Chapter 4

Vector Calculus

4.1 The Line Integrals

4.1.1 Curves

Definition 4.1. A subset C' € R" is called a curveif C is the image of an interval I € R
under the continuous map 7 : I — R (that is, €' = ~v(I)). The continuous map v : I — R"
is called a parametrization of the curve. A curve C is called simple if it has an injective
parametrization; that is, there exists.y : I— R" such that y(I) = C and v(x) = (y)
implies that x = y. A curve C with parametrization v : [ — R is called closed if I = [a, b]
for some closed interval [a,b] € R and y(a) = v(b). A simple closed curve C is a closed

curve with parametrization 7 : [a, b] — R™ such that +y is one-to-one on (a,b).

Example 4.2. A line segment joining two points Py, P, € R" is a curve. It can be parame-
terized by 7 : [0, 1] — R” defined by v(¢t) =tP, + (1 — t)F.

Example 4.3. A circle-on the plane is a simple closed curve. In fact, a circle centered at
the (zg,y0) with radius r has the following parametrization: ~ : [0,27] — R? defined by
v(0) = (xo + rcosb,yo + rsinf).

Example 4.4. Figure eight is the zero level set of F'(z,y) = 2% —a?(2? —1?) for some a # 0.
It can also be parameterized by 7 : [0, 47] — R? defined by v(6) = (acos g, g sin ) .
Definition 4.5 (Length of Curves). The length of curve C' € R" parameterized by ~ :

[a,b] — R" is defined as the number

Rn keNanda:t0<t1<---<tk:b}.

k
() =sup{ Y |v(t:) = y(ti)
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Definition 4.6 (Rectifiable curves). A curve C' € R with parametrization v : I — R is
called rectifiable if there is an homeomorphism ¢ : I -1 , where T is again an interval,

such that the map yo ¢ : I >R is Lipschitz.

Remark 4.7. 1. By an homeomorphism it means a continuous bijection whose inverse is

also continuous.

2. We can think of a curve as an equivalence class of continuous maps v : [ — R", where
two parametrization v : I — R™ and 7 : I — R" are equivalent if and only if there is
an homeomorphism ¢ : I — I such that ¥ = v o . Each element of the equivalence
class is a parametrization of the curve and thus a rectifiable curve is a curve which

has a Lipschitz continuous parametrization.

3. The length of a rectifiable curve parameterized by v : [a,b] — R is finite since by

choosing a Lipschitz parametrization 7 : [¢, d] — R", the number

{Z\h Dl

is bounded from above by M (d — ¢), where M is the Lipschitz constant of 7.

-<tk:d}

Example 4.8 (Non-rectifiable curves). Let €' < R? be a curve parameterized by

A @isin ) if e (0,1],
WF{ (0,0)t if t=0.

1 1 1 2
6(7/([”4_17” ) H’Y n—l—l) 7(n+1/2 HR2 T H’Y n—|—1/2) (E)HRZ > n -+ 1/2

= 00, by the remark above we conclude that ([0, 1]) is not a rectifiable

and Z

- n+1 / 2
curve
Definition 4.9. A curve C < R" is said to be of class €% or a €*-curve if there exists
a parametrization v : I — R" such that v is k-times continuously differentiable. Such a
parametrization is called a €*-parametrization of the curve. If there exists a parametrization
v : I — R which is of class €* for all k € N, then the curve is said to be smooth. A curve
C < R" is said to be regular if there exists a &€ '-parametrization v : I — R" such that
v'(t) # 0 for all t € I.
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Theorem 4.10. Let C = R" be a curve with €*-parametrization vy : [a,b] — R™. Then

b
~ [ Ol at.

Proof. Let € > 0 be given. Since 7 : [a,b] — R™ is ¢!, there exists § > 0 such that

17/ (t) = '(5)| g < T/n(b—a)

By the definition of the length of curves, there exists a partition P = {a =ty <t; < -+ <
tr, = b} of [a, b] such that

0) -7 <2 h

W.L.O.G., we can assume that |P| < 6. For each component ; of 7, the mean value

whenever st € [a,b],|s —t| <.

) < 4(C).

theorem implies that for some &; € [t;_1, 1],

’Yj(t> 7]( 1) = (5@)( i I

thus for each ¢ € {1,--- |k} and s; € [t;_1, 1],

€
1 (t:) = v5(ti1) — ) (s0) (s — timr)| < |7 (&) — Vi (o) |[t: — tica| < mﬁi —tia].
As a consequence, for each i € {1,--- Jk}and's; € [t;_1,t],
(te) = 1t = 130 s s = 1|\ [t = Atim) g = [ () (8 = ti)

n

=[5 )

J=1

< HW(tz) —y(tiz1) — (st —
-

4(b —a)

which further implies that

2 60 = ) g = X5 (50

Therefore, for a =ty < sop <t1 <81 - < s, <t =0,

-3 <Xl

Since |y’| is Riemann integrable over [a, b], we must have

|t; — t; ]

S
Rn|ti —tl’,1|’ < Z_l

Rn

t; —ti,ﬂ < 6(0) +%

(C) — & < L7/, P f ()|t < U7z, P) < £C) + ¢,

and the theorem is concluded because € > 0 is given arbitrarily. =



§4.1 The Line Integrals 99

Example 4.11. The length of the elliptic helix C' parameterized by

v(t) = (acost,bsint, ct) te [0, g}

can be computed by

(C) = J2 1y (t) |radt = f2 \/CL2 sin?t + b2 cos?t + 2 dt .
0 0

b2_ 2

1. When a < b, letting k = ﬁ, then

Q) = \/62+02J2 V1 —k2sin®tdt:
0

2
2. When a > b, letting k = 4/ a27b then
a“+c

(O = v+ @ [ Vi Btz Vit [ Vit
0 0

The integral E(k, f V1 — k2sin®t dt, where 0 < k? < 1, is called the elliptic integral

function of the second kind, and E(k) = E(k,g) is called the complete elliptic
integral of the second kind.

Definition 4.12. Let C'c R" be a curve with finite length. An arc-length parametriza-
tion of C is an injective parametrization = : [a,b] — R such that the length of the curve

v([a, s]) is exactly s — a; that is,
((v([a,s])) =s—a Vsela,b.

Example 4.13. Let C' be the circle centered at the origin with radius R. Then the
parametrization

v(s) = (R cos , Rsin s€ (0,27 R],

R)

is an arc-length parametrization of C'. To see this, we note that

— | 10l dt = | [(sin o8 )|t = [ dt=s Vs p2rR),
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In general, the arc-length parametrization of a rectifiable curve exists, and we have the

following

Theorem 4.14. Let C' < R" be a rectifiable simple curve. Then there exists an arc-length

parametrization of C.

Proof. We only prove the case that C' has a regular ¢'-parametrization v : [a, b] — R™.

Let s( f [7/(t)|rn dt’. Note that the s : [a,b] — R is strictly increasing since
the fundamental theorem of Calculus implies that s'(t) = ||7'(¢)|gn > 0 for all ¢ € [a,b].
The Inverse Function Theorem (Theorem A.10) then guarantees that s has a ¢'-inverse
w ' 0,0(C)] = [a,b] and we have u/(f) = ——

s'(u(t))
implies that 7 : [0, £(C)] — R™ is a ¢ '-parametrization of C', and Theorem 4.10 implies that

Define 4 = yowu. Then the chain rule

f 7/ () dt = f ) O snde = [ 1O 0]
= "(u(t)) ——— dt = J 1dt = s
which implies that 7 : [0, £(C)] is an arc-length parametrization of C. o

Theorem 4.15. Let C < R® be a € -curve with an arc-length parametrization v : [ — R®.
Then ||7'(s)|gn = 1 for all s € I.

Proof. Suppose that I = [a;b]. Since v : [ — R is an arc-length parametrization of C', we

s—a=[ 1w

Differentiating both sides of the equality above in ¢, the fundamental theorem of Calculus

must have
|R“ dt V S € I .

implies that 1 = |y/(s)||g= for all s e I. o

4.1.2 The line element and line integrals
Line elements
Definition 4.16. A curve C' < R" is said to be piecewise ¢* (smooth, regular) if there exists

a parametrization 7 : [a,b] — R" and a finite set of points {a = tg < t; < -+ < ty = b}
such that 7 : [t;, t;41] — R™ is €% (smooth, regular) for all i € {0,1,--- , N — 1}.
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Definition 4.17. Let %¢ be the collection of all piecewise regular curves. The line element

is a set function s : Z¢ — R that satisfies the following properties:
1. s(C) >0 for all C € Zc.

2. If C € % is the union of finitely many regular curves C', - - - , Cj that do not overlap

except at their end-points, then

s(C) =s(Cy) + -+ s(Cy).

3. The value of s agrees with the length on straight line segments; that is,
s(L) =¢(L) for all line segaments L .

Line integrals of scalar functions

Definition 4.18. Let ¢ < R" be a simple rectifiable curve with an injective Lipschitz

parametrization v : [a,b] — R* and f : C — R be a real-valued function. The line

integral of f along C', denoted by J f ds, is the number
c

k
Sup { ; (ﬁew([itl;lfl,ti}) f(é-))g(fy([tl 1,0 ‘ ke N a=ty<t1 < - <t = b}

provided that it is identical to

inf {

When C'is a closed curve, we also use \(ﬁ f ds to denote the line integral of f along C' to
c

M?r

sup . FENC(([tio, t ‘keNa—t0<t1 --<tk:b}.

i=1 &ev([ti=1,til)

emphasize that the curve C' is a closed loop.

Remark 4.19. Since the parametrization « is required to be injective, the line integral of

f along C' is independent of the choice of the parametrization.

Remark 4.20. In particular, if f =1, then ¢(C) = f lds = j ds.
c c

Remark 4.21. If the curve C is a line segment {(x, 0) ‘ a<x< b}, then the line integral
of f along C is simply the Riemann integral of f over [a,b] (by treating f as a function of
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Remark 4.22 (The interpretation of the line integrals). Let C' be a piecewise smooth curve,
and f(x) denote the density of the curve C' at position z. Suppose that f is continuous on

C and x = 7(t). Then f(z) is computed by

im m(y([t, ¢ + At]))
at—0 L(y([t, t + At])) '

f@) = f(y(t) =

where m(-) denotes the mass. Let ¢ > 0 be given. Then by the continuity of f o~ and the
definition of limit, there exists d > 0 such that

’(foy)(t)—(foy)(s)’<@ it t,selab], [t —sl<d

and

[FOr@)eCy([t ¢+ At])) —m(y([t, ¢ + At])| < C(y([t,t + At]))ﬁ if |At] <4

thus if P ={a =1ty <t; <--- <ty =0b} is a partition of [a,b] with |P| < 4, the total mass
k

of the curve m(C'), given by m(C) = >, m(y([t;i—1,t:])), validates the following estimate:

m(C) = 3 FO s, )] < 5
AS a consequence,
k
—e< Zﬁ@v([lt?flt )0y ([ti—1, ti])) < Zg (s[;lp . FEO([tier, t])) <m(C) + ¢

which implies that the line integral of f along C' is exactly the mass of the curve.

Theorem 4.23. Let C < R" be a simple curve with €*-parametrization v : [a,b] — R®,

and f: C — R be a real-valued continuous function. Then

wa—j () | () o (4.1)

Proof. Let € > 0 be given. Since f o~ and «' are continuous on [a,b], |fo~vy|+ |7/ |re < M
on [a,b] for some M > 0, and there exists § > 0 such that

£
’(foy)(s)—(foy)(t)’<8(M+1)(b_a) whenever st € [a,b], |s—t] <§
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and
€

r = S+ 1)(b—a)

whenever st € [a,b], |s—t] <.

[7'(s) =~'(t)
b
Moreover, since f o~ and 4’ are both continuous on [a, b], the integral f Fv@) |7 () |rn dt

exists; thus there exists a partition P = {a =ty < t; < --- <t = b} of [a, b] such that

k

sup  (f((s))I7'(5)lrn) — _ inf (f(v(S))IW(S)IIRnDIti—ti—ll<§- (4.2)

i=1 SG[tifl,tl‘} SE[ti_ht,‘]
By choosing of a refinement of P if necessary, we can assume that |P| < . Let s;,r; €

[ti—1,t;] be such that

sup  (f(YED Y (O)re) = F ()7 (50) | and  sup  f(€) = f(y(r:)).

te[ti_l,ti} 567([ti—1:ti])

Moreover, by Theorem 4.10 and the mean value theorem for integrals, there exists ¢; €
[ti—1,t;] such that

ga 48 = H’Y/(Qi) polti = tical;

st = | I

i—1

thus
€

g t’L 7 i— ‘ <
Therefore, by the fact that s;,7;,¢; € [ti_1,t;] and [t; — ;1| <9,

sup  (f(v()) 7' () lw) fti —tia| = sup f(ﬁ)ﬁ(v([tifbti]))‘

|ti — ti—1| .

pilti—t

sefti—1,ti] gey([ti-1.t:])
= |rtrts Hv s HRn - ’v(r-))\lv’(qi) ol ti]
< |F(r(s0)) = S ()| (s0) g ts = tical + [F(y (ra)) [ (53) = 7" (00) [ ulti = ti1]
mﬂi - i—1| ;
and summing the inequality above over ¢ we obtain that
k k
& se[ilfti] (FONIY () ) [t = tia| = ;gev(sfgjgm) f(g)ﬁ(y([ti_hti]))‘ <
Similarly,

k

)Z int (GO @)t~ tial =3 inf - FEU (i, 1) <

s€[ti—1,ti] [ti—1,ti])
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thus using (4.2) we find that

3

[ Fom@ @l de - e < L7 o e, P) - £
k
< Zﬁey(lt?fl . (E)(v([tim, ti])) < de (s[tuP " FE(v([tim1, ti]))

<U( ol P)+ 5 < [ (Fon @l

a

Rn dt + €.
Since € > 0 is chosen arbitrary, we conclude (4.1). =

Example 4.24. Let C' be the upper half part of the circle centered at the origin with radius
R > 0 in the zy-plane. Evaluate the line integral f yds.
c

First, we parameterize C' by
v(t) = (Rcost, Rsint) te [0,7].

Then

e

fyds:J Rsint|(—Rsint, Rcost) dt:J R*sintdt = 2R?.
c 0 0

Example 4.25. Find the mass of a wire lying along the first octant part of the curve of
intersection of the elliptic paraboloid z = 2 — 22 — 2y? and the parabolic cylinder z = 2
between (0,1,0) and (1,0, 1) if the density of the wire at position (x,y, 2) is o(z,y, 2) = xy.

Note that we can parameterize the curve C' by
W) = (VI— 1) tefol].

Therefore, the mass of the curve can be computed by
ot dt — \/172\/1—152%—2524—4152(1 ),
£)] st = —t N t
1 1t z
:f t«/Z—(l—QtQ)thZZJ \/2—u2du:ZJ4 2 cos? 6 df
0 —1 ™

1

[ o=

B 1[0 N sin(2¢9)] ‘922 B g

L
4 2 llp=—z 4°
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Line integrals of vector fields

We recall that a vector field is a vector-valued function whose domain and co-domain are
subsets of identical Euclidean space R".

Let C be a simple regular curve parameterized by v : I — R", and F : C' — R" be a
vector field. The line integral of F along C in the direction of v (or the oriented
line integral of F along C) is defined as the line integral of the scalar function F - T
along C, where T is the unit tangent of C' given by

/

Y -1
= _— o on C. 4.3
e o (4.3)

Given another parametrization ¢ : I — R® of C' such that (¢’ 0 ¢71)- (¥ 0y~1) > 0 (that is,

the orientation of C' given by ¢ and v are the same), using the chain rule we obtain that

1= L6067 0n)(1) = (¢ 067 oA 1)(6 01)'(h). (1.4

Since ¢ Loy : I — I, (¢t o)’ is a scalar function; thus (4.4) and the fact that (¢’ o¢™1) -
(7' oy71) > 0 imply that v/ oy~ = ¢(¢’ 0 ¢ 1) for some positive scalar function ¢ : C' — R.
Therefore,

¢/ ", ’Y’ -1
o ——' 5 on C. 4.5
T 4~ e 7 (4:5)

In other words, the tangent vector T is well-defined on C'; thus the line integral of F' along

C in the direction of the parametrization v is a well-defined quantity.
Suppose that I = [a,b]. Using (4.1), we find that

b / b
[REZE (Fov)(t%%v’(ﬂllw it = (o).

Let r: I — R® be an arc-length parametrization of €' such that (r/ o r71) - (v 0 y1) > 0

d
on C. Then (4.5) implies that T = d—r In terms of notation, we also write T ds as dr; thus
S

JCF~dr: JCF-Tds = Jb(Foy)(t) -y (t)dt.

a

Remark 4.26 (The interpretation of line integrals of vector fields). Consider the work done
by moving an object along a smooth curve C' parameterized by v : I — R" with a continuous

variable force F : C' — R" from ~y(a) to (b) (that is, in the direction of the parametrization
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of 7). Since the work done by a constant force is the inner product of the displacement and
the force, we find the the work done by the force F along the small portion ([t;, t;41]), from
v(t;) to y(tiy1), of the curve, where |t; — t;11| < 1, is approximately

(F-T)(v(t:) (Y ([tis tisa])) = F(y(t:)) - T(v(£:)) (v ([Es: tiga])) -

Summing over all the portions, we conclude that the work done by the force F along the

curve (), in the direction of the parametrization v, is approximately

k—1

P ICTCHECT{ER7))

=0

which converges to the line integral J (F-T)ds. Therefore, the line integral of vector fields
c

F along C' in the direction of the parametrization v is simply the work done by the force F

in moving an object along the curve C' from the starting point to the end point.

Example 4.27. Let F(z,y) = (v%, 2zy). Evaluate the line integral f F - dr from (0,0) to
c
(1,1) along

1. the straight line y = =z,

2. the curve y = 22, and

3. the piecewise smooth path consisting of the straight line segments from (0, 0) to (0, 1)
and from (0, 1) to (1, 1).

For the straight line case, we parameterize the path by v(t) = (¢,t) for ¢t € [0, 1]. Then

1 1
f F-dr:J (t2,2t2)-(1,1)dtzf 3tPdt = 1.
C 0 0

For the case of parabola, we parameterize the path by v(t) = (¢,#?) for t € [0,1]. Then

1

1
J F.dr_J (t4,2t3)-(1,2t)dt_J 5tldt =1.
C

0 0

For the piecewise linear case, we let C denote the line segment joining (0,0) and (0, 1),
and let Cy denote the line segment joining (0,1) and (1,1). Note that we can parameterize
01 and Cg by

71(t) = (0,t) te0,1] and ~(t)=(t,1) tel0,1],
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respectively. Therefore,

1 1
JF'dr:J F-dr+J F-dr:f(tQ,())-(O,l)dt—kf(1,2t)-(1,0)dt:1.
C Ch Co 0 0

We note that in this example the line integrals of F' over three different paths joining (0, 0)
and (1,1) are identical.

Example 4.28. Let F(x,y) = (y, —z). Evaluate the line integral f F - dr from (1,0) to
c
(0,—1) along

1. the straight line segment joining these points, and

2. three-quarters of the circle of unit radius centered at the origin and traversed counter-

clockwise.

For the first case, we parameterize the path by v(t) = (1 =t, —t) for ¢t € [0,1]. Then

LF-dr:f(—t,t—n-(—1,—1)dt:f1dt:1.

0 0
3£]

For the second case, we parameterize the path by ~(¢) = (cost,sint) for ¢ € [0, 5

Then

3 3r
El 2 3
J F-dr:J (sint,—cost)~(—sint,cost)dt:J (—1)dt:——ﬂ.
c 0 0 2
We note that in this example the line integrals of F' over different paths joining (1,0) and
(0, —1) might be different.

4.2 Conservative Vector Fields

In the previous section, we define the line integral of a force along a curve in a given
orientation. In Example 4.27, we see that the line integrals along three different paths
connecting two given points are the same, while in Example 4.28 the line integrals along
two different paths (connecting two given points) are different. In this section, we are

interested in the rule of judging whether the line integral is path independent or not.

Definition 4.29 (Conservative Fields). A vector field F : D < R* — R" is said to be
conservative if F = V¢ for some scalar function ¢ : D — R. Such a ¢ is called a (scalar)

potential for F on D.
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Theorem 4.30. Let D be an open, connected domain in R*, and let F be a smooth vector

field defined on D. Then the following three statements are equivalent:
(1) F is conservative in D.
2) 3€c F - dr =0 for every piecewise smooth, closed curve C' in D.
(3) Given any two point Py, P, € D, J F - dr has the same value for all piecewise smooth
curves in D starting at Py and enc(ijmg at Py.

Proof. (1) = (2): Suppose that F' = V¢ in D for some scalar function ¢+ D — R. Let
C' < R" be a piecewise smooth closed curve parameterized by 7 : [a,b] — R such
that 7 : [t;_1,t;] — R™ is smooth for all 1 <i < N, wherea =1ty <t <--- <ty =0.
Let C; = v([ti—1,ti]). Then the chain rule 1mphes that

jEF dr—ZJ Vo - dr—ZJ (Vo)) ' (t)dt

(2) = (3): Let Cy and C5 be two piecewise smooth curves in D starting at Fy and ending
at P, parameterized by yy+: [a,b] = R* and 75 : [¢,d] — R", respectively. Define
v :la,b+d—c] — R" by

7i(t) if t € a,b],
W(t):{ Yb+d—1t) iftelb,b+d—c|.

Then C' =9([a,b+ d — ¢]) is a piecewise smooth closed curve; thus

O:ngF-d’r‘:J(Foyl)(t)~71'(t)dt—f+ C(Fovz)(b+d—t)yg(ber—t)dt

a b
d
:f F-dr—J(Fow)(t)%'(t)dt:J F-dr—f F -dr.
1 c C C2

(3) = (1): Let By € D. For x € D, define ¢(x j F - dr, where C' is any piecewise

smooth curve starting at P and ending at x. Note that by assumption, ¢ : D — R is
well-defined.
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Choose § > 0 such that B(z,d) < D. Let C be a piecewise smooth curve joining
Fy, and L be the line segment joining = and x + he;, where 0 < h < 0 and e; =
(0,---,0,1,0,---,0) is the unit vector whose j-th component is 1. Then with the

parametrization of L: y(t) = x + te; for t € [0, k], we have

¢(x + he;) — ¢
h

1 1"
(z) :—J F-dr:—f F(x +tej) - e dt;
hlr h Jo

thus passing to the limit as h — 0, we find that

09
— F(z)-e;.
) = Fla)- o
As a consequence, F(x) = (V¢)(z) which implies that F is conservative. o

Let D < R? and F = (M, N): D — R? If F is conservative, then M = ¢, and N = ¢,
for some scalar function ¢ : D — R; thus if ¢ is of class €, we must have M, = N,. In
other words, if F : D — R? is a smooth vector field, then it is necessary that M, = N,. The

converse statement is not true in general, and we have the following counter-example.

Example 4.31. Let D < R? be the annular region D = {(a:,y) ‘ 1 <2?+9? < 4}, and

consider the vector field F(z,y) = ( 2_11/_ y, 2—+x ~). Then
Z y, T Y

o -y % — g 0 -z

8_yx2+y2 (22 g2)2 - 8_xx2—|—y2;

however, if F' = V¢ for some differentiable scalar function ¢ : D — R, we must have

. Y
¢x(‘r7y) - ZL’2 +y2

which further implies that
x
6(r.y) = axctan” + f(y).

Using that ¢, (z,y) = ﬁy?’ we conclude that f is a constant function; thus

¢(x,y) = arctan Tio.
)

Since ¢ is not differentiable on the positive z-axis, F # V¢.
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Definition 4.32. A connected domain D is said to be stimply connected if every simple
closed curve can be continuously shrunk to a point in D without any part ever passing out
of D.

Theorem 4.33. Let D < R? be simply connected, and F = (M, N) : D — R? be of class
¢t If M, = N, then F is conservative.

The theorem above can be proved using Theorem 4.30 and Green’s theorem (Theorem
4.90), and is left till Section 4.8 (where Green’s theorem is introduced).

4.3 The Surface Integrals

4.3.1 Swurfaces

Definition 4.34. A subset ¥ < R? is called a surface if for each p € ¥, there exist an open
neighborhood U < ¥ of p, an open set V < R?, and a continuous map ¢ : Y — V such
that ¢ : U — V is one-to-one, onto, and its inverse ¢ = ¢! is also continuous. Such a
pair {U, ¢} is called a coordinate chart (or simply chart) at p, and {V, ¢} is called a (local)

parametrization at p.

Remark 4.35. In some literatures the surface is defined in the following equivalent but
reversed way: A subset ¥ € R? is a surface if for each p € 3, there exists a neighborhood
U R3of pand amap ) : ¥V —->UNY of an open set V < R? onto U n X < R? such that v is
a homeomorphism; that is; 1) has an inverse ¢ = ¢! : i/ N2 — V which is continuous. The

mapping v is called a parametrization or a system of (local) coordinates in (a neighborhood

of) p.

Definition 4.36 (Regular surfaces). A surface ¥ < R3? is said to be regular if for each
p € 3, there exists a differentiable local parametrization {V, 1} of ¥ at p such that D(q),
the derivative of ¢ at ¢, has full rank for all ¢ € V; that is, Di(q) : R*> — R3 is one-to-one
for all ¢ € V. The range of the map D1 (w_l(p)) is called the tangent plane of ¥ at p,
and is denoted by T,X.

In the following, we always assume that Di(q) has full rank for all ¢ € V if {V, ¢}

is a local parametrization of a regular surface X < R3.
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Remark 4.37. Write ¢ : V — X as

Y(u,v) = (x(u,v),y(u,v),z(u,v)) )
Then if ¢ = (ug, vo),

2y (Ug, vo) Ty (ug, vo)
[(DV)(@)] = | Yuluo,v0) yuluo,vo) | = [[1h,1(u0,v0)]:[1,2(uo, v0)]] -

Zu(UOa Uo) Zv(uo, Uo)

The injectivity of D) (q) is then translated to that the two vectors

V1 (o, vo) = Pu(uo, vo) = (SUu(U(),Uo)’yu(umUo),zu(uoavo))

Y,z (ug, v0) = y(ug, vo) = (%(Uo,vo)ayv(uoavo), Zv(UmUo))

are linearly independent. Therefore, the range of Di)(q) is the span of the two vectors 1,1 (q)
and 1,5 (¢) and is indeed a plane for all g € V.

Let p € ¥ and ¢ = ¢~ '(p). Since Di(q) is injective, each v € T,X corresponds a
unique vector (a,b) € R? such that v = avy,; (q) + b,2 (¢). This vector (a,b) € R? satisfies
[v] = [D(g)][a,b]", and can be computed by

5] = (pe) [peta)) " (Do) "t

Example 4.38. Let S* = {(x,y,z) € RB’}xQ +y? 4+ 22 = 1} be the unit sphere in R3.

If p = (x0,v0,20) € S?, then either zg, yo or 2y is non-zero. Suppose that zy # 0. Let

r=1-—+/23+y2 > 0. Define

Vo, y) = (x,y,/1—2%2—9y?) if z >0,
’ (x,y,—+/1 — 22 —y?) if 25 <0,

Y = B((xo,yo),r), and U = (V). Then ¢ : V — U is a bijection. Let ¢ = ¢)~!. Then
{U,p} is a coordinate chart at p; thus S? is a surface.

There exists another coordinate chart. Let U; = S*\(0,0,—1) and Uy = S*\(0,0,1).
Define the map ¢; : Uy — R? by that ¢;(p) is the unique point on R? such that (0,0, —1),
©1(p) and (z,y, 0) are on the same straight line. Similarly, define ¢y : Us — R? by that @o(p)
is the unique point on R? such that (0,0,1), p2(p) and (z,y,0) are on the same straight
line. It is easy to check that if p € S?, then either {U;, o} or {Us, ¢s} is a coordinate chart
at p.
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A third kind of coordinate chart is given as follows. Let U = (0,27) x (0, 7), and define

Y(0, ¢) = (sin ¢ cos B, sin ¢ sin @, cos ¢).

Then ¢ : U — S*\{(z,0,2)|0 <z < 1,2% + 2% = 1} is a continuous bijection with a contin-
uous inverse. We note that for any U = (6, 0y + 27) x (¢, ¢o + ), ¥ is a homeomorphism

between U and an open subset of S2.

Next, we would like to define the derivative of f when f : ¥ — R3 is a vector-valued
function. We first talk about what the directional derivative is. Let ¥ < R? be a regular
surface, p € ¥, and v € T, X. It is intuitive to define the directional derivative of f at p in

the direction v by

C rea)), (1.6
if the derivative exists, where x : (—§,0) — ¥ is a ¢'-parametrization of a curve on ¥ such
that (0) = p and ¢’'(0) = v. The first question arising naturally is that if the derivative
in (4.6) depends on the choices of . Suppose that .y (—§,0) — ¥ is a €'-parametrization
of another curve on ¥ such that y(0) = p and ¢’(0) = v (note that the curve x((—6,0))
and y((—d,0)) in general are different). Let {V,1} be a parametrization of ¥ at p, and

q =1~ (p). Then the chain rule (Theorem 2.49) implies that

d d
— / —_ _—
v_w(())_dt dt

(o d b om)(t) = (D)) (

(W o))

t=0

and similarly, v = (Dv)(q) (jt‘t_o(z/z_l oY) (t)) Therefore,

t=0

(D)) (], @ e a)0) = (D)) (5

The injectivity of (Dv)(¢~!(p)) then shows that

d d

dt T dt

(W oy)®).

t=0 t=0

(v oy)(t).

t=0

Y om)(t)

t:O(

Using the chain rule again,

d d ~1 1 d .
T Tean =2 (Fevevom)) = D(f o) ) (| W om))
= D(fov)(® ' (p) (% e y)(t)) = % _(Few).

In other words, the derivative in (4.6) is independent of the choice of x as long as x(0) = p

and «'(0) = v. This observation implies the following
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Theorem 4.39. Let ¥ = R3 be a regular surface, {Vy,101} and {Va, s} be two local €*-
parameterizations of X2 at a point p € 3, and U = 1(Vy) n (V) € X. Then for (i,7) =
(1,2) and (2,1), the transition function ¢;" o : 7 (U) — 5 (U) is of class €.

7

Proof. We first note that wj_l o ; is continuous on ;' (U). Moreover, by the chain rule we

o(w; oy
find that (%uodﬁ) is the unique 2-vector satisfying
O 0 _ . 04" o)
(2%, 0)] = [y 005" 0 9 (w,0)] = [(D) W5 0 9 (,0)]| [ S )]
oYt o
Similarly, W is the unique 2-vector satisfying

(28] = [0 45" 0 )] = [ 5 e 1] [ 22 ).

Therefore, we obtain that

6(1/,],—1 oz/)i)} [6(1/11—1 ovjjz)ﬂ ‘

[Dei] = [(Dwy) o (v o )] [[S - (4.7)

Since [Dz/zj] has full rank, [D%-]T [Dl/)j] is an invertible 2 x 2 matrix (for if AT Az = 0 then
|Az|2. = 2T AT Az = 0 which implies 2 =0 since A has full rank); thus (4.7) implies that

(%7 o) g r0(y5 o)
[T

| = (Do D) o (5 o) [(De) o (w5 ows)] [Dws]:

thus the partial derivatives of wj'l o1); exist and are continuous. Theorem 2.30 then implies
that ¢; " o ; is of class €™ o

Similar to how the directional derivative is defined, we intend to define the differentia-
bility of f through the differentiability of the function f o : V — R® where {V, ¢} is a
local parametrization of ¥ (at some point). Again, we need to talk about if this definition
depends on the choice of local parameterizations. Nevertheless, if {V;, 11} and {Vs, 15}
are two %'-local parametrization of ¥ at p, and f o v, is differentiable at 1;*(p), then
the chain rule and Theorem 4.39 imply that f o1, is also differentiable at v, (p) since
fowy = (for)o (1y" o1hs). This induces the following

Definition 4.40. Let ¥ < R3 be a ¢'-regular surface. A scalar function f : ¥ — R is
said to be differentiable at p € ¥ if for every parametrization {V,v} of 3 at p, the function
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fow :V — R" is differentiable at ©/~'(p). The derivative of f at p, denoted by df,,, is a

linear map on 7}, ¥ satisfying

(dh)w) = 5| (Fom).

where = : (—0,0) — ¥ is a ¢'-parametrization of a curve on ¥ such that z(0) = p and
z'(0) = v. A scalar function f : ¥ — R is said to be of class €' if f o is of class € for

all local parametrization {V,}.

4.3.2 The metric tensor and the first fundamental form

Definition 4.41 (Metric). Let 3 < R? be a regular surface. The metrie tensor associated

with the local parametrization {V, ¢} (at p € X) is the matrix ¢ = [gaglax2 given by

Y Oy in_ YV
i:layo‘ ayﬁ

ga,@’ = wmz waﬁ =

or equivalently, g = [Dv]|T[Dv].

Proposition 4.42. Let ¥ < R? be a reqular surface, and g = [gaslaxa be the metric tensor
associated with the local parametrization {V,¥} (at p € ¥). Then the metric tensor g is
positive definite; that is,
igagvavﬁ>0 Vo= iv”w;féﬂ.
a,p=1 =1
Proof. Since D has full rank-on V, every tangent vector v can be expressed as the linear

2
combination of {(M}, é’i} Write v = )] zﬂai. Then if v # 0,
dy1’ 0y2 2 oy

2 NN el s N e
0< |v|gs = i;aélv T%Uﬂ% = a;fqaﬂv VP o
Definition 4.43 (The first fundamental form). Let ¥ < R3 be a regular surface, and
g = [gaplax2 be the metric tensor associated with the local parametrization {V,v¢} (at
p € X). The first fundamental form associated with the local parametrization {V,} (at
p € X)) is the scalar function g = det(g).

Theorem 4.44. Let ¥ € R? be a reqular surface, and {V,1} be a local parametrization at
pe . Then

\/g = Hwﬂ Xwﬂ HRS . (48)
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Proof. Using the permutation symbol and Kronecker’s delta, we have

33 3
9,1 X1, Hf@a = Z 2 ik’ 1 wk,z )( Z Eirs" 1 ws,z)
i=1 j k=1 r,s=1
3 3 .
= 2 [ Zgijkgirs)¢J7l ¢k,2 (G ¢S,2]
k,r,s =1
3 .
= Z (5jr5ks - 5j35kr)wjal wk72 wral wsﬂ )
J,k,r,s=1
where we use the identity
3
Zgijk:girs = 5jr(5ks - 6j36k:7' (49)
i=1

to conclude the last equality. Therefore,

3

Hwﬂ Xwﬂ H]%@ = Z (lpjﬂ wkﬂ wjﬂ wkﬂ _,l/}jd wkﬁ ¢j72 ’l/}kﬂ )

G k=1
= 011922 — g12921 = det(g) =8g.

Finally, (4.8) is concluded from the fact that g is positive definite. O

Remark 4.45. Let L € Z(R?%* T,X) be given by
L(ael 7 b€2) = a¢71 _’_bd]?? )

where By = {e;, ey} is the standard basis of R%. Let B’ = {ej, s} be an orthonormal basis
of T,%, and Bs = {ey, 2,63} be the standard basis of R®. Then

[L]BQ7B/ - { w’l '61 1/}72 .61 } — [ [61

%3 ] [[w’1]535[¢72]33] .

[62]83

¢a1 ‘€2 77072 €2

By the fact that {e,es} is an orthonormal basis,

1% Ll = m (et el [[”]] [T
[¢’1] ] : 11 12
= [%2] _ [[%1]6&[%2]&] = {gm 522 } 5

where [gagl2x2 is the metric tensor associated with the parametrization {V,}. Therefore,
det([L]p,,5) = /8 as long as B’ is an orthonormal basis of T,%.
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Since a natural way to write Lv, where v = ae; + bey € R?, is

Lo = |[a Jilv.e]] M = [vv] M ’

sometimes we also use V1) to denote L, and then write /g as det(V1)) (even though [V1]
is a 3 x 2 matrix) and call /g the Jacobian of the map .

Example 4.46. Let X be the sphere centered at the origin with radius R. Consider the local

parametrization (0, ¢) = (R cosfsin ¢, Rsinfsin ¢, Rcos ¢) with (0,¢) € V = (0,27) x
(0,7). Then

1 (0,0) = (0, ¢) = (—Rsinfsin ¢, R cosfsin ¢, 0) ,
V.2 (0,0) = (0, ¢) = (Rcosbcos ¢, Rsin b cos ¢, —Rsin ¢) ;

thus the metric tensor and the first fundamental form associated with the parametrization
{V, ¢} are
T R’sin?¢ 0
0(0.9) = (Do [Du)6.) > |5 B
and g = det(g) = R*sin® ¢.

What does the first fundamental form do for us?

Let p = ¢(uo, vy) be a point in ¥ Then the surface area of the region ¢ ([ug, uo + h] x
[vo, vo + k]), where h, k are very small, can be approximated by the sum of the area of two
triangles, one with vertices4)(ug, vo), ¥ (uo + h, vo), ¥(ug, vo + k) and the other with vertices
WU(ug + h,vo), ¥(ug, vo + k), (g + h,vo + k).

Here we remark that the approximation of the surface area of a regular ¢-surface obeys

the surface area of ¥ ([ug, ug + h] x [vg, vo + kJ)

im
(h,k)—(0,0) the sum of area of the two triangles given in the context

=1. (4.10)
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The area of the triangle with vertices ¥ (ug, vo), ¥ (ug + h, vo), P (ug,vo + k) is

= —H( up + h, Uo ¢(U07 Uo)) x (iﬁ(uowo + k?) - ¢(U07 Uo))HR:a .

By the mean value theorem, for each component j € {1,2, 3}, we have

Y (ug + hyvo) — 17 (ug, vo) = 1 (ug + Q{ha vo)h,
Y (ug, vo + k) — 9 (g, vo) = 2 (ug, vo + %k)k

for some 6 € (0,1); thus if ¢ is of class €,

Y(ug + h,vo) — P(ug, vo) = 1,1 (uo, vo)h + E1(ug, vo; h)h,
w(uo, Vo + k’) - w(uo, Uo) =1, (UO, Uo)k + Ez(um Vo k)k,

where E, and E, are bounded vector-valued functions satisfying that }llirr(l) E;(up,vo;h) =0
and Ené E5(ug,vp; k) = 0. Therefore,

lim (¥ (uo +h,vo) — ¥ (uo, v0)) % (¥(uo, vo+k)—1(uo, vo))
(h,k)—(0,0) hk

Since /g = 1,1 X1,2 ||rs, we have

1
A = §th + f1(uo, vo; b, k)hk

for some function f; which converges to 0 as (h,k) — (0,0) and is bounded since Vi

— 1,1 (g, v9) X 1, (g, v9) =0.

is bounded. Similarly, the area of the triangle with vertices ¥ (ug + h,vg), ¥ (ug,vo + k),
w<U0 + h,Uo + k) is

1
= éx/ g(uo, Ug)hk + fg(Uo, Vo; h, l{?)hk .

Taking (4.10) into account, we find that
the surface area of ¢ ([ug, uo + h] x [vo, vo + k]) = \/g(uo, vo)hk + f(ug, vo; h, k)hk (4.11)

for some bounded function f(-,-;-,-) which converges to 0 as the last two variables h,k
approach 0.

Now consider the surface area of ¢([a,a + L] x [b,b+ W]). Let € > 0 be given. Choose
N > 0 such that

€
2LW

|f(u, vk, k)| < V0 < h< %,O<k‘< % and (u,v) € [a,a+ L] x [b,b+ W],
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and

\ZZ\/g( “lat VEdA| <= ifnm> N,

J= 1:=1 [a7a+L] X [b7b+W}

Then for n,m > N, with (h, k) denoting (— R) (4.11) implies that

‘the surface area of ¥ ([a,a + L] x [b,b+ W]) — f
la,a+ L] x [b,b+W]

\/gdA‘

= ’ Z Z the surface area of ¥([a + (i — 1)h,a +ih] x [b+ (j — D)k, b+ jk])
j=1li=1

- f JEdA ‘
[a,a+L]x[b,b+W]

)ﬁiix/a+z1hb+u1mwkff JEdh
=a |

a,a+L]x[bb+W]

+‘ii fla+ (i—-1Dh,b+ (j - Dk; hkhk‘

<g 2LWZth_€

j=1li=

The discussion above verifies the following

Theorem 4.47. Let ¥ € R3 be a reqular €*-surface, {V, 1} be a local €*-parametrization
of ¥ at p, and g be the first fundamental form associated with {V,1}. Then

the surface area of 1¥(V J VgAdA .

Example 4.48. Recall from Example 4.46 that the first fundamental form g of the parametriza-
tion {V, 1} of the 2-sphere centered at the origin with radius R, where

(0, ¢) = (RcosBsin ¢, Rsinfsin ¢, R cos ¢)

and V = (0,27) x (0,7), is given by g(f, ¢) = R*sin? ¢. Therefore,
the surface area of ¢((0,27) x (0,7)) = f R?sin ¢ d(0, ¢)
(0,27) % (0,7)

2w pm
= R?f f sin ¢ dpdf = 4T R? .
0 0

Since the difference of the 2-sphere and 1 ((0,2m) x (0,7)) has zero area, we find that the

surface area of the 2-sphere with radius R is 47 R2.
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Example 4.49. Let ¥ < R3 be the upper half sphere; that is, ¥ = {(a:, y,z) e R ‘ 2+ y? +
22=R%z> O}, and {V, 1} be a global parametrization of ¥ given by

Y(u,v) = (u,v, VR2 —u? = v?), (u,v) €V = {(u,v) e R*|v* +v* < R*}.

To find the surface area using this parametrization, we first compute {1,1,1,5 } as follows:

R2Z — y2 — 2

and ¢, (u,v) = (07 L _—U) ’

R2 — 2 — 2

1/}71 (U, U) - (]-7 07
thus the first fundamental form associated with the parametrization {V, ¢} is
2
u v )

Y 71
VRZ — w2 — 02’ VRZ a2 — 12

(1 0) = 1 (1,0) x .z (. 0) [ = [ (

RQ
R2 — 2 — 2"

RB

Therefore, the surface area of X is
R rVRZ—u?
de:JRdA:f f B du
> v VRZ —u?2 — 2 r)ovrr—z VR? —u? —0?

R v p=vEE—@E R
= RJ arcsin ———— du = RJ mdu = 27R?.
R R2 — q2 v=—~/R2%2—u? R

Note the the computation abovealso shows that the surface area of the sphere in R? with

radius R is 47 R? which is the same as what we have conclude in Example 4.48.

Remark 4.50. The example-above provides one specific way of evaluating the surface
integrals: if the surface ¥is in fact a subset of the graph of a function f : D < R? — R;
that is, ¥ < {x,y, f(zyy)) ! (z,y) € D}, then ¥ has a global parametrization

U(x,y) = (v,y, fz,y),  (zy)eV,

where V' is the projection of ¥ onto the xy-plane along the z-direction. Then the first

fundamental form associated to this parametrization is

0 d
8(e,9) = [0 (.9) x s (9) B = 1+ | @) + [ )

thus the surface area of X is

L ds = L \/1 @y + @y day).
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Example 4.51. Let C' be a smooth curve parameterized by

o Tom
r(t) = (costsint,sintsint, cost), te [—— —] :

The clearly C is on the unit sphere S? since |r(t)|gs = 1 for all ¢ € [—g, g} Since C'is a

closed curve, C' divides S? into two parts. Let ¥ denote the part with smaller area (see the

following figure), and we are interested in finding the surface area of X.

To compute the surface area of 33, we need to find a way to parameterize 3. Naturally we
try to parameterize 3 using the spherical coordinate. In other words, let R = (0, 27) x (0, 7)
and 1) : R — R? be defined by

(0, ¢) = (cosfsin ¢, sin O sin ¢, cos @) ,

and we would like to find a region D < R such that ¢(D) = X.

Suppose that v(t) = (9(75), gp(t)), te [—g, g] , is a curve in R such that (¢ o7)(t) = 7(¢).
Then for t € |0, g], the identity cost = cos ¢(t) implies that ¢(t) = ¢; thus the identities
costsint = cosf(t)sin ¢(t) and sintsint = sin 0(t) sin ¢(¢) further imply that 6(t) = t.

On the other hand, for t € [—%,O], the identity cost = cos ¢(t), where ¢(t) € (0, ),
implies that ¢(t) = —t; thus the identities costsint = cos(t)sin¢(t) and sintsint =
sin 0(t) sin ¢(t) further imply that 6(t) = = + t.
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Since the first fundamental form associate with {R, v} is the first fundamental form
associated with {R, ¢} is

8(u,0) = | (Y0 x o) (u,0) g
= H —sinfsin ¢, cos @ sin ¢, 0) x (cos O cos ¢, sinf cos ¢, — sin @) H;B
= | (= cos@sin® ¢, — sin O sin” ¢, —(sin” § + cos” B) sin ¢ cos @) H;?,
= (cos® § + sin? 6) sin* ¢ + sin® ¢ cos® ¢ = sin’ ¢,

the area of the desired surface can be computed by

LdS:J \/gdA:F Jﬂ_¢sin¢d0dq§:Lg(w—2¢)sin¢d¢

™

= (—Tcos¢+2¢cosd— 2s1ngz§)‘ ;:71'—2.

Another way to parameterize ¥ is to view X as the graph of function z = 4/1 — 22 — 32
over D, where D is the projection of ¥ along z-axis onto zy-plane. We note that the

boundary of D can be parameterized by

~ o T T
7(t) =(costsint,sintsint), te [—5, ﬂ :

Let (z,y) € 0D. Then 22 +y? = y; thus ¥ can also be parameterized by 1 : D — R3 where
V(z,y) = (z,y,/1—22—y?) and D= {(z,y)|2>+y* <y}.

Therefore, with f denoting the function f(x,y) = 4/1 — 2?2 — y?, Remark 4.50 implies that

the surface area of ¥ can be computed by

2 2 : e 1
AT+ 24+ f dA:JJ —dxdy
L ! 0 J-fym? V1 —a? =P

z=1/y—y? 1
= J Arcsin ———— dy = 2f arcsin VY dy ;
0 1 — y?la=—q/y—y? 0 I+y
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thus making a change of variable y = tan? § we conclude that

the surface area of X = QJ aresin
0 sec

Y d(tan? 0) = zr 0.d( tan®0)
0

— 2[f tan? Q)H - FT fan? 9d9}
- 0

™

9=

- [} o= y08] —2[ — amo o) 7]
(-] -2

4.3.3 The surface element and the surface integral

=2

=2

Let ¥ < R? be a regular surface, and {V, 1} be a parametrization of ¥ such that (V) = 3.

If f:> — Ris a bounded continuous function, the surface integral of f over X, denoted by

J fdS, is defined by

b
f de:J(foqﬁ)\/gdA. (4.12)
) v

In particular, if f = 1, the number f ds = f 1dS is the surface area of X.
b5 )

Since the surface integrals defined by (4.12) seems to depend on a given parametrization,
before proceeding we show that the surface integral is indeed independent of the choice of the
parameterizations. Suppose that {Vi;¢1} and {Vs, 15} are two local €*-parameterizations
of a regular surface 3 at p, g1, go denote the metric tensors associated with the parameter-
izations {Vi, 91}, {Vs, 19}, respectively, and g; = det(g1), go = det(gs) are corresponding
first fundamental forms. Let W = 15 04/, Then the change of variables formula (Theorem
3.31) implies that

fw(fowz)@m -|

Vi

<fow2o\11)(@ow>|J@|dA=f (f 0 1) (VB2 0 )| Ju| dA .

Vi

where Jy is the Jacobian of the map V. Using (4.7), we find that
(D] [(Dyz) 0 W] [(Dhy) 0 W] [D¥] = [Den]" [Di] ;
thus by the fact that g; = det ([Dy1]T[D¢4]) and go = det ([Dib2]'[D1bs]), we obtain that

det ([D‘P])2(g2 o) =g.
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Since Jy = det ([D\If] ), the identity above implies that |Jg|(,/g20¥) = /g1, so we conclude
that

[ (tovivEaa= [ rowvmaa, (4.13)

Va
Therefore, the surface integral of f over X is independent of the choice of parameterizations
of Y. In particular, the surface area of a regular ¢ *-surface which can be parameterized by
a global parametrization is also independent of the choice of parameterizations.

As noticed in Remark 4.45, the first fundamental form /g associated with the parametriza-
tion {V, 9} can be viewed as the Jacobian of the map 1. Therefore, we arrive at the con-
clusion that dS* =",/gdA. dS is called the surface element. Moreover, similar to the
reason provided in Remark 4.22, the surface integral of a positive continuous function f

over Y, where f is considered as the mass density of the surface given by

the mass of ¥(A)

im
dlam(8) 0 the surface area of ¥(A)
Pp—i(z)eA

fx) =

is the total mass of the surface.

Next, we study the surface area of general regular surfaces that cannot be parameterized
using a single pair {V,v}. Let ¥ € R? be.a regular surface, and {V;,1;}icz be a collection
of local parameterizations satisfying that for each p € ¥ there exists ¢ € Z such that {V;, ¢}
is a local parametrization of ¥ at-p. If there exists a countable collection of non-negative
functions {(;},es defined on X such that

1. For each j € J, spt((;) = the closure of {x ex ‘ Gi(z) # O} c V, for some i € Z;
2. YjesGila)=1forallze X,

then intuitively we can compute the surface area by
f dS=>| ¢ds, (4.14)
) jerJT

where the surface integral of (; over ¥ is defined by (4.12) since spt(¢;) < ¢(V;) and (; =0
outside spt(¢;). In other words, each term on the right-hand side of (4.14) can be evaluated
by

L Gds = L(Cj o 1;)\/gi dS .
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if spt(¢;) < ¢i(V;). Similarly, for a bounded continuous function f defined on 3, the surface
integral of f over ¥ can be defined by

|ras=%[wnis=% % | (G ovEdS.  (015)

jed

jej choose one 7 such that
spt(¢;) < i (Vi)

Remark 4.52. Defining the surface integrals of a function as above, a question arises natu-
rally: is the surface integral given by (4.15) independent of the choice of the parametrization
and the partition-of-unity? In other words, if a regular €*-surface 3 admits two collections
of local parametrization {U;, p;}icr and {V},1;}je7, and {(; }ier and {\;} ;7 are & -partition-
of-unity subordinate to {U;}iez and {V;};e7, respectively. Is it true that

YN Jwheevmas=Y, ¥ [ eviaas.

1€Z choose one i such that ]gj choose one j such that
spt((;) S @i (U;) spt(Ag) < ¥5(V;5)

where g; and g; are the first fundamental form associated with the parametrization {4, ;}
and {V;,¢;}, respectively.

The answer to the question above is affirmative, and the surface integral given by (4.15)
is indeed independent of the choice of parametrization of the surface and the partition-of-

unity; however, we will not prove this and only treat this as a known fact.
Now we focus on the existence of a collection of functions {(;},c7 discussed above.

Definition 4.53. A collection of subsets of R" is said to be locally finite if for every point
x € R there exists r > 0 such-that B(z,r), the ball centered at = with radius r, intersects

at most finitely many sets in this collection.

Definition 4.54 (Partition of Unity). Let A € R" be a subset. A collection of functions
{(;}jes is said to be a partition-of-unity of A if

I.O< (¢ <1lforall je J.

2. The collection of sets {Spt(Cj)}je 7 is locally finite.

3. 2 ¢(z)=1forall z e A.
JjeJ
Let {U;};es be an open cover of A; that is, U; is open for all j € J and A < Ujejuj.
A partition-of-unity {(;}jes of A is said to be subordinate to {U;};cs (or {U;}jcs has a
subordinate partition-of-unity of A) if spt(¢;) < U; for all j € J.
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We note the if {(;},es is a partition-of-unity of A, then the property of local finiteness of
{spt((;)} es ensures that for each point = € A has a neighborhood on which all but finitely

many A;’s are zero.

Lemma 4.55. Let A < R" be a subset, {U;}iez be an open cover of A, and {V;}es be a
collection of open sets such that each V; is a subset of some U;; that is, for each j € J,
V; € U; for some i € I. If {V;}jes has a subordinate €"-partition-of-unity of A, so has
{ui}ieI-

Proof. Let {(;};es be a partition-of-unity of A subordinate to {V;};e7s, and f : J — T
be a map such that V; < Uy;) (we note that such f in general is not unique). Define
Xi : R* — [0, 1] by

xil@) = Y, (). (4.16)

jef=1()

Then clearly spt(x;) € U; and Y] x;(x) = 1 for all x € A.. Moreover, since the sum (4.16)
is a finite sum, y; is of class Cgkz for all i € T since(; if of class €* for all j € J. Now
we show that {spt(xi)}iez is locally finite. Let 2 € R™ be given. By the local finiteness of
{spt(Cj)}jEJ there exists r > 0 such that #{j € J|B(z,r) nspt((;) # &} < 0. By the
fact that f~'(iy) n f1(i2) = & if iy # ip(that is, each j € J belongs to f~1(i) for exactly
one i € 7) and that

ye B(x,r) nspt(x:) . < ye B(x,r) nspt(¢;) for some j e f71(i),

we must have
#{ieZ|B(zr)ospt(xi) # T} < #{je T|Blz,r) nspt((;) # B} < 0. o

Theorem 4.56. Let ¥ € R? be a reqular €*-surface. Then every open cover of ¥ has a
subordinate €*-partition-of-unity of ¥.

Proof. Let {O;}icr be a given open cover of 3. Let {U;, ¢;};c7 be a collection of €*-charts
of ¥ such that {U};cs is a locally finite open cover of ¥ and for each j € J, U; < O; for
some i € Z. By Lemma 4.55, it suffices to find a €*-partition-of-unity of ¥ subordinate to
{Ujieq-

W.L.O.G., we can assume that U; and V; = ¢(U;) is bounded for all j € J. Define
Y = goj_l. Then {V;,1;},es is a collection of local parametrization of ¥£. Choose a collection
of open sets {W;};cs such that W; < V; for all j € J and {wj(Wj)}jej is still an open cover
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) , o N; )

of . For each j € J, let {B,(f)}fjil be a collection of open balls satisfying W, < | B,(j)
. k=1

and c(BY) < V; forall ke {1,--- | N;}. For je J and k € {1,---, N;}, with ¢;;, and 75,

denoting the center and the radius of B,gj ), respectively, let

exp( 12 5 > ingeB,(Cj)7
LGk () = Iz = cinllzs =75 .
0 if z ¢ BY
N; o
and then define x; : R* — R by x;(z) = > px(x). Then x; > 0 inW;, and x; = 0

£
Il

1
N; )

outside |J B,EJ). Further define
k=1

o)) ifxel;,
)\j(x):{(XJ v;) () J

0 if x Z/{J[? .
Then A; > 0 on ;(W;) which implies that ] A\; > 0. Finally, we define (; = A .
jes 2jeg i
Then {(;}jes is a €*-partition-of-unity subordinate to the open cover {U;} ez o

Definition 4.57 (Piecewise Regular Surface). A surface ¥ = R? is said to be piecewise
k

regular if there are finite many curves Ci, -, Cj such that ¥\ | J C; is a disjoint union of
i=1

regular surfaces.

Definition 4.58. Let ¥ < R? be a piecewise regular surface such that ¥ is the disjoint

union of regular surfaces 3;, where i € Z for some finite index set Z. For a continuous

function f : ¥ — R, the surface integral of f over X, still denoted by f fdS, is defined by
)

Lde:;Lide.

Definition 4.59. Let %5 be the collection of piecewise regular surfaces in R®. The surface

element is a set function . : Z5;, — R that satisfies the following properties:

1. Z(¥) >0 for all ¥ € Zx.

2. If ¥ is the union of finitely many regular surfaces >q,--- , ¥ that do not overlap

except at their boundaries, then
L(B) =S (E0)+ -+ L (5g)
3. The value of .¥ agrees with the area on planar surfaces; that is,

L (P) =A(P) for all planar surfaces P.
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4.4 Oriented Surfaces

In the study of surfaces, orientability is a property that measures whether it is possible to
make a consistent choice of surface normal vector at every point. A choice of surface normal
allows one to use the right-hand rule to define a “counter-clockwise” direction of loops in
the surface that is required in the presentation of the Stokes theorem (Theorem 4.86), a

main result in vector calculus which will be introduced later in Section 4.7.2.

Definition 4.60. A regular surface ¥ < R? is said to be oriented if there exists a contin-
uous vector-valued function N : 3 — R3 such that |[N|gs = 1 and for all pe 3, N(p)-v =10

for all ve T,X. Such a vector-field N is called a unit normal of ¥.

Suppose that ¥ < R? is a connected regular surface. Since.at each p € ¥ the tangent
plane T,X of ¥ at p has two normal directions, ¥ has at most two continuous unit normal
vector fields. If in addition that ¥ is oriented, there are exactly two continuous unit normal
vector fields of X, and one is the opposite of the-other. The two unit normal vector fields
define two sides of the surface.

Suppose further that this oriented surface ¥ is the boundary of an open set Q < R?
(for example, a sphere is the boundary of a ball), then one of the unit normal vector fields
N : 092 — R3 has the property that p+ tN(p) ¢ Q for all small but positive t. Such
a normal is called the outward-pointing unit normal of 0€), and the opposite of the

outward-pointing unit normal of 0€2 is called the tnward-pointing unit normal of 0f2.

Example 4.61. Consider the unit sphere S? = {(:E,y, z) e R? \ 22+ y? 42 = 1}. Then
N : S - R3 defined by N(p) = p, where the right-hand side is treated as the vector
p — 0, is a continuous unit normal vector field on ¥; thus S? is an oriented surface. Let
B(0,1) = {(z,y,2). e R*|2? + y* 4+ 22 < 1} be the unit ball in R®. Then N is the outward-
pointing unit normal of 0B(0, 1).

Let ¥ < R? be a regular surface, p € ¥, and {V, 4} be a local parametrization of 3 at p.
Since 1,7 and 1,5 are linearly independent, 1,1 x1,5 # 0; thus the vector n given by

n—= ,lvz)al X’QZ),Q o w_l
||¢71 Xl/}72 HR3

is a unit normal vector field on ¥()). As a consequence, a regular ¢'-surface that can be

parameterized by one single parametrization {V,v}; that is, ¥ = ¢(V), is always oriented.
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Such a normal vector fields is said to be compatible with the parametrization {V,¢}. To be

more precise, we have the following

Definition 4.62. Let ¥ < R? be an oriented ¢'-surface, and N : ¥ — R3 be a continuous
unit normal vector field of 3. For each p € V, N is said to be compatible with a local
parametrization {V, ¢} of ¥ at p if det ([¢, 11,2 INo9]) > 0.

The following example provides a famous regular surface which is not oriented.

Example 4.63. A Mabius strip/band is a surface obtained, conceptually, by half-twisting a
paper strip and then joining the ends of the strip together to form a loop (see the following
figure for the idea).

Figure 4.1: Normal vector fields on a Mobius strip

As one can see from Figure 4.1, a Mébius strip is not oriented. To see this mathemati-

cally, consider the following Mobius strip
M = {(—(2 + v cos g) sinu, (2 + v cos g) CoS U, v sin g) ’ (u,v) €[0,2m] x (-1, 1)}
and choose a local parametrization ¢ : ¥V — R? given by
U(u,v). = (—(2+ vcos g) sinw, (2 + v cos g) cos u, v sin g) :

where (u,v) € V =(0,27) x (—1,1).

Y

Figure 4.2: The Mobius strip/band ([0, 27] x [—1, 1])
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Then the unit normal vector field on ¥ (V) compatible with the parametrization {V, ¥} is

1/]71 Xwﬂ 2
N o = -
(Nop)(uv) = s Vot A+ 20cos(u2)?

v Cuy . u,
X <§Cosu—|—(2+vsm§)sm§smu,

— sinu+ (2+vcos g)singcosu —(2 —|—UCOSE)COS E)
2 2 2 ’ 2 2/’
but N does not have a continuous extension on M since if N is a continuous extension of
N; that is, N is a unit normal vector field on M and N = N on ¥(V), then

(0,0,—1) = lim (No)(u,0) = N(2,0,0) = lim (N o)(u,0)= (0,0,1)

u—0t u—2m—

which is a contradiction.

Another way of seeing that M is not oriented is the following. Let r(t) = G(¢,0) =
(—2sint,2cost,0), and C' = r([0, 27]) = M be a closed curve on M. If there is a continuous
unit normal vector field N on M, then N is also continuous on C. However, N is never
continuous on C' since by moving N continuously along C', starting from 7(0) and moving
along C' in the direction 7" and back to r(0) = r(27), we obtain a different vector which

implies that N o7 is not continuous at #(0) = r(27) = (2,0,0).

Definition 4.64. An open set Q'€ R?is said to be of class ¢* if the boundary 0Q is a

regular ¢*-surface.

Theorem 4.65. Let Q) & R? be a bounded open set of class €. Then 02 is oriented.

4.5 Manifolds, Charts, Atlas and Differentiable Struc-
ture

In the following, we introduce a more abstract concept, the so-called manifolds, which is a

generalization of regular surfaces.

Definition 4.66. A topological space M is called an n-dimensional manifold if it is
locally homeomorphic to R"; that is, there is an open cover % = {U;};ez of M such that
for each ¢ € Z there is a map ; : U; — R™ which maps U; homeomorphically onto an open

subset of R". The pair {U;, ;} is called a chart (or coordinate system) with domain I;, and
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{gpl ), ©; 1} is called a local parametrization of M. The collection of charts ® = {U;, p;}ier
is called an atlas.
Two charts {U;, p;} and {U;, p;} are said to be €"-compatible or have €"-overlap if

the coordinate change .
piopr il nU;) — iU N Uj)

is of class €". An atlas ® on M is called €" if every pair of its charts is €"-compatible.
A maximal €"-atlas o on M is called a differentiable structure, and the pair {M, «} is
called a manifold of class €.

A function f: M — R is said to be of class €” if fo ;' :U; — R is of class € for all
charts {U;, ¢;}.

In particular, a regular ¢'!-curve C' < R? is a one-dimensional ¢*-manifold, and a regular

&-surface ¥ < R3 is a two-dimensional € !-manifold.

Definition 4.67 (Metric). Let ¥ < R" be a (n—1)-dimensional manifold. The metric tensor
associated with the local parametrization {V, ¢} (at p € ¥) is the matrix g = [gag]m—1)x(n-1)
given by

oYt oy’ .
Gap = ¢7a waﬂ Zay 5y5 mn V .

Proposition 4.68. Let ¥ < R" be a (n— 1)-dimensional manifold, and g = [gas]m-1)x(@n-1)
be the metric tensor associated with the local parametrization {V,v} (at p € X). Then the

metric tensor g is positive definite; that is,

n—1

WwP>0  VYou= 1% Lo,
aélgaw ’ °7 ZU oy g

Definition 4.69 (The first fundamental form). Let ¥ < R be a (n — 1)-dimensional mani-
fold, and g = [gaﬁ](n_l)x(n_l) be the metric tensor associated with the local parametrization
{V,9¥} (at p € ¥).The first fundamental form associated with the local parametrization
{V,¢¥} (at p € X) is the scalar function g = det(g).

Definition 4.70 (Surface integrals). Let M be an (n—1)-dimensional ¢ '-manifold, {4}z
be a collection of charts of M and {(;}cz is a partition-of-unity of M subordinate to {U;};cz.

The “surface integral” (or simply integral) of a scalar function f: M — R over M, denoted

by f £dS, is defined by
M

f fds = ZJZM ¢ e dr,

el
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where g; is the first fundamental form associated with the parametrization {¢;(U;), o™'}.

Remark 4.71. Let C' < R3 be a regular €*-curve. The line integral of a scalar function
f:C — R over C is the “surface integral” of f over C' defined in (4.70). In other words,

dS = ds in the case that M is a one-dimensional manifold.

4.5.1 Some useful identities

Let ¥ < R™ be the boundary of an open set  (thus an oriented surface); {V, 1} be a local
parametrization of ¥, and N : ¥ — R" be the normal vector on ¥ which is compatible with

the parametrization ¢; that is,

det([w,l ’QD,Q E?ﬂ,n,l NO’QD}) > 0.

Define ¥(y’,y,) = ¥(¥') + yo(N o ¥)(y’). Then ¥ : V x (—e,e) — T for some tubular
neighborhood 7T of X.

Figure 4.3: The map W constructed from the local parametrization {V, ¢}

Since (vq/)y{y Moy E [ it oo 1,y INow ], Corollary 1.65 and 1.66 implies that
det(V¥)? w0} = [det (VO)T) det(VT)] = det ((VI)"VU)
Yn= {yn:O} {yll:o}
911 g2 Gu-u1 0
921 g2 gm-12 O
—det (| o ) =e
9m-11 Ju-12 ° Gm-1)m-1) O
|0 0 - 0 1|

Defining J as the Jacobian of the map ¥; that is, J = det(V V), then the identity above
implies that

J=4g on {y,=0}.
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Moreover, letting A denote the inverse of the Jacobian matrix of ¥; that is, A = (V)™

and letting [gaﬁ} (n—1)x(n—1) be the inverse matrix of [gaﬁ} (n-1)x(n_1)? W€ find that
n—1 n—1 T
_ la . . n—1)a :
A’{yn:o} — Zlg W toverrmreenns : Zlg( Jeah o ‘N o)
As a consequence,
(JATe)|,, oy = VENow). (4.17)

4.6 The Divergence Theorem

Two differential operators play important roles in vector calculus. The first one is called
the divergence operator which measures the flux of a vector field, and the second one is
called the curl operator which measures the circulation (the speed of rotation) of a vector

field. We will study this two operators in the following two sections.

4.6.1 Flux integrals

Let ¥ < R3 be an oriented surface with a fixed unit normal vector field N : ¥ — R?, and
u : X — R3 be a vector-valued function. The flux integral of w over ¥ with given orientation

N is the surface integral of u - N over X.

Physical interpretation

Let € < R? be an open set which stands for a fluid container and fully contains some liquid
such as water, and u : 0 — R3 be a vector-field which stands for the fluid velocity; that is,
u(x) is the fluid velocity at point x € Q. Furthermore, let 3 < Q be a surface immersed in
the fluid with given orientation N, and ¢ : £ — R be the concentration of certain material
dissolving in the liquid. Then the amount of the material carried across the surface in the

direction N by the fluid in a time period of At is
At - J cu-NdS'.
b

Therefore, f cu-N dS is the instantaneous amount of the material carried across the surface
b

in the direction N by the fluid.
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Example 4.72. Find the flux integral of the vector field F(z,y,z) = (x,9% 2) upward
through the first octant part X of the cylindrical surface 22 + 2% = a2, 0 < y < b.

z
a
|
)\\ |
CL// \\\\ Ib
4 2
x I y

Figure 4.4: The surface X

Fist, we parameterize > by

Y(u,v) = (u,v,vVa? —u?), (u,v)eV =(0,a) x (0,b).

a2

Since the first fundamental form g associated with {V, ¢} is g = 1,1 x¢2 |25 =

a2 — w2’

and the upward-pointing unit normal is N(z, y,2) = (E, 0, E), we have
a a

(1 5 2 2 a _ 2 1
JEFNdS—fva(U +a —u)md(u,v)—a Vﬁd(lﬁ,v)

u=a  1q2h

u
dudv = a*barcsin —

[ [ s
o Jo Va —u? a

u=0 2

4.6.2 Measurements of the flux - the divergence operator

Let © < R3 be an open set, and u : 2 — R? be a € vector field. Suppose that O is a
bounded open set of class €' such that O < Q with outward-pointing unit normal vector
field N. Then the flux integral of u over dO in the direction N is

J u-NdS.
20
Consider a special case that O = B(a,r) for some ball in R?® centered at a with radius r.
We first compute u’N3 dS. Consider
0B(a,r)
Vi (21,19) = (azl,xg, as + \/7"2 — (1 —a)? — (z9 — (12)2) , (x1,22) € D(a,r),

V- (2, 12) = (21,22, a3 — N2 — (1 —a)? — (20 — a2)?) (x1,22) € D(a,r),
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where D(a,r) is the disk in R? given by {(z1, z2) € R ‘ (21— a1)? + (z2 — az)? < r?}. Since
0B(a,m)\(¢+(D(a,r)) U _(D(a,r)) is the equator of the sphere 0 B(a,r) which has zero

area, we must have

J u’N3dS = u’N3 dS + J u’N3 dS .
oB(a,r) ¥+(D(a,r)) ¢—(D(a,r))
Note that (N oty )(xy,22) = %(wi (z1,22) — a). In view of Example 4.49, we have

f U3N3 dS

¥+ (D(a;r))

2 (1 — a2 — (29 — a9)2
- f U3<¢+<$1,$2))\/T (o — )" (o2 = o) 3 . 5 D) dA
D(a,r) r \/T’ — (.%1 = al) — (1‘2 — ag)

- f (1 (1, 20)) dA
D(a,r)

and similarly,
J WN, dS = —f w0 (21, 7)) dA
w+(D(a7r)) D(a,r)

Therefore,

J WN, dS = J [ (s (21 2)) — W (W (21, 7))] dA
0B(a,r) D(a,r)

a3+\/7“27(x1*a1)2*(12*a2)2 oud
:J <J 7($17$2,$3)d$3)dA
D(a,r) \/7“2—($1—a1)2—($2—02)2 0x3

az—

Similarly,

1 2
J u'N, dS = J %% gz and J u?N, dS = J 97 s
0B(a,r) B(a,r) oy 0B(a,r) B(a,r) 0y

thus we conclude that , '
f u-NdS:J >
0B(a,r) B(a,r) j=1 Ly

The computation above motivates the following

Definition 4.73 (The divergence operator). Let w : @ € R® — R" be a vector field. The

divergence of w is a scalar function defined by

Doul

divu = ; oz,
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Definition 4.74. A vector field u : 2 € R* — R" is called solenoidal or divergence-free if
dive = 0 in Q.

4.6.3 The divergence theorem

Theorem 4.75 (The divergence theorem). Let Q € R™ be a bounded Lipschitz domain, and
ve €1 Q) N E(Q). Then

f divvdx:f v-NdS,
Q o0

where N is the outward-pointing unit normal of 2.

Proof. To embrace the beauty of geometry (and the context that we have introduced), we

prove the case that €2 is a bounded open set of class €3.

Let {U,}5_, be an open cover of Q) such that for each m € {1,---, K} there exists
a €3-parametrization ¥, : V,, € R* ' — U, which is compatible with the orientation N;
that is,

det ([mo1 & i Vmsnt 1N o)) >0 on V.

Define 9,,(y', yn) = ¥m(y') +ya(N o ¥,,)(y') as in Section 4.5.1. Then there exists &, > 0
such that V., : Vi X (—€ms Em) = Wi is a €*-diffeomorphism for some open set in R such
that U, : Vi X (=&m,0) = Q@ W, while ¥, : V,,, x (0,,,) — int(Q) n W,,.
o K
Choose an open set Wy < R" such that Wy € Q and 2 < | J W,,, and define J; as the

m=0

identity map. Let 0 < ¢, < 1 in €%°(U,,) denote a partition-of-unity of Q subordinate to

the open covering {W,,}X_; that is,

K

Y Gu=1 and spt(Gn) S Un V.

m=0

Let J,, = det(VY,,), A, = (VU,,)7 !, and g, denote the first fundamental form associated
with {Vm,i/}m} Using (417), 4/gm(N O’l?m) = Jm(Am)Ten on V,, X {O} for m € {1, c ’K}
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Therefore, making change of variable z = ¥,,(y) in each W,,, we find that

K
f v-NdS = )’ J (m(v-N)dS
o0 m=1 JOQnWp,

K n

- X ZJ (G 0 V) (V' 0 030 )(N" © U0 ) /8 Ay’
m=1i=1 Y Vm x{yn=0}
K n

- f (Gm ©Um) (V' © Vn) Jon (A’ dy’
m= 1Z 1 mX{yn—O}

= Tr;l;J;}mx( :0) ayn |:<Cm m); m Y.

On the other hand, for a« € {1,--- ,n—1} and i € {1,--- ,n},

0 afp
| G o I (An)2 (0 )] dy =05
Vin % (—em,0) ¢Ya
thus the Piola identity (2.6) implies that

K n

[REZEED | G © D) T (0 00,)] dy
0Q m=11,5=1 'm X (—€m;,0) 6yj

K n ) )

=2 X I A (G o D)y (0 0 D) dy

m=11,5=1

+ J (G (A (80 ) dy
m= 12] 1 JVmXx(—em,0

Making change of variable y = ¥;,!(x) in each V,,, x (—&,,,0) again, by the fact that
Z (v"06,,),; = (dive) 0 b,, and J div(¢ov) dz =0,
j=1 Wo
we conclude that

J v-NdS:J div(¢ov) dz + ZJ v V) da + Z Cndivo de
oQ Wo m

Wm

Z (v- V)G dr + Z Crdivodx

W’m
:J(U-V:p)ldm—i-J div'vdac:J divudz . o
Q Q Q

Letting v = (0,---,0, f,0,---,0) = fe;, we obtain the following
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Corollary 4.76. Let 2 € R™ be a bounded Lipschitz domain, and f € €1(Q) n € (). Then

of de = fN;dS,
Q ox; o0

where N; is the i-th component of the outward-pointing unit normal N of €.

Letting v be the product of a scalar function and a vector-valued function in Theorem

4.75, we conclude the following

Corollary 4.77. Let Q € R® be a bounded Lipschitz domain, and v € €*(Q; R2) N €' (; R?)
be a vector-valued function and ¢ € €1 () N € (Q) be a scalar function. Then

fgpdivvdaszf (v-N)gpdS—J v Vedr, (4.18)
Q 00 Q

where N is the outward-pointing unit normal on 0f).

Example 4.78. Let €2 be the the first octant part bounded by the cylindrical surface
22 + 2% = a? and the plane y = b, and F : Q — R? be a vector-valued function defined by

F(a,y,2) = (2,92 2).

Figure 4.5: The domain €2 and its five pieces of boundaries

With N denoting the outward-pointing unit normal of 0€2,

o b aP—a? 0 pVaP—a?
J divFd(x,y,2) = f J f (2 + 2y) dzdydz = (b* + 2b)J J dzdx
Q o Jo Jo

0 Jo
ma®(b? + 2b)
—

On the other hand, we note that the boundary of €2 has five parts: X as given in Example
4.72, two rectangles Ry = {x = 0} x [0,b] x [0,a], Ry = [0,a] x [0,b] x {z = 0}, and two
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quarter disc Dy = {(2,0,2) e R*|2? + 22 < a?,2,2 > 0} and Dy = {(2,b,2) e R*|2? 4+ 2% <
a’, x, 2 > 0}. Therefore,

r ra b

F-NdS:J rOy z)-(=1,0,0)dydz =0,
Jr: 0 Jo
r ra b

F'NdS:J ((x,yQ,O 0,0,—1)dydx =0,
Jr, 0 Jo
r ra (\/m

F-NdS:J (x,0,2)-(0,—1,0)dzdz =0,
JDy 0 JO

and

a rVad—z2 a rVa2=z? Ta2b?
J F-Ndszf f (x,b2,z)-(0,1,0)dzd:c:bzf J dzdr = .
D 0 JO 0 JO 4

Together with the result in Example 4.72, we find that

W ra?h wa?(B + 2b
f F-NdSz(J +J +J +J +| JF-Nas =T+ T _ ma(t" + 20)
o0 b R; Ra Dy Do 4 2 4

= J divFd(z,y, z) .
Q

4.6.4 The divergence theorem on surfaces with boundary

This section is devoted to the divergence theorem on surfaces in R? instead of domains of
R*. To do so, we need to define what the divergence operator on a surface is, and this

requires that we first define the vector fields on which the surface divergence operator acts.

Definition 4.79. Let ¥ < R? be an open € !-surface; that is, X is of class € and ¥ n oY =
&. A vector field u defined on X is called a tangent vector field on 2, denoted by u € TY,

if w-N =0 on 3, where N : ¥ — §? is a unit normal vector field on X.

Having established (4.18), we find that the divergence operator div is the formal adjoint

of the operator —V. The following definition is motivated by this observation.

Definition 4.80 (The surface gradient and the surface divergence). Let ¥ < R" be a
regular € '-surface. The surface gradient of a function f : ¥ — R, denoted by Vif, is a

vector-valued function from 3 to T,X given, in a local parametrization {V, ¢}, by

P o(fov) oy
(Vef) oy = g ,
aﬂZl aya ayﬁ
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where [g?F] is the inverse matrix of the metric tensor [gas] associated with {V, 1}, and

oY "
— are tangent vectors to 2.
0yp ) p=1

The surface divergence operator diw;, is defined as the formal adjoint of —V%; that is, if
u € T, then

—f u-VZde:f fdiwudS  Vfe% (iR).
b b

In a local parametrization (V, ),
1 &0
il L 06/3
(divgu) o \f ; o [\fg (wo)- ayﬁ)}

where g = det(g) is the first fundamental form associated with {V, ¥}

Remark 4.81. Suppose that f : O € R® — R for some open set containing ¥. Then the
surface gradient of f at p € ¥ is the projection of the gradient vector (V f)(p) onto the
tangent plane 7,%. In other words, let N : ¥ — R? be a continuous unit normal vector field
on Y, then

(V%f)(p) = (VH)p) = [(V)(p) - N@)]N(p) (or simply Vif =Vf—(Vf -N)N).

Definition 4.82 (Surfaces with Boundary). An oriented ¢ *-surface ¥ < R? is said to have

¢*-boundary 0¥ if there exists a collection of pairs {V,,, ¥, }X_,, called a collection of local

m17

parametrization of ¥, if

1. YV, € R? is open and v, : V,, — R? is one-to-one map of class €* for all m €
{17 e 7K}7

2. hy(Vm) NS # @ forallme {1, -, K} and & < [ JE_, hn(Von);

3. Um : Vi = V(Y is a €F-diffeomorphism if ¢,,(V,,) S s

4. Py : VE=V0 0 {ya > 0} = ,(Vin) 0 3 is a €F-diffeomorphism if U, N 0% # ;
5. Um : Vi 0 {y2 = 0} = U, N 0% is of class €* if Uy, n 0¥ # &.

Now we are in the position of stating the divergence theorem on surfaces with boundary.
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Theorem 4.83. Let ¥ € R? be an oriented €*-surface with €*-boundary 03, N : ¥ — S?
be a continuous unit normal vector field on ¥, and T : 0¥ — S? be tangent vector on 0%

such that T is compatible with N (which means T x N points away from ). Then

J u-(TxN)d:s:f divyudS VueTE n €2 R?) n (3 R?),
ox

%

where divy is the surface divergence operator.

Proof. Let {V,,, ¥ }X_, denote a collection of local parametrization of 3 such that 1, (V,n) N
0¥ =g for 1 <m < J,and ¢,,(Vn) N 0¥ is non-empty and connected for J+1 <m < K.
W.L.O.G., we can assume that V,, = B,, = B(0,r,,) for some r,, > 0. Write U, = ¥,,(Vin),
and let { gm}K be the associated metric tensor, as well as the associated first fundamental
form g, = det(gn). Let {(n}E_, be a partition-of-unity of ¥ subordinate to {U,}%_,
Then

K
L divsudS = m21 L . CdiveudS
:ZMZJ (G © ) — [@g (<uowm)-?§’;)]dy
+ i Zf (G © ) [ ’((wothm) - ‘w’")]
m=J+1 a,4=1 ) Vnm " ys Y

Let n denote the outward-pointing unit normal on either 0B, for 1 < m < J or dB;} for
J+1<m< K. Since ¢, %, = 0 on 0B(0,r,,) for 1 < m < J, and (,, cJ,, = 0 on
{y > 0} N 0B(0,7,,) for J +1 < m < K, the divergence theorem (on R?) implies that

JdlvzudS— Z Z J \/gim fnﬂ((umﬂm) Zwm)];(fmo¢m)dy

m=1 a,f=1 Y (UnOY)

A

m=J+1 a,f=1 B n{y2=0}

Cm © wm)na [\/gim %ﬁ(<’u’ © ¢m) aé'lf/:)} dyl
K

-3, L gy 8 S ) 2 Uy

+ 2 J (G © U) (w0 Pyy) [ 2 Mar/Emg ?/)m]

m=J+1 Y Bmn{y2=0} a,B=1
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Since

K K
m=1 wr_nl(umﬁz) m=1

Mmr\Z

we conclude that

fdlvzudS— Z f (Cm © V) (w0 Uyy,) [ Z Nar/8m g, ¢m}dy1‘

m=J+1 Y Bmn{y2=0} a,f=1

On the other hand,

K

f u- (T xN)ds = Gnu - (T x N)ds
ox

m=J+1 Lzﬁum

Ot
=3 [ Gotwe s [N o v 2y,
m=J+1 Y Bm{y2=0}
Therefore, the theorem can be concluded as long as we can show that
2 o9 o1
D May/Emgs S = (T xN)o @Z)m‘im‘ on By, n{y,=0}. (4.19)

a,f=1 ay’B

2

Let 7, = D, nm/gmgaﬂ wm on B, o {ys = 0}. Since n, = —da4, we find that Tm-ﬁ =
a,8=1 1

0 on By, N {y2 = 0}; thus

T (TOy) =0 on B, n{ys=0}.

0Ym

, we must have
ys

Moreover, noting that 7, is a linear combination of tangent vectors

Tm - (Noty,)=0 on B, n{y,=0}.

As a consequence,
Tm | (T x N) o, on B, n{y:=0}.

Since (T x N) points away from %, while a;Zm ot ; points toward X, by the fact that
2 o

O,
Y2

2
OYm  OYm
=Zna¢€giﬁaﬁ - ¢ z—\/ngQ

a,B=1

Tm -
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we must have 7, - (T x N) o, > 0 on B, n {y2 = 0}. In other words,
Tm = |Tm|(T x N) oy, on B, n{y,=0}.

Finally, since

2

a OYm  Ohm 0Ym |?

Tm: Tm = Z Em N 'n"ygmﬁgg? v ) v = gmng = Omi11 = v ) )

o W 0ys  0Ys oy
,0,7,0=
0Ym : :
we conclude that 7, = ’ 2y ‘(T x N) o 1),, on {y, = 0}; thus (4.19) is established. o
1

Remark 4.84. On 0%, the vector T x N is “tangent” to ¥ and points-away from >. In
other words, T x N can be treated as the “outward-pointing” unit “normal” of 0% which

makes the divergence theorem on surfaces more intuitive.

4.7 The Stokes Theorem

4.7.1 Measurements of the circulation - the curl operator

We consider the circulation or the speed of rotation of a vector field v about an axis in the
direction N. Let P be a plane passing thorough a point a and having normal N, and C,. be
a circle on the plane P centered at.a with radius r. Pick the orientation of the unit tangent

vector T which is compatible with the unit normal N (see Figure 4.6 for reference).

Figure 4.6: the circulation about an axis in direction N

Since the instantaneous angular velocity of a vector field u along the circle C,. is measured
u-T

by , it is quite reasonable to measure the circulation of uw along C, by averaging the

angular velocity; that is, we consider the quantity

1 u-T
2rr)e,. 7

ds (4.20)
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as a (constant multiple of) measurement of the speed of rotation. The limit of the quantity
above, as r — 0, is then a good measurement of the rotation speed of u at the point a about
the axis in the direction N.

We start from the case that N = e3 so that P be parallel to the zixo-plane. With
U1, s, uz denoting respectively the first, the second and the third components of u, by the
change of variable ds = rdf and the L'Hdspital rule (to obtain the second “=") we find that

i 1 u-T
lim —
r—=02mr Jo o1

ds

2m
= lim L J [us (@ + (rcosf,rsing,0)) cos — ui(a+ (rcos,rsind;0)) sinf] df

r—0 277 Jg
1 d 21 . . .
=5 [uQ(a + (rcosf,rsinb, O)) cos ) — ul(a~|— (ricos@,rsin 6, O)) sm@} do
T 7“ r=0 0
1 27 Ouo 2 Oug . Juq ) oy L
=5 ) [axl(a) cos” 0 + a—@(a) cosfsinf — a—xl(a) cosf sinf — a—m(a) sin 0} do
_ 1 dug ouy L 1 2 an
2 [(9:61(0') - 8x2<a)] =5 Z €3z'ja—xi(a) . (4.21)

ij=1
Now suppose the general case that N # e3. Let €3 = N and choose €; and €, so that

{61,82,33} is an orthonormal basis following the right-hand rule (that is, €; x €, = €3).

Then the vector field u has two representations
U = U1€1 + Uo€s + Uze3 = Ul/él + Ug/ég + 0383 . (422)

Let O = [é;:€€;3], and introduce a new Cartesian coordinate system y = OTz. Note
that y is the coordinate with coordinate axis parallel to the basis {€;,€,,€3}. In this new

Cartesian coordinate system, (4.21) implies that

lim — §==
r—=027mr Jo o 2

1 qu 1[(91)2 b _aﬂ
oy Y2

)],
where b = O'a.

Now we transform the result above back to the original coordinate system (so that the
limit is in terms of derivatives of u; w.r.t. x;). Note that (4.22) implies that v = OTu so
that v; = €; - w. Moreover, with e;; denoting the k-th component (w.r.t. the ordered basis

{e1,e2,e3}) of €;; that is, €; = e;1€; + ¢;2€2 + ¢;3€3, the chain rule provides that

&yl o Haxl 125‘1‘2 135.%‘3 8y2 - 2151‘1 225%2 2381‘3’
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thus
w-T 1 0(u-e) 0(u-ep)
11~1—I>I(1) %»%C T dS o 5 Z |:61] a{L'j <a) 62] a.’L'j ( )
T 7j=1
1 5 6uk 1 3 6uk
= §j§1 (€1j€2k - e2j€1k)§_xj<a) = _jk§:1<5jr($ks 5356kr)61r62saxj (a) )

where 0.’s are the Kronecker deltas. Using (4.9), we further conclude that

1 2 &uk
ds = 5 Z €ijk€ir5617«€23(}—xj(a) .

i,5,k,r,s=1

Since €; X €; = €3, we have eg; = . g;.5€1.€25; thus the identity above shows that
r,s=1

3

. 1 [ u-T 1 é‘uk 1 auk
o =5 2 SUkC G 252(2%’“ )63"

Cr i,5,k=1 J

(The blue expression of) (4.21) and the identity above motivate the following

Definition 4.85 (The curl operator). Let w: Q € R® - R* n =2 or n = 3, be a vector
field.

1. For n = 2, the curl of wu is a scalar function defined by

2
curlu = Z E£3;5 U

4,j=1

2. For n = 3, the curl of u is a vector-valued function defined by

curlu Z 5,Jk'u,

7,k=1

The function curlwu is also called the vorticity of u, and is usually denoted by one single
Greek letter w.

Having the curl operator defined, for the three-dimensional case the circulation of a
curlu - N

vector field w on the plane with normal N is given by 5
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4.7.2 The Stokes theorem

The path we choose to circle around the point a does not have to be a circle. However, in
such a case the average of the angular velocity no longer makes sense (since w - T might not
contribute to the motion in the angular direction), and we instead consider the limit of the

following quantity

1
£1%K§CU~TCZS,

where A is the area enclosed by C. This limit is always curlu - N because of the famous

Stokes’ theorem.

Theorem 4.86 (The Stokes theorem). Let u: Q = R3 — R? be a.smooth vector field, and
Y be a €' -surface with €*-boundary 0% in Q. Then

f 'u,-Tds:J curlu - NdS,,
0% by

where N and T are compatible normal and tangent vector fields.
To prove the Stokes theorem, we first establish the following

Lemma 4.87. Let Q < R? be a bounded Lipschitz domain, and w : Q@ — R" be a mooth

vector-valued function. If ¥ < Q is.an oriented €1 -surface with normal N, then
curlw - N = divg(w x N) on X. (4.23)

Proof. Let O < Q be'a € -domain such that ¥ < dO and N is the outward-pointing unit

normal on dO. In other words, ¥ is part of the boundary of O. Since
i 0N i
(Vo) = TN+ (Vaop)”  on 00,

by the divergence theorem we conclude that for all ¢ € €1 (O),

J (curlw - N)pdS = J curlw - Vo dr = J (N x w) - VpdS
20 o 00

- f (N x ) VeowdS = | divao(w x N)pds.
00 00

Identity (4.23) is concluded since ¢ can be chosen arbitrarily on X. o
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Proof of the Stokes theorem. Using (4.23) and then applying the divergence theorem on
surfaces with boundary (Theorem 4.83), we find that

(uxN)-(TxN)ds:Lx(u-T)ds

f curlu - NdS = f divg(u x N)dS = J
2 )

ox
in which the identity (u x N) - (T x N) = w - T is used. o

Example 4.88. Let ¥ be the surface given in Example 4.51, and F : R? — R3 be a vector-
valued function given by F(z,y,z) = (y, —x,0). Then by the definition of line integral,

g
jg F - dr :J (sin®t, — costsint, 0) - (COSQt—Singt,2sil’ltCOSt,—SiIlt)dt
C —

(VB

3
= J ( sin®t cos® t — sin* t — 2sin? ¢ cos? t) dt

us
2

2, 21— cos2t (t sin2t>
= - tdt =— | ————dt ===+
f St f 2 9 4

us
2 2

while by the fact that curl F = (0,0, —2), the Stokes theorem implies that

us
2

™

™
5 .

3 (m¢
ﬁcF cdr = JE(O, 0,—-2)-NdS = L;—l(z) —2cos¢singd(6, ¢) = —QL L sin ¢ cos ¢ dfd¢p

™

= — JQ (m —2¢)sin2¢ do = (g cos2¢ — ¢ cos2¢p + % sin2¢)‘¢:2
7r0 T w ™ ”
A
Example 4.89. Let C' be a smooth curve parameterized by
r(t) = (cos(sint)sint, sin(sin¢) sin¢, cost) , t €[0,27].

Then the curve € is a closed curve on S?, and divide S? into two parts. Let ¥ denote the

part with smaller area.
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As in Example 4.51 and Example 4.88, we would like to find the area of 3, and verify
the Stokes theorem for the special case that F : R3 — R3 given by

F(x,y,z) = (y,—x,0).

To find the surface area of X, we need to parameterize ¥. As in Example 4.51, we look
for v(t) = (6(t), (1)), t € [0, 2], such that ¥ ((t)) = r(t), where ¥ : R = (0,27) x (0, ) is
given by (0, ¢) = (cos  sin ¢, sin 0 sin ¢, cos ¢) .

For t € (0,7), since cost = cos ¢(t) and ¢(t) € (0,7), we must have ¢(t) = ¢; thus the
two identities cos(sint)sint = cosf(t)sin ¢(t) and sin(sint)sint = sin0(t)sin ¢(t) further
imply that 6(t) = sint. Therefore, the curve r((O,w)) corresponds'to 6= sin ¢, ¢ € (0,7),
on R.

On the other hand, for t € (7, 27), the identity cos ¢(t) = cost implies that ¢(t) = 27 —
t. The two identities cos(sint)sint = cos6(t) sin ¢(t) and sin(sint)sint = sin 0(t) sin ¢(t)
further imply that

cos(sint) = —cosf(t) and sin(sint) = —sin6(t) t e (m2m).

Therefore, 6(t) = 7 + sint which implies. that the curve r((m,27)) corresponds to 6 =
T —sing, ¢ € (0,7), on R.

Therefore, the surface area of ¥ is

sin(2¢) ) ‘¢>=7r B
$=0

T prsing i | |
LLW sm¢d0d¢=L(W—Qsmgb)smgbdgb:—<7rcos¢—|—¢_T

Next, we compute the line integral fﬁ F - dr. First, we note that
c

r'(t) = (—sin(sint) sint cost + cos(sint) cos t, cos(sin t) sin t cos t + sin(sint) cost, —sint) ;
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thus

(For)(t) r'(t) = —sin®(sint) sin® t cos t + sin(sint) cos(sint) sint cos t
— cos*(sint) sin®t cost — sin(sin ) cos(sint) sint cost

= —sin?tcost.

As a consequence,
27 1 t=2m
§F-dr:—f sintcostdt = ——sin®t =0.
C 0 3 t=0

On the other hand,

m rm—sin ¢
f curlF - NdS = J J (0,0,—2) - (cos @ sin ¢, sin 0 sin ¢, cos ¢) sin ¢ dOd¢
b 0 Jsing
= —2J sin ¢ cos ¢p(m — 2sin @) do
0
(7 4.3\
= <§cos2¢+ gsm ¢)’¢=0 =0.

4.8 Green’s Theorem

In most of materials Green’s theorem is introduced prior to the divergence theorem and the
Stokes theorem; however, we treat Green’s theorem as a corollary of the divergence theorem
(Theorem 4.75), the Stokes theorem (Theorem 4.86) and Theorem 4.83.

Theorem 4.90 (Green'’s theorem). Let D be a bounded domain whose boundary 0D is
piecewise smooth, and M, N : D— R be of class €*. Then

3€ (M,N) -dr = f (N, — M,)dA

oD D

where the line integral (on the left-hand side of the identity above) is taken so that the curve

1s counter-clockwise oriented.

Proof 1. Let u(z,y) = (N(z,y),—M(z,y)) be a vector-valued function defined on the 2-
dimensional domain D. Suppose that 0D is parameterized by 7(t) = (z(t), y(t)) for ¢ € [a, b],
where 7’ points in the counter-clockwise direction. Then with N denoting the outward-

pointing unit normal of 0D, the divergence theorem implies that

jg (M,N)-drz% u-Nds:JdivudA:J(Nx—My)dA. o
oD oD D D
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Proof 2. Let F(z,y,2z) = (M(x,y),N(x,y),O) be a vector-valued function defined in a
subset of R?. Then
curlF' = (0,0, N, — M,);

thus the Stokes theorem implies that
jg (M,N)-drzf F-Tds:JCurlF‘NdS:J(0,0,Nx—My)-(0,0,l)dA
oD oD D D

—J(Nx—My)dA. o

D
Proof 3. Let ¥ = D x {z = 0}. Then ¥ is a surface with boundary and the upward-
pointing unit normal N = (0,0,1). Let F : ¥ — R? and u : D — R? be vector-valued
functions defined by F(z,y,z) = (N(z,y), —M(z,y),0) and u(z,y) = (N(z,y), —M(z,y)),
respectively. We note that if 0D is parameterized by r(t) = (z(t),y(t),0), then

T N= ——(2/(t),y/().0) x (0,0,1) = m@/(w, ~2/(t),0);

|7 () s
thus by the fact that the surface divergence operator divy-is the same as the 2-d divergence
operator (since X is flat), Theorem 4.83 implies that

j@ (M,N)-dr:§ F.-(TxN)ds :fdiVZFdS: f divudA:J (Ny —M,)dA. o
oD )

oD D D
Corollary 4.91. Let R < R? be a domain enclosed by a simple closed curve C' which is

parameterized by r(t) = (:B(t), y(t)) for't e [a,b]. Suppose r' points in the counter-clockwise

direction. Then ,
1
the area of R = §J [z(t)y' (t) — y(t)z'(t)]dt .
Proof. The corollary is concluded by applying Green’s theorem to the special case: M (z,y) =
—y and N(z,y) = x. o

Example 4.92. Compute the area enclosed by the Cardioid which has a polar representa-

tion r = (1 —sin#) with 6 € [0, 27]. y

Figure 4.7: The Cardioid
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Given the polar representation r = (1 — sinf), a parametrization of the Cardioid is
r(t) = (z(t),y(t)) = ((1 —sint) cost, (1 —sint)sint) ¢ e [0,2n].

Then Corollary 4.91 implies that the area enclosed by the Cardioid is

1 27
§f [(1—sint)cost(— costsint + (1 — sint) cost)
0

— (1 —sint)sint(— cos®t — (1 — sint)sint)|dt
1 21
= §J (1 —sint) [COSzt — 2sintcos®t + sint cos® t 4 sin®t — sin® t}dt
0

1 21 1 21 3
= —f (1 —sint)(1 —sintcos®t — sin®t)dt = = J (1 —sint)*dt = .

2 Jo 2 Jo 2
Before finishing this chapter, we would like to establish an unproven theorem: Theorem

4.33. We recall Theorem 4.33 as follows.

Theorem 4.33. Let D < R? be simply connected, and F = (M, N) : D — R? be of class
¢'. If M, = N,, then F is conservative.
Proof of Theorem 4.33. By Theorem 4.30, it suffices to show that j@ F - dr = 0 for all
piecewise smooth closed curve C' € D. Nevertheless, if C' is a piecewisec closed curve and R
is the region enclosed by C| by the fact that D is simply connected, we must have 0R = C.
Therefore, Green’s theorem implies that

%C(M, N) - dr = JR(NI — M) dA =0, o
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