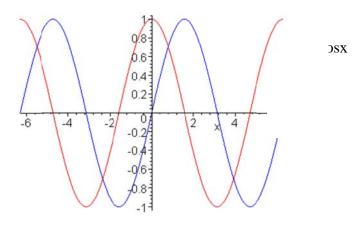
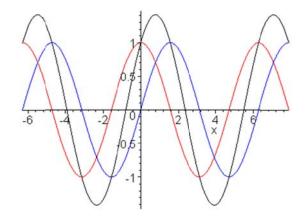
T-5 疊合函數

1. 圖形的疊合

【例】
$$y = f(x) = \sin x + \cos x$$



將 $y = \sin x$ 的圖形與 $y = \cos x$ 的圖形疊合:



由上圖我們可發現, $y = f(x) = \sin x + \cos x$ 的圖形與 $y = \sin x$ 的圖形很相似,都是以 2π 為週期的波狀圖形,只是振幅不同,且波峰與波谷的位置不同。

2. 當 $r \cdot \theta$ 為常數且 r > 0 時,函數 $y = r\sin(x + \theta)$ 只是將 $y = \sin x$ 的圖形上下伸縮 r 倍,再左 右移動 $|\theta|$ 單位($\theta < 0$ 為右移, $\theta > 0$ 為左移)。猜測 $y = \sin x + \cos x$ 的圖形為 $y = \sin x$ 的圖形,上下伸縮,左右平移而得。

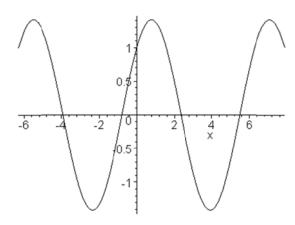
這樣的猜測是否合理呢?我們可以藉由一些三角函數計算上的技巧驗證看看。

《驗證過程》 $y = \sin x + \cos x$

$$= \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right)$$
$$= \sqrt{2} \left(\cos \frac{\pi}{4} \sin x + \sin \frac{\pi}{4} \cos x \right)$$
$$= \sqrt{2} \sin(x + \frac{\pi}{4})$$

因此,函數 $y = f(x) = \sin x + \cos x$ 的圖形是將 $y = \sin x$ 的圖形上下伸縮 $\sqrt{2}$ 倍,再向左平移 $\frac{\pi}{4}$ 單位而得。

將 $y = \sin x + \cos x$ 與 $y = \sqrt{2} \sin(x + \frac{\pi}{4})$ 的圖形描繪在同一坐標平面可得:



3. 一般而言,當 $a \cdot b$ 不全為0 時,函數 $y = a\cos x + b\sin x$ 的圖形都是 $y = r\sin(x + \theta)$ 的形式。 因此,函數 $y = a\cos x + b\sin x$ 的圖形都是以 2π 為週期的波,且當x 為實數時,

函數 $y = a\cos x + b\sin x$ 的最大值為 $\sqrt{a^2 + b^2}$,最小值為 $-\sqrt{a^2 + b^2}$ 。

【說明】

4. 當 $a \cdot b$ 不全為 0 時,函數 $y = a\cos x + b\sin x$ 的圖形亦可表示為 $y = r\cos(x + \phi)$ 的形式。 【說明】

【例】試將 $\cos x + \sqrt{3} \sin x$ 化為單一的三角函數。