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Continuous versus discrete

The set of real numbers R includes:

(1) the set of rational numbers Q = { q
p : p ̸= 0, q are integers}:

1.1, 3.14, 2/3,−3/7, · · ·

(2) the set of irrational numbers Qc = R \ Q:
π = 3.14159265358979..., e = 2.718281828...,

√
2 = 1.4142...

The real numbers are “continuous”!

Computer numbers:

(1) integers: 0, +1, -1, · · ·
(2) non-integers (floating-point numbers): x1x2...xn.y1y2...ym,

where both m and n are finite.

The computer numbers are “finite and discrete”!
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Number systems: computer versus user

The decimal number system: base = 10

427.325 := (427.325)10 =
4 × 102 + 2 × 101 + 7 × 100 + 3 × 10−1 + 2 × 10−2 + 5 × 10−3

The binary number system: base = 2

(1001.11101)2 = 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 + 1 × 2−1 +
1 × 2−2 + 1 × 2−3 + 0 × 2−4 + 1 × 2−5 = (9.90625)10

Notation:
β > 1 integer, (N)β denotes a number system with base β,
digits 0, 1, 2, · · · , β − 1, and a sign (+ or −) affixed to it.

(1001.11101)2 = (9.90625)10
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Number systems: computer versus user (cont’d)

Most computers deal with real numbers in the binary number
system!

conversion
computer (binary) ⇄ user (decimal)

conversion

=⇒ roundoff error!

For example, 1
10 = (0.00011001100110011...)2

If we read 0.1 into a 32-bit computer and then print it out to 40
decimal places, we obtain:

0.10000 00014 90116 11938 47656 25000 00000 00000
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Questions

How to represent the numbers in a computer?

How to perform the basic operations +, −, ×, /?

What is the error?
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Numbers on a computer

Suppose that our computer can store only six digits, with five digits
after the decimal point, i.e., X.XXXXX

ordinary number system

(1) smallest (positive) number: 0.00001 (= 10−5)
(2) largest number: 9.99999 (≈ 101)
(3) range of the system ≈ 10−5 ∼ 101

A “better” number system: let us allocate two digits for the
“power of ten”, (assuming we know how to do the signs
without using any of the digits)

(1) smallest (positive) number: 0.001 × 10−99

(2) largest number: 9.999 × 1099(≈ 10100)
(3) range of the system ≈ 10−102 ∼ 10100

Good: the “better” system has a much bigger range, which has a
lot more numbers that one can use.

Bad: the “better” system has only 4 digits of accuracy.
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Examples (cont’d)

1 π = 3.14159265358979...

in the ordinary system, π = 3.14159
in the “better” system, π = 3.142 × 100

2 n = 1234567

in the ordinary system, n = “overflow”
in the “better” system, n = 1.235 × 106

relative error =
∣∣∣∣1234567 − 1.235 × 106

1234567

∣∣∣∣ ≈ 10−4

3 A = 0.000001

in the ordinary system, A = “underflow” (set to zero)
in the “better” system, A = 0.100 × 10−5
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What is the best way to represent numbers on a computer?

Answer: binary + floating-point system.

Decimal representation is convenient for people, but not for
computers.

Binary representation is much more useful on computers.
The basic unit in a binary representation is called a bit.

A bit can be viewed as a physical entity that is either off or on.
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Some terminologies

Bits are organized in groups of 8, each called a byte.
A byte can represent any of 256 = 28 different bitstrings (0-255
integers, 256 characters, 256 colors, ...).

A word is four consecutive bytes; i.e., 32 bits.

A double word is eight consecutive bytes; i.e., 64 bits.

A kilobyte (KB) is 1024 = 210 bytes (kilo ≈ 103).

A megabyte (MB) is 1024 KB = 220 bytes (mega ≈ 106).

A gigabyte (GB) is 1024 MB = 230 bytes (giga ≈ 109).

A terabyte (TB) is 1024 GB = 240 bytes (tera ≈ 1012).

A petabyte (PB) is 1024 TB = 250 bytes (peta ≈ 1015).

Large Hadron Collider (大型強子對撞機): produces 15PB data/per year.
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Binary system

Two types of binary system can be designed:

Fixed-point system is very limited in its range. For example, in a
32-bit system, 1 bit for the sign, 15 bits for the number before the
binary point, 16 bits for the number after the binary point, range
of the system (positive number) ≈ 2−16 ∼ 215.

Floating-point system: Consider the normalized scientific notation
for decimal number system:

732.5051 = 0.7325051 × 103,
−0.005612 = −0.5612 × 10−2.

The decimal point floats to the position immediately before the
first nonzero digit. In general, a nonzero real number x can be
represented in the form:

x = ±r × 10n, where
1

10
≤ r < 1 and n ∈ Z.
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Floating-point system

Floating-point system: ±f × βe

(1) f : mantissa part (fraction) that contains the significant
digits of the number;

(2) e: exponent (the scale of the number);
(3) β: the base of the number system.

A nonzero floating-point number a = ±f × βe is said to be normalized
if

β−1 ≤ f < 1.

For example, if β = 10, then 0.1 ≤ f < 1. f can be written as
0.x1x2x3... and x1 ̸= 0, e.g., 0.002597 = 0.2597 × 10−2.

Some bases:

(1) β = 2, binary, most computers;
(2) β = 10, decimal, most calculators;
(3) β = 16, hexadecimal, IBM mainframes.
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IEEE standard 32-bit binary systems

Published in 1985 by the Institute of Electrical and Electronics
Engineers (IEEE).

Based on the work of William Kahan (1933 –) of UC-Berkeley.
Kahan received the 1989 Turing Award for this work.

http://www.cs.berkeley.edu/˜wkahan/

The essentials of the standard include
(1) consistent representation of floating-point numbers by all

computers adopting the standard;
(2) correctly rounded floating point numbers;
(3) consistent treatment of exceptional situations such as

division by zero.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Computer Arithmetic – 12/30

http://www.cs.berkeley.edu/~wkahan/


Single precision format: hypothetical computer Marc-32

A single precision floating-point number

x = s a1a2a3 · · · a8 b1b2b3 · · · b23

(1) 1 bit for the sign of the fraction: s (0 for + and 1 for −)
(2) 8 bits for the biased exponent: e

0 < e < (11111111)2 = 28 − 1 = 255 (1 ≤ e ≤ 254)
e = 0 and e = 255 are reserved for special cases such as ±0,
±∞ and NaN (not a number).

(3) 23 bits for the fraction (mantissa): f

The bias on the exponent is

127 = 20 + 21 + 22 + · · ·+ 26 = (01111111)2

The actual exponent m = e − 127 (⇒ −126 ≤ m ≤ 127)

The actual fraction (mantissa) is q = (1.f )2 (⇒ 1 ≤ q < 2).

The nonzero normalized binary floating-point number (machine
number) is: x = (−1)sq × 2m
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An example

x = 0 0000 1110 1010 0000 0000 0000 0000 000

Mantissa is
(1.1010 · · · 0)2 = (20 + 2−1 + 2−3)10 = (1 + 0.5 + 0.125) = 1.625

Exponent is 00001110 − 01111111 = −01110001 =
−(20 + 24 + 25 + 26)10 = −(113)10

01111111
00001110
01110001

Finally, the number is x = 1.625 × 2−113
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Summary (s = 0)

Single precision has roughly 7 digits of decimal accuracy and the
range is 2−126 ∼ (20 + 2−1 + · · ·+ 2−23)2127 = (2 − 2−23)2127

≈ 1.1754944 × 10−38 ∼ 3.4028235 × 1038

2−23 ≈ 1.1920929 × 10−07

2−24 ≈ 5.9604645 × 10−08

IEEE double precision (64-bit) system:

(1) one bit for the sign of the fraction
(2) 11 bits for the biased exponent
(3) 52 bits for the fraction

It has roughly 15 digits of decimal and range is ≈ 10−307 ∼ 10307
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Some limitations of the floating-point system

The range of the fraction is limited (round-off error).

The range of the exponent is limited (overflow, underflow).

(1) “overflow” is a fatal error (program stops).
(2) “underflow” is often the same as “set to zero.”

Some properties of the floating-point system:

The floating-point system is a small subset of the real number
system.

The floating-point numbers are not equally spaced on the real
line (see page 21 below).
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How to get around the limitation?

Example: calculating the vector norm ∥x∥?

Let x = (a, b)⊤, c = ∥x∥ =
√

a2 + b2. Let us take a toy floating-point
system: β = 10, two digits for the exponent, and a = 1060, b = 1.0.
Then a2 = (1060)2 = 10120 overflow, program stops, can’t obtain c.

A trick: use a mathematically equivalent form of c

c = s

√(a
s

)2
+

(
b
s

)2
,

where s = max{|a|, |b|}. In this case, s = 1060. Then( a
s
)2

= 1.
(

b
s

)2
=

(
1

1060

)2
(underflow, set to zero).

c ≈ s
√

1 + 0 = s = 1060.

Mathematically equivalent forms are often not numerically equivalent!
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Nearby machine numbers

Given a positive real number x by

x = q × 2m, 1 ≤ q < 2, −126 ≤ m ≤ 127,
= (1.a1a2 · · · a23a24a25 · · · )2 × 2m,

each ai is either 0 or 1, we have two nearby machine numbers

x− = (1.a1a2 · · · a23)2 × 2m (chopping),

x+ = ((1.a1a2 · · · a23)2 + 2−23)× 2m (rounding up).

Then x− ≤ x ≤ x+. The closer of x− and x+ is chosen to represent x in
the computer, denoted by fl(x) (machine number).

——————————–

chopping: 無條件捨棄
rounding up: 無條件進位
rounding off: 有捨有入(例如十進位時的四捨五入)
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Nearby machine numbers (cont’d)

If fl(x) = x−, then we have

|x − x−| ≤
1
2
|x+ − x−| =

1
2

2m−23 = 2m−24.

The relative error is
∣∣∣∣x − x−

x

∣∣∣∣ ≤ 2m−24

q × 2m =
1
q

2−24 ≤ 2−24.

If fl(x) = x+, then we have

|x − x+| ≤
1
2
|x+ − x−| =

1
2

2m−23 = 2m−24.

The relative error is
∣∣∣∣x − x+

x

∣∣∣∣ ≤ 2m−24

q × 2m =
1
q

2−24 ≤ 2−24.

For both cases, we have
∣∣∣∣x − fl(x)

x

∣∣∣∣ ≤ 2−24.
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Nearby machine numbers (cont’d)

Letting δ =
fl(x)− x

x
, then we have fl(x) = x(1 + δ) and |δ| ≤ 2−24,

where the number 2−24 is called the unit roundoff error (單位捨入誤差).

Machine epsilon (ε): the smallest positive floating-point number ε
such that 1 + ε > 1.

In general, for number system with base β, fl(x) = x(1 + δ),
where |δ| ≤ γε and γ is not too large (For Marc-32, the machine
epsilon, ε = 2−23, is twice of the unit roundoff error, γ = 1/2).
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Machine numbers

Suppose that x = q × 2m, a positive nonzero machine number.

Then the next (larger) machine number on the right is
xr = (q + 2−23)× 2m.

The previous (smaller) machine number on the left is
xℓ = (q − 2−23)× 2m.

We have

xr − x = x − xℓ = 2m−23 =⇒ xr − x
x

=
x − xℓ

x
=

1
q
× 2−23.

Since 1 ≤ q < 2, we have

2−24 <
xr − x

x
=

x − xℓ
x

≤ 2−23.

Hence, the relative spacing between machine numbers x and xr, or x
and xℓ is approximately a constant value, 2−23.
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Floating-point operations: +, −, ×, ÷

1 Let the symbol ⊙ stand for any one of the arithmetic operations
+, −, × or ÷. For Marc-32, we have

fl(x ⊙ y) = (x ⊙ y)(1 + δ), |δ| ≤ 2−24,
if x and y are machine numbers;

fl(fl(x)⊙ fl(y)) = (x(1 + δ1)⊙ y(1 + δ2))(1 + δ3), |δi| ≤ 2−24,
if x and y are not machine numbers.

2 Floating-point error analysis: Suppose that x, y and z are
machine numbers in Marc-32. We want to compute x(y + z).
Then we have

fl(x(y + z)) = (xfl(y + z))(1 + δ1) |δ1| ≤ 2−24

= (x(y + z)(1 + δ2))(1 + δ1) |δ2| ≤ 2−24

= x(y + z)(1 + δ2 + δ1 + δ2δ1)

≈ x(y + z)(1 + δ1 + δ2)

:= x(y + z)(1 + δ3) |δ3| ≤ 2−23.
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Conditioning of f (x)

The words condition or conditioning are used to indicate how
sensitive the solution of problem may be to small relative
changes in the input data.

In general, how do we calculate a function f (x) for some x ∈ R?

(1) find an x∗ := fl(x) in the floating point system such that
x∗ ≈ x.

(2) compute f (x∗).

Question: How sensitive is f (x) to the change of x to x∗?

condition number of f (x) at x

:= max


∣∣∣ f (x)−f (x∗)

f (x)

∣∣∣∣∣ x−x∗
x

∣∣ : ∀ x∗ s.t. 0 < |x − x∗| ≪ 1

 .
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Some remarks

The definition of condition number is difficult to use to see how
good/bad a function is.

If the function f is continuously differentiable, then we have an
easier way to use approximation. By the Mean-Value Theorem,

f (x)− f (x∗) = f ′(ξ)(x − x∗) ≈ f ′(x)(x − x∗), as x∗ ≈ x,

we have ∣∣∣ f (x)−f (x∗)
f (x)

∣∣∣∣∣ x−x∗
x

∣∣ =

∣∣∣∣ f (x)− f (x∗)
x − x∗

x
f (x)

∣∣∣∣ ≈ ∣∣∣∣ f ′(x)x
f (x)

∣∣∣∣ ,

which is easier to compute.
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Examples

f (x) =
√

x

condition number ≈
∣∣∣∣∣ 1

2 x−1/2

x1/2 x

∣∣∣∣∣ ≈ 1
2 .

We say that f (x) is well-conditioned for all x > 0.

f (x) =
10

(1 − x2)

condition number ≈
∣∣∣∣ 2x2

1 − x2

∣∣∣∣.
We can find that the condition number is large for |x| ≈ 1. Therefore,
we claim that f (x) is ill-conditioned for |x| ≈ 1.
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Remarks

The bad news: If f (x) is ill-conditioned, there is not much that
we can do to accurately compute it, unless use high precision
machines.

Question: Can we always obtain a good answer if the function
is well-conditioned?
Answer: Yes! If you have a lot of experience.
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An example

Let f (x) =
√

x + 1 −
√

x. Then

f (12345) =
√

12346 −
√

12345 ≈ 0.111113 · 103 − 0.111108 · 103

= 0.005 = 0.5 · 10−2.

(Suppose computer can store only six digits after the decimal point!)
Exact answer ≈ 0.0045.

Relative error ≈ 0.005 − 0.0045
0.0045

≈ 11%.

May be the function is ill-conditioned?

x = 12345.

condition number of f at x ≈
∣∣∣∣ f ′(x)

f (x)
x
∣∣∣∣ = 1

2

∣∣∣∣ x√
x + 1

√
x

∣∣∣∣ .

When x is large, condition number ≈ 1/2.

This is a well-conditioned function for large x.
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An example (cont’d)

Computing steps:

Step 1: load x0 = 0.12345 · 105.

Step 2: compute x1 = x0 + 1.

Step 3: compute x2 =
√

x1.

Step 4: compute x3 =
√

x0.

Step 5: output x4 = x2 − x3.
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Reason

The problem is Step 5.

Let g(t) := x2 − t, the condition number of g(t) at t is
approximately ∣∣∣∣g′(t)t

g(t)

∣∣∣∣ = ∣∣∣∣ t
x2 − t

∣∣∣∣ .

Not well-conditioned if t ≈ x2

Note: to obtain a good result from a well-conditioned function, one has
to design an algorithm so that every step is well-conditioned.
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How to avoid the bad steps?

1 Answer: change the formula.

Example:

f (x) =
√

x + 1 −
√

x =
(
√

x + 1 −
√

x)(
√

x + 1 +
√

x)√
x + 1 +

√
x

=
1√

x + 1 +
√

x
, for x ≫ 1.

2 Other techniques: use Taylor’s expansion.

Example: x − sin(x) = x3/3! − x5/5! + · · · , for x ≈ 0.
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