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In this paper, we study the structure of traveling wave solutions of Cellular Neural Networks
of the advanced type. We show the existence of monotone traveling wave, oscillating wave
and eventually periodic wave solutions by using shooting method and comparison principle. In
addition, we obtain the existence of periodic wave train solutions.

1. Introduction

In this paper, we are going to study the structure
of traveling wave solutions of Cellular Neural Net-
works (CNN) which was proposed by Chua and
Yang [1988], sometimes called CY-CNN, and has
been studied by many authors (see [Chua & Roska,
1993; Chua & Yang, 1988; Hsu & Lin, 1998; Juang
& Lin, 1998; Shih, 1998; Thiran et al., 1995]). The
Cellular Neural Networks on Z2 or Z1 without input
terms are of the form

dxi,j
dt

= −xi,j + z +
∑

|k|≤d,|l|≤d
ak,lf(xi+k,j+l)

(i, j) ∈ Z2 (1)

or

dxi
dt

= −xi + z +
∑
|l|≤d

alf(xi+l) i ∈ Z1 . (2)

Here the nonlinearity f is a piecewise-linear func-
tion (e.g. f(x) = (1/2)(|x + 1| − |x − 1|)), and
called the output function. The quantity z is called
threshold or biased term and the numbers ak,l can
be arranged into a (2d+1)×(2d+1) matrix A which
is called a space-invariant template.

The study of traveling wave solutions can pro-
ceed as follows. Let θ ∈ R be given, and consider
solutions of (1) or (2) of the form

xi,j(t) = φ(i cos θ + j sin θ − ct) (3)

or

xi = φ(i− ct) (4)

for some continuous function φ : R1 → R1 and
some unknown real number c. A solution of form
(3) (or (4)) of system (1) (or (2)) is called a trav-
eling wave solution of (1) (or (2)). Denote s =
i cos θ+j sin θ−ct (or s = i−ct). Then φ(s) and c
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satisfies the equation of the form

−cφ′(s) = G(φ(s+ r0), φ(s+ r1), . . . , φ(s+ rN )),

(5)

here r0 = 0, ri are real numbers for i = 1 to N . If
Eq. (5) depends on the past and future, i.e. if

rmin ≡ min{ri}Ni=0 < 0 < rmax ≡ max{ri}Ni=0 , (6)

then (5) is called mixed type. If rmin = 0 or
rmax = 0, then (5) is called advance or delay type,
respectively.

Equation (5) ((1) or (2)) is called bistable if it
has three spatially homogeneous solutions φ(s) ≡
x−, x0, and x+ satisfying x− < x0 < x+ and

G(x, x, . . . , x) > 0 for x ∈ (−∞, x−) ∪ (x0, x+) ,

G(x, x, . . . , x) < 0 for x ∈ (x−, x0) ∪ (x+, ∞) .

Note that if z = 0, f(x) = (1/2)(|x + 1| − |x− 1|),
and

∑
|k|≤d,|l|≤d ak,l > 1 in (1) or

∑
|l|≤d al > 1 in

(2), then (5) is bistable.
Suppose that Eq. (5) is bistable. Recently,

Mallet-Paret [1999] showed that (5) has a unique
monotone solution satisfying the boundary condi-
tions,

lim
s→−∞

φ(s) = x− and lim
s→∞

φ(s) = x+ . (7)

More precisely, it is proved in [Mallet-Paret, 1997]
that under some assumptions, there is a unique c∗

such that (5) has a monotone solution satisfying
(7) iff c = c∗, and such solution is also unique
up to a phase shift if c = c∗ 6= 0. When G is
quasi-monotone and satisfies a set of conditions,
Hsu and Lin [1998] proved that there are a family of
monotone solutions of (5) satisfying the boundary
conditions

lim
s→−∞

φ(s) = x0 and lim
s→∞

φ(s) = x+ . (8)

The method used in [Hsu & Lin, 1998] is a mono-
tone iteration scheme and the results are recalled as
follows

(i) Assume that rmin < 0 < rmax and G satis-
fies certain conditions (see [Hsu & Lin, 1998]).
Then there exists c∗ < 0 such that for any
c < c∗, (5) has a nondecreasing solution sat-
isfying the boundary conditions (8).

(ii) Assume that rmax = 0, then for any c < 0 there
exists a nondecreasing solution of (5) satisfying
the boundary conditions (8).

We point out that (i) above also holds for the
advance case rmin = 0. In the case of advance (or
delay) type, Hsu and Lin [1998] also studied (5)
with the “initial” condition lims→∞ φ(s) = x+ (or
lims→−∞ φ(s) = x−) and proved the local existence.
Indeed, the solution φ(s) of (5) with rmin = 0 and
lims→∞ φ(s) = x+ can be represented as

φ(s) = x+ − γeσ+s − φ̃(s)e2σ
+s for s� 1 , (9)

where σ+ < 0, γ > 0, and φ̃(s) is a bounded and
C1-function.

Our objective in this paper is to study the struc-
ture of traveling wave solutions of one-dimensional
CNN of the advanced type. Namely, we consider
solution φ(s; c) of

−cφ′(s; c) = −φ(s; c) + af(φ(s; c))

+βf(φ(s+ 1; c)) (10)

satisfying

lim
s→∞

φ(s; c) = x+ (11)

for any c < 0, where x+ = a+ β, and f(x) ≡ fε(x)
(ε > 0),

fε(x) =


1 if x ≥ ε ,
x

ε
if |x| ≤ ε ,

−1 if x ≤ −ε ,

(12)

or f(x) ≡ f0(x), f0 is the set-valued function given
by

f0(x) =


{1} if x > 0 ,

[−1, 1] if x = 0 ,

{−1} if x < 0 .

(13)

The following is one of our main results.

Theorem A. Suppose that f = f1, a > 0, β > 0
and a + β > 1. Let x± = ±(a + β), x0 = 0, and
φ(s; c) be the solution of (10) and (11).

(1) Assume that a ≥ 1 + β. There is c∗ =
c∗(a, β) < 0 such that

(i) if c ≤ c∗, then φ(s; c) is nondecreasing and
satisfies (8),

(ii) if c∗ < c < 0, then φ(s; c) is oscillating (see
Definition 2.2) and |φ(s; c)| < 1 for s < 0.
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(2) Assume that a < 1 + β. There exist c∗ =
c∗(a, β), cp = cp(a, β), and c∗ = c∗(a, β) with
c∗ ≤ cp ≤ c∗ < 0 such that

(i) if c ≤ c∗, then φ(s; c) is nondecreasing and
satisfies (8),

(ii) if c∗ < c < cp, then φ(s; c) is oscillating,
(iii) if cp ≤ c < c∗, then φ(s; c) is even-

tually periodic (see Definition 2.2) and
sups<0 |φ(s; c)| > 1,

(iv) if c = c∗ > c∗, then φ(s; c∗) is nondecreas-
ing and satisfies (7),

(v) if c∗ < c < 0, then φ(s; c) is nondecreasing
and unbounded.

Clearly, (10) with f = fε (ε > 0) and that
with f = f1 have the same dynamics. In fact, if
φε(s; c) is a solution of (10) with f = fε, then
φ(s; c) = (1/ε)φε(s; c) is a solution of (10) with
f = f1 and a, β being replaced by a/ε, β/ε. When
f = f0, we have,

Theorem B. Suppose that a > 0, β > 0. Let
φ0(s; c) be the solution of (10) and (11) with f = f0.

(1) Assume that a ≥ β. Then for any c < 0,
φ0(s; c) is nondecreasing and satisfies (8).

(2) Assume that a < β. There exists c∗ < 0 such
that

(i) if c < c∗, then φ0(s; c) is eventually
periodic,

(ii) if c = c∗, then φ0(s; c) is nondecreasing
and satisfies (7),

(iii) if c∗ < c < 0, then φ0(s; c) is nondecreas-
ing and unbounded.

We remark that when f = f0 and a < β,
nondecreasing solutions of (10) satisfying (8) no
longer exist. Roughly, this is due to the fact that
cp(a/ε, β/ε) → −∞ as ε → 0 (see Remark 4.1).
The idealized nonlinearity f = f0 is used in many
problems to provide an insight into the dynamics of
the problems (see [Cahn et al., 1998] and references
therein). Comparing Theorems A and B above, we
see that the dynamics of (10) and (11) with f = f0

carry over most but not all basic features of that
with f = f1.

Note that the eventual periodicity of φ(s; c) in
Theorems A and B is due to the piecewise linearity
and symmetry of f . On reflection, eventually peri-
odic solutions result in periodic solutions of (10)
(such solutions are called periodic traveling wave

or periodic wave train solutions of (3), see Defini-
tion 2.2). Equation (10) has also periodic solutions
with arbitrary small magnitude resulting from the
linear part of the output function.

There has been many studies on traveling wave
solutions of spatially discrete or both spatially and
time discrete systems (see [Afraimovich & Nekorkin,
1994; Hankerson & Zinner, 1993; Keener, 1987;
Mallet-Paret, 1995; Shen, 1996], etc). However,
as far as we know, oscillating traveling wave solu-
tions have been hardly studied in such discrete sys-
tems. Though f in Theorem A is piecewise linear,
we believe that similar results to Theorem A hold
for more general f with bistable properties, that is,
(10) is bistable.

The paper is organized as follows. In Sec. 2,
we introduce definitions and present basic results
of later use. We consider (10) with piecewise-linear
nonlinearity and prove Theorem A and the exis-
tence of eventually periodic and periodic solutions
in Sec. 3. In Sec. 4, we study (10) with the idealized
nonlinearity f = f0 and prove Theorem B.

2. Preliminary Results

In this section, we introduce definitions and present
basic results for later use.

Consider the following one-dimensional CNN
with zero biased term,

dxi
dt

= −xi + af(xi) + βf(xi+1) , i ∈ Z , (14)

where a, β are constants and f is the output func-
tion. We first assume that f = f1, where f1 is
as in (12), and a > 0, β > 0, a + β > 1. Then
(14) has three spatially homogeneous stationary
solutions x− < x0 < x+, where

x+ = a+ β , x0 = 0 , and x− = −a− β , (15)

and is of the bistable type.
Suppose that xi(t) = φ(i − ct; c) is a traveling

wave solution of (14) with φ ∈ C1(R1, R1). Then c
and φ(s; c) satisfy

−cφ′(s; c) = −φ(s; c) + af(φ(s; c))

+βf(φ(s+ 1; c)) . (16)

We investigate basic properties about solutions of
(16) with c < 0 and

lim
s→∞

φ(s; c) = x+ . (17)
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First of all, by direct computation, we have,

Lemma 2.1. For any c < 0,

φ(s; c) = (1− a− β)e
1
c
s + a+ β (18)

is a solution of (16) and (17) for s ∈ [0, ∞).

For the rest of this section, we assume that
c < 0 and φ(s; c) for s ∈ [0, ∞) is given by (18), un-
less specified otherwise. Note that solution φ(s; c)
in (18) has been normalized such that φ(0; c) = 1.
We say φ(s; c) monotone if it is nondecreasing or
nonincreasing.

Lemma 2.2. If there is s0 < 0 such that 1 ≤
φ(s; c) < x+ or x− < φ(s; c) ≤ −1 for s ∈
[s0 − 1, s0], then φ(s; c) is not monotone for s ∈
[s0 − 1, 0] and is periodic for s < 0.

Proof. For simplicity, we denote φ(s; c) by φ(s).

Case 1. 1 ≤ φ(s) < x+ for s ∈ [s0 − 1, s0] and
some s0 < 0.

First, since φ(0) = 1 and φ′(0) = (1/c)(1 − a−
β) > 0, we have φ(−s) < 1 for 0 < s � 1. Hence
φ(s) is not monotone for s ∈ [s0 − 1, 0].

Next, note that

φ′(s0 − 1) =
1

c
(φ(s0 − 1)− a− β) > 0 .

Hence, for any s1 ≤ s0 − 1 with φ(s) ≥ 1 for
s ∈ [s1, s0 − 1],

φ′(s) ≥ 1

c
(φ(s0 − 1)− a− β) > 0 .

This implies that there is s2 ≤ s0 − 1 such that
φ(s2) = 1 and 1 ≤ φ(s) < x+ for s ∈ [s2, s0].

We prove that φ(s) = φ(s− s2) for s ≤ s2. To
do so, let ψ(s) = φ(s− s2). Then

ψ(s2) = φ(s2) , f(ψ(s+ 1)) = f(φ(s+ 1)) = 1

for s ∈ [s2 − 1, s2] . (19)

By (16),

ψ′(s) =
1

c
(ψ(s)− af(ψ(s))− βf(ψ(s+ 1))) , (20)

and

φ′(s) =
1

c
(φ(s)− af(φ(s))− βf(φ(s+ 1))) . (21)

Following from (19)–(21), we have

φ(s) = ψ(s) for s ∈ [s2 − 1, s2] . (22)

Now, by (22),

ψ(s2 − 1) = φ(s2 − 1) ,

f(ψ(s+ 1)) = f(φ(s+ 1)) ,

s ∈ [s2 − 2, s2 − 1] . (23)

Then following from (20), (21), and (23),

φ(s) = ψ(s) for s ∈ [s2 − 2, s2 − 1] . (24)

Continuing this process, we have φ(s) = ψ(s) =
φ(s−s2) for s ≤ s2. Therefore φ(s) is periodic with
period ω = −s2 for s < 0.

Case 2. x− < φ(s) ≤ −1 for s ∈ [s0 − 1, s0] and
some s0 < 0.

Since φ′(0) = (1/c)(1 − a − β) > 0 and
φ′(s0 − 1) = (1/c)(φ(s0 − 1) + a + β) < 0, φ(s)
is not a monotone for s ∈ [s0 − 1, 0]. Moreover,
there is s2 < s0 − 1 such that

φ(s2) = −1 and x− < φ(s) ≤ −1

for s ∈ [s2, s0] . (25)

Let ψ(s) = −φ(s− s2). Then we have

φ(s2) = ψ(s2) and f(ψ(s+ 1)) = f(φ(s+ 1))

for s ∈ [s2 − 1, s2] (26)

and ψ(s), φ(s) satisfy (20) and (21) respectively.
By similar arguments as in Case 1, φ(s) = ψ(s) for
all s ≤ s2. This implies that φ(s) = φ(s − 2s2) for
s ≤ 2s2, that is, φ(s) is periodic for period ω = −2s2
for s ≤ 0. �

Lemma 2.3. Suppose that there is s∗ < 0 such that
φ(s∗; c) = x−, and φ(s; c) > x− and is monotone
for s > s∗. Then s∗ ≥ s∗ − 1, where s∗ > s∗ is
such that φ(s∗; c) = −1. Moreover, φ(s; c) = x−

for s ≤ s∗ if s∗ = s∗ − 1, and φ(s; c) is monotone
and unbounded if s∗ > s∗ − 1.

Proof. For simplicity, we denote φ(s; c) by φ(s).
First, note that x− < φ(s) ≤ −1 for s∗ < s <

s∗. If s∗ < s∗ − 1, then by Lemma 2.2, φ(s) is
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not a monotone on (s∗, 0), a contradiction. Hence,
s∗ ≥ s∗ − 1.

Now, clearly, #{s > s∗|φ′(s) = 0} <∞. Hence
if s∗ > s∗ − 1, then

φ′(s∗)=
1

c
(x−+a−βf(φ(s∗+1))>

1

c
(x−+a+β)=0 .

This implies that

φ′(s) =
1

c
(φ(s)− af(φ(s)− βf(φ(s+ 1)))

≥ 1

c
(φ(s) + a+ β) >

1

c
(x− + a+ β) = 0

for all s ≥ s∗. Therefore, φ(s) is monotone and un-
bounded for s < 0. If s∗ = s∗− 1, then it is easy to
see that

φ(s) = x− for s ≤ s∗ . �

Lemma 2.4. If there is s0 < 0 such that φ(s; c) is
not a monotone for s0 < s < 0, then φ(s; c) lies in
(x−, x+) for all s ≤ 0.

Proof. For simplicity again, we denote φ(s; c) by
φ(s).

Clearly, φ(s) is increasing for s ∈ [−δ, 0] with
0 < δ � 1. Therefore, there is s1 with s0 < s1 < 0
such that φ(s) is nondecreasing for s ∈ [s1, 0], but
is not monotone for s ∈ (s1 − δ, s1 + δ) with any
δ > 0.

We first claim that x− < φ(s1) < 0. In fact, if
φ(s1) ≥ 0, then #{s ∈ [s1, 0]|φ′(s) = 0} < ∞, and
hence

0 = φ′(s1) =
1

c
((1− a)φ(s1)− βf(φ(s1 + 1)))

>
1

c
((1− a)φ(s1)− βφ(s1)) ≥ 0 ,

a contradiction. If φ(s1) ≤ x−, then there is
s1 ≤ s∗ < s∗ such that φ(s∗) = x−, φ(s∗) = −1,
and φ(s) > x− for s > s∗. By Lemma 2.3, φ(s) is
monotone for s < 0, a contradiction again.

Therefore, we must have x− < φ(s1) < 0. It
then follows that

x− < φ(s1) ≤ φ(s) < 1 for s1 ≤ s < 0 , (27)

and
S = {s ∈ (s1 − δ, 0)|φ′(s) = 0}

is a finite set for any 0 < δ � 1. Hence, φ(s1) must
be a nontrivial local minimum.

Next we prove that

φ(s1) ≤ φ(s) ≤ −φ(s1) for s < s1 . (28)

To do so, let s̃1 > s1 be such that φ(s̃1) = −φ(s1),
and s2 < s1 < s̃2 < s̃1 be such that φ(s2) = φ(s̃2) >
φ(s1) and φ(s) is decreasing for s2 < s < s1. Hence

φ(s1) ≤ φ(s) ≤ −φ(s1) for s2 ≤ s < s1 . (29)

Let s̄ = min{1, s̃1− s1, s̃2− s2}, and define ψ(s) by

ψ(s) = −φ(s) for s ∈ R .

Then we have

φ(s) ≥ ψ(s+ s̃1 − s1) for s ≥ s1 , (30)

and

φ(s) ≤ φ(s+ s̃2 − s2) for s ≥ s2 . (31)

We claim that

φ(s) ≤ ψ(s+ s̃1 − s1) ≤ −φ(s1)

for s1 −s ≤ s ≤ s1 , (32)

and

φ(s) ≥ φ(s+ s̃2 − s2) ≥ φ(s1)

for s2 −s ≤ s ≤ s2 . (33)

In fact, let η1(s) = φ(s), η2(s) = ψ(s+ s̃1−s1), and
η3(s) = φ(s+ s̃2 − s2). By (16),

η̇1(s) =
1

c
(η1(s)− af(η1(s))− βf(φ(s+ 1))) , (34)

η̇2(s) =
1

c
(η2(s)− af(η2(s))

−βf(ψ(s+ 1 + s̃1 − s1))) , (35)

and

η̇3(s) =
1

c
(η3(s)− af(η3(s))

−βf(φ(s+ 1 + s̃2 − s2))) . (36)

Note that η1(s1) = η2(s1), η1(s2) = η3(s2), and by
(30) and (31),

−β
c
f(φ(s+ 1)) ≥ −β

c
f(ψ(s+ 1 + s̃1 − s1))

for s ≥ s1 −s ,

−β
c
f(φ(s+ 1)) ≤ −β

c
f(φ(s+ 1 + s̃2 − s2))

for s ≥ s2 −s .
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Then following from the comparison arguments for
scalar ODE’s, we have

η1(s) ≤ η2(s) ≤ −φ(s1) for s1 −s ≤ s ≤ s1

and

η1(s) ≥ η3(s) ≥ φ(s1) for s2 −s ≤ s ≤ s2 ,

that is, (32) and (33) hold.
By (32) and (33), there are s̃3 ∈ [s̃1−s, ∞) and

s̃4 ∈ [s̃2 −s, ∞) such that

φ(s1 −s) = ψ(s̃3) , φ(s2 −s) = φ(s̃4) .

We claim that

φ(s) ≥ ψ(s+ s̃3 − s1 +s) for s ≥ s1 −s , (37)

φ(s) ≤ φ(s+ s̃4 − s2 +s) for s ≥ s2 −s , (38)

and

φ(s) ≤ ψ(s+ s̃3 − s1 +s)

≤ −φ(s1) for s1 − 2s ≤ s ≤ s1 −s , (39)

φ(s) ≥ φ(s+ s̃4 − s2 +s)

≥ φ(s1) for s2 − 2s ≤ s ≤ s2 −s . (40)

In fact, let η4(s) = ψ(s + s̃3 − s1 +s) and η5(s) =
φ(s+ s̃4 − s2 +s). Then

η′4(s) =
1

c
(η4(s)− af(η4(s))

−βf(ψ(s+ 1 + s̃3 − s1 +s))) , (41)

and

η′5(s) =
1

c
(η5(s)− af(η5(s))

−βf(ψ(s+ 1 + s̃4 − s2 +s))) . (42)

Note that η4(s1 −s) = φ(s1 −s) and η5(s2 −s) =
φ(s2−s). Since s̃3 ≥ s̃1−s and s̃4 ≥ s̃2−s, by (30)
and (31), there hold

−β
c
f(φ(s+ 1)) ≥ −β

c
f(ψ(s+ 1 + s̃3 − s1 +s))

for s ≥ s1 −s (43)

and

−β
c
f(φ(s+ 1)) ≤ −β

c
f(φ(s+ 1 + s̃4 − s2 +s))

for s ≥ s2 −s . (44)

Following from the comparison arguments for scalar
ODE’s again, we have

η1(s) ≥ η4(s) for s ≥ s1 −s

and

η1(s) ≤ η5(s) for s ≥ s2 −s ,

that is, (37) and (38) hold. Now (39) and (40) fol-
low from the similar arguments to (32) and (33).

Continuing the above process, we have

φ(s) ≤ −φ(s1) for s ≤ s1 (45)

and

φ(s) ≥ φ(s1) for s ≤ s2 . (46)

Equation (28) then follows from (29), (45) and (46),
and the lemma follows from (27) and (28). �

Corollary 2.5.

(1) If φ(s∗; c) = x− for some s∗ < 0, then φ(s; c)
is monotone.

(2) lims→−∞ φ(s; c) = x− iff there is s∗ < 0 such
that φ(s; c) = x− for s ≤ s∗.

(3) If φ(s; c) is not monotone for s < 0, then
φ(s; c) is bounded and either φ(s; c) is not
monotone for s ∈ (−∞, s0) with any s0 < 0,
or |φ(s; c)| ≤ 1 for s� −1.

Proof. It directly follows from Lemmas 2.2–2.4. �

Lemma 2.6. If |φ(s; c)| ≤ 1 for s � −1 and
−cσ = −1 + a + βeσ has no positive roots σ, then
φ(s; c) is not monotone for s ∈ (−∞, s0) with any
s0 < 0 and #{s|φ(s; c) = 0, s < 0} =∞.

Proof. See [Gyori & Ladas, 1991]. �

Lemma 2.7. Suppose that a < 1 + β. If there is
c∗ < 0 such that lims→−∞ φ(s; c∗) = x−, then x− <
φ(s; c) < x+ for any s < 0 and c < c∗, and φ(s; c)
is nondecreasing and unbounded for c∗ < c < 0.

Proof. First of all, by Corollary 2.5, φ(s; c∗) is
monotone and there is s∗ < 0 such that φ(s; c∗) =
x− for s ≤ s∗.

Case 1. Suppose that c∗ < c < 0. We shall prove
φ(s; c) is unbounded. Clearly, it suffices to prove
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φ(s; c) < x− for some s < 0. Let s0 = 0. By
Lemma 2.1,

φ(s; c) > φ(s; c∗) for s > s0 . (47)

We claim that

φ(s; c) < φ(s; c∗) for s0 − 1 ≤ s < s0 . (48)

Note that φ(0; c) = φ(0, c∗) = 1 and

φ′(0; c) =
1

c
(1− a−β) >

1

c∗
(1− a−β) = φ′(0; c∗) .

Hence, if (48) does not hold, then there is s0 − 1 ≤
s̃ < s0 such that φ(s; c) < φ(s; c∗) for s̃ < s <
s0 and φ(s̃; c) = φ(s̃; c∗). Therefore, φ′(s̃; c) ≤
φ′(s̃; c∗). Since f(φ(s̃+ 1; c)) = f(φ(s̃+ 1; c∗)) = 1
and a < 1 + β, we have

φ(s̃; c)− af(φ(s̃; c)) − βf(φ(s̃+ 1; c))

= φ(s̃; c∗)− af(φ(s̃; c∗))− βf(φ(s̃+ 1; c∗))

< 0 .

Hence,

φ′(s̃; c)=
1

c
(φ(s̃; c)−af(φ(s̃; c))−βf(φ(s̃+1; c)))

>
1

c∗
(φ(s̃; c∗)−af(φ(s̃; c∗))

−βf(φ(s̃+1; c∗)))

=φ′(s̃; c∗) ,

a contradiction. Therefore, (48) holds.
Now if φ(s0−1; c∗) = x−, then φ(s0−1; c) < x−

and the lemma follows. Otherwise, let s1 = s0 − 1
and s0 − 1 < s1 < s0 be such that φ(s1; c) =
φ(s1; c

∗). We claim that

φ′(s1; c) > φ′(s1; c∗) , (49)

φ(s− s1 +s1; c) > φ(s; c∗) for s > s1 , (50)

and

φ(s− s1 +s1; c) < φ(s; c∗) for s1 − 1 ≤ s < s1 .

(51)

In fact, −1 < f(φ(s1 + 1; c∗)) ≤ 1. If f(φ(s1 + 1;
c∗)) = 1, then by (47),

φ(s1; c)− af(φ(s1; c))− βf(φ(s1 + 1; c))

≤ φ(s1; c
∗)− af(φ(s1; c

∗))− βf(φ(s1 + 1; c∗))

< 0 ,

which implies (49). If −1 < f(φ(s1 + 1; c∗)) < 1,
then by (47),

φ(s1; c)− af(φ(s1; c))− βf(φ(s1 + 1; c))

< φ(s1; c
∗)− af(φ(s1; c

∗))− βf(φ(s1 + 1; c∗))

≤ 0 ,

which also implies (49). Hence, (49) holds.
If (50) does not hold, by (49), there is s̃ > s1

such that φ(s − s1 + s1; c) > φ(s; c∗) for s1 <
s < s̃ and φ(s̃ − s1 + s1; c) = φ(s̃; c∗). Then
φ′(s̃−s1+s1; c) ≤ φ′(s̃; c∗). But by the similar argu-
ments to (49), we have φ′(s̃− s1 +s1; c) > φ′(s̃; c∗),
a contradiction. Hence (50) holds.

Similarly, if (51) does not hold, then there is
s1−1 ≤ s̃ < s1 such that φ(s−s1 +s1; c) < φ(s; c∗)
for s̃ < s < s1 and φ(s̃ − s1 + s1; c) = φ(s̃; c∗).
Hence, φ′(s̃ − s1 + s1; c) ≤ φ′(s̃; c∗). But, by
(50) and the similar arguments to (49), we have
φ′(s̃−s1+s1; c) > φ′(s̃; c∗), a contradiction. Hence,
(51) also holds.

Again, if φ(s1 − 1; c∗) = x−, then φ(s1 −
1; c) < x− and the lemma follows. Otherwise, let
s2 = s1 − 1 and s1 − 1 < s2 < s1 be such that
φ(s− s2 +s2− s1 +s1; c) = φ(s2; c

∗). Using similar
arguments as above, we have

φ(s− s2 +s2 − s1 +s1; c) > φ(s; c∗) for s > s2 ,

and

φ(s− s2 +s2 − s1 +s1; c) < φ(s; c∗)

for s2 − 1 ≤ s < s2 .

Continuing the above process, there is s̃ such
that φ(s̃; c) < x− = φ(s∗; c∗) and then the lemma
follows.

Case 2. Suppose that c < c∗. If there is s̃ such
that φ(s̃; c) = x−, by Corollary 2.5, φ(s; c) is mono-
tone. Then by the similar arguments as in Case 1,
there is s̃∗ such that φ(s̃∗; c∗) < x−, a contradic-
tion. Therefore, φ(s; c) > x− for s < 0. By the
arguments of Lemma 2.4, x− < φ(s; c) < x+ for
s < 0. �

Corollary 2.8. Suppose that a < 1+β. Then there
is at most one c∗ < 0 such that lims→−∞ φ(s; c∗) =
x−.

Now we consider (14) and (16) with f = f0,
where f0 is as in (13).
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Definition 2.1. Suppose that f = f0. Then φ(s; c)
is called a solution of (16) if it is absolutely contin-
uous and satisfies the differential inclusion,

−cφ′(s; c)∈−φ(s; c)+af(φ(s; c))+βf(φ(s+1; c))

for almost all s ∈ R.

We end up this section with the following clas-
sification of bounded solutions of (16).

Definition 2.2.

(i) A bounded solution φ(s; c) of (16) and (17) is
called oscillating if φ(s; c) is not monotone for
s ∈ (−∞, s0) with any s0 < 0. If φ(s; c) is os-
cillating, then xi(t) = φ(i− ct; c) is said to be
an oscillating traveling wave solution of (14).

(ii) An oscillating traveling wave xi(t) = φ(i −
ct; c) of (14) is called eventually periodic if
there exists s0 in R1 such that φ(s; c) is pe-
riodic for s ≤ s0.

(iii) If a solution φ(s; c) of (16) is periodic, then
xi(t) = φ(i−ct; c) is called periodic wave train
solution of (14).

3. Traveling Waves in CNN with
Piecewise-Linear Output

In this section, we study (14) with piecewise-linear
output and prove Theorem A and the existence
of eventually periodic and periodic traveling wave
solutions. We therefore first consider (16) with
f = f1, and assume that a > 0, β > 0, a + β > 1,
and φ(s; c) is the solution of (16) given by (18) for
s ≥ 0, unless specified otherwise. Then we have

Theorem 3.1.

(1) Suppose that a ≥ 1 + β. There is c∗ < 0 such
that

(i) if c ≤ c∗, then φ(s; c) is nondecreasing and
lims→−∞ φ(s; c) = 0,

(ii) if c∗ < c < 0, then φ(s; c) is oscillating and
|φ(s; c)| < 1 for s < 0.

(2) Suppose that a < 1 + β. There are c∗, cp, and
c∗ with c∗ ≤ cp ≤ c∗ < 0 such that

(i) if c ≤ c∗, then φ(s; c) is nondecreasing and
lims→−∞ φ(s; c) = 0,

(ii) if c∗ < c < cp, then φ(s; c) is oscillating,
(iii) if cp ≤ c < c∗, then φ(s; c) is eventually

periodic and sups<0 |φ(s; c)| > 1,

(iv) if c = c∗ > c∗, then φ(s; c) is nonde-
creasing and there is s∗ < 0 such that
φ(s; c) = x− for s ≤ s∗,

(v) if c∗ < c < 0, then φ(s; c) is nondecreasing
and unbounded.

Note that Theorem A follows from Theo-
rem 3.1. To prove Theorem 3.1, we show the fol-
lowing lemmas first.

Lemma 3.2. There is c∗ < 0 such that for any c ≤
c∗, φ(s; c) is nondecreasing and lims→−∞ φ(s; c) =
0, and for any c > c∗, −cσ = −1 + a+ βeσ has no
positive roots σ.

Proof. See [Hsu & Lin, 1998]. �

Lemma 3.3. Suppose that a < 1 + β. Then there
is c0 < 0 such that φ(s; c) satisfies

φ(s∗; c) = −1 ,

φ(s; c) > −1 is monotone for s > s∗
(52)

with some s∗ ≥ −1 iff c ≥ c0. Moreover, if a 6= 1,
then

c0 = (a− 1) ·
{

ln
1− a+ β

a+ β − 1

}−1

, (53)

and if a = 1, then

c0 =
−β
2
. (54)

Proof. We prove the case that a 6= 1. First, for any
s∗ ≥ −1 satisfying (52), we have

φ′(s; c) =
1

c
(φ(s; c)− aφ(s; c)− β) for s ∈ [s∗, 0]

and then

φ(s; c) =

(
(1− a− β)

1− a

)
e

1
c
(1−a)s +

β

1− a
for s ∈ [s∗, 0]. If φ(s∗; c) = −1, we must have

s∗ = − c

c0
,

where c0 is as in (53). The lemma then follows. �

Lemma 3.4. Suppose that a < 1 + β. Let

c̃ =

{
1

c0
− ln

2β

1− a+ β

}−1

. (55)

Then φ(−1; c̃) = x−.
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Proof. By Lemma 3.3, for any c0 ≤ c < 0, there is
s∗ ≥ −1 satisfying (52). Therefore, if c0 ≤ c < 0,

φ′(s; c) =
1

c
{φ(s; c) + a− β} for s ∈ [−1, s∗] .

It then follows that

φ(s; c) = (a−1−β)e
1
c
(s−s∗)−a+β for s ∈ [−1, s∗] .

Let c̃ be as in (57). Clearly, φ(−1; c̃) = x−. �

Lemma 3.5. Suppose that a ≥ 1 + β. Then
−1 < φ(s; c) < 1 for any c < 0 and s < 0.

Proof. First, consider

ψ̇(s; c) =
1

c
(ψ(s; c)− aψ(s; c)− β) for s ≤ 0

with ψ(0; c) = 1. We have

ψ(s; c) =
1− a− β

1− a e
1−a
c
s +

β

1− a .

Hence, ψ′(s; c) > 0 for any s ≤ 0, and then

−1 ≤ β

1− a < ψ(s; c) < 1 for s < 0 .

This implies that

−1 < ψ(s; c) = φ(s; c) < 1 for − 1 ≤ s < 0 .

Next, if there is some s2 ∈ [−2, −1) such that
φ(s2; c) = −1 and φ(s; c) > −1 for s ∈ (s2, −1],
then

0 ≤ φ′(s2; c) =
1

c
(a− 1)− β

c
f(φ(s2 + 1; c))

<
1

c
(a− 1)− β

c
≤ 0 ,

a contradiction. If there is some s2 ∈ [−2, −1) such
that φ(s2; c) = 1 and φ(s; c) < 1 for s ∈ (s2, −1],
then

0 ≥ φ′(s2) =
1

c
(1− a)− β

c
f(φ(s2 + 1; c))

>
1

c
(1− a) +

β

c
≥ 0 ,

a contradiction again. Therefore, we must have
φ(s; c) ∈ (−1, 1) for s ∈ [−2, −1].

Continuing the above process, we have that
φ(s; c) ∈ (−1, 1) for s < 0. �

Proof of Theorem 3.1. Let c∗ ≤ 0 be as in
Lemma 3.2.

(1) (i) follows from Lemma 3.2, and (ii) follows
from Lemmas 2.6, 3.2 and 3.5.

(2) Let

C = {c| for any c < c < 0, φ(s; c)

is unbounded} .
By Lemmas 3.3 and 3.4, C 6= ∅. Define c∗ by

c∗ = inf{c|c ∈ C} . (56)

Clearly, c∗ ≤ c∗ < 0, and φ(s; c∗) is bounded and
monotone.

Case 1. c∗ = c∗. Let cp = c∗. Then (i) follows
from Lemma 3.2, and (ii)–(v) follow from the defi-
nitions of c∗ and cp.

Case 2. c∗ > c∗. By Lemmas 2.2, 2.3, 2.6 and 3.2,
we must have φ(s; c∗) = x− for s ≤ s∗ and some
s∗ < 0, and (iv) then follows. Again, (i) follows
from Lemma 3.2 and (v) follows from the definition
of c∗. Let

Cp = {c|x− < φ(s; c) ≤ −1 for c ≤ c < c∗

and s∗ − 1 ≤ s ≤ s∗} ,
where s∗ = s∗(c) < 0 is such that φ(s∗; c) = −1,
and φ(s; c) > −1 for s > s∗. By Lemma 2.7,
Cp 6= ∅. Define cp by

cp = inf{c|c ∈ Cp} . (57)

Then (ii) follows from Corollary 2.5 and Lem-
mas 2.6, 2.7, and 3.2. (iii) follows from Lemma 2.2.

�

Remark 3.1. If c∗ > c∗, then c∗ ≤ cp < c∗.

Proposition 3.6. If 1 ≤ a < 1 + β, then c∗ < c∗,
where c∗, c∗ are as in Theorem 3.1(2). Moreover, if
(5/4) ≤ a < 1 + β, then cp ≤ c0, where c0 is as in
Lemma 3.3, and cp is as in (57).

Proof. First, we assume that 1 ≤ a < 1 + β and
prove c∗ < c∗. Clearly, it is suffice to prove that
φ(s; c) is oscillating for c > c∗ with c − c∗ � 1.
Note that for any c∗ < c < 0, {s < 0|φ(s; c) = 0}
is not empty. For otherwise, we have φ′(s; c) =
(1/c)((1− a)φ(s; c)− βf(φ(s+ 1; c)) > 0 for s < 0
and then 0 < φ(s; c) < 1 for s < 0. By Lemmas 2.6
and 3.2, #{s < 0|φ(s; c) = 0} = ∞, a contradic-
tion. For given c∗ < c < 0, let s0 < 0 be such that
φ(s0; c) = 0 and φ(s; c) > 0 for s > s0. Then

φ′(s0; c) > 0, φ(s; c) < 0 for s < s0, s0 − s� 1 .

(58)



1316 C.-H. Hsu et al.

Since lims→−∞ φ(s; c∗) = 0, we have φ(s0 − 1; c) >
−1 provided that c∗ < c and c − c∗ � 1. Now if
φ(s0 − 1; c) ≥ 0, by (58), φ(s; c) is not monotone
for s < 0. If φ(s0 − 1; c) < 0, then φ′(s0 − 1; c) =
(1/c)(1− a)φ(s0 − 1; c) < 0. By (58) again, φ(s; c)
is also not monotone for s < 0. Therefore, following
from Corollary 2.5 and Lemmas 2.6, 3.2, φ(s; c) is
oscillating for c > c∗ with c − c∗ � 1, and then
c∗ < c∗.

Next, we assume that (5/4) ≤ a < 1 + β and
prove cp ≤ c0. By Lemma 3.3, for any c0 ≤ c < c∗,
there is s∗ ≥ −1 such that φ(s∗; c) = −1 and
φ(s; c) > −1 for s > s∗. Then by Lemma 2.2,
it is suffice to prove that x− < φ(s; c) ≤ −1 for
s ∈ [s∗ − 1, s∗]. By direct computation, for any
c0 ≤ c < 0,

φ(s; c) =

(
1− a− β

1− a

)
e

1−a
c
s+

β

1− a , s∗ ≤ s ≤ 0 ,

and

φ(s; c) = (a−1−β)e
1
c
(s−s∗)−a+β , −1 ≤ s ≤ s∗ .

Consider

ψ′(s; c) =
1

c

(
ψ(s; c) + a− β

(
1− a− β

1− a

)
e

1−a
c

(s+1)

− β2

1− a

)
, s∗ − 1 ≤ s ≤ −1

with ψ(−1; c) = φ(−1; c). Then

ψ(s; c) =

(
φ(−1; c) + a− β2

1− a

)
e

1
c
(s+1)

+
β(1− a− β)

a(1− a) e
1
c
(s+1)(e−

a
c
(s+1) − 1)

− a+
β2

1− a .

Hence,

ψ(s∗ − 1; c) =

(
φ(−1; c) + a− β2

1− a

)
e

1
c
s∗

+
β(1− a− β)

a(1− a) e
1
c
s∗(e−

a
c
s∗ − 1)

− a+
β2

1− a .

Note that e
1−a
c
s∗ = ((a − 1 − β)/(1 − a − β)) and

s∗/c = (1/(1−a)) ln((a−1−β)/(1−a−β)). Then it

is not difficult to see that φ(−1; c) and ψ(s∗− 1; c)
are decreasing as c increases for c0 ≤ c < 0. Clearly,
φ(s; c) ≤ −1 for s ∈ [s∗ − 1, s∗] iff ψ(s; c) ≤ −1 for
s ∈ [s∗−1, −1], and ψ(s; c) ≤ −1 for s ∈ [s∗−1, −1]
iff ψ(s∗ − 1; c) ≤ −1.

Observe that ψ(s∗ − 1; c0) ≤ −1 iff

− 1

c0
≥ ln

−1 + a+
β(β + 1)

a
− β

a
(a+ β − 1)e

− 1
c0

a− 1− β ,

which is equivalent to H(a, β) ≥ e
1
c0 , where

H(a, β) =
a− a2 + β − β2

a− a2 − β − β2
.

Let H(a, β) ≡ H(a, β) − e
1
c0 . Then for any fixed

a > 1, we have

lim
β→∞

H(a, β) = 0 , and lim
β→a−1

H(a, β) =
a− 1

a
.

(59)

By an elementary computation, if H(a, β) has a
critical point at some β0, then

H(a, β0) = a(a− 1)2 + β2
0a(4a− 5) . (60)

Then by (59) and (60), when (5/4) ≤ a < 1 + β,

H(a, β) ≥ 0 (i.e. H(a, β) ≥ e
1
c0 ), and hence cp ≤

c0. �

Corollary 3.7. Suppose that a < 1+β. Let cp and
c∗ be as in Theorem 3.1(2). Then for any cp ≤ c <
c∗, φ̃(s; c) is a periodic solution of (16) with period
ω(c), where φ̃(s; c) = φ(s; c) for s ≤ 0, φ̃(s; c) =
φ(s − (k + 1)ω(c); c) for s ∈ [kω(c), (k + 1)ω(c)],
k = 0, 1, 2, . . . , and ω(c) is the period of φ(s; c) for
s < 0.

We point out that the eventually periodic and
periodic solutions of (16) in Theorem 3.1(2)(iii) and
Corollary 3.7 are mainly due to the piecewise linear-
ity and symmetry of the output function f . Equa-
tion (16) has also periodic solutions with arbitrary
small magnitude resulting from the linear part of
the output function. In fact, we have

Theorem 3.8. Suppose that a < 1 + β. Let ν0 ∈
[0, π] be such that

cos ν0 =
1− a
β

,
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and νk and ck be defined by

νk = ν0 + 2kπ and ck =
−β sin νk

νk
.

Then the functions φk,l(s) defined by

φk,l(s) = l · cos νks with |l| ≤ 1

for k ∈ Z are periodic solutions of (16).

Proof. Suppose that iν0 with ν0 ∈ [0, π] is the root
of the characteristic equation of (16) about φ = x0,
that is, ∆(iν0, c, x

0) = 0, where

∆(σ, c, x0) = −cσ + 1− a− βeσ .

Then

cos ν0 =
1− a
β

and c =
−β sin ν0

ν0

Hence, ∆(iνk, ck, x
0) = 0 for all k ∈ Z and the

result follows. �

As mentioned, (16) and (17) with f = fε
(ε > 0) and f = f1 have same dynamics. Moreover,
denote c∗(a, β) cp(a, β), and c∗(a, β) as c∗, cp, and
c∗ in Theorem 3.1, respectively. By Theorem 3.1
and Proposition 3.6, we have

Theorem 3.9. Let a > 0 and β > 0 be fixed,
and c∗(ε) = c∗(a/ε, β/ε), cp(ε) = cp(a/ε, β/ε),
c∗(ε) = c∗(a/ε, β/ε). Suppose that φε(s; c) is the
solution of (16) and (17) with f = fε. There is
ε0 = ε0(a, β) > 0 such that for any 0 < ε < ε0, the
following holds.

(1) Suppose a > β. Then

(i) if c ≤ c∗, then φε(s; c) is nondecreasing and
satisfying (8),

(ii) if c∗ < c < 0, then φε(s; c) is oscillating
and |φε(s; c)| < ε for s < 0.

(2) Suppose a ≤ β. Then

(i) if c ≤ c∗, then φε(s; c) is nondecreasing
and satisfies (8),

(ii) if c∗ < c < cp, then φε(s; c) is oscillating,
(iii) if cp ≤ c < c∗, then φε(s; c) is eventually

periodic and sups<0 |φε(s; c)| > ε,
(iv) if c = c∗, then φε(s; c

∗) is nondecreasing
and there exists s∗ such that φε(s; c

∗) = x−

for all s ≤ s∗,

(v) if c∗ < c < 0, then φ(s; c) is nondecreasing
and unbounded.

Remark 3.2. By Proposition 3.6, c∗(a/ε, β/ε) ≤
cp(a/ε, β/ε)→ −∞ as ε→ 0.

4. Traveling Waves in CNN with
Idealized Output

In this section, we shall prove Theorem B stated in
the introduction. We therefore consider (16) and
(17) with f = f0. Assume that a > 0 and β > 0.
Denote φ0(s; c) as the solution of (16) and (17) with
f = f0.

Theorem 4.1.

(1) Suppose a ≥ β. Then for any c < 0, φ0(s; c)
is nondecreasing and there is s0 < 0 such that
φ0(s; c) = 0 for s ≤ s0.

(2) Suppose a < β. Then there is c∗ < 0 such that

(i) if c < c∗, then φ0(s; c) is eventually peri-
odic,

(ii) if c = c∗, then φ0(s; c) is nondecreasing
and there is s∗ < 0 such that φ(s; c) = x−

for s ≤ s∗,
(iii) if c∗ < c < 0, then φ0(s; c) is nondecreas-

ing and unbounded.

Remark 4.1. Theorem 4.1(1) and (2) can be viewed
as the limit analogue of Theorem 3.9(1) and (2) as
ε → 0, respectively. Note that when a > β, oscil-
lating solutions no longer exist due to the fact that
|φε(s; c)| < ε for s < 0. When a < β, nondecreasing
solutions satisfying (8) no longer exist and oscillat-
ing solutions are eventually periodic due to the fact
that cp(a/ε, β/ε) → −∞ as ε → 0. It should be
pointed out that when a = β, the dynamics is sim-
ilar to the case that a > β.

Proof of Theorem 4.1. First of all, we may assume
that a+β > 1. For otherwise, let k > 1/(a+β) and
ψ(s; c) = kφ0(s; c). Then ψ satisfies (16) and (17)
with f = f0 and a and β being replaced by ka and
kβ, respectively. Hence we may also assume that
φ0(0; c) = 1.

(1) Suppose that a ≥ β. For any c < 0, consider

ψ′(s) =
1

c
(ψ(s) − a− β)



1318 C.-H. Hsu et al.

with ψ(0) = 1. Then

ψ(s) = (1− a− β)e
1
c
s + a+ β . (61)

Let s01 < 0 be such that ψ(s01) = 0, and

φ0(s; c) =

{
ψ(s), s ≥ s01 ,
0, s < s01 .

Since a ≥ β, φ0(s; c) is the solution of (16) and
(17) (see Definition 2.1).

(2) Suppose that a < β. Let ψ(s) be as in (61)
and s01 < 0 be such that ψ(s01) = 0. Then
s01 = c(ln(a+ β)/(−1 + a+ β)), and

φ0(s; c) =



(1− a− β)e
1
c
s + a+ β

for s ≥ s01 ,

(a− β)e
1
c
(s−s01) − a+ β

for s01 − 1 ≤ s ≤ s01 .

(62)

Let

c∗ =

(
ln
β − a
2β

)−1

. (63)

By (62), we have

φ0(s
0
1 − 1; c∗) = x−,

and

φ0(s
0
1 − 1; c) < x− for c∗ < c < 0 .

It then follows that

φ0(s; c
∗) = x− for s ≤ s01 − 1 ,

and

φ0(s; c) = (φ(s01 − 1; c)

+ a+ β)e
1
c
(s−s01+1) − a− β

for s ≤ s01 − 1 , c∗ < c < 0 .

Therefore, (ii) and (iii) hold.

If c < c∗, we may assume that φ0(s
0
2; c) = 0 for

some s02 < s01 − 1 and φ0(s; c) satisfies

−cφ′0(s; c) = −φ0(s; c) + a− β
for s ∈ [s02 − 1, s02] . (64)

By (62) and (64), we have

φ0(s; c) = −φ0(s− s02 + s01; c)

for s ∈ [s02 − 1, s02] . (65)

Then by (65), we have

φ0(s; c) = −φ0(s− s02 + s01; c)

for s ∈ [s02 − 2, s02 − 1] . (66)

Continuing this process, we have that

φ0(s; c) = −φ0(s− s02 + s01; c)

= φ0(s− 2(s01 − s02); c) for s ≤ 2s02 − s01 .
(67)

Hence, φ0(s; c) is a periodic function for s ≤ s01 with
period 2(s01 − s02). �

Remark 4.2. Suppose that a < β. Let c∗ be
as in Theorem 4.1(2) and ω(c) be the period of
the eventually periodic solution φ(s; c) in Theo-
rem 4.1(2)(ii). Then by an elementary computa-
tion, we have

ω0(c) = 2(s01 − s02)

= ω0(c) = 2

(
1− c · ln a+ β

2β + (a− β)e
−1
c

)
,

and

lim
c→c∗

ω0(c) =∞ and lim
c→−∞

ω0(c) =
4β

a+ β
.
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