :=LLT,T; = l;\/d; = \/d; >0V i

@ uniqueness (p. 158, #2, L and U are unique = L unique).
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Cholesky decomposition for SPD matrices

a1 ap - A l11 iy Iy
a1 dp - Ay by Ay U
ap1 Ay2 -+ Apn enl b -+ Ay

@ (i # 1in general.

@ Need a square root to compute the diagonal entry:

k-1 1/2
Ekk = <akk — Z éé) .

s=1

@ Cost = O(n®) + O(n?) + “n square roots.”
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Some remarks

@ If A is SPD, then all the leading principal submatrices of A are
also SPD.

. k12 \2 -
@ Since { = (akk - Y Eks) ,wehave forj <k

k

N2 s 2

age =) les > G
s=1

and
Ul < Vage  (1<j<k).

Hence, the elements of L do not become large relative to A even
without any pivoting (pivoting will be explained later).
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LDLT decomposition for SPD matrices

1 i 1 Aty Lo
gnl bpp -+ 1 dnn 1

No need to compute square roots.

If A= LDLT, then solve Ax = b in three stages: Lz = b, Dw = z, and
LTx =w.

How to get A =LDL"? e.g.,
A is tridiagonal & SPD. (why SPD? cf. proof of Cholesky Theorem)
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Banded matrices

® A = (a;;) with upper bandwidth g and lower bandwidth p:
aj=0ifj>i+q,
a; =0ifi <j+p.

@ total bandwidth=p+ g+ 1.

@ Theorem: If A has an LU decomposition then U has an upper
bandwidth q and L has a lower bandwidth p (L is unit lower
triangular).

@ Remark: Both L and U can be stored in A.
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Banded matrices (continued)

@ Cost: If p <7,
npq —1/2pg* —1/6p> + pn.

@ Remark: If p and q are much smaller than 7, then the algorithm
is linear in n.

@ Remark: If A is banded and SPD, then the cost of Cholesky
decomposition is

1/2np? 4 p° +3/2(np — p*) + n square roots

In the case when p is small, the square root calculation can be a
significant part of the decomposition. LDL " is preferred!
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Tridiagonal & SPD matrices

Find the LDL" decomposition of a tridiagonal SPD matrix A:

a1 an
az1 a2 az3
A =
Apn—1 Ann
Suppose that
1 d1 1 €1
e1 1 dz 1 (%)
A=
€n—1 1 dn 1
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Tridiagonal & SPD matrices (continued)

Then we have

1 d1 d1€1
er 1 do  drer
A =
L €1 1 dn
[ d dieg

e1dq d2+d1€% drer

dn + dnfle;zqfl
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Tridiagonal & SPD matrices (continued)

@ Comparing with the elements in A, we obtain:
ap = dq.
k-1 = €x—10k—1-
e = di + di_15_.
@ A simple observation:
e = di + dy_16}_ | = di + (de_161)ex—1 = dg + Apge—185—1-
@ Algorithm:
dp = an.
fork=2,---,n.
€1 = Agk—1/dx—1-
dy = A — Cf—10kk—1-
end do

@ Total cost ~ n multiplications + n divisions + n subtractions.
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Tridiagonal & SPD matrices (continued)

@ Solving a tridiagonal & SPD system:

step 1: obtain the LDL' decomposition (= 21 flops).
step 2: solve the lower triangular system (# flops).

step 3: solve the diagonal system (1 divisions ~ n flops).
step 4: solve the upper triangular system (n flops).

@ Total cost ~ 5n flops.
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Basic Gaussian elimination

Let A() = (ai(jl)) = A = (a;) and b)) = b. Consider the following
linear system Ax = b:

6 -2 2 4 X1 12
12 -8 6 10 X | 34
3 -13 9 3 x3 | 27
—6 4 1 -18 Xy —38
pivot row = rowl.
pivot element: agll) =6.

row?2 - (12/6)*row1l — row?2.
row3 - (3/6)*row1l — row3.
row4 - (-6/6)*rowl — row4.

6 -2 2 4 X 12
|0 42 2 x| | 10
0 -12 8 1 X3 21
0 2 3 -14 X —26

multipliers: 12/6,3/6, —6/6.
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Basic Gaussian elimination (continued)

We have the following equivalent system A x = b(?):

pivot row = row2.

pivot element ag) = —4.

row3 - (-12/-4)*row2 — row3.
row4 - (2/-4)*row2 — row4.

6 —2 2 4
0 —4 2 2
=~ 1lo0o 02 -5
0 0 4 —13

multiplier: —12/ — 4,2/ — 4.

© Suh-Yuh Yang ( Wi 1E), Math. Dept., NCU, Taiwan

X1 12
X2 . 10
X3 o 21
X4 —26
X1 12
X2 o 10
X3 o -9
X4 —-21
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Basic Gaussian elimination (continued)

We have the following equivalent system A®)x = b(3):

6 -2 2 4 X 12
0 -4 2 2 w | | 10
0 02 -5 u || -9
0 0 4 —13 Xy 21

pivot row = row3.

pivot element aY =2
row4 - (4/2)*row3 — row4.

6 —2 2 4 X 12
|0 42 2 x| | 10
0 02 -5 X3 -9
0 00 -3 X4 -3

multiplier: 4/2.
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Basic Gaussian elimination (continued)

Finally, we have the following equivalent upper triangular system

Ay — p@).
6 -2 2 4 X 12
0 -4 2 2 x| | 10
0 02 -5 x| 7| -9
0 00 -3 Xy -3

Using the backward substitution, we have

X1 1
X2 o -3
X3 - -2
X4 1
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The LU decomposition

Display the multipliers in an unit lower triangular matrix L = (¢;):

h

I
—NI= N
NI= W = O
N —m OO
—_ O OO

Let U = (u;;) be the final upper triangular matrix A® ., Then we have

6 -2 2 4
0 —4 2 2
U= 0 0 2 =5
0 0 0 -3

and one can check that A = LU (the Doolittle Decomposition).
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Some remarks

@ The entire elimination process will break down if any of the
pivot elements are 0.

@ The total number of arithmetic operations:

7’13 n
D=—+n*-=;
M/ 3t =3
3 2
A/s="m_om

3 2 6
.. The GE is an O(n?®) algorithm.
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Pivoting
For example, the above technique doesn’t work if we have

tHIRNH

and works incorrectly if we have (¢ > 0 is sufficiently small)

e 1 ][] _[1
RIS
Using the above case as an example: row2 - (1/¢)*row1 — row2, we
have - - -
€ 1 X1 | 1
[0 1-1/¢ | {xQ__ _2—1/£:|'
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Example

€ 1 x1 | 1
0 1—-1/¢ X | | 2—1/e |°
@ Using the backward substitution, we have

_2—1/8 X _1—X2
T 1-—1/¢ 1= 7

X2

If welet0 < e < 1, then (1/¢) > 1, and then x; goes to 1 and x;
goes to 0.

@ However, the exact solution should be close to x; = 1 and
Xy = 1.
What's wrong?
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Example (continued)

@ Maybe that is because the pivot element a;; = ¢ is too small. So
we multiply rowl by 1/¢ before perform GE.

LR

@ However, it does not help too much since

271/8 1 X2
= —— =1, =-—==0.
1—-1/¢ M1 € €

X2
@ In fact, it is not actually the smallness of the coefficient a1 that is
causing trouble. Rather, it is the smallness of a7 relative to the
other elements in its row.
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Example (continued)

@ An equivalent linear system: exchanging equations 1 and 2, we

have
117[x] [2
e 1 x| | 1|
@ Using the same algorithm, we obtain x; = (1 —2¢) /(1 —¢),
which is close to 1 and x; = 2 — x5 is also close to 1.
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Partial pivoting and complete pivoting

@ GE with partial pivoting: select the largest element (in | - |) in
the column as the pivot element (= exchange rows).

@ GE with complete pivoting: select the largest element (in | - |) in
the whole matrix as the pivot element (= exchange rows and
columns).

@ After the first round of elimination, we obtain an
(n —1) x (n— 1) linear system to solve. The same idea is used
for this subsystem, and so on.
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Gaussian elimination with scaled row pivoting

@ The algorithm consists of two parts:

e a factorization phase (also called forward elimination);
e asolution phase (involving updating and backward
substitution).

@ In a factorization phase, first compute the scale of each row

5= max |aij| = max{|an|, [an|, -, |ain|}-

Doitforl <i<un.
@ To get started, we choose the pivot row for which |a;;|/s; is

largest. The index p; is associated to the index i, where
|ap,1|/sp; = lan|/sifor1 <i<n.

@ Zeros are created by subtracting multiples of row p; and so on
(see next example).

@ The permutation vector (1,2, - ,n) = (p1,p2,- - ,pn) and we
obtain a permutation matrix P according to the permutation

vector (p1,p2, -+ ,Pn)-
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Example

A:

2 3 -6
1 -6 8.

3 -2 1

@ First compute the scales s = (6,8,3) and initialize
p = (p1,p2,p3) = (1,2,3).
@ Select the first pivot row from ratios, {2/6,1/8,3/3}. Since 3th

row has the largest ratio, the row3 is selected to be the first
pivot. Change the permutation vector by p; <+ p3 and then

p = (p1,p2.p3) = (3,2,1).
@ Perform rowl—(2/3)row3 and row2—(1/3)row3, we have

0 13/3 -20/3
0 —-16/3 23/3 |.
3 -2 1
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Example (continued)

@ From the previous page, s = (6,8,3), p = (p1,p2,p3) = (3,2,1),
0 13/3 —-20/3
0 —-16/3 23/3
3 -2 1

@ Select the next pivot row from ratios,
{7 16/3 13/3} = {2/3,13/18}. Since p3(= 1)th row has the largest
ratlo the rowps (rowl) is selected to be the pivot row and
pa2 <> p3. Thenp = (p1,pa,p3) = (3,1,2).

@ Perform row2—(—16/13)row1 to obtain
|: 0 13/3 -20/3 ]

0 0 -7/13
3 -2 1
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Example (continued)

At the end, we have a decomposition for PA = LU, where

[0 0 1 2 3 -6
PA = 1 0 0 1 -6 81,
|0 10 3 -2 1
r 1 00 3 =2 1
Lu = 2/3 10 0 13/3 —20/3
| 1/3 —16/13 1 0 0 —7/13

cAx =b. .. PAx = Pb.

In the solution phase, we consider two equations: Lz = Pb and
Ux = z.

Pb—b—solvelLz=b— 2z — b —solve Ux = b.
This procedure is called updating b.
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Vector norm

Let V be a vector space over R, e.g., V = R". A norm is a real-valued
function || - || : V — R that satisfies

@ ||x|| >0,Vx eV, and |[x]| = 0if and only if x = 0;
@ |[Ax|| = |Al||x||, Vx € Vand A € R;
o |[x+uy| <|x|+ |yl ¥xy € V (triangle inequality).

Note: ||x|| is called the norm of x, the length or magnitude of x.
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Some vector norms on R”

Letx = (x1,xp,-- ,x,) | € R™

@ The 2-norm (Euclidean norm, or ¢? norm):

[n
_ 2
HxH2 = Exl‘-
=

@ The infinity norm (¢*°-norm):
1[0 = max |xi|.
1<i<n

@ The 1-norm (/!-norm):

n
Ixll = ) Jxl.
i=1
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The difference between the above norms

@ Take three vectors x = (4,4, —4,4)",v = (0,5,5,5)T,
w = (6,0,0,0)

L LT [T [Tl |
¥ |16 |8 |4
v |15 | 866 |5
w6 |6 |6

@ What is the unit ball {x € R?: ||x|| < 1} for the three norms
above?

e 2-norm: a circle
e co-norm: a square
e l-norm: a diamond
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Matrix norm

Let A be an n x n real matrix. If || - || is any norm on R", then

Al == sup{lAx] s x € R [x] = 1} & [lA] == sup{ 23] v e 7,2 2 0)

defines a norm on the vector space of all n x n real matrices. (This is
called the matrix norm associated with the given vector norm)

Proof:
o - ||Ax|| > 0Vx € R, [|x|| = 1. . ||A]| > 0.
Exercise: ||A|| = 0if and only if A = 0.
° [[AA]l = sup{[[AAx] : [|x[| = 1} = sup{[A|[|Ax[| : [[x]| = 1}
= [A[sup{[|Ax]| - [|x[| = 1} = [A[[|A]]
© [[A+B| = sup{[|(A+B)x| : [lx]| = 1} < sup{[|Ax]|| + ||Bx] :

[ =1}
< sup{|[Ax]| : [|x[| = 1} + sup{[[Bx] : [|x[| = 1} = [|A] + [|B]-
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Some additional properties

o [[Ax[| < [lAflllx]l, v x € R™.

Proof:
Letx # 0. Thenv = || ” is of norm 1.
A
14l > flav) = 1221
x|
o 1] =1.

o [[AB| < [lAll[IB]-

Proof:

|AB|| := sup{[|(AB)x[| : x € R", [lx[| = 1}

< sup{[|A[[[[Bx[| : x € R, [|x[| =1}

< sup{[|A[[|[BIl[|x[| : x € R?, [|x[| = 1} = [[A[[|B]].
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Some matrix norms

Let Ayxn = (a;7) be an n x n real matrix. Then

@ The co-matrix norm:

A =
[[Alleo fg@;Zlagl

@ The 1-matrix norm:
[All1 = max Z% |a;;l.
1=

@ The 2-matrix norm (¢2-matrix norm):

[All2 = sup [|Ax|>.

[lxll2=1
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The 2-matrix norm

@ ||A]|2 is not easy to compute.

@ Since AT Ais symmetric, AT A has n real eigenvalues,
A1, Az, -+, Ay € R. Moreover, one can prove that they are all
nonnegative. Then

TA) = it >0.
(A A) = max {Ai} > 0

is called the spectral radius of AT A.

@ Then the £2-matrix norm of A is given by

[All2 = /(AT A).

@ The /2-matrix norm is also called the spectral norm.
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(2-matrix norm of A

Singular value decomposition (SVD): Let A € R"™*". Then we have
A=UZVT = [ug up ... U T
where U and V are orthogonal matrices,
UU" =U"U=Luxm, VV' =V'V=1In
Y =diag(oy,...,04,0...,0) € R™*" with

0'1Z-~~ZUy>0:Ur+1:"':Umin{m,n}

mxm = 01 2 .. U]

isa diagomzl matrix of singular values, and r = rank(A).
Givenx = sz v; € R" with ||x|l = 1, then 1 = ||x||3 = th and
i=1
n

r T
Ax =Y wAv = Y wow; = ||Ax|3 =) afof <of Z <o
i=1 = '

Moreover, we have ||Avy ||, = ||oqu1]|2 = 1. Therefore,

[All2 := max [|Ax[l2 =01 = \/p(ATA).
[|x][2=1
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Some error analysis

@ Suppose that we want to solve the linear system Ax = b, but b is

somehow perturbed to b (this may happen when we convert a
real b to a floating-point b).

@ Then actual solution would satisfy a slightly different linear
system

AX =b.
@ Question: Is ¥ very different from the desired solution x of the
original system?
The answer should depend on how good the matrix A is.
@ Let || - || be a vector norm, we consider two types of errors:

e absolute error: ||x —X||?
e relative error: ||x —X||/||x||?
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The absolute error

For the absolute error, we have
=% = |A20 — A5 = A~ (6 =B < A~ [1b—B].

Therefore, the absolute error of x depends on two factors: the
absolute error of b and the matrix norm of A~1.
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The relative error

For the relative error, we have

k-3 = JA-ATF| = A" b -D)]
b— b

< JAIb—B) = A~ Az i ”
) b—B|

< A YNAINx H

< s

That is

=3 eayn g 1=

7< A~ A

o <tatian B

Therefore, the relative error of x depends on two factors: the relative
error of b and ||Al|[|AY].
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Condition number

@ Therefore, we define a condition number of the matrix A as
K(A) = [A[lAT].
«(A) measures how good the matrix A is.
@ Example: Lete > 0 and

o 1 1+e¢ -1 _ -2 1 —-1-—¢
A_[l—s 1 }:”‘ B T

Then ||Aljec =2+¢, [[A7 || = e2(2+¢), and

- (2L

© Suh-Yuh Yang (#5#i#%), Math. Dept., NCU, Taiwan MA 8019: Linear Equations — 72/148



Condition number (continued)

@ For example, if ¢ = 0.01, then x(A) > 40000.

@ What does this mean?

It means that the relative error in x can be 40000 times greater
than the relative error in b.

@ If x(A) is large, we say that A is ill-conditioned, otherwise A is
well-conditioned.

@ In the ill-conditioned case, the solution is probably very
sensitive to the small changes in the right-hand vector b (higher
precision in b may be needed).
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Another way to measure the error
Consider the linear system Ax = b. Let X be a computed solution (an

approximation to x).

@ Residual vector:

@ Error vector:

@ They satisfy

(Proof: Ae =Ax —Ax=b—Ax =7)

@ Moreover, we have

(Theorem on bounds involving condition number)
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Proof of the Theorem

cAe=r.
e=A"1r

< elllipll = A= | Ax] < A=A -

el 7l
Cor—r < x(A) .
EIRSAT
On the other hand, we have
Il llx]l = flAaelllA~te] < [AllllellA~ ] lI])-

N )
<CA) Tl = x|
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Concept of convergence in a vector space

@ If a vector space V is assigned a norm || - ||, then the pair

(V|| - ||) is a normed linear space.
@ Consider a sequence of vectors v(1),v(2), ... in a normed space
(V]| - ||)- Then we say that the given sequence converges to a

vector v € V and write lim v®) = v if
k—o00

lim |[o®) — | = 0.
k—o0
@ Theorem: Any two norms || - || and || - ||, on a finite-dimensional
vector space V are equivalent, i.e., 3 C1,Cp > 0 such that
Cillolly < llolla < Callvlly, VoeV,

which leads to the same concept of convergence.

@ Caution: This theorem does not apply in infinite-dimensional
normed linear spaces. (See Problem 4.5, #20, p. 206)
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An example in R*

@ Let
3— k1 3
—2+k71/2 -2
'U(k) e (k + 1)k*l and U= 1
ek 0
Then

k1

~1/2

’U(k) — 0= k kfl

ek

@ Then lim [[o®) —9||o = 0.
k—o0
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Neumann series

Theorem on Neumann series: If A is an n X n matrix such that
|A|| < 1 then I — A is invertible and

(I-A)1=Y 4k
k=0

Proof: Suppose that I — A is not invertible.

Then 3 0 # x with ||x|| = 1 such that (I — A)x = 0.

21 =x]| = ||Ax|| < [|A]l]lx]| = [JA]] < 1, a contradiction!
<) m

Claim: }_ AF = (I-A)7 ie, lim (I-A) )_AF=1.
k=0 e k=0

m m
(I—A)ZAk: Z(Ak—Ak+l):AO—Am+1:I—Am+1
k=0 k=0

m
S0 (I A) ZA"—IH = || =A™ < JA|" = 0asm — oo
k=0
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Iterative refinement

o Let x(9) be an approximate solution of
Ax =Db.
Then the residual vector is
10 =p— Ax).

and the error vector is

0) 0)

e = x — x(0),
@ Since Ae(®) = Ax — Ax(®) = p — Ax(®) = +(0) we have
Ae®) = 4(0)

which is not too expensive to solve at this point. Why?
We also know that the exact solution

X = x(o) + e(o)
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Iterative refinement (continued)
Consider the linear system: Ax = b. Let x(?) be an approximation to
the exact solution x. Then

0 b— Ax),
Ae®) = 40

Let 2(%) be an approximate solution of e(?). Then define
x() = x(0) 4 5(0), Repeat this process, we have x(z), x(3), e

7), Math. Dept., NCU, Taiwan MA 8019: Linear Equations — 80/148



Example

Consider the linear system:

420 210 140 105 X1 875
210 140 105 84 x| | 539
140 105 84 70 x3 | | 399
105 84 70 60 Xa 319

@ Exact solutionx = (1,1,1, 1)
@ GE with partial pivoting;:

x(0) 0.999988,1.000137, 0.999670, 1.000215) ',

( )
M = (0.999994,1.000069,0.999831,1.000110) T,
x® = (0.999996,1.000046,0.999891,1.000070) ",
) (0.999993,1.000080,0.999812,1.000121) T,

( )

4) 1.000000, 1.000006, 0.999984, 1.000010) ' .

DA

© Suh-Yuh Yang (7 &), Math. Dept., NCU, Taiwan MA 8019: Linear Equations — 81/148



A comparison

@ We have been studying direct methods for solving the matrix
problem Ax = b, e.g., LU-decomposition and GE.

e large operation count.

e needs lot of memory.

e hard to do on parallel machines.

e a solution will be found, and we know how long and how
much memory it takes.

@ Iterative methods produce a sequence of vectors that ideally
converges to the solution.

e much smaller operation counts.

e needs much less memory.

o alot easier to implement on parallel computers.

e not as reliable or predicable (the number of iterations is not
known in advance).
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Example

B

How can this be solved by an iterative process?

Rewrite the system of equations as

X1 =
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Jacobi method

(k) 6 (k-1 , 3
X = §x§ ) + 7
k 8 (k—1) 4

Here are some values of the iterates of the Jacobi method for this
example:

k xgk) xgk)

0 0.00000 0.00000
10 0.14865 -0.19820
20 0.18682 -0.24909
30 0.19662 -0.26215
40 0.19913 -0.26637
50 0.19978 -0.26637
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Gauss-Seidel method

(k) 6 -1, 3
X = §x2 + 7
0 _ 8w 4
Xy 9 g
Some output from this method:
k xgk) xgk)

0 0.00000  0.00000
10 0.21978 -0.24909
20 0.20130 -0.26531
30 0.20009 -0.26659
40 0.20001 -0.26666
50 0.20000 -0.26667
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Basic concepts

In general, to solve the system
Ax=b

using an iterative process, we prescribe a matrix Q, called the
splitting matrix. We can rewrite the original system of equations as:

Qr=(Q-A)x+b.
The iterations are defined as follows:
Q™ = (Q-Ax* D4 (k>1),

where x(9) is an initial vector. The goal is to choose Q so that the
following conditions hold:

@ The sequence {x()} is easily computed.

@ The sequence {x)} converges rapidly to a solution.
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Theoretical analysis

2 = (1-Q 1A 1 1 0. (%)

The actual solution x satisfies
x=(1I-Q '"A)x+Q b ()
Thus, x is a fixed point of the mapping
— (I-Q 'A)x+ Q7 'b.
Subtracting (**) from (*) yields

X0 —x=(1-QtA) kD - x).
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Theoretical analysis (continued)

Using a convenient vector norm and its associated matrix norm,
e —x|| < 1 - QA [Jx*Y —x].
Repeating this step, we obtain
le® — 2l < 1= Q7 A — x|l
Thus, if [ — Q7 'A|| < 1 then

lim [|x®) — x| =0

k—o0

for any initial vector x(%).

Note: According to Theorem on Neumann series, ||| — Q7 !A|| < 1
implies the invertibility of Q1A and of A.
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Theorem on iterative method convergence

If||II — Q A|| < 1 for some vector induced matrix norm ( also called
subordinate matrix norm), then the sequence produced by

QxM) = (Q—A)x*Y 4

converges to the solution of Ax = b for any initial vector x(0).

Note: If {x(¥)} converges, it converges in any norm.
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Richardson method

@ (is chosen to be the identity matrix. In this case, the iterates are
given by:

x(k) — (I — A)x(k_l) + b — x(k_l) + r(k_l),
where r*=1) is the residual vector, ¢~ := p — Ax(k=1),

@ According to the above theorem, Richardson method will
converges to solution of Ax = b if ||l — A|| < 1 for some vector
induced matrix norm.

@ There are two classes of matrices having the required property
(cf. page 229, problems 2 & 3):

e unit row strictly diagonally dominant matrices:
n

a;=1> Z |a,-j| 1<i<n—= ‘|17A‘|00<1
=T

e unit column strictly diagonally dominant matrices:
n

”J’j:1>,;#4|ﬂij| 1<j<n)= |I-A];1 <1
i=1,i#j
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An example

Compute 100 iterates using the Richardson method, starting with

x=(0,0,0)".
1 1 11
I 3 3 x1 18
1 1 _ 11
3 1 3 X2 | = | 13
1 1 11
7 3 1 x3 18

A few of the iterates:

x(© = (0.00000,0.00000,0.00000) ",
xM = (0.61111,0.61111,0.61111) T,
x(10) = (0.27950,0.27950,0.27950) T,
x40 = (0.33311,0.33311,0.33311) T,
x80) = (0.33333,0.33333,0.33333) .
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Diagonally dominant matrices

@ Definition: The n x n matrix A = (a;;) is called strictly
diagonally dominant if

n
lai] > Y el (1<i<n).
Ry

@ Example:
4 -1 0 -1
-1 4 0 -1
-1 0 4 -1
0 -1 -1 4

is strictly diagonally dominant.
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Jacobi method

@ In the Jacobi iteration, Q is a diagonal matrix whose diagonal
entries are the same as those in the matrix A.

@ One can verify that

n a::
I— Q 'Alleo = max .
[ o= o 2 1

@ Theorem on Convergence of Jacobi Method:

If A is strictly diagonally dominant, then the sequence produced by the
Jacobi iteration converges to the solution of Ax = b for any starting
vector.
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Algorithm for the Jacobi method

input n, (Lli]‘), (bi)/ (xi), M
fork=1toMdo
fori=1tondo

n
U; <— (bi_ Z ai]«xj> /111'1‘
J=Lj#

end do
fori=1tondo
Xj < Ui
end do
output k, (x;)
end do
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Some remarks

@ Some divisions can be avoided by preprocessing the system.

fori =1tondo
d=1/a;
b; + dbl
forj=1tondo
al-j = dai]-
end do
end do

Then the replacement statement for u; becomes simply

n
U < bi — Z ai]-x]-.

j=Li#
@ Another way to interpret this is that the original system Ax = b
has been replaced by:
D~'Ax =D 'b,

where D = diag(a;;).
Suh-Yuh Yang ( 7), Math. Dept., NCU, Taiwan MA 8019: Linear Equations — 95/148




How to stop the iterations?

@ Residual norm: ||r|| = ||b — Ax||.

@ Where is 7; in the computer program? (if without preprocessing)

ri=b;— i AjX; — AjiX; = Al — AjiX;.
j=Lj#
@ Or, one can implement the Jacobi algorithm differently:
D = (1- Q7 14)x® + Q1.
is the same as

x(k+1) — x(k) — Q_l(b — Ax(k)) — x(k) — Q_lr(k)
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Spectral radius

@ The spectral radius of A is defined by
p(A) = max{|A| : det(A — AI) = 0}.

@ Thus, p(A) is the smallest number such that a circle with that
radius centered at 0 in the complex plane will contain all the
eigenvalues of A.

@ Theorem on Spectral Radius: The spectral radius function satisfies
the equation:
p(A) = infl|All,

in which the infimum is taken over all subordinate matrix norms.
Proof: see pp. 214-215.
@ Corollary on Spectral Radius:

o p(A) < ||A||, for any subordinate matrix norm.
o If p(A) < 1then [|A]| < 1 for some subordinate matrix
norm.
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Analysis

In general, an iterative method defined by
0x0) = (@ — A)x*=1) 4,

Let G =1— Q 'Aand c = Q !b. Then we consider the iterative
process in the following form:

x®) = Gx=1) 4 ¢,

Suppose that it converges, then the solution must satisfy

x=Gx+c¢,
or
(I-G)x=c¢,
or
x=(1I-G)te
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Necessary and sufficient conditions for convergence

For the iteration formula
x0) = Gx=1) 4 ¢

to produce a sequence converging to (I — G) I, for any c and starting

vector x(0), it is necessary and sufficient that the spectral radius of G be less
than 1, ie., p(G) < 1.
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Proof of the Theorem

Suppose that p(G) < 1. Then there is a subordinate matrix norm such
that ||G|| < 1. From the iteration formula, we have

x(l) = Gx(o) + c,
@ = G20 4 G+ c,
. .
O = GO+ Y G (%)

]:
Using the matrix norm (and corresponding vector norm) that satisfies
the spectral radius theorem:

IGR | < IS I < IGIF I« @) =0 as k= co.

The second term on RHS of (x) as k — oo is given by

ZG]C— (I-G

=
when [|G|| < 1by Neumann series. Thus, by letting k — co, we obtain
lim x®) = (1-G) e
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Proof of the Theorem (continued)

For the converse, suppose that p(G) > 1. Select u and A so that
Gu = Au,

k=1
where [A| > 1 and u # 0. Recall that x¥) = G*x(0) + Y~ Glc. Letc = u
j=0
and x(%) = 0. Then we have
k-1 k-1
x) = Y Gu=) Nu
=0 =0
o If A = 1,x(X) = ku, this diverges as k — co.

0 If A #1,x*% = (Ak —1)(A — 1) 'u, this diverges as k — oo and
this diverges also because limy_, AK does not exist.

For both cases, {x(¥)} diverges, a contradiction! Therefore, p(G) < 1.
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Gauss-Seidel method

In the Gauss-Seidel iteration, Q is the lower triangular part of A,
including the diagonal.

Theorem on Gauss-Seidel Method Convergence:

If A is strictly diagonally dominant, then the Gauss-Seidel method
converges for any starting vector.

Proof: Tt suffices to prove that p(I — Q 'A) < 1. Let A be any
eigenvalue of I — Q7 !A and let x be a corresponding

eigenvector. Without loss of generality, we assume that
x|l = 1. Then (I — Q 'A)x = Ax or Qx — Ax = AQx.

Z axj = A Zﬂqu (1<i<n).
j=i+1

By transposing terms in thls equation, we obtain

1— n
Aaixi = =AY aix = ), ayx,  (L<i<n).
j=1 j=i+1
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Theorem on Gauss-Seidel method convergence (continued)

Since [|x[|c = 1, we can select an index i such that [x;| = 1 > |x;| for
all j. Then

|Allaii] < I/\IZI%IﬂL 2 |aij].

j= j=i+1

Solving for |A| and using the strictly diagonal dominance of A, we
have , )

| < D= Jaj
i = i lag]

Therefore, p(I — Q7 'A) < 1
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Algorithm for the Gauss-Seidel iteration

input n, (a;), (b;), (x;), M
fork=1toMdo
fori=1tondo

n
Xj < bi — Z {Ili]'x]‘ aj;
j=L1j#i
end do
output k, (x;)
end do
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Example

Consider the linear system:

2 -1 0 X 2
1 6 -2 v | =| -4
4 -3 8 X3 5

Start with x(0) = (0,0,0) 7. Scaling using the equation D~'Ax = Db
where D = diag(A), we obtain:

1 -1 0 x1 1
1 1 _ 2
I X | =] -3
1 3 3
3~ 1 3 8
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Example (continued)

Referring to this system as Ax = b, we take Q to be the lower
triangular part of A. The Gauss-Seidel iteration is given by:

Qx®) = (@ — AV +p

or
1 007« 0o 1 o] [ 1
v o[ p=]0o0 ||+ -3
I =31 1 0 00 R 2
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Example (continued)

We obtain x(¥) by solving a lower triangular system:

=
NORE W RN WO
) a0 e s
xé = %xl + x2 +8

The following iterates are obtained (x(1%) is the correct solution):

x(M = (1.000000, —0.833333, —0.187500) T,

(0.622836, —0.760042,0.028566) ',

(0.620001, —0.760003, 0.029998) T,

R
2
=
w
&
|

(0.620000, —0.760000, 0.030000) .
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Basic iterative methods

For any nonsingular matrix Q, the system
Ax=1b

can be rewritten as:

Qx=(Q—A)x+b.
An iterative method can be defined as follows:
Qx®) = (@ — AV +p

or
0 = (1 -0 1Ak L Q.

Here G = I — Q7 'A is called the iteration matrix.
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More about iteration matrices

Suppose A is partitioned into
A=D-C.—-Cy,

where D = diag(A), Cf, is the negative of the strictly lower part of A,
and Cy; is the negative of the strictly upper part of A.

@ Richardson:

Q =1, (splitting matrix)
G = I-A. (iteration matrix)

) = (1= A)x*D 1p,
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More about iteration matrices (continued)

@ Jacobi:

Q = D, (splitting matrix)
G D~Y(CL + Cy). (iteration matrix)

Dx® = (Cp + Cy)x*Y b
@ Gauss-Seidel:

Q = D-Cp, (splitting matrix)
G (D—-Cp)"'Cy.  (iteration matrix)

(D —Cp)x® = cyx=1 4 p.
@ Successive over-relaxation (SOR):

Q = w(D-wC), (splitting matrix)
G = (D-wCp)™! ((1 —w)D+ wCu). (iteration matrix)

(D — wCp)x® = ((1 —w)D+ aJCu>x(k*1) + wb.
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Another viewpoint of SOR

xgk) is obtained by a weighted sum of x(kfl) and the GS iteration:

xl(k) =(1- w)xfk_ a”( Za,] Z ajX; 2 )

j=i+1
i-1
= a,»ixfk) +w Za,-]»xj(k) =(1- w)a,»ixgk*l) —w Z aijx](kfl) + wb;
j=1 j=i+1

— (D-wCp)x® = ((1 —w)D+ wCu)x(k_l) + wb
— 0 =(D-wcp)™ ((1 —w)D + wCu)?C(k*l) +w(D—wCp)" b

Remarks:

@ 0 < w < 1: under-relaxation methods and can be used to obtain
convergence of some systems that are not convergent by the GS.

@ 1 < w: over-relaxation methods, which are used to accelerate the
convergence for systems that are convergent by the GS.

@ Methods are abbreviated SOR (successive over-relaxation).
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Recall - linear algebra

@ Let y € C and be written as y = « + i3, where « and §§ are real
and i> = —1. The conjugate of 7y is defined to be ¥ = a — iB.

@ In C", the inner product is defined as < x,y >=y*x = }I' ; x;7j;.
Here y* is the conjugate transpose of y, i.e., y* =7 .

@ Some properties: x,y,z € C*, a,f,A € C, A € C"".

<x,x>>0, (iffx#0).

<x Ay >=A<x,y>.

<xy>=<y,x>.

<ax+Pyz>=a <xz>+B<yz>.

<Ax,y >=<x,A*y >and < x, Ay >=< A*x,y >.

lxll2 = V< x,x > = Vx*x.

@ Ais Hermitian if A* = A, where A" is conjugate transpose of A.

@ Ais positive definite if < Ax,x >> 0forall 0 # x € C".
@ If Ais Hermitian, then < Ax,y >=<x, A*y >=<x, Ay >.
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A general theory for SOR

Theorem on SOR convergence: A is Hermitian and positive definite
In the SOR method, suppose that the splitting matrix Q is chosen to be

aD — C, where « is a real parameter, D is any positive definite Hermitian
matrix, and C is any matrix satisfying C + C* = D — A. If A is positive
definite Hermitian, if Q is nonsingular, and if & > %, then the SOR
iteration converges for any starting vector.

Proof: Let G := I — Q™' A be the iteration matrix. We wish to show
that p(G) < 1. Let A be an eigenvalue of G and x be a corresponding
eigenvector. Let y = (I — G)x. Then we have

y=x—Gx=x—Ax=Q Ax, (1)
Q-A=@D—-C)—(D-C—C*)=aD—D+C" (2)
From (1), we have
(aD — C)y = Qy = Ax. (3)

By (1), (2), (3), we obtain
(aD—D+C"y=(Q—-Ay=A(x—y) = A(x—Q 'Ax) = AGx. (4)
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A general theory for SOR (continued)

From (3) and (4), we have
a<Dyy>—<Cyy>=<Ax,y >, (5)
a<yDy>—<yDy>+ <y Cy>=<yAGx >. (6)
On adding (5) and (6), we have
20 < Dy,y > — <y,Dy >=< Ax,y > + <y, AGx >,
which implies
(2a —1) < Dy,y >=< Ax,y > + < y,AGx > . (7)
Since y = (1 — A)x and Gx = Ax, equation (7) yields
(20 —1)|1 = A < Dx,x >= (1 - A) < Ax,x > +A(1 - A) < x, Ax >
=(1—-[A%) <Ax,x>.

If A # 1 then LHS is positive, RHS must be positive and |A| < 1.
IfA=1theny=x—Ax=0=Q 'Ax. So, Ax = 0. Thisis a
contradiction, since < Ax,x >> 0. Therefore, we have p(G) < 1.
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A general theory for SOR (continued)

@ In practice, we let D be the diagonal of A, and —C be the strictly
lower triangular part of A, i.e.,, C = CJ.

@ In the most popular SOR method,
Q=w}D—-wC)=aD-C.

This implies that w ™! = a. Therefore, & > 1/2 <=0 < w < 2.

@ w = 1, we have the Gauss-Seidel method.
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Homework

Consider the linear system Ax = b, where

2 -1 i (1]
-1 2 -1 0
-1 2 -1 0
A= , b=
-1 2 -1 0
L -1 2 110x%10 L 1 J10x1

Using x(©0) = (1,0,0,---,0) T as an initial vector, write Matlab files for
the Jacobi, Gauss-Seidel, SOR with w = 1.25 to solve the system.
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Extrapolation

@ The extrapolation technique can be used to improve the
convergence properties of a linear iterative process.

@ Consider the iteration formula:

20 = Gk ¢ (%)
@ We introduce a parameter, v # 0 and consider

x(k) — "}/(Gx(k_l) —+ C) + (1 — ry)x(k_l)
Gn,x(k’l) + ¢,

where
Gy =96+ (1—19)L

@ Notice that when v = 1, we recover the original iteration (*).
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Extrapolation (continued)

@ If the iteration converges,
x=75(Gx+c)+ (1—79)x

or

x=Gx+c¢,

since v # 0.

@ IfG=1— QA !andc = Q'b, then this iteration corresponds to
solving Ax = b.
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Extrapolation (continued)

@ Theorem on Eigenvalues of p(A): If A is an eigenvalue of a matrix
A and if p is a polynomial, then p(\) is an eigenvalue of p(A).

@ The convergence of the extrapolated method is guaranteed if
p(Gy) < 1.

G = max |A|l= max |[yA+1-—
P(Gy) AeA(G7)| | /\eA(G)|7 7|

< Ar1—ql,
< argfgbh +1—19]

if we know only an interval [2,b] C R that contain all
eigenvalues of G.

@ We can prove thatif 1 ¢ [4, b] then < can be chosen so that
p(G,) < 1. The best choice for v is 2/(2 —a —b), and in such
case p(G,) <1 — |y|d, d is the distance from 1 to [a, b] (see pp.
222-223).
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An example

If A is a matrix whose eigenvalues A1, Ay, - - - , A, are all real, define
m(A) = min A; M(A) = max A,;.
1 1

Example: Determine the spectral radius of the optimal extrapolated
Richardson method.

In Richardson iteration, Q = Iand G =1 — A.
M(G) =1—-m(A) m(G) =1-M(A).

The optimal v is:
v =2/(m(A) + M(A)).

The resulting spectral radius is:

0(Gy) = (M(A) —m(A))/ (M(A) + m(A)).
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SPD linear systems

@ Let A € C"" be a square matrix and x,y € C". Define x* := X',

(x,y) :=y*x € C. Then (Ax,x) = x*Ax is called a quadratic form.
@ Definition: Let A € C"*".

A is positive definite <= (Ax,x) >0, VO0#xeC"

@ Note1: A = A*(::ZT) <= (Ax,x) e R,Vx € C".

@ Note 2: If A € C"*" is positive definite, then A = A*. (by Note 1)

@ Note 3: Let A € R"*". A is positive definite
<= A=ATand (Ax,x) >0,V0 # x € R".

@ Note 4: Let A € C"*" and A = A*. Then A is positive definite
<= all of its eigenvalues are real and positive.
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SPD linear systems (continued)
Let A € RM*M be a SPD sparse matrix. Define f : RM :— R by
1
fln) = 5n-Ap=b-1.
@ Problem (1): Find & € RM such that f(&) = min, cgu f(77)-

@ Problem (2): Find & € RM such that AZ = b.

Note: 3! solution ¢ such that A¢ = b, since A is SPD.

Theorem: Problem (1) <= Problem (2).

See next two pages for the proof.
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Proof of the Theorem

@ Problem (1) (=) Problem (2):

Let ¢ € RM be such that f(¢) = min, cgu f(17). Given
0#7n¢€ RM we have

8(e) = fE+en) = (E+en) A +en) —b-(§+en)
1
ES
= %8217~A17+e17~A§febo17+%§«A§fb-§,

1 1 1
= SAG+ §~A;7+§s;7.Ag+Eszq-Aq—b-g—sb.q

where we use

G- An = (&, An) = (AT¢n) = (AL, n) = (1,A8) =11 - AC.

. g s a quadratic poly. in ¢ with leading coefficient 37 - Ay > 0
-+ g(0) = £(&) = min, g f() .g'(0) = 0 (by Fermat's Thm)

2 0=g'0)=(en-An+n-AE—b-y)|_,=1-(A; =)
AE=D
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Proof of the Theorem (continued)

@ Problem (2) (=) Problem (1):

Assume that A¢ = b. Let 7 € RM. Define w := 57 — ¢. Then
7 =w+ ¢. We have

fo) = gu-An—bog= @+ A@+E) ~b- @+
= %w-Aw—kw-ACvL%C-AC—b-w—b-C

= Jw Awtw AL b wHf(E)

> w AF—b-w+f(@) (-;AisSPD.'.%w-szo)
= w-b=b-w+f(g) =f(g)

- f(§) = min, cgu f(17)-
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Minimization algorithms

Given an initial approximation ¢ € RM of the exact solution ¢, find
Ck eRM k=1,2,--- of the form

Fl=crad, k=01,
where d¢ € RM is the search direction, a; > 0 is the step size (length).

We will focus on two methods:
@ The gradient method

@ The conjugate gradient method
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Some notation

Let g : RM — R be a smooth function and 7 € RM.
@ gradientof gaty

= /() = Vg0 == () ), 2% n)

@ Hessian of g at 7,

82g 82g 62g

o2 ) 5 3o
§'(n) = : : :

82g 82g azg

= (VEm) v E )

My MxM

I o
_ og , «  0g
= V(ﬁ(ﬂ)/ ,%(W))

= VEm") =v(VemT).
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Homework

Assume that A € RM*M jg a symmetric rnatrix, b € RMis a given
vector, and f : RM — R is defined by f(17) := 317 - Ay — b - 1.

Prove that V7 € RM,
o f'(n) =An—b;
o () =A
Hint:
© - A =1m(Ar-n) +m2(Az 1) + -+ ym(Am. - 77)-

o f"(n) = V(Vf(n ) )=V((Ar—-b)T) =
V(Al 17 bl, AM ﬁ—bM)
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Taylor’s expansion of a smooth function g at &

Let g : RM — R be a smooth function. By Taylor’s expansion,

9@ = g+ Ve(@) (@ ) + (@ - g E W gk g,

for some n € gkgk+1,
2
o .
= 80 +ag/ (€5 - d' + pd "), if T =+

- g(EHY) = g(&F) + ag’ (&) - d* + O(a?), if the entries in g (17) are
bounded in a neighborhood containing gkgk+1.

I/ (&) - d¥ < 0and ay > 0 is sufficiently small, g(&F1) < g(&k).
In this case, we call d* a descent direction.
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The gradient method

Let us go back to the case of ¢ = f, where f(y7) := 1y - Ay — b7 and
Ais SPD.

If we choose d* = —f'(&%) = — (A& —b) and if f/(&¥) # 0,
then we have f/(&) - d* = —Hf’(‘:k)”% <0.
We obtain the so-called gradient method or the steepest descent

method.

Note: If f'(¥) = 0 then AZ* — b = 0 = AZ* = b = & is the exact
solution.
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How to choose a; > 0 in the gradient method?

Determine optimal & such that f(& + ad*) = ming g f (& + adk).

Notice that f(& + ad*) can be viewed as a quadratic function in a
with positive leading coefficient.

=0.

K=}

If &y is optimal, then %f (& + ad®)

cf (@ ad)-d| =00 f(E + adh) - dk =0

—0 = [ +ud)d = (A +ud) - b) &
= (AZ —b)-d" + nd* - Ad.
(AgF—b)-a*  d*.d
dk . Adk gk AdK?
d“ = —f'(g¥) = —(AgF —b) #0
+AisSPD ..d*-Ad* > 0, provided d* = —f"(&*) = — (A& —b) #0
s g > 0, provided df = —f'(&%) = — (A& —b) #0

provided

SN = —
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The gradient method with optimal step length «;

Given &0 € RM, define
§k+l _ Ck—l—akdk,k: 0[1,, .

d* = —(AZ* —b).
d* - d*
T g Ad
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Recall of the condition number

Let A € RM*M be a SPD matrix.
Let0 < Ap <Ay <--- < Ay be the eigenvalues of A.

1 1 1

Then0 < — < < ... < — are the eigenvalues of AL,
Am T Ama M

Let p(A) denote the spectral radius of 4, i.e., the maximum size of the

eigenvalues of A. Thatis, p(A) = 1 jp ax ” |A|
1s an e.v. o,

condition number x(A)
= lAJ2lA "2 = \Jo(A*A) Jp((A-1) A1)

= \P(ATANp((A)TAT) = \/p(42)/p((A~1)?

_\//\T\/; M.

- x(A) = Dmax,

)\min

© Suh-Yuh Yang ( Wi 1E), Math. Dept., NCU, Taiwan MA 8019: Linear Equations — 132/148



The gradient method with constant step length

Given §o, « > 0 sufficiently small.
g =gk ad k=0,1,- -
(&) = —(AgF )

Let ¢ be the exact solution, A = b. = ¢ =& — a (A — D).

Letef := ¢ — &K — 1 = &k —a(Aek) = (I —aA)k, k=0,1,2--

st = (I — wA)H1e0,

lim "1 = 0 for every &0 <= lim (I — aA)f1e® = 0 for every ¢
k—o00 k—o00

= p(I—aA) <1<+=max |l —a)j| <1

= -1<1-a)r<1,j=12,--- M

<= 1—aAmax > —1 <= aAmax < 2.
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The gradient method with constant step length (continued)

If we choose & = % > 0, then we have
max

1
||€k+1||2 = |- ocA)ekHz < ||I—0¢AH2H€kH2 < (1 - rAmin) ||ek||2
max

= (1= ) Il

ekl < (1 - 1{(1A))k||eo|2 (small x(A) is better).

Given 0 < & < 1, find the smallest 7 such that ||e" ||, < ¢|e°||,.

1 \n
.". We require (1 — m) <e
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The gradient method with constant step length (continued)

(1 — K(lA))" < g nln(l — K(lA)) <In(e)

s n(-mn(1- L)) () e n )

k(A)//) —

0 0
“—In(1—x) :ZxT >xfor0 < x<1.
i=1
1 1

.. We take n > x(A) ln<%).

.. The required number of iterations in the gradient method is
proportional to the condition number x(A). If k(A) is large, then the
gradient method is not efficient.
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The conjugate gradient method

@ Roughly speaking, the conjugate gradient method ~
the gradient method + optimal step length, but with different
search direction.

@ Let AbeaSPD real M x M matrix. Define < (,17 >:= (- Ay,
V{7 € RM. Then < -,- > is a scalar product on RM.
Proof: check

e itis a symmetric bilinear form;
0o <v,v>>0VveRM and < v,v >=0 <= v =0.

@ Define the energy norm: ||7||4 :=< 7,7 >/2,¥y € RM.
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The conjugate gradient method (continued)

Given &% € RM, {0 := —10 := —£/(&0) = —(AZ" — ),
findC1 &dl, §2 &d?,--, suchthatfork=0,1,---,

§k+1 _ €k+l)(kdk,
rk . dk
e 3 3 (optimal step length),
gl = kel ﬁkdk (for next step),

where
rk = f/(gk) :Agk*b,
B = < k1 gk >
.
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Some remarks

@ The new search direction d¥*1 is a linear combination of #*1 and
the old search direction dF.

@ Notice that

< Pkt gk >

By = S el Br < d*,d* > — </, d" >=0

— < A4 gt dF >=< d,dF >=0.

0 then

k gk—1
<r,d=t >
k k—1 _ k _ k—1 _ ’ k—1
+ﬁk_1d =0=r"= ﬁk—ld = —< dk_lldk_l >

@ Suppose that aod ... gkl #0.If dk

— ... =rr=0?

@ oy is the optimal step length.
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Lemma1

Notation: Let 4%, 7%, -, 5™ € RM. Define
%t ™) = span{y®,pt, -y

Lemma 1: Form = 0,1, - - -, we have
[d0’d1’. . ’dm] _ [7’0, 7’1,- . ,rm] _ [T’O,ATO,- . ’Amr()].

Proof: We will use the induction to prove the assertion.

m = 0: It is trivial, since [d°] = [-9] = [°] = [A%/7].

Suppose that the assertion holds for m < k. Consider the case m =k,
we have [d,d',- - ,dk] =[O, . ,rk] = [0,A", ... ,Akro}.

€k+1 — gk 4 akdk.
AT = AFK 4w AdK
AT _p = AFK — b+ w AdE

okl — gk thAdk.
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Proof of Lemma 1 (continued)

cdhe [0,A0, - AN and *F € [0, A0, -, ARO).

S Ad e [0,A°, -, A0 and

Pl =k g AdE € [10,A0, - - ART1O),

- [7’0/ 1,1, . k+1] [ 0 A}, ,Ak'HTO].

- AR ¢ [do,dl,- . ,dk] = [ro, ... ,rk] = [rO,Alro,- .- ,AkrO].
S AR e (A, AdY, - -, AdK).

Notice that d° € [1°] = Ad® € [1*, Ar%] = [/7, rl].
Similarly, Ad' € [0, 71,#2], .-, Ad*"1 € [0, 71, .. ],
and 71 = 4 a; Ad¥ implies Ad* € [k, /<1

L AL0 ¢ [1,0 el

. [TO,Ar , ,Ak+1r0] C (:>:)[1,0’1,1/, . ,rk'H}_

On the other hand,

[7,0, 71,, . ,rk] — [do,dl,' . ,dk] and dk+1 — k1 —l—ﬁkdk.
- [rO, rl, .. ,rk*l] _ [do,dl,' .. ,dkH].
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Lemma 2

@ ri-r=0ifi#j (orthogonal).
o <d,d >=0ifi#j  (conjugate).

Proof: We use induction on n (i,j < n).

n=1
1_ .0 0 i —0-d 0
] r=r +0(0Ad Wlthaozm,r :_d .
1..0 0 0 _dO.dO 0 0

d°-d® — (d°-d% =o.
0 <dld' >=< -+ Bod’,d* >=< —r1,d* > + By < d%d° >=
< Tl,do > 0 10 o

Note: If < d9,d0 >=0«=d" Al =0 <= ' =0 <= 0 =
0= A —b=0<= AF =1.

— <L d > 4
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Proof of Lemma 2 (continued)

Suppose that these two properties hold for n < k.
c[d0,d, A = [0, R
sked =0forj=0,1,--- k-1
R =k g 4 Ad
S Forj=0,1,--- k=1, d = . d 4 ap <d",d >=0
Notice that

Algk = f/((;:kﬂ) Lk :f/((fk + zxkdk) . dk

= %f(gk + ucdk)|a:ak =0 (" oy is optimal).

..'rkJrl d] :Oforj: 0,1,--- ,k
A A = 0

skl =0 forj=0,1,--- k. Thatis, the first property holds.

© Suh-Yuh Yang ( Wi 1E), Math. Dept., NCU, Taiwan MA 8019: Linear Equations — 142/148



Proof of Lemma 2 (continued)

ok = K g+ AdR
A e [P0, - P for anyj=0,1,---
S Ad =< A g >=0forj=0,1,--- k- 1.

s<d L d s=< A d > 4B <dd >=0+0=0for
=01, k-1

<dHL g s=< Ay gdR, A >= — < AT dF > 4 < dF,dE >

rk+1 dk
= — <kt gk +% < d5dF >=0.

s<dtd >=0forj=0,1,- k
.. The second property holds.
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Theorem on the conjugate gradient method

JIm < M such that AG™ = b.
Proof:

o, j=20,1,2,--- are pairwise orthogonal
(= linearly independent if nonzero) and dimR™ = M

S 3rme {0, -, MY, 0 < m < M, such that 7" = 0
AT b =0= A" =b
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Theorem on the conjugate gradient method (continued)

@ Theorem: Let x be the exact solution, then

k
k(A)—1
lx = x[la < 2 <\/W> [l = xo[ -

@ In order to have
I — xF][a < ellx — 20,

for some given €, we must have

1 7/ 2
7’125 K(A)h’lg

@ Compare with the gradient method with constant step length

1> K(A) h%.

The number of iterations is large for ill-conditioned matrices.

@ Can we change the condition number without changing the
solution of a given system?
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Preconditioning

1
1 i = min (=17-Ay—b-7).
(1) Ugg/(ﬂ) ;2;{}4(2’7 U 17)

The gradient method with constant step length « is
;7k+1 — 77k _ IX(Aﬂk _ b).

Let E be a nonsingular M x M matrix. Let { = Ey = 5 = E~!{. Then
F@) = fo) =fED) = (70 AET) —b Elg
S ETAE-EThg= 1 A-Dog,

where A := E-TAE'and b := E~Th.

MA 8019: Linear Equations — 146/148

© Suh-Yuh Yang ( ), Math. Dept., NCU, Taiwan



Preconditioning (continued)

(2) min (%g?\g—ﬁg)

ERM
The gradient method with constant step length « is
€k+l — gk _ tX(Agk _E)

If k(A) < x(A) then the gradient method for problem (2) will
converge much faster than the same method applied to problem (1).
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Preconditioning (continued)

- Enpftt = EyF — a(AERK D).
P = f — B (E-TAEEyf — E-Th) = nf — aEVE-T (Ank — b).
LetC:=E"E.ThenC ! =E'E-T and

77k-‘rl — 77k _ IXC_l(Aﬂk _ b)

This is the preconditioned version of the gradient method for
problem (1) with preconditioner C.

To compute 7**1 from 7k, we have to solve
cok = (Ay*F —b).

Note that do not need the explicit form of C~1.
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