Decision Problems

« We will consider only problem with Yes-No
answers.
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1. Given a nonnegative integer edge weighted graph,
what is the minimum length cycle that visits each

node exactly once ?

2. Given a nonnegative integer edge weighted graph
and an integer K, is there a cycle that visits each
node exactly once, with weight at most K?
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A Boolean formula is called conjunctive

norma.

| form (CNF) if for the input Boolean

variab!

€ X1, X5 .- 0X,, it hao the following form
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Output Boolean variable

literals
clause

ie. CNRf = product- of - Sums
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» 2-CNF: each clause has two distinct literals.

:(x1 V_‘xl)/\(x3vxz)/\(xzvx1)
(%+ 7)) (x3+ %) (x2+x)

« 3-:CNE: each clause has three distinct literals.
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out

X = MV VX)) A VX, VX)) A(X, VXV X)
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Some Problems

o 9SAT: Given a Boolean formula in 2-CNF, is there a satisfying truth assignment to
the input variables’

o 3SAT: Civen a Boolean formula in 3-CNF is there a satisfying truth assignment to

the input variables’

~ SAT IS Qa 3“’3'\ ﬂ-UMiable B°°|e0h 'foym“,a "n CNF &-‘-.‘S-frable‘?
HW, ! Sa‘!‘ES‘f‘\'aUe" meéanrs "cawn be made rMJ "

EXQM e: ('X+5»)(7+}) 1s Satisfiable
(x+ 3X(x)(3) s not satisfiable



Qefi nmtoh:
A problem 4 is in P if for every input x the solution A(x)
can be computed-in polynomialtime;O(poly(length(x))).



NP

A problem A is NP if there exist a polynomial p and a polynomial-time
algorithm V() such that @ds'a YES-input for problem A'if and only if there exists a solution
y, with length(y) < p(length(z)) such that V(x,y) outputs YES.

NP = Non-deterministic Polynomial-time



Intuitively, a problem is in NP if it can be formulated as the problem of whether there is
a solution

o They are small, In each case the solution would never have to be longer than a

polynomial in the length of the input.

o They are easily checkable. In each case there is a polynomial algorithm which takes
as inputs(the input of the problem)and(the alleged solution) and checks whether the
solution is a valid one for this input. In the case of 3SAT, the algorithm would just
check that the truth assignment indeed satisfies all clauses. In the case of Hamilton
cycle whether the given closed path indeed visits every node once. And so on.

. For every yes-input x to A4, there 1s a polynomial size piece
of evidence x which can be checked in polynomial time
that indeed x is a yes-input. This "evidence'

(sometimes called a “certificate' or “witness' of "proof’)
may be very hard to come up with, but 1s easy to check.
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THEOREM: P C NP
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Proof: This is obvious. If you can solve a problem
efficiently, there exists short evidence as to what the
solution is (both for YES and NO inputs!). Simply, use
the execution trace of your solving algorithm as the
evidence that the answer is YES or NO depending on
what the case may be.

P-Np



2-CoLOR

w: Given a erafk Gel(V.E) 1S there a {Uthl‘on.
c:V—> {1,2.3} st Ceok coypy Por ol ge xy €E ?

‘E_a_(i; 3-COLOR pro blem 's a decision problem.

fiadk: 3-cowor probiom is in NP

f: let G be a YES-inpat for the 3-COLOR problem.

—
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G is 3-wlnable = 3 ¢: /= {1,2.3} |
C(x)#—cca) fm, ang edae "—3: ob&G

Such a Coloring ¢ Can serwve ao a centifical  Which, can
be checked in pelyromial time that indeecdl G 15 3-wlorable

Fot Qqc.h edaz Ay < E(G)
do tf coo=cy) thenstop ond G s not 3-coloruble.
Primt* Gis 3-colorable a E D



e A reduction from decision problems 4 to B

is a polynomial-time algorithm R such that
for every input x to problem 4 we have

(x) = B(R(x))

xis a “yes” input of 4 <> R(x) is a “yes” input of B

e We write _<_ B




Can have size at most p(n)

Take time p(n)
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{ A< B} +{B has apoly. time algor.}
— {A has a poly. time algor.§



{A< B}
— If we known 4 1s hard,
then B 1s hard.




NP-hard

A problem B is NP -hard if for every problem
s NP

NP-hard = Non-deterministic Polynomial-time hard



NP-complete

A problem B is NP-complete if it is NP -hard

and it is contained in NP.

If B is NP-complete, then B is in P if and only 1t
P=NP.



Proving more NP-completeness result

lemmg A<B&§ B=C= A=C

Lemma, lex Ce HP—Complete and. A€ NP.
If c=A then AéN/?-CompIete,




The ‘(frsk NP- complete problem

CooK's Theorem ¢
SAT is MNP- Complete.

. Sfepheh Arthur, Cook e The Complexc‘-y *f Theorem ﬂ"”"”; Frocedures
o CDOK Yeceive d Tunh-‘n? AWMJ in 19£2.

Mi"ennium Pn'i'e p"bblem: P-_—:NP ?



SAT = 35947
:_r_hr_f_m_ 3SAT 1S NP"CDMP/ere
F\lA §ufffces-to show thal SAT < 3SAT (sketch /)
LQT ( ..... ’(X,*Xz-}- °"'+'X't)""(..,_) beanfn,vaSA[
(%)= (7(+a-rb)(x+ E*b)(?H a+ g)(x.f Z+ Z)
(x'ra)’__:._' (nty+c )(ma+ )
(x;"71+7‘3*""'x6) ’__‘:(x.f X2t )(;(+X,»+ (3 )(Ff-x,;rr)(?‘;+)o-+x‘)
Note ‘H\d* LHS is Sa‘l’i—d{,‘aue Iﬁ RHS (s ,a-h‘sfmb/e,
QED



Observations

C'Gim: Using three colors {t, f, a} to color a graph.

Suppose we are given the following graph in which vertices
x, y and z not all receiving the same color. Then we can
properly 3-color the other vertices so that vertex T receives

the color t.
X

y

1@,




proof:




Remark: |

Suppose vertices x, y and z received the same color.
When we 3-color the other vertices of the graph we
will arrive at the following situation. That vertex T

always receive the same color as {x,y,z}.




3-COLOR

Thm 3-COLOR problem is NP-complete

..h.{.‘ To Show 3SAT== 3-CoLOR. (sketch)
let S= <"+9+3)(?+‘}*3>(3€+3+g_)bean input obﬁ 3SAT.

We Clmm -Hm*' Sis a "ges '"/’M-"f”/’f
Iﬁ and on% (ﬁ Gs is a *Yes" input "f
3—00LOR why'g



