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A system of linear equations

We are interested in solving systems of linear equations having the
form: 

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2,
a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3,

...
...

...
an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn.

This is a system of n equations in the n unknowns, x1, x2, · · · , xn. The
elements aij and bi are assumed to be prescribed real numbers.
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Ax = b

We can rewrite this system of linear equations in a matrix form:
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n

...
...

...
. . .

...
an1 an2 an3 · · · ann




x1
x2
x3
...

xn

 =


b1
b2
b3
...

bn

 .

We can denote these matrices by A, x, and b, giving the simpler
equation:

Ax = b.
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Matrix

A matrix is a rectangular array of numbers such as
3.0 1.1 −0.12
6.2 0.0 0.15
0.6 −4.0 1.3
9.3 2.1 8.2

 ,
[

3 6 11
7 −17

]
,

 3.2
−4.7
0.11

 .

4× 3 matrix 1× 4 matrix 3× 1 matrix
a row vector a column vector
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Matrix properties

If A is a matrix, the notation aij, (A)ij, or A(i, j) is used to denote
the element at the intersection of the ith row and the jth column.
For example, let A be the first matrix on the previous slide. Then
a32 = (A)32 = A(3, 2) = −4.0.

The transpose of a matrix is denoted by A⊤ and is the matrix
defined by (A⊤)ij = aji. The transpose of the matrix A is:

A⊤ =

 3.0 6.2 0.6 9.3
1.1 0.0 −4.0 2.1

−0.12 0.15 1.3 8.2

 .

If A = A⊤, we say that matrix A is symmetric.

The n× n matrix

I := In := In×n :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


is called an identity matrix. Notice that IA = A = AI for any
n× n matrix A.
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Algebraic operations

Scalar * Matrix: If A is a matrix and λ is a scalar, then λA is
defined by (λA)ij = λaij.

Matrix + Matrix: If A = (aij) and B = (bij) are m× n matrices,
then A + B is defined by (A + B)ij = aij + bij.

Matrix * Matrix: If A is an m× p matrix and B is a p× n matrix,
then AB is an m× n matrix defined by:

(AB)ij =
p

∑
k=1

aikbkj, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

What is the cost of AB?

Answer: mnp multiplications and mn(p− 1) additions.
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Right inverse and left inverse

If A and B are two matrices such that AB = I, then we say that B is a
right inverse of A and that A is a left inverse of B. For example,[

1 0 0
0 1 0

]  1 0
0 1
α β

 =

[
1 0
0 1

]
= I2×2, ∀α, β ∈ R.

[
1 0 α
0 1 β

]  1 0
0 1
0 0

 =

[
1 0
0 1

]
= I2×2, ∀α, β ∈ R.

Notice that right inverse and left inverse may not unique.
1 Theorem: A square matrix can possess at most one right inverse.

Proof: Let AB = I. Then
n

∑
j=1

bjkA(j) = I(k), 1 ≤ k ≤ n. So, the columns of A form a

basis for Rn. Therefore, the coefficients bjk above are uniquely determined. □

2 Theorem: If A and B are square matrices such that AB = I, then
BA = I.
Proof: Let C = BA− I + B. Then AC = ABA−AI + AB = A−A + I = I.
Since right inverse for square matrix is at most one, B = C.
Hence, C = BA− I + B = BA− I + C, i.e., BA = I. □
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Inverse

1 If a square matrix A has a right inverse B, then B is unique and
BA = AB = I. We then call B the inverse of A and say that A is
invertible or nonsingular. We denote B = A−1.

2 Example:[
−2 1

3
2 − 1

2

] [
1 2
3 4

]
=

[
1 2
3 4

] [
−2 1

3
2 − 1

2

]
=

[
1 0
0 1

]
= I2×2.

3 If A is invertible, then the system of equations Ax = b has the
solution x = A−1b. If A−1 is not available, then in general, A−1

should not be computed solely for the purpose of obtaining x.

4 How do we get this A−1?
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Equivalent systems

1 Let two linear systems be given, each consisting of n equations
with n unknowns:

Ax = b and Bx = d.

If the two systems have precisely the same solutions, we call
them equivalent systems.

2 Note that A and B can be very different.

3 Thus, to solve a linear system of equations, we can instead solve
any equivalent system. This simple idea is at the heart of our
numerical procedures.
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Elementary operations

1 Let Ei denote the i-th equation in the system Ax = b. The
following are the elementary operations which can be
performed:

Interchanging two equations in the system: Ei ↔ Ej;
Multiplying an equation by a nonzero number: λEi → Ei;
Adding to an equation a multiple of some other equation:
Ei + λEj → Ei.

2 Theorem on equivalent systems: If one system of equations is
obtained from another by a finite sequence of elementary operations,
then the two systems are equivalent.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations – 10/148



Elementary operations (cont’d)

1 An elementary matrix is defined to be an n× n matrix that arises
when an elementary operation is applied to the n× n identity
matrix.

2 Let Ai be the i-th row of matrix A. The elementary operations
expressed in terms of the rows of matrix A are:

The interchange of two rows in A: Ai ↔ Aj;
Multiplying one row by a nonzero constant: λAi → Ai;
Adding to one row a multiple of another: Ai + λAj → Ai.

3 Each elementary row operation on A can be accomplished by
multiplying A on the left by an elementary matrix.
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Examples

 1 0 0
0 0 1
0 1 0

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a11 a12 a13
a31 a32 a33
a21 a22 a23

 .

 1 0 0
0 λ 0
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a11 a12 a13
λa21 λa22 λa23
a31 a32 a33

 .

 1 0 0
0 1 0
0 λ 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33


=

 a11 a12 a13
a21 a22 a23

λa21 + a31 λa22 + a32 λa23 + a33

 .
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Invertible matrix

1 If matrix A is invertible, then there exists a sequence of
elementary row operations can be applied to A, reducing it to I,

EmEm−1 · · ·E2E1A = I.

2 This gives us an equation for computing the inverse of a matrix:

A−1 = EmEm−1 · · ·E2E1 = EmEm−1 · · ·E2E1I.

Remark: This is not a practical method to compute A−1.
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Eigenvalue and eigenvector

Definition: Let A ∈ Cn×n be a square matrix. If there exists a nonzero
vector x ∈ Cn and a scalar λ ∈ C such that

Ax = λx,

then λ is called an eigenvalue of A and x is called the corresponding
eigenvector of A.

Remark: Computing λ and x is a major task in numerical linear
algebra, see Chapter 5.
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Theorem on nonsingular matrix properties

For an n× n real matrix A, the following properties are equivalent:
1 The inverse of A exists; that is, A is nonsingular
2 The determinant of A is nonzero
3 The rows of A form a basis for Rn

4 The columns of A form a basis for Rn

5 As a map from Rn to Rn, A is injective (one to one)
6 As a map from Rn to Rn, A is surjective (onto)
7 The equation Ax = 0 implies x = 0
8 For each b ∈ Rn, there is exactly one x ∈ Rn such that Ax = b
9 A is a product of elementary matrices
10 0 is not an eigenvalue of A

Note: We can view an n× n real matrix A as a linear transformation
A : Rn → Rn. Then by the rank-nullity theorem, we have

dim(kernel(A)) + dim(image(A)) = dim(Rn) = n.
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Positive definiteness (review)

Let A ∈ Cn×n be a square matrix and x, y ∈ Cn. Define x∗ := x⊤,
(x, y) := y∗x ∈ C. Then (Ax, x) = x∗Ax is called a quadratic form.

Definition: Let A ∈ Cn×n.

A is positive definite ⇐⇒ (Ax, x) > 0, ∀ 0 ̸= x ∈ Cn.

Note 1: A = A∗(:= A⊤)⇐⇒ (Ax, x) ∈ R, ∀ x ∈ Cn.

Note 2: If A ∈ Cn×n is positive definite, then A = A∗. (by Note 1)

Note 3: Let A ∈ Rn×n. A is positive definite
⇐⇒ A = A⊤ and (Ax, x) > 0, ∀ 0 ̸= x ∈ Rn.
Proof: (⇒) Trivial!
(⇐) Let 0 ̸= x := x1 + ix2 ∈ Cn. Then x1 ̸= 0 or x2 ̸= 0.
∴ (A(x1 + ix2), (x1 + ix2)) = (Ax1, x1)− i(Ax1, x2) + i(Ax2, x1) + (Ax2, x2)

∵ −i(Ax1, x2) = −i(x1, A∗x2) = −i(x1, A⊤x2) = −i(x1, Ax2) = −i(Ax2, x1)

∴ (A(x1 + ix2), (x1 + ix2)) = (Ax1, x1) + (Ax2, x2) > 0

Note 4: Let A ∈ Cn×n and A = A∗. Then A is positive definite
⇐⇒ all of its eigenvalues are real and positive.
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Proof of Note 1

(⇒) ∵ (Ax, x) = x∗Ax = (Ax)∗x = (x, Ax) = (Ax, x), ∀ x ∈ Cn

∴ (Ax, x) ∈ R, ∀ x ∈ Cn

(⇐) ∀ x, y ∈ Cn, we have
R ∋ (x + y)∗A(x + y) = x∗Ax + y∗Ay + x∗Ay + y∗Ax.
∴ x∗Ay + y∗Ax ∈ R

Let x = ej ∈ Rn, y = ek ∈ Rn. Then R ∋ x∗Ay + y∗Ax = ajk + akj

∴ Im(ajk) = −Im(akj)

∴ ajk := a + bi and akj := c− bi for some a, b, c ∈ R

Let x = iej ∈ Cn, y = ek ∈ Rn. Then

R ∋ x∗Ay+ y∗Ax = −iajk + iakj = (−ia+ b)+ (ci+ b) = (c− a)i+ 2b.

∴ c = a. Then ajk := a + bi = a− bi = akj

∴ A = A⊤ = A∗
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Example

The following 2× 2 real matrix[
2 1
1 2

]
is positive definite since A = A⊤ and

x⊤Ax = [x1, x2]

[
2 1
1 2

] [
x1
x2

]
= (x1 + x2)

2 + x2
1 + x2

2 > 0,

∀ 0 ̸= (x1, x2)
⊤ ∈ R2.
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Partitioned matrices

Let A, B, C be matrices that have been partitioned into submatrices:

A =


A11 A12 · · · A1n
A21 A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amn

 , B =


B11 B12 · · · B1k
B21 B22 · · · B2k

...
...

. . .
...

Bn1 Bn2 · · · Bnk

 ,

C =


C11 C12 · · · C1k
C21 C22 · · · C2k

...
...

. . .
...

Cm1 Cm2 · · · Cmk

 .

If each product AisBsj can be formed and Cij =
n

∑
s=1

AisBsj, then C = AB.

(see pp.146-147 for the proof)
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Partitioned matrices - an example


[

1 2
] [

1 −1 0 1
]

−1 1
0 1
1 −1
1 0




1 0 −1 1
−1 1 0 1
0 0 1 0
1 2 1 0





[
1 0 1
−1 1 2

] [
2 1
0 1

]


1 0 1
−1 1 0
2 1 0
0 1 1




1 2
0 1
−2 1
−1 1





=


[

1 2 7
] [

2 5
]

−3 1 3
−3 3 2
4 0 −1
2 3 2




0 2
−2 1
0 1
1 6


 .
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Some easy-to-solve systems

Diagonal Structure:

We consider


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann




x1
x2
...

xn

 =


b1
b2
...

bn

 .

The solution is: (provided aii ̸= 0 for all i = 1, 2, · · · , n)

x =
( b1

a11
,

b2

a22
, · · · ,

bn

ann

)⊤
.

If aii = 0 for some index i, and if bi = 0 also, then xi can be any
real number. The number of solutions is infinity.

If aii = 0 and bi ̸= 0, no solution of the system exists.

What is the complexity of the method? n divisions.
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Lower triangular systems

We consider


a11 0 · · · 0
a21 a22 · · · 0

...
...

. . .
...

an1 an2 · · · ann




x1
x2
...

xn

 =


b1
b2
...

bn

 .

If a11 ̸= 0, then we have x1 = b1/a11. Once we have x1, we can
simplify the second equation, x2 = (b2 − a21x1)/a22, provided
that a22 ̸= 0. Similarly, we can continue this process.

In general, to find the solution to this system, we use forward
substitution (assume that aii ̸= 0 for all i):

input n, (aij), b = (b1, b2, · · · , bn)⊤

for i = 1 to n do

xi ←
(

bi −
i−1

∑
j=1

aijxj

)
/aii

end do
output x = (x1, x2, · · · , xn)⊤
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Lower triangular systems (continued)

Complexity of forward substitution:

n divisions; n subtractions;
the number of multiplications: 0 for x1, 1 for x2, 2 for x3, · · ·
0 + 1 + 2 + · · ·+ (n− 1) ≈ 1 + 2 + · · ·+ n = (n + 1)n/2,
∴ total = O(n2).
the number of additions: same as multiplications = O(n2).

The complexity of an algorithm is often measured using the unit
called flop:

one flop = one addition + one multiplication.

Forward substitution is an O(n2) algorithm.

Remark: forward substitution is a sequential algorithm (not
parallel at all).
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Upper triangular systems


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann




x1
x2
x3
...

xn

 =


b1
b2
b3
...

bn

 .

The formal algorithm to solve for x is called backward substitution. It
is also an O(n2) algorithm. Assume that aii ̸= 0 for all i:

input n, (aij), b = (b1, b2, · · · , bn)⊤

for i = n : −1 : 1 do

xi ←
(

bi −
n

∑
j=i+1

aijxj

)
/aii

end do
output x = (x1, x2, · · · , xn)⊤
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Another simple systems

For example, consider the following linear system: a11 a12 0
a21 a22 a23
a31 0 0

 x1
x2
x3

 =

 b1
b2
b3

 .

If we reorder these equations, we can get a lower triangular system: a31 0 0
a11 a12 0
a21 a22 a23

 x1
x2
x3

 =

 b3
b1
b2

 .
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Another Simple Systems (continued)

How do we solve Ax = b if A is a permuted lower or upper triangular
matrix?

Assuming that the permutation vector (p1, p2, · · · , pn) is known, we
modify the forward substitution algorithm for a permuted lower
triangular system:

input n, (aij), b = (b1, b2, · · · , bn)⊤, (p1, p2, · · · , pn)
for i = 1 to n do

xi ←
(

bpi −
i−1

∑
j=1

apijxj

)
/apii

end do
output x = (x1, x2, · · · , xn)⊤
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LU decomposition (factorization)

Suppose that A can be factored into the product of a lower
triangular matrix L and an upper triangular matrix U:

A = LU.

Then,
Ax = LUx = L(Ux).

Thus, to solve the system of equations Ax = b, it is enough to
solve this problem in two stages:

Lz = b solve for z,
Ux = z solve for x.
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LU decomposition (continued)

We begin with an n× n matrix A and search for matrices:

L =


ℓ11 0 · · · 0
ℓ21 ℓ22 · · · 0
...

...
. . .

...
ℓn1 ℓn2 · · · ℓnn

 , U =


u11 u12 · · · u1n
0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn


such that A = LU. When this is possible, we say that A has an
LU decomposition.

It turns out if we compare A = LU, we have more unknowns
n2 + n than equations n2. Hence, L and U are not uniquely
determined by A = LU.

One simple choice is to make L unit lower triangular (ℓii = 1 for
each i). Another obvious choice is to make U unit upper
triangular (uii = 1 for each i).
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LU decomposition (continued)

Using the formula for matrix multiplication, we have

aij =
n

∑
s=1

ℓisusj =
min(i,j)

∑
s=1

ℓisusj. (∗)

Notice that ℓis = 0 for s > i and usj = 0 for s > j. At each new step k,
we know rows 1, 2, · · · , (k− 1) for U and columns 1, 2, · · · , (k− 1) for
L. We wish to know formulas at k by setting i = j = k, i = k, and j = k
in (*), respectively. We obtain

akk =
k−1

∑
s=1

ℓksusk + ℓkkukk, specify ℓkk = 1 or ukk = 1⇒ obtain ℓkk and ukk

akj =
k−1

∑
s=1

ℓksusj + ℓkkukj, k + 1 ≤ j ≤ n⇒ obtain ukj

aik =
k−1

∑
s=1

ℓisusk + ℓikukk, k + 1 ≤ i ≤ n⇒ obtain ℓik

Note: ℓkk and ukk =⇒ ukj for j = k + 1, k + 2, · · · , n (kth row of U)
=⇒ ℓik for i = k + 1, k + 2, · · · , n (kth column of L)
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LU decomposition (continued)

This algorithm is known as Doolittle’s decomposition when L is
a unit lower triangular and as Crout’s decomposition when U is
a unit upper triangular.

When U = L⊤, so that ℓii = uii for 1 ≤ i ≤ n, the algorithm is
called Cholesky’s decomposition (will be discussed later).

Homework: find the Doolittle, Crout, and Cholesky
decompositions of the matrix

A =

[
1 2
2 7

]
.
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LU decomposition (continued)

The algorithm for the general LU decomposition is as follows:

input n, (aij)
for k = 1 to n do

specify a nonzero value for either
ℓkk or ukk and compute the other from
ℓkkukk = akk −∑k−1

s=1 ℓksusk
for j = k + 1 to n do

ukj ←
(

akj −∑k−1
s=1 ℓksusj

)
/ℓkk

end do
for i = k + 1 to n do

ℓik ←
(

aik −∑k−1
s=1 ℓisusk

)
/ukk

end do
end do
output (ℓij), (uij)
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Operation counts (cf. the algorithm)

Consider the number of multiplications (≈ additions),

k = 1 : 0 + ((n− 1) ∗ 0) ∗ 2,

k = 2 : 1 + ((n− 2) ∗ 1) ∗ 2,

k = i : (i− 1) + ((n− i) ∗ (i− 1)) ∗ 2, · · ·

k = n : (n− 1) + ((n− n) ∗ (n− 1)) ∗ 2.

Total =
n

∑
i=1

(i− 1) + 2
n

∑
i=1

(n− i) ∗ (i− 1) ≈
n

∑
i=1

i + 2
n

∑
i=1

(n− i) ∗ i

=
n

∑
i=1

i + 2n
n

∑
i=1

i− 2
n

∑
i=1

i2 = (2n + 1)
n

∑
i=1

i− 2
n

∑
i=1

i2

= (2n + 1)n(n + 1)/2− 2n(n + 1)(2n + 1)/6

=
1
6

n(n + 1)(2n + 1) = O(
1
3

n3).

The number of subtractions = the number of divisions =
n + 2(1 + 2 + · · ·+ (n− 1)) ≈ 2(1 + 2 + · · ·+ n) = O(n2).
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Basic steps for solving a linear system

Want to solve
Ax = b.

Obtain a LU decomposition,

A = LU.

Solve a lower triangular system

Lz = b.

Solve an upper triangular system

Ux = z.
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Total cost

In the LU decomposition phase, the cost is O(n3).

In solving triangular systems phases, the cost is O(n2).

Total cost is O(n3) or more precisely

O(
1
3

n3) + O(n2).

Remark: Once L and U are obtained, A is no longer needed. One
can over-write A with L and U.
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Theorem on LU decomposition

If all n leading principal submatrices of the n× n matrix A are nonsingular,
then A has an LU-decomposition, where L is unit lower triangular.

Proof is omitted. See the textbook, pp. 156-157 (by induction).

Recall that the kth leading principal submatrix of the matrix A is the
matrix:

Ak :=


a11 a22 · · · a1k
a21 a22 · · · a2k

...
... · · ·

...
ak1 ak2 · · · akk

 .
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Cholesky Theorem on LL⊤ decomposition

If A is a real, symmetric and positive definite matrix, then it has a unique
factorization, A = LL⊤, in which L is a lower triangular matrix with
positive diagonal.

Proof: Some key steps:

Prove that A has an LU-decomposition (L unit lower triangular)
by showing that all leading principal submatrices of A are SPD.
(∵ x⊤Ax > 0 for all x = (x1, · · · xk, 0, · · · , 0)⊤ ̸= 0 ∴ Ak is SPD)

Show that A = LDL⊤ by considering LU = A = A⊤ = U⊤L⊤

=⇒ U(L⊤)
−1︸ ︷︷ ︸

upper∆

= L−1U⊤︸ ︷︷ ︸
lower∆

(p. 158, #1) =⇒ ∃ D s.t. D = U(L⊤)−1

=⇒ DL⊤ = U =⇒ A = LU = LDL⊤.

∵ A = LU = LDL⊤ and L is nonsingular
∴ D is SPD (cf. p. 160, #26) ∴ dii > 0 for all i

∴ A = LDL⊤ = LD
1
2 D

1
2 L⊤ := L̃L̃⊤, ℓ̃ii = ℓii

√
dii =

√
dii > 0 ∀ i

uniqueness (p. 158, #2, L and U are unique⇒ L̃ unique).
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Cholesky decomposition for SPD matrices


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

 =


ℓ11
ℓ21 ℓ22
...

...
. . .

ℓn1 ℓn2 · · · ℓnn




ℓ11 ℓ21 · · · ℓn1
ℓ22 · · · ℓn2

. . .
...

ℓnn

 .

ℓkk ̸= 1 in general.

Need a square root to compute the diagonal entry:

ℓkk =

(
akk −

k−1

∑
s=1

ℓ2
ks

)1/2

.

Cost = O(n3) + O(n2) + “n square roots.”
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Some remarks

If A is SPD, then all the leading principal submatrices of A are
also SPD.

Since ℓkk =
(

akk −∑k−1
s=1 ℓ

2
ks

)1/2
, we have for j ≤ k

akk =
k

∑
s=1

ℓ2
ks ≥ ℓ2

kj

and
|ℓkj| ≤

√
akk (1 ≤ j ≤ k).

Hence, the elements of L do not become large relative to A even
without any pivoting (pivoting will be explained later).
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LDL⊤ decomposition for SPD matrices

A =


1
ℓ21 1
...

...
...

ℓn1 ℓn2 · · · 1




d11
d22

dnn




1 ℓ21 · · · ℓn1
1 · · · ℓn2

...
...
1

 .

No need to compute square roots.

If A = LDL⊤, then solve Ax = b in three stages: Lz = b, Dw = z, and
L⊤x = w.

How to get A = LDL⊤? e.g.,

A is tridiagonal & SPD. (why SPD? cf. proof of Cholesky Theorem)
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Banded matrices

A = (aij) with upper bandwidth q and lower bandwidth p:
aij = 0 if j > i + q,
aij = 0 if i < j + p.

total bandwidth = p + q + 1.

Theorem: If A has an LU decomposition then U has an upper
bandwidth q and L has a lower bandwidth p (L is unit lower
triangular).

Remark: Both L and U can be stored in A.
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Banded matrices (continued)

Cost: If p ≤ q,
npq− 1/2pq2 − 1/6p3 + pn.

Remark: If p and q are much smaller than n, then the algorithm
is linear in n.

Remark: If A is banded and SPD, then the cost of Cholesky
decomposition is

1/2np2 + p3 + 3/2(np− p2) + n square roots

In the case when p is small, the square root calculation can be a
significant part of the decomposition. LDL⊤ is preferred!
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Tridiagonal & SPD matrices

Find the LDL⊤ decomposition of a tridiagonal SPD matrix A:

A =


a11 a21
a21 a22 a23

. . . . . . . . .
an,n−1 ann

 .

Suppose that

A =


1
e1 1

. . . . . .
en−1 1




d1
d2

. . .
dn




1 e1
1 e2

. . . . . .
1

 .
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Tridiagonal & SPD matrices (continued)

Then we have

A =


1
e1 1

. . . . . .
en−1 1




d1 d1e1
d2 d2e2

. . . . . .
dn



=


d1 d1e1

e1d1 d2 + d1e2
1 d2e2

. . . . . .

. . . dn + dn−1e2
n−1

 .
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Tridiagonal & SPD matrices (continued)

Comparing with the elements in A, we obtain:
a11 = d1.
akk−1 = ek−1dk−1.
akk = dk + dk−1e2

k−1.

A simple observation:
akk = dk + dk−1e2

k−1 = dk + (dk−1ek−1)ek−1 = dk + akk−1ek−1.

Algorithm:
d1 = a11.
for k = 2, · · · , n.

ek−1 = akk−1/dk−1.
dk = akk − ek−1akk−1.

end do

Total cost ≈ n multiplications + n divisions + n subtractions.
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Tridiagonal & SPD matrices (continued)

Solving a tridiagonal & SPD system:

step 1: obtain the LDL⊤ decomposition (≈ 2n flops).
step 2: solve the lower triangular system (n flops).
step 3: solve the diagonal system (n divisions ≈ n flops).
step 4: solve the upper triangular system (n flops).

Total cost ≈ 5n flops.
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Basic Gaussian elimination

Let A(1) = (a(1)ij ) = A = (aij) and b(1) = b. Consider the following
linear system Ax = b:

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18




x1
x2
x3
x4

 =


12
34
27
−38

 .

pivot row = row1.
pivot element: a(1)11 = 6.
row2 - (12/6)*row1→ row2.
row3 - (3/6)*row1→ row3.
row4 - (-6/6)*row1→ row4.

=⇒


6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14




x1
x2
x3
x4

 =


12
10
21
−26

 .

multipliers: 12/6, 3/6,−6/6.
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Basic Gaussian elimination (continued)

We have the following equivalent system A(2)x = b(2):
6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14




x1
x2
x3
x4

 =


12
10
21
−26

 .

pivot row = row2.
pivot element a(2)22 = −4.
row3 - (-12/-4)*row2→ row3.
row4 - (2/-4)*row2→ row4.

=⇒


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13




x1
x2
x3
x4

 =


12
10
−9
−21

 .

multiplier: −12/− 4, 2/− 4.
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Basic Gaussian elimination (continued)

We have the following equivalent system A(3)x = b(3):
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13




x1
x2
x3
x4

 =


12
10
−9
−21

 .

pivot row = row3.
pivot element a(3)33 = 2.
row4 - (4/2)*row3→ row4.

=⇒


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3




x1
x2
x3
x4

 =


12
10
−9
−3

 .

multiplier: 4/2.
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Basic Gaussian elimination (continued)

Finally, we have the following equivalent upper triangular system
A(4)x = b(4): 

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3




x1
x2
x3
x4

 =


12
10
−9
−3

 .

Using the backward substitution, we have
x1
x2
x3
x4

 =


1
−3
−2

1

 .
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The LU decomposition

Display the multipliers in an unit lower triangular matrix L = (ℓij):

L =


1 0 0 0
2 1 0 0
1
2 3 1 0
−1 − 1

2 2 1

 .

Let U = (uij) be the final upper triangular matrix A(4). Then we have

U =


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3


and one can check that A = LU (the Doolittle Decomposition).
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Some remarks

The entire elimination process will break down if any of the
pivot elements are 0.

The total number of arithmetic operations:

M/D =
n3

3
+ n2 − n

3
;

A/S =
n3

3
+

n2

2
− 5n

6
.

∴ The GE is an O(n3) algorithm.
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Pivoting

For example, the above technique doesn’t work if we have[
0 1
1 1

] [
x1
x2

]
=

[
1
2

]
and works incorrectly if we have (ε > 0 is sufficiently small)[

ε 1
1 1

] [
x1
x2

]
=

[
1
2

]
.

Using the above case as an example: row2 - (1/ε)*row1→ row2, we
have [

ε 1
0 1− 1/ε

] [
x1
x2

]
=

[
1

2− 1/ε

]
.
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Example

[
ε 1
0 1− 1/ε

] [
x1
x2

]
=

[
1

2− 1/ε

]
.

Using the backward substitution, we have

x2 =
2− 1/ε

1− 1/ε
, x1 =

1− x2

ε
.

If we let 0 < ε≪ 1, then (1/ε)≫ 1, and then x2 goes to 1 and x1
goes to 0.

However, the exact solution should be close to x1 = 1 and
x2 = 1.
What’s wrong?
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Example (continued)

Maybe that is because the pivot element a11 = ε is too small. So
we multiply row1 by 1/ε before perform GE.[

1 1/ε
1 1

] [
x1
x2

]
=

[
1/ε

2

]
.

However, it does not help too much since

x2 =
2− 1/ε

1− 1/ε
≈ 1, x1 =

1
ε
− x2

ε
≈ 0.

In fact, it is not actually the smallness of the coefficient a11 that is
causing trouble. Rather, it is the smallness of a11 relative to the
other elements in its row.
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Example (continued)

An equivalent linear system: exchanging equations 1 and 2, we
have [

1 1
ε 1

] [
x1
x2

]
=

[
2
1

]
.

Using the same algorithm, we obtain x2 = (1− 2ε)/(1− ε),
which is close to 1 and x1 = 2− x2 is also close to 1.
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Partial pivoting and complete pivoting

GE with partial pivoting: select the largest element (in | · |) in
the column as the pivot element (=⇒ exchange rows).

GE with complete pivoting: select the largest element (in | · |) in
the whole matrix as the pivot element (=⇒ exchange rows and
columns).

After the first round of elimination, we obtain an
(n− 1)× (n− 1) linear system to solve. The same idea is used
for this subsystem, and so on.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations – 56/148



Gaussian elimination with scaled row pivoting

The algorithm consists of two parts:
a factorization phase (also called forward elimination);
a solution phase (involving updating and backward
substitution).

In a factorization phase, first compute the scale of each row

si = max
1≤j≤n

|aij| = max{|ai1|, |ai2|, · · · , |ain|}.

Do it for 1 ≤ i ≤ n.

To get started, we choose the pivot row for which |ai1|/si is
largest. The index p1 is associated to the index i, where
|ap11|/sp1 ≥ |ai1|/si for 1 ≤ i ≤ n.

Zeros are created by subtracting multiples of row p1 and so on
(see next example).

The permutation vector (1, 2, · · · , n) =⇒ (p1, p2, · · · , pn) and we
obtain a permutation matrix P according to the permutation
vector (p1, p2, · · · , pn).
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Example

A =

 2 3 −6
1 −6 8
3 −2 1

 .

First compute the scales s = (6, 8, 3) and initialize
p = (p1, p2, p3) = (1, 2, 3).

Select the first pivot row from ratios, {2/6, 1/8, 3/3}. Since 3th
row has the largest ratio, the row3 is selected to be the first
pivot. Change the permutation vector by p1 ↔ p3 and then
p = (p1, p2, p3) = (3, 2, 1).

Perform row1−(2/3)row3 and row2−(1/3)row3, we have 0 13/3 −20/3
0 −16/3 23/3
3 −2 1

 .
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Example (continued)

From the previous page, s = (6, 8, 3), p = (p1, p2, p3) = (3, 2, 1), 0 13/3 −20/3
0 −16/3 23/3
3 −2 1

 .

Select the next pivot row from ratios,
{ 16/3

8 , 13/3
6 } = {2/3, 13/18}. Since p3(= 1)th row has the largest

ratio, the rowp3 (row1) is selected to be the pivot row and
p2 ↔ p3. Then p = (p1, p2, p3) = (3, 1, 2).

Perform row2−(−16/13)row1 to obtain 0 13/3 −20/3
0 0 −7/13
3 −2 1

 .
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Example (continued)

At the end, we have a decomposition for PA = LU, where

PA =

 0 0 1
1 0 0
0 1 0

 2 3 −6
1 −6 8
3 −2 1

 ,

LU =

 1 0 0
2/3 1 0
1/3 −16/13 1

 3 −2 1
0 13/3 −20/3
0 0 −7/13

 .

∵ Ax = b. ∴ PAx = Pb.

In the solution phase, we consider two equations: Lz = Pb and
Ux = z.

Pb→ b =⇒ solve Lz = b =⇒ z→ b =⇒ solve Ux = b.
This procedure is called updating b.
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Vector norm

Let V be a vector space over R, e.g., V = Rn. A norm is a real-valued
function ∥ · ∥ : V → R that satisfies

∥x∥ ≥ 0, ∀ x ∈ V, and ∥x∥ = 0 if and only if x = 0;

∥λx∥ = |λ|∥x∥, ∀ x ∈ V and λ ∈ R;

∥x + y∥ ≤ ∥x∥+ ∥y∥, ∀ x, y ∈ V (triangle inequality).

Note: ∥x∥ is called the norm of x, the length or magnitude of x.
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Some vector norms on Rn

Let x = (x1, x2, · · · , xn)⊤ ∈ Rn:

The 2-norm (Euclidean norm, or ℓ2 norm):

∥x∥2 =

√
n

∑
i=1

x2
i .

The infinity norm (ℓ∞-norm):

∥x∥∞ = max
1≤i≤n

|xi|.

The 1-norm (ℓ1-norm):

∥x∥1 =
n

∑
i=1
|xi|.
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The difference between the above norms

Take three vectors x = (4, 4,−4, 4)⊤, v = (0, 5, 5, 5)⊤,
w = (6, 0, 0, 0)⊤:

∥ · ∥1 ∥ · ∥2 ∥ · ∥∞

x 16 8 4
v 15 8.66 5
w 6 6 6

What is the unit ball {x ∈ R2 : ∥x∥ ≤ 1} for the three norms
above?

2-norm: a circle
∞-norm: a square
1-norm: a diamond
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Matrix norm

Let A be an n× n real matrix. If ∥ · ∥ is any norm on Rn, then

∥A∥ := sup{∥Ax∥ : x ∈ Rn, ∥x∥ = 1} ⇔ ∥A∥ := sup{∥Ax∥
∥x∥ : x ∈ Rn, x ̸= 0}

defines a norm on the vector space of all n× n real matrices. (This is
called the matrix norm associated with the given vector norm)

Proof:

∵ ∥Ax∥ ≥ 0 ∀ x ∈ Rn, ∥x∥ = 1. ∴ ∥A∥ ≥ 0.
Exercise: ∥A∥ = 0 if and only if A = 0.

∥λA∥ = sup{∥λAx∥ : ∥x∥ = 1} = sup{|λ|∥Ax∥ : ∥x∥ = 1}
= |λ| sup{∥Ax∥ : ∥x∥ = 1} = |λ|∥A∥.

∥A + B∥ = sup{∥(A + B)x∥ : ∥x∥ = 1} ≤ sup{∥Ax∥+ ∥Bx∥ :
∥x∥ = 1}
≤ sup{∥Ax∥ : ∥x∥ = 1}+ sup{∥Bx∥ : ∥x∥ = 1} = ∥A∥+ ∥B∥.
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Some additional properties

∥Ax∥ ≤ ∥A∥∥x∥, ∀ x ∈ Rn.

Proof:

Let x ̸= 0. Then v =
x
∥x∥ is of norm 1.

∴ ∥A∥ ≥ ∥Av∥ = ∥Ax∥
∥x∥ .

∥I∥ = 1.

∥AB∥ ≤ ∥A∥∥B∥.

Proof:
∥AB∥ := sup{∥(AB)x∥ : x ∈ Rn, ∥x∥ = 1}
≤ sup{∥A∥∥Bx∥ : x ∈ Rn, ∥x∥ = 1}
≤ sup{∥A∥∥B∥∥x∥ : x ∈ Rn, ∥x∥ = 1} = ∥A∥∥B∥.
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Some matrix norms

Let An×n = (aij) be an n× n real matrix. Then

The ∞-matrix norm:

∥A∥∞ = max
1≤i≤n

n

∑
j=1
|aij|.

The 1-matrix norm:

∥A∥1 = max
1≤j≤n

n

∑
i=1
|aij|.

The 2-matrix norm (ℓ2-matrix norm):

∥A∥2 = sup
∥x∥2=1

∥Ax∥2.
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The 2-matrix norm

∥A∥2 is not easy to compute.

Since A⊤A is symmetric, A⊤A has n real eigenvalues,
λ1, λ2, · · · , λn ∈ R. Moreover, one can prove that they are all
nonnegative. Then

ρ(A⊤A) := max
1≤i≤n

{λi} ≥ 0.

is called the spectral radius of A⊤A.

Then the ℓ2-matrix norm of A is given by

∥A∥2 =
√

ρ(A⊤A).

The ℓ2-matrix norm is also called the spectral norm.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations – 67/148



ℓ2-matrix norm of A

Singular value decomposition (SVD): Let A ∈ Rm×n. Then we have

A = UΣV⊤ :=
[
u1 u2 . . . um

]
m×m Σ

[
v1 v2 . . . vn

]⊤
n×n ,

where U and V are orthogonal matrices,

UU⊤ = U⊤U = Im×m, VV⊤ = V⊤V = In×n,

Σ = diag(σ1, . . . , σr, 0 . . . , 0) ∈ Rm×n with

σ1 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σmin{m,n}

is a diagonal matrix of singular values, and r = rank(A).

Given x =
n

∑
i=1

αivi ∈ Rn with ∥x∥2 = 1, then 1 = ∥x∥2
2 =

n

∑
i=1

α2
i and

Ax =
n

∑
i=1

αiAvi =
r

∑
i=1

αiσiui ⇒ ∥Ax∥2
2 =

r

∑
i=1

α2
i σ2

i ≤ σ2
1

r

∑
i=1

α2
i ≤ σ2

1 .

Moreover, we have ∥Av1∥2 = ∥σ1u1∥2 = σ1. Therefore,

∥A∥2 := max
∥x∥2=1

∥Ax∥2 = σ1 =
√

ρ(A⊤A).
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Some error analysis

Suppose that we want to solve the linear system Ax = b, but b is
somehow perturbed to b̃ (this may happen when we convert a
real b to a floating-point b).

Then actual solution would satisfy a slightly different linear
system

Ax̃ = b̃.

Question: Is x̃ very different from the desired solution x of the
original system?
The answer should depend on how good the matrix A is.

Let ∥ · ∥ be a vector norm, we consider two types of errors:

absolute error: ∥x− x̃∥?
relative error: ∥x− x̃∥/∥x∥?
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The absolute error

For the absolute error, we have

∥x− x̃∥ = ∥A−1b−A−1b̃∥ = ∥A−1(b− b̃)∥ ≤ ∥A−1∥∥b− b̃∥.

Therefore, the absolute error of x depends on two factors: the
absolute error of b and the matrix norm of A−1.
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The relative error

For the relative error, we have

∥x− x̃∥ = ∥A−1b−A−1b̃∥ = ∥A−1(b− b̃)∥

≤ ∥A−1∥∥b− b̃∥ = ∥A−1∥∥Ax∥∥b− b̃∥
∥b∥

≤ ∥A−1∥∥A∥∥x∥∥b− b̃∥
∥b∥ .

That is
∥x− x̃∥
∥x∥ ≤ ∥A−1∥∥A∥ ∥b− b̃∥

∥b∥ .

Therefore, the relative error of x depends on two factors: the relative
error of b and ∥A∥∥A−1∥.
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Condition number

Therefore, we define a condition number of the matrix A as

κ(A) := ∥A∥∥A−1∥.

κ(A) measures how good the matrix A is.

Example: Let ε > 0 and

A =

[
1 1 + ε

1− ε 1

]
=⇒ A−1 = ε−2

[
1 −1− ε

−1 + ε 1

]
.

Then ∥A∥∞ = 2 + ε, ∥A−1∥∞ = ε−2(2 + ε), and

κ(A) =
(2 + ε

ε

)2
≥ 4

ε2 .
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Condition number (continued)

For example, if ε = 0.01, then κ(A) ≥ 40000.

What does this mean?
It means that the relative error in x can be 40000 times greater
than the relative error in b.

If κ(A) is large, we say that A is ill-conditioned, otherwise A is
well-conditioned.

In the ill-conditioned case, the solution is probably very
sensitive to the small changes in the right-hand vector b (higher
precision in b may be needed).
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Another way to measure the error

Consider the linear system Ax = b. Let x̃ be a computed solution (an
approximation to x).

Residual vector:
r = b−Ax̃.

Error vector:
e = x− x̃.

They satisfy
Ae = r.

(Proof: Ae = Ax−Ax̃ = b−Ax̃ = r)

Moreover, we have

1
κ(A)

∥r∥
∥b∥ ≤

∥e∥
∥x∥ ≤ κ(A)

∥r∥
∥b∥ .

(Theorem on bounds involving condition number)
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Proof of the Theorem

∵ Ae = r.

∴ e = A−1r.

∴ ∥e∥∥b∥ = ∥A−1r∥∥Ax∥ ≤ ∥A−1∥∥r∥∥A∥∥x∥.

∴
∥e∥
∥x∥ ≤ κ(A)

∥r∥
∥b∥ .

On the other hand, we have

∥r∥∥x∥ = ∥Ae∥∥A−1b∥ ≤ ∥A∥∥e∥∥A−1∥∥b∥.

∴
1

κ(A)

∥r∥
∥b∥ ≤

∥e∥
∥x∥ .
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Concept of convergence in a vector space

If a vector space V is assigned a norm ∥ · ∥, then the pair
(V, ∥ · ∥) is a normed linear space.

Consider a sequence of vectors v(1), v(2), · · · in a normed space
(V, ∥ · ∥). Then we say that the given sequence converges to a
vector v ∈ V if

lim
k→∞
∥v(k) − v∥ = 0.

Theorem: Any two norms on a finite-dimensional vector space lead to
the same concept of convergence.

Caution: This theorem does not apply in infinite-dimensional
normed linear spaces. (See Problem 4.5.20, p. 206, for an
example)
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An example in R4

Let

v(k) =


3− k−1

−2 + k−1/2

(k + 1)k−1

e−k

 and v =


3
−2

1
0

 .

Then

v(k) − v =


−k−1

k−1/2

k−1

e−k

 .

Then lim
k→∞
∥v(k) − v∥∞ = 0.
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Neumann series

Theorem on Neumann series: If A is an n× n matrix such that
∥A∥ < 1 then I−A is invertible and

(I−A)−1 =
∞

∑
k=0

Ak.

Proof: Suppose that I−A is not invertible.
Then ∃ 0 ̸= x with ∥x∥ = 1 such that (I−A)x = 0.
∴ 1 = ∥x∥ = ∥Ax∥ ≤ ∥A∥∥x∥ = ∥A∥, a contradiction!

Claim:
∞

∑
k=0

Ak = (I−A)−1, i.e., lim
m→∞

(I−A)
m

∑
k=0

Ak = I.

∵ (I−A)
m

∑
k=0

Ak =
m

∑
k=0

(Ak −Ak+1) = A0 −Am+1 = I−Am+1

∴ 0 ≤ ∥(I−A)
m

∑
k=0

Ak − I∥ = ∥ −Am+1∥ ≤ ∥A∥m+1 → 0 as m→ ∞
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Iterative refinement

Let x(0) be an approximate solution of

Ax = b.

Then the residual vector is

r(0) = b−Ax(0).

and the error vector is

e(0) = x− x(0).

Since Ae(0) = Ax−Ax(0) = b−Ax(0) = r(0), we have

Ae(0) = r(0),

which is not too expensive to solve at this point. Why?
We also know that the exact solution

x = x(0) + e(0).
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Iterative refinement (continued)

Consider the linear system: Ax = b. Let x(0) be an approximation to
the exact solution x. Then

r(0) = b−Ax(0),
Ae(0) = r(0).

Let ẽ(0) be an approximate solution of e(0). Then define
x(1) := x(0) + ẽ(0). Repeat this process, we have x(2), x(3), · · ·
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Example

Consider the linear system:
420 210 140 105
210 140 105 84
140 105 84 70
105 84 70 60




x1
x2
x3
x4

 =


875
539
399
319

 .

Exact solution x = (1, 1, 1, 1)⊤.

GE with partial pivoting:

x(0) = (0.999988, 1.000137, 0.999670, 1.000215)⊤,

x(1) = (0.999994, 1.000069, 0.999831, 1.000110)⊤,

x(2) = (0.999996, 1.000046, 0.999891, 1.000070)⊤,

x(3) = (0.999993, 1.000080, 0.999812, 1.000121)⊤,

x(4) = (1.000000, 1.000006, 0.999984, 1.000010)⊤.
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A comparison

We have been studying direct methods for solving the matrix
problem Ax = b, e.g., LU-decomposition and GE.

large operation count.
needs lot of memory.
hard to do on parallel machines.
a solution will be found, and we know how long and how
much memory it takes.

Iterative methods produce a sequence of vectors that ideally
converges to the solution.

much smaller operation counts.
needs much less memory.
a lot easier to implement on parallel computers.
not as reliable or predicable (the number of iterations is not
known in advance).
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Example

[
7 −6
−8 9

] [
x1
x2

]
=

[
3
−4

]
.

How can this be solved by an iterative process?

Rewrite the system of equations as

x1 =
6
7

x2 +
3
7

,

x2 =
8
9

x1 −
4
9

.
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Jacobi method

x(k)1 =
6
7

x(k−1)
2 +

3
7

,

x(k)2 =
8
9

x(k−1)
1 − 4

9
.

Here are some values of the iterates of the Jacobi method for this
example:

k x(k)1 x(k)2
0 0.00000 0.00000

10 0.14865 -0.19820
20 0.18682 -0.24909
30 0.19662 -0.26215
40 0.19913 -0.26637
50 0.19978 -0.26637
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Gauss-Seidel method

x(k)1 =
6
7

x(k−1)
2 +

3
7

,

x(k)2 =
8
9

x(k)1 −
4
9

.

Some output from this method:

k x(k)1 x(k)2
0 0.00000 0.00000

10 0.21978 -0.24909
20 0.20130 -0.26531
30 0.20009 -0.26659
40 0.20001 -0.26666
50 0.20000 -0.26667
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Basic concepts

In general, to solve the system

Ax = b

using an iterative process, we prescribe a matrix Q, called the
splitting matrix. We can rewrite the original system of equations as:

Qx = (Q−A)x + b.

The iterations are defined as follows:

Qx(k) = (Q−A)x(k−1) + b (k ≥ 1),

where x(0) is an initial vector. The goal is to choose Q so that the
following conditions hold:

The sequence {x(k)} is easily computed.

The sequence {x(k)} converges rapidly to a solution.
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Theoretical analysis

x(k) = (I−Q−1A)x(k−1) + Q−1b. (∗)

The actual solution x satisfies

x = (I−Q−1A)x + Q−1b. (∗∗)

Thus, x is a fixed point of the mapping

x 7−→ (I−Q−1A)x + Q−1b.

Subtracting (**) from (*) yields

x(k) − x = (I−Q−1A)(x(k−1) − x).
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Theoretical analysis (continued)

Using a convenient vector norm and its associated matrix norm,

∥x(k) − x∥ ≤ ∥I−Q−1A∥∥x(k−1) − x∥.

Repeating this step, we obtain

∥x(k) − x∥ ≤ ∥I−Q−1A∥k∥x(0) − x∥.

Thus, if ∥I−Q−1A∥ < 1 then

lim
k→∞
∥x(k) − x∥ = 0

for any initial vector x(0).

Note: According to Theorem on Neumann series, ∥I−Q−1A∥ < 1
implies the invertibility of Q−1A and of A.
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Theorem on iterative method convergence

If ∥I−Q−1A∥ < 1 for some vector induced matrix norm ( also called
subordinate matrix norm), then the sequence produced by

Qx(k) = (Q−A)x(k−1) + b

converges to the solution of Ax = b for any initial vector x(0).

Note: If {x(k)} converges, it converges in any norm.
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Richardson method

Q is chosen to be the identity matrix. In this case, the iterates are
given by:

x(k) = (I−A)x(k−1) + b = x(k−1) + r(k−1),

where r(k−1) is the residual vector, r(k−1) := b−Ax(k−1).

According to the above theorem, Richardson method will
converges to solution of Ax = b if ∥I−A∥ < 1 for some vector
induced matrix norm.

There are two classes of matrices having the required property
(cf. page 229, problems 2 & 3):

unit row strictly diagonally dominant matrices:

aii = 1 >
n

∑
j=1,j ̸=i

|aij| (1 ≤ i ≤ n) =⇒ ∥I−A∥∞ < 1

unit column strictly diagonally dominant matrices:

ajj = 1 >
n

∑
i=1,i ̸=j

|aij| (1 ≤ j ≤ n) =⇒ ∥I−A∥1 < 1
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An example

Compute 100 iterates using the Richardson method, starting with
x = (0, 0, 0)⊤. 

1 1
2

1
3

1
3 1 1

2

1
2

1
3 1




x1

x2

x3

 =


11
18

11
18

11
18

 .

A few of the iterates:

x(0) = (0.00000, 0.00000, 0.00000)⊤,
x(1) = (0.61111, 0.61111, 0.61111)⊤,
x(10) = (0.27950, 0.27950, 0.27950)⊤,

...
x(40) = (0.33311, 0.33311, 0.33311)⊤,

...
x(80) = (0.33333, 0.33333, 0.33333)⊤.
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Diagonally dominant matrices

Definition: The n× n matrix A = (aij) is called strictly
diagonally dominant if

|aii| >
n

∑
j=1,j ̸=i

|aij| (1 ≤ i ≤ n).

Example: 
4 −1 0 −1
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4


is strictly diagonally dominant.
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Jacobi method

In the Jacobi iteration, Q is a diagonal matrix whose diagonal
entries are the same as those in the matrix A.

One can verify that

∥I−Q−1A∥∞ = max
1≤i≤n

n

∑
j=1,j ̸=i

|
aij

aii
|.

Theorem on Convergence of Jacobi Method:
If A is strictly diagonally dominant, then the sequence produced by the
Jacobi iteration converges to the solution of Ax = b for any starting
vector.
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Algorithm for the Jacobi method

input n, (aij), (bi), (xi), M
for k = 1 to M do

for i = 1 to n do

ui ←
(

bi −
n

∑
j=1,j ̸=i

aijxj

)/
aii

end do
for i = 1 to n do

xi ← ui
end do
output k, (xi)

end do
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Some remarks

Some divisions can be avoided by preprocessing the system.

for i = 1 to n do
d = 1/aii

bi ← dbi

for j = 1 to n do
aij = daij

end do
end do

Then the replacement statement for ui becomes simply

ui ← bi −
n

∑
j=1,j ̸=i

aijxj.

Another way to interpret this is that the original system Ax = b
has been replaced by:

D−1Ax = D−1b,
where D = diag(aii).
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How to stop the iterations?

Residual norm: ∥r∥ = ∥b−Ax∥.

Where is ri in the computer program? (if without preprocessing)

ri = bi −
n

∑
j=1,j ̸=i

aijxj − aiixi = aiiui − aiixi.

Or, one can implement the Jacobi algorithm differently:

x(k+1) = (I−Q−1A)x(k) + Q−1b.

is the same as

x(k+1) = x(k) −Q−1(b−Ax(k)) = x(k) −Q−1r(k).
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Spectral radius

The spectral radius of A is defined by

ρ(A) = max{|λ| : det(A− λI) = 0}.

Thus, ρ(A) is the smallest number such that a circle with that
radius centered at 0 in the complex plane will contain all the
eigenvalues of A.

Theorem on Spectral Radius: The spectral radius function satisfies
the equation:

ρ(A) = inf
∥·∥
∥A∥,

in which the infimum is taken over all subordinate matrix norms.
Proof: see pp. 214-215.

Corollary on Spectral Radius:

ρ(A) ≤ ∥A∥, for any subordinate matrix norm.
If ρ(A) < 1 then ∥A∥ < 1 for some subordinate matrix
norm.
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Analysis

In general, an iterative method defined by

Qx(k) = (Q−A)x(k−1) + b.

Let G = I−Q−1A and c = Q−1b. Then we consider the iterative
process in the following form:

x(k) = Gx(k−1) + c.

Suppose that it converges, then the solution must satisfy

x = Gx + c,

or
(I−G)x = c,

or
x = (I−G)−1c.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations – 98/148



Necessary and sufficient conditions for convergence

For the iteration formula

x(k) = Gx(k−1) + c

to produce a sequence converging to (I−G)−1c, for any starting vector
x(0), it is necessary and sufficient that the spectral radius of G be less than 1,
i.e., ρ(G) < 1.
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Proof of the Theorem

Suppose that ρ(G) < 1. Then there is a subordinate matrix norm such
that ∥G∥ < 1. From the iteration formula, we have

x(1) = Gx(0) + c,
x(2) = G2x(0) + Gc + c,

· · ·

x(k) = Gkx(0) +
k−1

∑
j=0

Gjc. (⋆)

Using the matrix norm (and corresponding vector norm) that satisfies
the spectral radius theorem:

∥Gkx(0)∥ ≤ ∥Gk∥∥x(0)∥ ≤ ∥G∥k∥x(0)∥ → 0 as k→ ∞.

The second term on RHS of (⋆) as k→ ∞ is given by
∞

∑
j=0

Gjc = (I−G)−1c,

when ∥G∥ < 1 by Neumann series. Thus, by letting k→ ∞, we obtain

lim
k→∞

x(k) = (I−G)−1c.
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Proof of the Theorem (continued)

For the converse, suppose that ρ(G) ≥ 1. Select u and λ so that

Gu = λu,

where |λ| ≥ 1 and u ̸= 0. Recall that x(k) = Gkx(0) +
k−1

∑
j=0

Gjc. Let c = u

and x(0) = 0. Then we have

x(k) =
k−1

∑
j=0

Gju =
k−1

∑
j=0

λju.

If λ = 1, x(k) = ku, this diverges as k→ ∞.

If λ ̸= 1, x(k) = (λk − 1)(λ− 1)−1u, this diverges as k→ ∞ and
this diverges also because limk→∞ λk does not exist.

For both cases, {x(k)} diverges, a contradiction! Therefore, ρ(G) < 1.
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Gauss-Seidel method

In the Gauss-Seidel iteration, Q is the lower triangular part of A,
including the diagonal.

Theorem on Gauss-Seidel Method Convergence:

If A is strictly diagonally dominant, then the Gauss-Seidel method
converges for any starting vector.

Proof: It suffices to prove that ρ(I−Q−1A) < 1. Let λ be any
eigenvalue of I−Q−1A and let x be a corresponding
eigenvector. Without loss of generality, we assume that
∥x∥∞ = 1. Then (I−Q−1A)x = λx or Qx−Ax = λQx.

−
n

∑
j=i+1

aijxj = λ
i

∑
j=1

aijxj, (1 ≤ i ≤ n).

By transposing terms in this equation, we obtain

λaiixi = −λ
i−1

∑
j=1

aijxj −
n

∑
j=i+1

aijxj, (1 ≤ i ≤ n).
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Theorem on Gauss-Seidel method convergence (continued)

Since ∥x∥∞ = 1, we can select an index i such that |xi| = 1 ≥ |xj| for
all j. Then

|λ||aii| ≤ |λ|
i−1

∑
j=1
|aij|+

n

∑
j=i+1

|aij|.

Solving for |λ| and using the strictly diagonal dominance of A, we
have

|λ| ≤
∑n

j=i+1 |aij|
|aii| −∑i−1

j=1 |aij|
< 1.

Therefore, ρ(I−Q−1A) < 1.
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Algorithm for the Gauss-Seidel iteration

input n, (aij), (bi), (xi), M
for k = 1 to M do

for i = 1 to n do

xi ←
(

bi −
n

∑
j=1,j ̸=i

aijxj

)/
aii

end do
output k, (xi)

end do
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Example

Consider the linear system: 2 −1 0
1 6 −2
4 −3 8

 x1
x2
x3

 =

 2
−4

5

 .

Start with x(0) = (0, 0, 0)⊤. Scaling using the equation D−1Ax = D−1b
where D = diag(A), we obtain:

1 − 1
2 0

1
6 1 − 1

3

1
2 − 3

8 1




x1

x2

x3

 =


1

− 2
3

5
8

 .
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Example (continued)

Referring to this system as Ax = b, we take Q to be the lower
triangular part of A. The Gauss-Seidel iteration is given by:

Qx(k) = (Q−A)x(k−1) + b

or
1 0 0

1
6 1 0

1
2 − 3

8 1




x(k)1

x(k)2

x(k)3

 =


0 1

2 0

0 0 1
3

0 0 0




x(k−1)
1

x(k−1)
2

x(k−1)
3

+


1

− 2
3

5
8

 .
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Example (continued)

We obtain x(k) by solving a lower triangular system:

x(k)1 = 1
2 x(k−1)

2 + 1,
x(k)2 = − 1

6 x(k)1 + 1
3 x(k−1)

3 − 2
3 ,

x(k)3 = − 1
2 x(k)1 + 3

8 x(k)2 + 5
8 .

The following iterates are obtained (x(13) is the correct solution):

x(1) = (1.000000,−0.833333,−0.187500)⊤,
...

x(5) = (0.622836,−0.760042, 0.028566)⊤,
...

x(10) = (0.620001,−0.760003, 0.029998)⊤,
...

x(13) = (0.620000,−0.760000, 0.030000)⊤.
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Basic iterative methods

For any nonsingular matrix Q, the system

Ax = b

can be rewritten as:
Qx = (Q−A)x + b.

An iterative method can be defined as follows:

Qx(k) = (Q−A)x(k−1) + b

or
x(k) = (I−Q−1A)x(k−1) + Q−1b.

Here G = I−Q−1A is called the iteration matrix.
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More about iteration matrices

Suppose A is partitioned into

A = D− CL − CU,

where D = diag(A), CL is the negative of the strictly lower part of A,
and CU is the negative of the strictly upper part of A.

Richardson:{
Q = I, (splitting matrix)
G = I−A. (iteration matrix)

x(k) = (I−A)x(k−1) + b.
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More about iteration matrices (continued)

Jacobi: {
Q = D, (splitting matrix)
G = D−1(CL + CU). (iteration matrix)

Dx(k) = (CL + CU)x(k−1) + b.

Gauss-Seidel:{
Q = D− CL, (splitting matrix)
G = (D− CL)

−1CU. (iteration matrix)

(D− CL)x(k) = CUx(k−1) + b.

Successive over-relaxation (SOR):{
Q = ω−1(D−ωCL), (splitting matrix)
G = (D−ωCL)

−1
(
(1−ω)D + ωCU

)
. (iteration matrix)

(D−ωCL)x(k) =
(
(1−ω)D + ωCU

)
x(k−1) + ωb.
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Another viewpoint of SOR

x(k)i is obtained by a weighted sum of x(k−1)
i and the GS iteration:

x(k)i = (1−ω)x(k−1)
i +

ω

aii

(
bi −

i−1

∑
j=1

aijx
(k)
j −

n

∑
j=i+1

aijx
(k−1)
j

)
⇐⇒ aiix

(k)
i + ω

i−1

∑
j=1

aijx
(k)
j = (1−ω)aiix

(k−1)
i −ω

n

∑
j=i+1

aijx
(k−1)
j + ωbi

⇐⇒ (D−ωCL)x(k) =
(
(1−ω)D + ωCU

)
x(k−1) + ωb

⇐⇒ x(k) = (D−ωCL)
−1
(
(1−ω)D + ωCU

)
x(k−1) + ω(D−ωCL)

−1b

Remarks:

0 < ω < 1: under-relaxation methods and can be used to obtain
convergence of some systems that are not convergent by the GS.

1 < ω: over-relaxation methods, which are used to accelerate the
convergence for systems that are convergent by the GS.

Methods are abbreviated SOR (successive over-relaxation).
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Recall - linear algebra

Let γ ∈ C and be written as γ = α + iβ, where α and β are real
and i2 = −1. The conjugate of γ is defined to be γ̄ = α− iβ.

The inner product, < x, y >= y∗x = ∑n
i=1 xiyi. Here y∗ is the

conjugate transpose of y, i.e., y∗ = y⊤.

Some properties: x, y, z ∈ Cn, α, β, λ ∈ C, A ∈ Cn×n.

< x, x >> 0, (if x ̸= 0).
< x, λy >= λ < x, y >.
< x, y >= < y, x >.
< αx + βy, z >= α < x, z > +β < y, z >.
< x, Ay >=< A∗x, y >.
∥x∥2 =

√
< x, x > =

√
x∗x.

A is Hermitian, if A∗ = A. A∗ is the conjugate transpose of A.

A is positive definite, if < Ax, x >> 0 for all 0 ̸= x ∈ Cn.

If A is Hermitian, then < Ax, y >=< x, Ay >.
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A general theory for SOR

Theorem on SOR convergence: A is Hermitian and positive definite
In the SOR method, suppose that the splitting matrix Q is chosen to be
αD− C, where α is a real parameter, D is any positive definite Hermitian
matrix, and C is any matrix satisfying C + C∗ = D−A. If A is positive
definite Hermitian, if Q is nonsingular, and if α > 1

2 , then the SOR
iteration converges for any starting vector.

Proof: Let G := I−Q−1A be the iteration matrix. We wish to show
that ρ(G) < 1. Let λ be an eigenvalue of G and x be a corresponding
eigenvector. Let y = (I−G)x. Then we have

y = x−Gx = x− λx = Q−1Ax, (1)
Q−A = (αD− C)− (D− C− C∗) = αD−D + C∗. (2)

From (1), we have

(αD− C)y = Qy = Ax. (3)

By (1), (2), (3), we obtain

(αD−D+C∗)y = (Q−A)y = A(x− y) = A(x−Q−1Ax) = AGx. (4)
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A general theory for SOR (continued)

From (3) and (4), we have

α < Dy, y > − < Cy, y >=< Ax, y >, (5)
α < y, Dy > − < y, Dy > + < y, C∗y >=< y, AGx > . (6)

On adding (5) and (6), we have

2α < Dy, y > − < y, Dy >=< Ax, y > + < y, AGx >,

which implies

(2α− 1) < Dy, y >=< Ax, y > + < y, AGx > . (7)

Since y = (1− λ)x and Gx = λx, equation (7) yields

(2α− 1)|1− λ|2 < Dx, x >= (1− λ) < Ax, x > +λ(1− λ) < x, Ax >

= (1− |λ|2) < Ax, x > .

If λ ̸= 1 then LHS is positive, RHS must be positive and |λ| < 1.
If λ = 1 then y = x− λx = 0 = Q−1Ax. So, Ax = 0. This is a
contradiction, since < Ax, x >> 0. Therefore, we have ρ(G) < 1.
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A general theory for SOR (continued)

In practice, we let D be the diagonal of A, and −C be the strictly
lower triangular part of A, i.e., C = CL.

In the most popular SOR method,

Q = ω−1(D−ωCL) = αD− CL.

This implies that ω−1 = α. Therefore, α > 1/2⇐⇒ 0 < ω < 2.

ω = 1, we have the Gauss-Seidel method.
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Homework

Consider the linear system Ax = b, where

A =



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .
−1 2 −1

−1 2


10×10

, b =



1
0
0
...
0
1


10×1

Using x(0) = (1, 0, 0, · · · , 0)⊤ as an initial vector, write Matlab files for
the Jacobi, Gauss-Seidel, SOR with ω = 1.25 to solve the system.
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Extrapolation

The extrapolation technique can be used to improve the
convergence properties of a linear iterative process.

Consider the iteration formula:

x(k) = Gx(k−1) + c. (∗)

We introduce a parameter, γ ̸= 0 and consider

x(k) = γ(Gx(k−1) + c) + (1− γ)x(k−1)

= Gγx(k−1) + γc,

where
Gγ = γG + (1− γ)I.

Notice that when γ = 1, we recover the original iteration (*).
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Extrapolation (continued)

If the iteration converges,

x = γ(Gx + c) + (1− γ)x.

or

x = Gx + c,

since γ ̸= 0.

If G = I−QA−1 and c = Q−1b, then this iteration corresponds to
solving Ax = b.
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Extrapolation (continued)

Theorem on Eigenvalues of p(A): If λ is an eigenvalue of a matrix
A and if p is a polynomial, then p(λ) is an eigenvalue of p(A).

The convergence of the extrapolated method is guaranteed if
ρ(Gγ) < 1.

ρ(Gγ) = max
λ∈Λ(Gγ)

|λ| = max
λ∈Λ(G)

|γλ + 1− γ|

≤ max
a≤λ≤b

|γλ + 1− γ|,

if we know only an interval [a, b] ⊆ R that contain all
eigenvalues of G.

We can prove that if 1 ̸∈ [a, b] then γ can be chosen so that
ρ(Gγ) < 1. The best choice for γ is 2/(2− a− b), and in such
case ρ(Gγ) ≤ 1− |γ|d, d is the distance from 1 to [a, b] (see pp.
222-223).
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An example

If A is a matrix whose eigenvalues λ1, λ2, · · · , λn are all real, define

m(A) = min
i

λi M(A) = max
i

λi.

Example: Determine the spectral radius of the optimal extrapolated
Richardson method.

In Richardson iteration, Q = I and G = I−A.

M(G) = 1−m(A) m(G) = 1−M(A).

The optimal γ is:
γ = 2/(m(A) + M(A)).

The resulting spectral radius is:

ρ(Gγ) = (M(A)−m(A))/(M(A) + m(A)).
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SPD linear systems

Let A ∈ Cn×n be a square matrix and x, y ∈ Cn. Define x∗ := x⊤,
(x, y) := y∗x ∈ C. Then (Ax, x) = x∗Ax is called a quadratic form.

Definition: Let A ∈ Cn×n.

A is positive definite ⇐⇒ (Ax, x) > 0, ∀ 0 ̸= x ∈ Cn.

Note 1: A = A∗(:= A⊤)⇐⇒ (Ax, x) ∈ R, ∀ x ∈ Cn.

Note 2: If A ∈ Cn×n is positive definite, then A = A∗. (by Note 1)

Note 3: Let A ∈ Rn×n. A is positive definite
⇐⇒ A = A⊤ and (Ax, x) > 0, ∀ 0 ̸= x ∈ Rn.

Note 4: Let A ∈ Cn×n and A = A∗. Then A is positive definite
⇐⇒ all of its eigenvalues are real and positive.
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SPD linear systems (continued)

Let A ∈ RM×M be a SPD sparse matrix. Define f : RM :→ R by

f (η) =
1
2

η ·Aη − b · η.

Problem (1): Find ξ ∈ RM such that f (ξ) = minη∈RM f (η).

Problem (2): Find ξ ∈ RM such that Aξ = b.

Note: ∃ ! solution ξ such that Aξ = b, since A is SPD.

Theorem: Problem (1)⇐⇒ Problem (2).

See next two pages for the proof.
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Proof of the Theorem

Problem (1) (=⇒) Problem (2):

Let ξ ∈ RM be such that f (ξ) = minη∈RM f (η). Given
0 ̸= η ∈ RM, we have

g(ε) := f (ξ + εη) =
1
2
(ξ + εη) ·A(ξ + εη)− b · (ξ + εη)

=
1
2

ξ ·Aξ +
1
2

εξ ·Aη +
1
2

εη ·Aξ +
1
2

ε2η ·Aη − b · ξ − εb · η

=
1
2

ε2η ·Aη + εη ·Aξ − εb · η +
1
2

ξ ·Aξ − b · ξ,

where we use
ξ ·Aη = (ξ, Aη) = (A⊤ξ, η) = (Aξ, η) = (η, Aξ) = η ·Aξ.

∴ g is a quadratic poly. in ε with leading coefficient 1
2 η ·Aη > 0

∵ g(0) = f (ξ) = minη∈RM f (η) ∴ g′(0) = 0 (by Fermat’s Thm)

∴ 0 = g′(0) =
(
εη ·Aη + η ·Aξ − b · η

)∣∣
ε=0= η · (Aξ − b)

∴ Aξ = b
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Proof of the Theorem (continued)

Problem (2) (=⇒) Problem (1):

Assume that Aξ = b. Let η ∈ RM. Define w := η − ξ. Then
η = w + ξ. We have

f (η) =
1
2

η ·Aη − b · η =
1
2
(w + ξ) ·A(w + ξ)− b · (w + ξ)

=
1
2

w ·Aw + w ·Aξ +
1
2

ξ ·Aξ − b ·w− b · ξ

=
1
2

w ·Aw + w ·Aξ − b ·w + f (ξ)

≥ w ·Aξ − b ·w + f (ξ) (∵ A is SPD ∴
1
2

w ·Aw ≥ 0)

= w · b− b ·w + f (ξ) = f (ξ).

∴ f (ξ) = minη∈RM f (η).
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Minimization algorithms

Given an initial approximation ξ0 ∈ RM of the exact solution ξ, find
ξk ∈ RM, k = 1, 2, · · · of the form

ξk+1 = ξk + αkdk, k = 0, 1, · · · ,

where dk ∈ RM is the search direction, αk > 0 is the step size (length).

We will focus on two methods:

The gradient method

The conjugate gradient method
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Some notation

Let g : RM → R be a smooth function and η ∈ RM.

gradient of g at η

= g′(η) := ∇g(η) :=
(

∂g
∂η1

(η), ∂g
∂η2

(η), · · · , ∂g
∂ηM

(η)
)⊤

.

Hessian of g at η,

g′′(η) =


∂2g
∂η2

1
(η)

∂2g
∂η1∂η2

(η) · · · ∂2g
∂η1∂ηM

(η)

...
... · · ·

...
∂2g

∂ηM∂η1
(η)

∂2g
∂ηM∂η2

(η) · · · ∂2g
∂η2

M
(η)


M×M

=
(
∇ ∂g

∂η1
(η), · · · ,∇ ∂g

∂ηM
(η)
)

:= ∇
( ∂g

∂η1
(η), · · · ,

∂g
∂ηM

(η)
)

= ∇
(
g′(η)⊤

)
= ∇

(
∇g(η)⊤

)
.
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Homework

Assume that A ∈ RM×M is a symmetric matrix, b ∈ RM is a given
vector, and f : RM → R is defined by f (η) := 1

2 η ·Aη − b · η.

Prove that ∀ η ∈ RM,

f ′(η) = Aη − b;

f ′′(η) = A.

Hint:

η ·Aη = η1(A1· · η) + η2(A2· · η) + · · ·+ ηM(AM· · η).

f ′′(η) = ∇(∇f (η)⊤) = ∇((Aη − b)⊤) =
∇(A1· · η − b1, · · · , AM· · η − bM).
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Taylor’s expansion of a smooth function g at ξk

Let g : RM → R be a smooth function. By Taylor’s expansion,

g(ξk+1) = g(ξk) +∇g(ξk) · (ξk+1 − ξk) + (ξk+1 − ξk) · g′′(η)
2!

(ξk+1 − ξk),

for some η ∈ ξkξk+1.

= g(ξk) + αkg′(ξk) · dk +
α2

k
2!

dk · g′′(η)dk, if ξk+1 = ξk + αkdk.

∴ g(ξk+1) = g(ξk) + αkg′(ξk) · dk + O(α2
k), if the entries in g′′(η) are

bounded in a neighborhood containing ξkξk+1.

∴ If g′(ξk) · dk < 0 and αk > 0 is sufficiently small, g(ξk+1) < g(ξk).
In this case, we call dk a descent direction.
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The gradient method

Let us go back to the case of g = f , where f (η) := 1
2 η ·Aη − b · η and

A is SPD.

If we choose dk = −f ′(ξk) = −(Aξk − b) and if f ′(ξk) ̸= 0,

then we have f ′(ξk) · dk = −∥f ′(ξk)∥2
2 < 0.

We obtain the so-called gradient method or the steepest descent
method.

Note: If f ′(ξk) = 0 then Aξk − b = 0 =⇒ Aξk = b =⇒ ξk is the exact
solution.
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How to choose αk > 0 in the gradient method?

Determine optimal αk such that f (ξk + αkdk) = minα∈R f (ξk + αdk).

Notice that f (ξk + αdk) can be viewed as a quadratic function in α
with positive leading coefficient.

If αk is optimal, then
d

dα
f (ξk + αdk)

∣∣∣
α=αk

= 0.

∴ f ′(ξk + αdk) · dk
∣∣∣
α=αk

= 0. ∴ f ′(ξk + αkdk) · dk = 0.

=⇒ 0 = f ′(ξk + αkdk) · dk =
(

A(ξk + αkdk)− b
)
· dk

= (Aξk − b) · dk + αkdk ·Adk.

∴ αk = −
(Aξk − b) · dk

dk ·Adk =
dk · dk

dk ·Adk , provided

dk = −f ′(ξk) = −(Aξk − b) ̸= 0

∵ A is SPD ∴ dk ·Adk > 0, provided dk = −f ′(ξk) = −(Aξk − b) ̸= 0

∴ αk > 0, provided dk = −f ′(ξk) = −(Aξk − b) ̸= 0
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The gradient method with optimal step length αk

Given ξ0 ∈ RM, define

ξk+1 = ξk + αkdk, k = 0, 1, · · ·

dk = −(Aξk − b).

αk =
dk · dk

dk ·Adk .
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Recall of the condition number

Let A ∈ RM×M be a SPD matrix.

Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λM be the eigenvalues of A.

Then 0 <
1

λM
≤ 1

λM−1
≤ · · · ≤ 1

λ1
are the eigenvalues of A−1.

Let ρ(A) denote the spectral radius of A, i.e., the maximum size of the
eigenvalues of A. That is, ρ(A) = max

λ is an e.v. of A
|λ|

condition number κ(A)

:= ∥A∥2∥A−1∥2 =
√

ρ(A∗A)
√

ρ((A−1)∗A−1)

=
√

ρ(A⊤A)
√

ρ((A−1)⊤A−1) =
√

ρ(A2)
√

ρ((A−1)2)

=
√

λ2
M

√
1

λ2
1
=

λM
λ1

.

∴ κ(A) =
λmax

λmin
.
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The gradient method with constant step length

Given ξ0, α > 0 sufficiently small.

ξk+1 = ξk + αdk, k = 0, 1, · · ·

dk = −f ′(ξk) = −(Aξk − b).

Let ξ be the exact solution, Aξ = b. =⇒ ξ = ξ − α(Aξ − b).

Let ek := ξ − ξk. =⇒ ek+1 = ek − α(Aek) = (I− αA)ek, k = 0, 1, 2 · · ·

∴ ek+1 = (I− αA)k+1e0.

lim
k→∞

ek+1 = 0 for every e0 ⇐⇒ lim
k→∞

(I− αA)k+1e0 = 0 for every e0

⇐⇒ ρ(I− αA) < 1⇐⇒maxj |1− αλj| < 1
⇐⇒−1 < 1− αλj < 1, j = 1, 2, · · · , M

⇐⇒ 1− αλmax > −1⇐⇒ αλmax < 2.
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The gradient method with constant step length (continued)

If we choose α = 1
λmax

> 0, then we have

∥ek+1∥2 = ∥(I− αA)ek∥2 ≤ ∥I− αA∥2∥ek∥2 ≤
(

1− 1
λmax

λmin

)
∥ek∥2

=
(

1− 1
κ(A)

)
∥ek∥2.

∴ ∥ek∥2 ≤
(

1− 1
κ(A)

)k
∥e0∥2 (small κ(A) is better).

Given 0 < ε < 1, find the smallest n such that ∥en∥2 ≤ ε∥e0∥2.

∴ We require
(

1− 1
κ(A)

)n
≤ ε.
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The gradient method with constant step length (continued)

(
1− 1

κ(A)

)n
≤ ε⇐⇒ n ln

(
1− 1

κ(A)

)
≤ ln(ε)

⇐⇒ n
(
− ln

(
1− 1

κ(A)

))
≥ ln

(1
ε

)
⇐⇒ n ≥

ln
(

1
ε

)
− ln

(
1− 1

κ(A)

) .

∵ − ln(1− x) =
∞

∑
i=1

xi

i
> x for 0 < x < 1.

∴ − ln
(

1− 1
κ(A)

)
>

1
κ(A)

.

∴ We take n ≥ κ(A) ln
(1

ε

)
.

∴ The required number of iterations in the gradient method is
proportional to the condition number κ(A). If κ(A) is large, then the
gradient method is not efficient.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations – 135/148



The conjugate gradient method

Roughly speaking, the conjugate gradient method ≈
the gradient method + optimal step length, but with different
search direction.

Let A be a SPD real M×M matrix. Define < ζ, η >:= ζ ·Aη,
∀ ζ, η ∈ RM. Then < ·, · > is a scalar product on RM.
Proof: check

it is a symmetric bilinear form;
< v, v >≥ 0 ∀ v ∈ RM, and < v, v >= 0⇐⇒ v = 0.

Define the energy norm: ∥η∥A :=< η, η >1/2, ∀ η ∈ RM.
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The conjugate gradient method (continued)

Given ξ0 ∈ RM, d0 := −r0 := −f ′(ξ0) = −(Aξ0 − b),

find ξ1 & d1, ξ2 & d2, · · · , such that for k = 0, 1, · · · ,

ξk+1 = ξk + αkdk,

αk = − rk · dk

< dk, dk >
(optimal step length),

dk+1 = −rk+1 + βkdk (for next step),

where

rk := f ′(ξk) = Aξk − b,

βk :=
< rk+1, dk >

< dk, dk >
.
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Some remarks

The new search direction dk+1 is a linear combination of rk+1 and
the old search direction dk.

Notice that

βk =
< rk+1, dk >

< dk, dk >
⇐⇒ βk < dk, dk > − < rk+1, dk >= 0

⇐⇒ < −rk+1 + βkdk, dk >=< dk+1, dk >= 0.

Suppose that d0, d1, · · · , dk−1 ̸= 0. If dk = 0 then

−rk + βk−1dk−1 = 0 =⇒ rk = βk−1dk−1 =
< rk, dk−1 >

< dk−1, dk−1 >
dk−1

=⇒ · · · =⇒ rk = 0 ?

αk is the optimal step length.
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Lemma 1

Notation: Let η0, η1, · · · , ηm ∈ RM. Define
[η0, η1, · · · , ηm] := span{η0, η1, · · · , ηm}.

Lemma 1: For m = 0, 1, · · · , we have

[d0, d1, · · · , dm] = [r0, r1, · · · , rm] = [r0, Ar0, · · · , Amr0].

Proof: We will use the induction to prove the assertion.
m = 0: It is trivial, since [d0] = [−r0] = [r0] = [A0r0].
Suppose that the assertion holds for m ≤ k. Consider the case m = k,
we have [d0, d1, · · · , dk] = [r0, r1, · · · , rk] = [r0, Ar0, · · · , Akr0].

∵ ξk+1 = ξk + αkdk.

∴ Aξk+1 = Aξk + αkAdk.

∴ Aξk+1 − b = Aξk − b + αkAdk.

∴ rk+1 = rk + αkAdk.
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Proof of Lemma 1 (continued)

∵ dk ∈ [r0, Ar0, · · · , Akr0] and rk ∈ [r0, Ar0, · · · , Akr0].

∴ Adk ∈ [r0, Ar0, · · · , Ak+1r0] and
rk+1 = rk + αkAdk ∈ [r0, Ar0, · · · , Ak+1r0].

∴ [r0, r1, · · · , rk+1] ⊆ [r0, Ar0, · · · , Ak+1r0].

∵ Akr0 ∈ [d0, d1, · · · , dk] = [r0, r1, · · · , rk] = [r0, A1r0, · · · , Akr0].

∴ Ak+1r0 ∈ [Ad0, Ad1, · · · , Adk].

Notice that d0 ∈ [r0] ⇒ Ad0 ∈ [r0, Ar0] = [r0, r1].

Similarly, Ad1 ∈ [r0, r1, r2], · · · , Adk−1 ∈ [r0, r1, · · · , rk],

and rk+1 = rk + αkAdk implies Adk ∈ [rk, rk+1].

∴ Ak+1r0 ∈ [r0, r1, · · · , rk+1].
∴ [r0, Ar0, · · · , Ak+1r0] ⊆ (⇒=)[r0, r1, · · · , rk+1].

On the other hand,

∵ [r0, r1, · · · , rk] = [d0, d1, · · · , dk] and dk+1 = −rk+1 + βkdk.

∴ [r0, r1, · · · , rk+1] = [d0, d1, · · · , dk+1].
© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations – 140/148



Lemma 2

ri · rj = 0 if i ̸= j (orthogonal).

< di, dj >= 0 if i ̸= j (conjugate).

Proof: We use induction on n (i, j ≤ n).

n = 1:

∵ r1 = r0 + α0Ad0 with α0 =
−r0 · d0

< d0, d0 >
, r0 = −d0.

∴ r1 · r0 = (−d0) · (−d0)− −d0 · d0

< d0, d0 >
Ad0 · (−d0) =

d0 · d0 − (d0 · d0) = 0.

< d1, d0 >=< −r1 + β0d0, d0 >=< −r1, d0 > +β0 < d0, d0 >=

− < r1, d0 > +
< r1, d0 >

< d0, d0 >
< d0, d0 >= 0.

Note: If < d0, d0 >= 0⇐⇒ d0 ·Ad0 = 0⇐⇒ d0 = 0⇐⇒ r0 =
0⇐⇒ Aξ0 − b = 0⇐⇒ Aξ0 = b.
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Proof of Lemma 2 (continued)

Suppose that these two properties hold for n ≤ k.

∵ [d0, d1, · · · , dk−1] = [r0, r1, · · · , rk−1]

∴ rk · dj = 0 for j = 0, 1, · · · , k− 1

∵ rk+1 = rk + αk + Adk

∴ For j = 0, 1, · · · , k− 1, rk+1 · dj = rk · dj + αk < dk, dj >= 0

Notice that

rk+1 · dk = f ′(ξk+1) · dk = f ′(ξk + αkdk) · dk

=
d

dα
f (ξk + αdk)|α=αk = 0 (∵ αk is optimal).

∴ rk+1 · dj = 0 for j = 0, 1, · · · , k

∵ [r0, r1, · · · , rk] = [d0, d1, · · · , dk]

∴ rk+1 · rj = 0 for j = 0, 1, · · · , k. That is, the first property holds.
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Proof of Lemma 2 (continued)

∵ rk+1 = rk + αk + Adk.

∴ Adj ∈ [r0, r1, · · · , rj+1] for any j = 0, 1, · · ·

∴ rk+1 ·Adj =< rk+1, dj >= 0 for j = 0, 1, · · · , k− 1.

∴ < dk+1, dj >=< −rk+1, dj > +βk < dk, dj >= 0 + 0 = 0 for
j = 0, 1, · · · , k− 1.

∵
< dk+1, dk >=< −rk+1 + βkdk, dk >= − < rk+1, dk > +βk < dk, dk >

= − < rk+1, dk > +
< rk+1, dk >

< dk, dk >
< dk, dk >= 0.

∴ < dk+1, dj >= 0 for j = 0, 1, · · · , k.

∴ The second property holds.
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Theorem on the conjugate gradient method

∃ m ≤ M such that Aξm = b.

Proof:

∵ rj, j = 0, 1, 2, · · · are pairwise orthogonal
(⇒ linearly independent if nonzero) and dimRM = M

∴ ∃ rm ∈ {r0, r1, · · · , rM}, 0 ≤ m ≤ M, such that rm = 0

∴ Aξm − b = 0⇒ Aξm = b
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Theorem on the conjugate gradient method (continued)

Theorem: Let x be the exact solution, then

∥x− xk∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

∥x− x0∥A.

In order to have

∥x− xk∥A ≤ ε∥x− x0∥A,

for some given ϵ, we must have

n ≥ 1
2

√
κ(A) ln

2
ε

.

Compare with the gradient method with constant step length

n ≥ κ(A) ln
1
ε

.

The number of iterations is large for ill-conditioned matrices.

Can we change the condition number without changing the
solution of a given system?
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Preconditioning

(1) min
η∈RM

f (η) = min
η∈RM

(1
2

η ·Aη− b · η
)

.

The gradient method with constant step length α is

ηk+1 = ηk − α(Aηk − b).

Let E be a nonsingular M×M matrix. Let ζ = Eη =⇒ η = E−1ζ. Then

f̃ (ζ) := f (η) = f (E−1ζ) =
1
2
(E−1ζ) ·A(E−1ζ)− b · E−1ζ

=
1
2

ζ · E−⊤AE−1ζ − E−⊤b · ζ =
1
2

ζ · Ãζ − b̃ · ζ,

where Ã := E−⊤AE−1 and b̃ := E−⊤b.
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Preconditioning (continued)

(2) min
ζ∈RM

(1
2

ζ · Ãζ− b̃ · ζ
)

.

The gradient method with constant step length α is

ζk+1 = ζk − α(Ãζk − b̃).

If κ(Ã)≪ κ(A) then the gradient method for problem (2) will
converge much faster than the same method applied to problem (1).
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Preconditioning (continued)

∵ ζ = Eη.

∴ Eηk+1 = Eηk − α(ÃEηk − b̃).

∴
ηk+1 = ηk − αE−1(E−⊤AE−1Eηk − E−⊤b) = ηk − αE−1E−⊤(Aηk − b).

Let C := E⊤E. Then C−1 = E−1E−⊤ and

ηk+1 = ηk − αC−1(Aηk − b).

This is the preconditioned version of the gradient method for
problem (1) with preconditioner C.

To compute ηk+1 from ηk, we have to solve

Cθk = (Aηk − b).

Note that do not need the explicit form of C−1.
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