Fundamental Thinsfor Algebraic Graph Theory I Thm Let G have the spectrum λ_1 z…z λ_2 Then $(1) |\lambda_1| \leq \Delta$, where $\Delta = \Delta(G)$. (2) If G is connected, then $\lambda_1 = \Delta$ if and only if G is 4 -regular.

Perron-Firobenius Thm (Graph version) Thm let G be a connected graph with A=A(G) Then \exists a vector $x > 0$ and $\lambda > 0$ s.t. \cdot $Ax = \lambda x$

- $\lambda \geq |\mu|$ for any eigenvalue μ of A
- · A has algebraic multiplicity 1.
- if $y \ge 0$ is an eigenvector of A , then y is a multiple of X.

10f: Let
$$
S = \{x \in \mathbb{R}^n : x \ge 0 \text{ and } \sum_{i=1}^n x_i = 1\}
$$

\n**Define** $f: S \rightarrow S$ such that $f(x) = \frac{1}{\sum_{i=1}^n (A_i)}$.
\n**Since** S is closed, convex and bounded in \mathbb{R}^n
\nand $f: S \rightarrow S$ is continuous, Brouwevo fixed Point $\overline{I}h_m$ since the make
\nsay that $\exists x \in S$ s.t. $f(x) = x$ i.e.

 $A x = \lambda x$ where $\lambda = \sum_{i=1}^{n} (A x_i) > 0$

 $Claim \ x > o$ **Pf**: $\chi_i = 0 \implies \sum_{j \sim i} x_j = 0 \implies x_j = 0$ $\forall j \in N(i)$
 $\implies x_j = 0$ $\forall j \in V(G)$ (: G is connected) a contradiction to $\sum_{i=1}^{n} x_i = 1$.

pf (continued)

 \sim

Claim $\lambda \geq |\mu|$ for any eigenvalue μ of A. \mathbf{p} : let \boldsymbol{y} be an eigenvector of $\boldsymbol{\mu}$ and \boldsymbol{y}^{\star} = ($\left(\boldsymbol{y}_{i}\right)$,..., $\left(\boldsymbol{y}_{n}\right)$) \boldsymbol{y}_{i} $(A\mathcal{J})_i = \sum_{j \in N(i)} |y_j| = |\sum_{j \in N(i)} y_j| = |(A\mathcal{J})_i| = |\mu| |\mathcal{Y}_i|.$ $\lambda x^t y^t = (\tilde{A}x)^t y^t = x^t (Ay^t) \geq x^t 1 \mu y^t = 1 \mu x^t y^t.$ engenspace.of)
C **Claim** λ has algebraic multiplicity 1. p **1:** Since A is diagonalizable, it suffice to show $dim V_A = 1$. $y \in V_{\lambda} \Longrightarrow \exists$ a small enough α s.t. $z = x - \alpha y \ge 0$ and $z_i = 0$ for some i. \Rightarrow $A\overline{z} = \lambda \overline{z}$ and hence $\Sigma_j \in N(x)$ $\overline{z_j} = 0$ i.e. $\overline{z_j} = 0$ $\forall j \in N(x)$. Gisconnected \overrightarrow{z} = 0 \overrightarrow{v} je \overrightarrow{v} = \overrightarrow{x} = αy

pf (continued)

Claim If 4 is an eigenvector of $\mu \neq \lambda$ then 4 has both
positive and negative components. $p f$: Assume $y \ge 0$. Then $\lambda x^{t}y = (Ax)^{t}y = x^{t}Ay = x^{t}\mu y = \mu x^{t}y$. Hence $\lambda = \mu$ (: x > 0, y zo, y = 0)

QED

Independent Sets in Graphs Thm For a d-regular connected graph
G with n vertices and spectrum $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ $\alpha(G) \leq \frac{-n\lambda_n}{1-\lambda_n}$

 $\mathcal{h}f$: Let $A=A(G)$ and S be a maximum independent set of G with chanacteristic vector Z. Let $M=A-\lambda_nI-\frac{d-\lambda_n}{n}I$ $A = A^t \Rightarrow \exists$ linear independent reigenvectors $\{\pm, v_2, v_3, \dots, v_n\}$ corresponding to eigenvalues d. 12. 73. 1. 2n respectively $\mathbf{A} \mathbf{u}_i = \lambda_i \mathbf{u}_i \Rightarrow \perp^t A \mathbf{u}_i = \lambda_i \perp^t \mathbf{u}_i \Rightarrow d \perp^t \mathbf{u}_i = \lambda_i \perp^t \mathbf{u}_i \Rightarrow \perp^t \mathbf{u}_i = o$ (: Person's Thm says that $d = \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n$). Thus $JU_i = 0$ $(A - \lambda_0 I - \frac{d - \lambda_0}{n} J) = 0.1$ $(A - \lambda nI - \frac{d - \lambda n}{n}I)$ $U_i = (\lambda_i - \lambda_n)U_i$ for each $2 \le i \le n$

 $h_{\mathbf{f}}$: It follows that the spectrum of $(A - \lambda_n I - \frac{d - \lambda_n}{n} J)$ $is \{ \lambda_2 - \lambda_n, \lambda_3 - \lambda_n, \lambda_4 - \lambda_n, \dots, \lambda_{n-1} - \lambda_n, 0, 0 \}$ Since their eigenvectors $\{v_2, v_3, \ldots, v_{n-1}, v_{n-1}\}$ are l.i. M is positive semidefinite $\Rightarrow 0 \leq z^{t}Mz = \bar{z}^{t}A\bar{z} - \lambda_{n}\bar{z}^{t}\bar{z} - \frac{d-\lambda_{n}}{n}\bar{z}^{t}J\bar{z}$ $= 0 - \lambda_0 |S| - \frac{d - \lambda_0}{R} |S|^2$ Therefore $\alpha(G) \leq \frac{-n\lambda_n}{d-2}$ (: $d-\lambda_n > 0$) QED

By-product Corollary: For a d-regular connected graph G on n vertices $\chi(G) \geq 1 - \frac{\theta(G)}{\theta_n(G)}$

Remort: In fact this bound is also true for

 $Lemma \otimes$ Let A be the adjacency matrix of G. Let $ev(A) = \{ \theta_1(A) \ge \theta_2(A) \ge \cdots \ge \theta_n(A) \}$ be the eigenvalues of A. If G is K-colorable then $\theta_{i}(A) + \sum_{i=1}^{k-i} \theta_{n-i+1}(A) \leq 0$

$$
\frac{\text{proof: (continued)}}{\theta_{1}(A)+\sum_{i=1}^{k-1}\theta_{n-i+1}(A)}
$$
\n
$$
= \theta_{1}(S^{T}AS) + \sum_{i=2}^{k}\theta_{n-k+i}(A)
$$
\n
$$
\stackrel{\text{ $\top}_{\text{thm}}\rightarrow\gamma}{\leq}\theta_{1}(S^{T}AS) + \sum_{i=2}^{k}\theta_{i}(S^{T}AS)$ \n
$$
= \text{trace}(S^{T}AS) = \sum_{i=1}^{k}(S^{T}AS)_{ii}
$$
\n
$$
= \sum_{i=1}^{k}\frac{(DV_{i})^{T}A(DV_{i})}{|DV_{i}|DV_{i}|} = 0 \quad \text{if the support of } DV_{i} \text{ is an}
$$
$$

Intelacing Thequalities
\n
$$
\underline{\text{Thm}^{\text{a}}}
$$
\nIf $A = A^t \in M_{n \times n}(R)$, $S \in M_{n \times n}(R)$
\nand $S^t S = I$. Then

 $\theta_i(A) \geq \theta_i(S^tAS) \geq \theta_{n-k+i}$ (A)

$$
\begin{aligned}\n\mathbf{Thm}: \text{Let} \\
\phi(x) &= \text{det}(x\mathbf{I} - \mathbf{A}_{n \times n}) \\
&= b_o x^n - b_1 x^{n_1} + b_2 x^{n_2} - b_3 x^{n_3} + \cdots \\
\mathbf{Then} \\
b_k &= \text{the sum of the principal kx } \\
\text{subdeterminants of } A \\
&= \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} \text{det} A \left(\begin{array}{c} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{array} \right)\n\end{aligned}
$$

 ζ

\n
$$
\text{proof: } \text{Let } A = [A_1, A_2 \dots A_n] \quad I = [E_1, E_2 \dots E_n]
$$
\n

\n\n $\phi(x) = \text{det}(x I - A) = \text{det}(x E_1 - A_1, x E_2 - A_2, \dots, x E_n - A_n]$ \n

\n\n $= \text{det}[x E_1, x E_2 - A_2 \dots, x E_n - A_n] + \text{det}[-A_1, x E_2 - A_1, \dots, x E_n - A_n]$ \n

 $\mathcal{C}\mathcal{P}^{\mathcal{A}}$

$$
= det [xE_1, xE_2, xE_3 - A_3, ..., xE_n - A_n] +
$$

det [xE_1, -A_2, xE_3 - A_3, ..., xE_n - A_n] +
det [-A_1, xE_2, xE_3 - A_3, ..., xE_n - A_n] +
det [-A_1, -A_2, xE_3 - A_3, ..., xE_n - A_n]

一… = 2"個 determint 之和,每一J det 之穿 j column不是

Fundamental Thus of Algebraic Graph Theory II

\nThm let
$$
\phi(G, x) = x^2 \cdot c_1 x^{n-1} \cdot c_2 x^{n-2} \cdots + c_n
$$
 be the characteristic polynomial of G. Then

\n(1) $C_1 = O$

\n(2) $-C_2$ is the number of edges of G.

\n(3) $-C_3$ is twice the number of triangles in G

\n(4) $C_i = (-1)^i \sum_{|S|=i} \det A(GISI)$

\nadjacency matrices of induced subgraphs

Proof:

\n
$$
(1) C_{1} = -\sum_{1 \leq i, j \leq n} \det A(\begin{array}{c} i \\ i \end{array}) = -\hbar \sec A = 0
$$
\n
$$
(2) C_{2} = \sum_{1 \leq i, j \leq n} \det A(\begin{array}{c} i \\ i \\ i \end{array} \begin{array}{c} i \\ i \end{array}) = \sum_{1 \leq i \leq j \leq n} \det \begin{array}{c} i \\ i \\ i \end{array} \begin{array}{c} i \\ i \\ i \end{array} \end{array}
$$
\n
$$
= -|E(G)|
$$
\n
$$
(3) C_{3} = -\sum_{1 \leq i \leq j \leq k \leq n} \det A(\begin{array}{c} i \\ i \end{array}) k = -\sum_{1 \leq i \leq j \leq k \leq n} \det \begin{array}{c} i \\ i \end{array} \begin{array}{c} i \\ i \end{array} \begin{array}{c} i \\ i \end{array} \begin{array}{c} j \\ j \end{array} \begin{array}{c} k \\ j \end{array} \end{array}
$$
\n
$$
= -2 \text{ (the number of 3-cycles in G)}
$$
\n
$$
(4) C_{i} = (-1)^{i} \sum_{1 \leq i \leq i, j \leq n \leq i, j \leq n} \det A(\begin{array}{c} i & i, i, \ldots, i_{k} \\ i_{i}, i_{1}, \ldots, i_{k} \end{array}) = \sum_{\substack{3 \times 3 \text{ non-floival points} \\ \text{minors} \\ \text{minors} \end{array}} \det A(\begin{array}{c} i & i, i, \ldots, i_{k} \\ i_{i}, i_{i}, \ldots, i_{k} \end{array}) = \begin{array}{c} i & \text{if } i \leq j \\ \text{if } i \leq j \leq n \end{array}
$$

 Cp

A. J. Hoffman's bound

Thm (Hoffman's ratio bound on X(G)) Flor a graph on nuertices, $\chi(G) \geq 1 - \frac{\theta(G)}{\theta_n(G)}$ If equality holds, the multiplicity of $\theta_n(G)$ is at least $\chi(G)-1$

Proof	let $\phi(x)$ be the characteristic polynomial ϕ G.
$\phi(x) = x^n - E(G) x^{n-2} + \cdots$ and trace $A(G) = 0$	
imply $\theta(G) > 0 > \theta_n(G)$	
$\exists \text{lim } x \implies \theta_1 + (\theta_1 + \theta_{n-1} + \theta_{n-2} + \cdots + \theta_{n-k+2}) \le 0$	
$\Rightarrow \theta_1 + (k-1)\theta_n \le 0$	
$\Rightarrow \theta_1 + (k-1) \ge 0 \quad (\because 0 > \theta_n)$	
$\Rightarrow \theta_n + (k-1) \ge 0 \quad (\because 0 > \theta_n)$	
$\Rightarrow k \ge 1 - \frac{\theta_1}{\theta_n}$	

 $\sum_{i=1}^{n}$

Lemma * Let A be the adjacency matrix of G . Let $ev(A) = \{ \theta_c(A) \ge \theta_c(A) \ge \cdots \ge \theta_n(A) \}$ be the eigenvalues of A. **c-colorable**then $\theta_{n-c+1}(A) + (c-1) \theta_2(A) \ge 0$

PROOF:	
$A = A^T$ implies \exists orthonormal matrix	
$P = [\overline{z_1} \ \overline{z_2} \ \overline{z_3} \ \dots \ \overline{z_n}] \in M_{n \times n}$ s.t.	
$P^T A P = \begin{bmatrix} \theta_1 & \theta_2 & \theta_1 \\ \theta_2 & \theta_2 & \theta_2 \end{bmatrix}$	
$P^T P = I$ where $\theta_i = \theta_i(A)$.	
$\text{Let } (V_1, V_2, \dots, V_n) \text{ be a proper } c-coloring \rightarrow G$.	
$\text{View } V_i$ as a characteristic column vector	
$V_i = \begin{bmatrix} u_i \\ u_i \\ \vdots \\ u_m \end{bmatrix} \in M_{n \times 1}$	
$\text{Let } D_i = \begin{bmatrix} v_{ii} & v_{ii} \\ 0 & v_{ii} \end{bmatrix} \in M_{n \times n}$	

Continued)

\n1.
$$
\begin{array}{ll}\n\mathbf{1} & \text{def} & \text{span}\{D, E_1, D_2, \ldots, D_c, Z_i\} \subseteq M_{n \times 1} \\
& \text{if} & \text{diag}(D, E_1) & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(D, E_2) \\
& \text{if} & \text{diag}(D, E_1) & \text{if} & \text{diag}(E_1) & \text{if} & \text{diag}(E_1) \\
& \text{if} & \text{diag}(E_1) & \
$$

(continued) M O of $S \stackrel{\text{def}}{=} [\frac{D_1 y}{1 D y_1}, \frac{D_2 y}{1 D_2 y_1}, \dots, \frac{D_c y}{1 D_c y_l}] \in M_{n \times c}$ hote: Here we assume I Digit to V i=1,2, ..., c. It is possible that I Dig = 0 for some i, In this case we delete it from S and proceed similarly to get $S \in M_{n \times c'}$ where $c' < c$. $rac{\partial^2 D_i D_j \partial_j}{\partial D_i y_i} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i = j. \end{cases}$ SO $S^T S = I \in M_{cxc}$ $A' \stackrel{\text{def}}{=} A - (\theta - \theta_2) Z Z' \in M_{n \times n}$ $ev(A')^{\text{def}} \{ \theta_i \ge \theta_2 \ge \dots \ge \theta_n' \}$ Claim* θ_1' θ_2' θ_3' θ_4' θ_5'' θ_6'' proficialm: if $i \neq 1$ then
 θ_2 θ_3 θ_4 θ_5 θ_7 θ_8 θ_9 θ_9 θ_1'' θ_2'' = AZ i = AZ i = AZ i = AZ i = AZ i if $i=1$ then $A'Z_1 = Az_1 - (4.8)Z_1Z_1 = Az_1 - (8.8)Z_1 = 0, Z_1 - (8.8)Z_1 = 0, Z_1$ $B \stackrel{\text{def}}{=} S'A'S \in M_{cxc}$ hote: the following argument is valid even if 5 has fewer than c columns.

Continued of
$$
f
$$
 is a linear combination of f and f is a linear combination of f and f are a linear combination of f and f are a linear combination of f and f and f are a linear combination of f and f and f are a linear combination of f and f and f are a linear combination of f and f and f and f are a linear combination of f and f and f and f are a linear combination of f and f and f are a linear combination of f and f and f are a linear combination of f and f and f are a linear combination of f and f and f and f are a linear combination of f and f and f are a linear combination of f and f and f are a linear combination of f and f and f and f are a linear combination of f and f and f and f are a linear combination of f and f and f are a linear combination of f and f and f are a linear combination of f and f and f are a linear combination of f and f

Continued)

\n1

\nNote that
$$
\begin{cases} \n\sqrt{3}z_1 = \sqrt{3}e^{i\theta} \text{ and } \sqrt{3}z_1 = e^{i\theta} \text{ and } \sqrt{3}z_1 = \sqrt{3}e^{i\theta} \text{ and } \sqrt{3}z_1 = \sqrt{3}e
$$

Thm (Haemers) If $\theta_2(G) > 0$ and $\chi(G) \le m_n$, where
 m_n is the multiplicity of $\theta_n(G)$ as an eigenvalue Then $\chi(G) = 1 - \frac{\theta_n(G)}{\theta_n(G)}$

 22

$$
\frac{p\text{for}}{\text{A(G)}} = m_n \Rightarrow \theta_{n-c+1}(G) = \theta_n(G)
$$
\n
$$
\sqrt{log} + hat \text{ lemma } \frac{p\text{ for } \theta_n}{\text{ from } \theta_n} = \theta_n(G)
$$
\n
$$
\theta_{n-c+1}(G) + (c-1) \theta_n(G) \ge 0
$$
\n
$$
\Rightarrow (c-1) \theta_n(G) \ge -\theta_{n-c+1}(G) = -\theta_n(G)
$$
\n
$$
\Rightarrow c \ge 1 - \frac{\theta_n(G)}{\theta_n(G)}
$$

QED

 2β

Lecturer: Dr. H. G. Yeh Department of Mathematics National Central University hgyeh@math.ncu.edu.tw

These tips are based on the following book

Algebraic Graph Theory, Algebraic Graph Theory, by Chriss Godsil and Gordon Royle

Notation and basic facts

• $A_{ij} \stackrel{\text{def}}{=}$ the submatrix of A resulting from the deletion of row i and column j. $A(\alpha, \beta) \stackrel{\text{def}}{\leq}$ the submattix of A that lies in the lows of A indexed by α and
the columns indexed by β . $A(\alpha) \stackrel{\text{def}}{=} A(\alpha, \alpha)$ $A(\alpha', \beta') \stackrel{\text{def}}{=} -\text{the submatrix of } A \text{ obtained by deleting } -\text{the four integers of } A \text{ obtained by adding the following.}$
Cofactor of $A \stackrel{\text{def}}{=} (-1)^{i+j} \text{det } A_{ij}$ the nows indicated by α and the column indicated adj $A \stackrel{\text{def}}{=} [(-1)^{i+j} \text{det } A_{ij}]$ α dj $A \stackrel{\text{def}}{=} [C_1)^{i+j}$ det A_{ji} Fact: $A^{-1} = \frac{adj A}{det A}$, provided det $A \neq 0$. Fiact: let $A \in M_{n_{x}}(\mathbb{R})$, nonsingular, let $\alpha = \{i\}$. Then $A'(\alpha) = \frac{\det A(\alpha')}{\sqrt{2\pi}}$ At:
 $\begin{array}{lll}\n\text{A} & \text{A} & \text{B} \\
\text{A} & \text{B} & \text{C} \\
\text{B} & \text{C} & \text{A} \\
\text{C} & \text{A} & \text{A} \\
\end{array}$ $\begin{array}{lll}\n\text{A} & \text{A} & \text{B} \\
\text{B} & \text{C} \\
\text{C} & \text{A} \\
\text{D} & \text{A} \\
\end{array}$ $\begin{array}{lll}\n\text{A} & \text{A} & \text{A} \\
\text{B} & \text{A} \\
\text{C} & \text{A} \\
\text{D$ 氏 det Δ \Rightarrow $A^{\dagger}(\alpha) = \frac{\det A(\alpha^{\prime})}{\det A}$

· Lemma 8.13.1 P187 let AEMnxn (R), and B Obtained by deleting the ith row and column of A. Then $\frac{\phi(B,\chi)}{\phi(A,\chi)} = e_i^{\pi}(xI-A)^{7}e_i$; where e_i is the ith standard basis vector.
 $\frac{\phi(A,\chi)}{\phi(A,\chi)} = (-1)^{i+1} \det[(xI-A)(\alpha)] = \det(xI-B)$ (:: definition of adj $(xI-A)$] $(xI-A)^{7}(x) = [\frac{adj(xI-A)}{x}](x) = \det(xI-B)$ (: $\frac{adj(xI-A)}{det(xI$ $\Rightarrow \frac{\det(xI - A)}{\det(xI - A)} = (xI - A)^T(x) = c_i^T(xI - A)^T e_i$

Corollary: 8.13.2 PIPT [for any graph G we have
\n
$$
\phi'(G,x) = \sum_{u \in V_G} \phi(G|u,x) \text{ defined from } G \text{ by}
$$
\n
$$
\text{RHS} = \phi(G,x) \sum_{i \in V_G} \frac{\phi(G|i,x)}{\phi(G,x)} \text{ characteristic polynomial of } G
$$
\n
$$
= \phi(G,x) \sum_{i \in V_G} \frac{\phi(G|i,x)}{\phi(G,x)} \text{ characteristic polynomial of } G
$$
\n
$$
= \phi(G,x) \sum_{i \in V_G} \frac{1}{\phi(G,x)} \text{ characteristic polynomial of } G
$$
\n
$$
= \phi(G,x) \text{ trace } (x1-A(G))^{-1}
$$
\n
$$
= \phi(G,x) \text{ trace } (\rho^T \left[\frac{1}{x-a} \right] \text{ where } A(G) \text{ is symmetric and hence}
$$
\n
$$
= \phi(G,x) \sum_{i \in V_G} \frac{1}{x-a_i} \text{ A(G)} \text{ Since } A(G) = P^T \left[\frac{1}{x-a_i} \right]
$$
\n
$$
= \phi(G,x) \sum_{i \in V_G} \frac{1}{x-a_i} \text{ A(G)} = \frac{1}{\phi(G,x)} \text{ Since } \phi(G,x) = \prod_{i=1}^{n} (x-a_i)
$$
\n
$$
= \phi'(G,x) \qquad \frac{\phi'(G,x)}{\phi(G,x)} \text{ Since } \phi(G,x) = \prod_{i=1}^{n} (x-a_i)
$$
\n**Remark:**
$$
\phi(G,x) = \int \frac{1}{\text{LieVg}} \phi(G(u,x) \, dx + \text{det}(-A(G)) \qquad \text{QED}
$$

 $\frac{1}{2}$

incidence matrix of
$$
G = B(G)
$$
 def v [ue] s.t. $ue = \int_0^1 \int_0^1 u e e e e$
\nLemma 8.22. Let B be the incidence matrix of G, and let $L = L(G)$ be
\nthe line graph of G. Then 0 $B^T B = 2I + A(L)$, 0 $BB^T = D + A(G)$
\nwhere $A(G) = \text{adjacency matrix of } G = v$ [uv] s.t. $uv = \int_0^1 \int_0^1 uv e e$
\n $PIO0f$: $0 \int_0^1 \int_0^1 B = 2I + A(L)$ since $e_0^r e_t = \int_0^2 \int_0^e e^{-\pi t} \int_0^1 e^{2\pi t} \int_0^1 e^{2$

Fact * CD & DC have the same nonzero eigenvalues with the same multiplicities.
Proof: let $X = \begin{pmatrix} xI_n & C \\ C & \overline{z}I_n \end{pmatrix}$, $Y = \begin{pmatrix} I_n & O \\ -D & \overline{x}I_m \end{pmatrix}$, Then $XY = \begin{pmatrix} xI_n & C \\ C & \overline{x}I_m \end{pmatrix}$, $Y = \begin{pmatrix} I_n & C \\ C & \overline{z}I_m \end$ $det(\chi\gamma) = det(\gamma x) \implies \chi^m det(\chi I_n - cD) = \chi^m det(\chi I_n - DC)$

Lemma 8.2.5 *pre* let G be a K-*negative* graph with n vertices and m edge
\nand let L be the line graph of G. Then the characteristic polynomial
$$
\phi(L,x)
$$

\nhas $\phi(L,x) = (x+2)^{m-n} \phi(G, x-k+2)$
\n
$$
\phi(L,x) = (x+2)^{m-n} \phi(G, x-k+2)
$$
\n
$$
\phi(L,x) = det(\pi I_m - A(L))
$$
\n
$$
\phi(L,x) = det(\pi I_m - (B^TB - 2I_m)) = B
$$
\n
$$
\phi(L,x) = det(\pi I_m - (B^TB - 2I_m)) = B
$$
\n
$$
\phi(L,x) = det(\pi I_m - (B^TB - 2I_m)) = B
$$
\n
$$
\phi(L,x) = det(\pi I_m - (B^TB - 2I_m)) = B
$$
\n
$$
\phi(L,x) = det(\pi I_m - (B^TB - 2I_m)) = B
$$
\n**Lemma 8.2.3** = $(x+2)^{m-n} det((x+2)I_n - KI_n - A(G))$
\n**Lemma 8.2.3** = $(x+2)^{m-n} det((x+2+1)I_n - A(G))$
\n $= (x+2)^{m-n} \phi(G, x-k+2)$
\n $= (x+2)^{m-n} \phi(G, x-k+2)$
\n $= h = number of edges$
\n $n = the number of edges$
\n**QED**

Fact: 1 is an eigenvector of a graph G with eigenvalue
$$
R \Leftrightarrow G
$$
 is R -negative

\n2f: (\Rightarrow) let $A = A(G) = [uv]$, $uv = \int_{0}^{1} i \int_{0}^{u} uv \in E_{9}$. Clearly $A \neq a \neq 1 \Rightarrow$ for any $u \in V$

\n1 N(u) = R

Lemma 8.5.1 nm: let G be a R-negulan graph on n-vertices with eigenvalues
\n
$$
\mathbf{R} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{n}
$$
. Then $\mathbf{G} \cdot \mathbf{A} \cdot \mathbf{G} \cdot \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{B} \cdot \mathbf{B} \cdot \mathbf{B} \cdot \mathbf{B} \cdot \mathbf{B}$ is a simple eigenvectors and the eigenvalues
\n $b_f^p \mathbf{G}$ are $\mathbf{n} - \mathbf{R} - \mathbf{i}$, $-1 - \mathbf{A} \cdot \mathbf{n}$.
\n $\mathbf{B} \cdot \mathbf{B} \cdot \mathbf{B}$
\n $\mathbf{B} \cdot \mathbf{B} \cdot \mathbf{B}$
\n $\mathbf{B} \cdot \mathbf{B} \$

21
$$
p_{16}q
$$
 (a) Determine the eigenvalues of K_{5}
\n(b) Find the eigenvalues of L(k_{5})
\n(c) Find the eigenvalues of P = L(k_{5})
\n(d) Find the eigenvalues of P = L(k_{5})
\n(d) Find the eigenvalues of L(P)
\n3. p_{16} ($k_{1.0}$) = $\sum_{k \in V(k_{10})} p(k_{10}x) = \sum_{k \in V(k_{10})} p(k_{21}x) = sp(k_{5}x)$
\n4. p_{16} (k_{10}) = $\sum_{k \in V(k_{11})} p(k_{10}x) = 4 p(k_{1.0}x) = p(k_{1.0}x) = 3 p(k_{1.0}x) = 3 (x^2 - 1)$
\n50 $p(k_{1.0}x) = \int 3(x^2 - 1) dx + det(-A(k_0x)) = [x^2 - 3x + det[\frac{5}{10}, \frac{1}{10}]] = x^2 - 3x - 2 = (x^2)(x+1)^2$
\n6. $p(k_{1.0}x) = \int 4(x^2 - 3x - 2) dx + det(-A(k_0x)) = -3 - 8x - 6x^2 + x^2$
\n7. $p(k_{1.0}x) = \int f(-3 - 8x - 6x^2 + x^2) dx + det(-A(k_0x)) = (x - 8)(x+1)^2$
\n8. $p(k_{10}x) = k_{10}x - k_{11}x + k_{12}x + k_{13}x + k_{14}x + k_{15}x + k_{16}x + k_{17}x + k_{18}x + k_{19}x + k_{10}x + k_{11}x + k_{11}x + k_{12}x + k_{13}x + k_{14}x + k_{15}x + k_{16}x + k_{17}x + k_{18}x + k_{19}x + k_{10}x + k_{11}x + k_{11}x + k_{12}x + k_{13}x + k_{10}x + k_{11}x + k_{11}x + k_{11}x + k_{12}x + k_{13}x + k_{14}x + k_{15}x + k_{16}x + k_{17}x + k_{$

(d) Lemma 8.2.5 p167 sagg + hat
\n
$$
\phi(Lcp), x) = (x+2)^{ecp-ycp} \phi(P, x-3+2)
$$
\n
$$
= (x+2)^{15-10} \phi(P, x-1)
$$
\n
$$
= (x+2)^{15-10} (x+2)^{r} (x-2)^{r} : \phi(p, y) = (x-3)(x+2)^{r} (x-1)
$$
\n
$$
= (x+2)^{15-10} (x+2)^{r} (x+2)^{r}
$$
\nSo Lcp)'s eigenvalues can be found easily!

Ł

Find CharPoly(Line(P))

In(162)= A= ToAdjacencyMatrix[LineGraph [PetersenGraph]]

MatrixForm[A]

ShowLabeledGraph [LineGraph [PetersenGraph] , Background \rightarrow Yellow];

Spectrum [LineGraph [PetersenGraph]]

p = Det[x * IdentityMatrix[15] - A]

Factor_[p]

Out[163]//MatrixForm=

 $O(x[165] = {4, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, -1, -1, -1}$ Out 166)= 4096 + 15360 x + 15360 x² - 8960 x³ - 23040 x⁴ - 4224 x⁵ +
12160 x⁶ + 5280 x⁷ - 3120 x⁸ - 1940 x⁹ + 396 x¹⁰ + 345 x¹¹ - 20 x¹² - 30 x¹³ + x¹⁵

Out[167]= $(-4 + x)$ $(-2 + x)$ ⁵ $(1 + x)$ ⁴ $(2 + x)$ ⁵

