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Chapter 4

Vector Calculus

4.1 The Line Integrals
4.1.1 Curves

Definition 4.1. A subset C Ď Rn is called a curve if C is the image of an interval I Ď R
under the continuous map γ : I Ñ Rn (that is, C = γ(I)). The continuous map γ : I Ñ Rn

is called a parametrization of the curve. A curve C is called simple if it has an injective
parametrization; that is, there exists γ : I Ñ Rn such that γ(I) = C and γ(x) = γ(y)

implies that x = y. A curve C with parametrization γ : I Ñ Rn is called closed if I = [a, b]

for some closed interval [a, b] Ď R and γ(a) = γ(b). A simple closed curve C is a closed
curve with parametrization γ : [a, b] Ñ Rn such that γ is one-to-one on (a, b).

Example 4.2. A line segment joining two points P0, P1 P Rn is a curve. It can be parame-
terized by γ : [0, 1] Ñ Rn defined by γ(t) = tP1 + (1 ´ t)P0.

Example 4.3. A circle on the plane is a simple closed curve. In fact, a circle centered at
the (x0, y0) with radius r has the following parametrization: γ : [0, 2π] Ñ R2 defined by
γ(θ) = (x0 + r cos θ, y0 + r sin θ).

Example 4.4. Figure eight is the zero level set of F (x, y) = x4 ´a2(x2 ´y2) for some a ‰ 0.

It can also be parameterized by γ : [0, 4π] Ñ R2 defined by γ(θ) =
(
a cos θ

2
,
a

2
sin θ

)
.

Definition 4.5 (Length of Curves). The length of curve C Ď Rn parameterized by γ :

[a, b] Ñ Rn is defined as the number

ℓ(C) ” sup
!

k
ÿ

i=1

›

›γ(ti) ´ γ(ti´1)
›

›

Rn

ˇ

ˇ

ˇ
k P N and a = t0 ă t1 ă ¨ ¨ ¨ ă tk = b

)

.
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§4.1 The Line Integrals 97

Definition 4.6 (Rectifiable curves). A curve C Ď Rn with parametrization γ : I Ñ Rn is
called rectifiable if there is an homeomorphism φ : rI Ñ I, where rI is again an interval,
such that the map γ ˝ φ : rI Ñ Rn is Lipschitz.

Remark 4.7. 1. By an homeomorphism it means a continuous bijection whose inverse is
also continuous.

2. We can think of a curve as an equivalence class of continuous maps γ : I Ñ Rn, where
two parametrization γ : I Ñ Rn and rγ : rI Ñ Rn are equivalent if and only if there is
an homeomorphism φ : rI Ñ I such that rγ = γ ˝ φ. Each element of the equivalence
class is a parametrization of the curve and thus a rectifiable curve is a curve which
has a Lipschitz continuous parametrization.

3. The length of a rectifiable curve parameterized by γ : [a, b] Ñ Rn is finite since by
choosing a Lipschitz parametrization rγ : [c, d] Ñ Rn, the number

!

k
ÿ

i=1

›

›

rγ(ti) ´ rγ(ti´1)
›

›

Rn

ˇ

ˇ

ˇ
k P N and c = t0 ă t1 ă ¨ ¨ ¨ ă tk = d

)

is bounded from above by M(d ´ c), where M is the Lipschitz constant of rγ.

Example 4.8 (Non-rectifiable curves). Let C Ď R2 be a curve parameterized by

γ(t) =

# (
t, t sin π

t

)
if t P (0, 1] ,

(0, 0) if t = 0 .

Since

ℓ
(
γ([

1

n+ 1
,
1

n
])
)

ě
›

›γ(
1

n+ 1
) ´ γ(

1

n+ 1/2
)
›

›

R2 +
›

›γ(
1

n+ 1/2
) ´ γ(

1

n
)
›

›

R2 ě
2

n+ 1/2

and
8
ř

n=1

2

n+ 1/2
= 8, by the remark above we conclude that γ([0, 1]) is not a rectifiable

curve.

Definition 4.9. A curve C Ď Rn is said to be of class C k or a C k-curve if there exists
a parametrization γ : I Ñ Rn such that γ is k-times continuously differentiable. Such a
parametrization is called a C k-parametrization of the curve. If there exists a parametrization
γ : I Ñ R which is of class C k for all k P N, then the curve is said to be smooth. A curve
C Ď Rn is said to be regular if there exists a C 1-parametrization γ : I Ñ Rn such that
γ 1(t) ‰ 0 for all t P I.
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98 CHAPTER 4. Vector Calculus

Theorem 4.10. Let C Ď Rn be a curve with C 1-parametrization γ : [a, b] Ñ Rn. Then

ℓ(C) =

ż b

a

}γ 1(t)}Rn dt .

Proof. Let ε ą 0 be given. Since γ : [a, b] Ñ Rn is C 1, there exists δ ą 0 such that

}γ 1(t) ´ γ 1(s)
›

›

Rn ă
ε

4
?

n(b ´ a)
whenever s, t P [a, b], |s ´ t| ă δ .

By the definition of the length of curves, there exists a partition P = ta = t0 ă t1 ă ¨ ¨ ¨ ă

tk = bu of [a, b] such that

ℓ(C) ´
ε

4
ă

k
ÿ

i=1

›

›γ(ti) ´ γ(ti´1)
›

›

Rn ď ℓ(C) .

W.L.O.G., we can assume that }P} ă δ. For each component γj of γ, the mean value
theorem implies that for some ξi P [ti´1, ti],

γj(ti) ´ γj(ti´1) = γ 1
j(ξi)(ti ´ ti´1) ;

thus for each i P t1, ¨ ¨ ¨ , ku and si P [ti´1, ti],
ˇ

ˇγj(ti) ´ γj(ti´1) ´ γ 1
j(si)(ti ´ ti´1)

ˇ

ˇ ď
ˇ

ˇγ 1
j(ξi) ´ γ 1

j(si)
ˇ

ˇ|ti ´ ti´1| ă
ε

4
?

n(b ´ a)
|ti ´ ti´1| .

As a consequence, for each i P t1, ¨ ¨ ¨ , ku and si P [ti´1, ti],
ˇ

ˇ

ˇ

›

›γ(ti) ´ γ(ti´1)
›

›

Rn ´
›

›γ 1(si)
›

›

Rn |ti ´ ti´1|

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ

›

›γ(ti) ´ γ(ti´1)
›

›

Rn ´
›

›γ 1(si)(ti ´ ti´1)
›

›

Rn

ˇ

ˇ

ˇ

ď
›

›γ(ti) ´ γ(ti´1) ´ γ 1(si)(ti ´ ti´1)
›

›

Rn ď

[ n
ÿ

j=1

( ε

4
?

n(b ´ a)
|ti ´ ti´1|

)2] 1
2

ă
ε

4(b ´ a)
|ti ´ ti´1|

which further implies that
ˇ

ˇ

ˇ

k
ÿ

i=1

›

›γ(ti) ´ γ(ti´1)
›

›

Rn ´

k
ÿ

i=1

›

›γ 1(si)
›

›

Rn |ti ´ ti´1|

ˇ

ˇ

ˇ
ă
ε

4
.

Therefore, for a = t0 ď s0 ď t1 ď s1 ¨ ¨ ¨ ď sk ď tk = b,

ℓ(C) ´
ε

2
ă

k
ÿ

i=1

›

›γ 1(si)
›

›

Rn |ti ´ ti´1| ă ℓ(C) +
ε

2
.

Since }γ 1} is Riemann integrable over [a, b], we must have

ℓ(C) ´ ε ă L(}γ 1}Rn ,P) ď

ż b

a

›

›γ 1(t)
›

›

Rndt ď U(}γ 1}Rn ,P) ă ℓ(C) + ε ,

and the theorem is concluded because ε ą 0 is given arbitrarily. ˝
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Example 4.11. The length of the elliptic helix C parameterized by

γ(t) = (a cos t, b sin t, ct) t P
[
0,
π

2

]
can be computed by

ℓ(C) =

ż π
2

0

}γ 1(t)}R3dt =

ż π
2

0

a

a2 sin2 t+ b2 cos2 t+ c2 dt .

1. When a ă b, letting k =

c

b2 ´ a2

b2 + c2
, then

ℓ(C) =
?
b2 + c2

ż π
2

0

a

1 ´ k2 sin2 t dt .

2. When a ą b, letting k =

c

a2 ´ b2

a2 + c2
, then

ℓ(C) =
?
a2 + c2

ż π
2

0

?
1 ´ k2 cos2 t dt =

?
a2 + c2

ż π
2

0

a

1 ´ k2 sin2 t dt .

The integral E(k, ϕ) ”

ż ϕ

0

?
1 ´ k2 sin2 t dt, where 0 ă k2 ă 1, is called the elliptic integral

function of the second kind, and E(k) ” E
(
k,
π

2

)
is called the complete elliptic

integral of the second kind.

Definition 4.12. Let C Ď Rn be a curve with finite length. An arc-length parametriza-
tion of C is an injective parametrization γ : [a, b] Ñ Rn such that the length of the curve
γ([a, s]) is exactly s ´ a; that is,

ℓ
(
γ([a, s])

)
= s ´ a @ s P [a, b] .

Example 4.13. Let C be the circle centered at the origin with radius R. Then the
parametrization

γ(s) =
(
R cos s

R
, R sin s

R

)
s P [0, 2πR] ,

is an arc-length parametrization of C. To see this, we note that

ℓ
(
γ([0, s])

)
=

ż s

0

›

›γ 1(t)
›

›

R2 dt =

ż s

0

›

›

(
´sin s

R
, cos s

R

)›
›

R2 dt =

ż s

0

dt = s @ s P [0, 2πR] .



Copy
rig

ht
Prot

ect
ed
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In general, the arc-length parametrization of a rectifiable curve exists, and we have the
following

Theorem 4.14. Let C Ď Rn be a rectifiable simple curve. Then there exists an arc-length
parametrization of C.

Proof. We only prove the case that C has a regular C 1-parametrization γ : [a, b] Ñ Rn.

Let s(t) =
ż t

a
}γ 1(t1)}Rn dt1. Note that the s : [a, b] Ñ R is strictly increasing since

the fundamental theorem of Calculus implies that s 1(t) = }γ 1(t)}Rn ą 0 for all t P [a, b].
The Inverse Function Theorem (Theorem A.10) then guarantees that s has a C 1-inverse
u : [0, ℓ(C)] Ñ [a, b] and we have u 1(t) =

1

s 1(u(t))
. Define rγ = γ ˝ u. Then the chain rule

implies that rγ : [0, ℓ(C)] Ñ Rn is a C 1-parametrization of C, and Theorem 4.10 implies that

ℓ
(
rγ([0, s])

)
=

ż s

0

}rγ 1(t)}Rn dt =

ż s

0

}γ 1(u(t))u 1(t)}Rn dt =

ż s

0

}γ 1(u(t))}Rn
ˇ

ˇu 1(t)
ˇ

ˇ dt

=

ż s

0

s 1(u(t))
1

ˇ

ˇs 1(u(t))
ˇ

ˇ

dt =

ż s

0

1dt = s

which implies that rγ : [0, ℓ(C)] is an arc-length parametrization of C. ˝

Theorem 4.15. Let C Ď Rn be a C 1-curve with an arc-length parametrization γ : I Ñ Rn.
Then }γ 1(s)}Rn = 1 for all s P I.

Proof. Suppose that I = [a, b]. Since γ : I Ñ Rn is an arc-length parametrization of C, we
must have

s ´ a =

ż s

a

}γ 1(t)}Rn dt @ s P I .

Differentiating both sides of the equality above in t, the fundamental theorem of Calculus
implies that 1 = }γ 1(s)}Rn for all s P I. ˝

4.1.2 The line element and line integrals
Line elements

Definition 4.16. A curve C Ď Rn is said to be piecewise C k (smooth, regular) if there exists
a parametrization γ : [a, b] Ñ Rn and a finite set of points ta = t0 ă t1 ă ¨ ¨ ¨ ă tN = bu

such that γ : [ti, ti+1] Ñ Rn is C k (smooth, regular) for all i P t0, 1, ¨ ¨ ¨ , N ´ 1u.
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Definition 4.17. Let RC be the collection of all piecewise regular curves. The line element
is a set function s : RC Ñ R that satisfies the following properties:

1. s(C) ą 0 for all C P RC.

2. If C P RC is the union of finitely many regular curves C1, ¨ ¨ ¨ , Ck that do not overlap
except at their end-points, then

s(C) = s(C1) + ¨ ¨ ¨ + s(Ck) .

3. The value of s agrees with the length on straight line segments; that is,

s(L) = ℓ(L) for all line segaments L .

Line integrals of scalar functions

Definition 4.18. Let C Ď Rn be a simple rectifiable curve with an injective Lipschitz
parametrization γ : [a, b] Ñ Rn, and f : C Ñ R be a real-valued function. The line
integral of f along C, denoted by

ż

C
f ds, is the number

sup
!

k
ÿ

i=1

(
inf

ξPγ([ti´1,ti])
f(ξ)

)
ℓ
(
γ([ti´1, ti])

) ˇ
ˇ

ˇ
k P N, a = t0 ă t1 ă ¨ ¨ ¨ ă tk = b

)

provided that it is identical to

inf
!

k
ÿ

i=1

(
sup

ξPγ([ti´1,ti])

f(ξ)
)
ℓ
(
γ([ti´1, ti])

) ˇ
ˇ

ˇ
k P N, a = t0 ă t1 ă ¨ ¨ ¨ ă tk = b

)

.

When C is a closed curve, we also use
¿

C
f ds to denote the line integral of f along C to

emphasize that the curve C is a closed loop.

Remark 4.19. Since the parametrization γ is required to be injective, the line integral of
f along C is independent of the choice of the parametrization.

Remark 4.20. In particular, if f ” 1, then ℓ(C) =
ż

C
1 ds ”

ż

C
ds.

Remark 4.21. If the curve C is a line segment
␣

(x, 0)
ˇ

ˇ a ď x ď b
(

, then the line integral
of f along C is simply the Riemann integral of f over [a, b] (by treating f as a function of
x).
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Remark 4.22 (The interpretation of the line integrals). Let C be a piecewise smooth curve,
and f(x) denote the density of the curve C at position x. Suppose that f is continuous on
C and x = γ(t). Then f(x) is computed by

f(x) = f(γ(t)) = lim
∆tÑ0

m(γ([t, t+∆t]))

ℓ(γ([t, t+∆t]))
,

where m(¨) denotes the mass. Let ε ą 0 be given. Then by the continuity of f ˝ γ and the
definition of limit, there exists δ ą 0 such that

ˇ

ˇ(f ˝ γ)(t) ´ (f ˝ γ)(s)
ˇ

ˇ ă
ε

4ℓ(C)
if t, s P [a, b], |t ´ s| ă δ

and
ˇ

ˇf(γ(t))ℓ(γ([t, t+∆t])) ´ m(γ([t, t+∆t]))
ˇ

ˇ ď ℓ(γ([t, t+∆t]))
ε

4ℓ(C)
if |∆t| ă δ ;

thus if P = ta = t0 ă t1 ă ¨ ¨ ¨ ă tk = bu is a partition of [a, b] with }P} ă δ, the total mass

of the curve m(C), given by m(C) =
k
ř

i=1

m(γ([ti´1, ti])), validates the following estimate:

ˇ

ˇ

ˇ
m(C) ´

k
ÿ

i=1

f(γ(si´1))ℓ(γ([ti´1, ti]))
ˇ

ˇ

ˇ
ď
ε

2
.

As a consequence,

m(C) ´ ε ă

k
ÿ

i=1

inf
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti])) ď

k
ÿ

i=1

sup
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti])) ă m(C) + ε

which implies that the line integral of f along C is exactly the mass of the curve.

Theorem 4.23. Let C Ď Rn be a simple curve with C 1-parametrization γ : [a, b] Ñ Rn,
and f : C Ñ R be a real-valued continuous function. Then

ż

C

f ds =

ż b

a

f
(
γ(t)

)
}γ 1(t)}Rn dt . (4.1)

Proof. Let ε ą 0 be given. Since f ˝ γ and γ 1 are continuous on [a, b], |f ˝ γ| + }γ 1}Rn ď M

on [a, b] for some M ą 0, and there exists δ ą 0 such that
ˇ

ˇ(f ˝ γ)(s) ´ (f ˝ γ)(t)
ˇ

ˇ ă
ε

8(M + 1)(b ´ a)
whenever s, t P [a, b], |s ´ t| ă δ
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and
›

›γ 1(s) ´ γ 1(t)
›

›

Rn ă
ε

8(M + 1)(b ´ a)
whenever s, t P [a, b], |s ´ t| ă δ .

Moreover, since f ˝γ and γ 1 are both continuous on [a, b], the integral
ż b

a
f
(
γ(t)

)
}γ 1(t)}Rn dt

exists; thus there exists a partition P = ta = t0 ă t1 ă ¨ ¨ ¨ ă tk = bu of [a, b] such that
k
ÿ

i=1

(
sup

sP[ti´1,ti]

(
f(γ(s))}γ 1(s)}Rn

)
´ inf

sP[ti´1,ti]

(
f(γ(s))}γ 1(s)}Rn

))
|ti ´ ti´1| ă

ε

2
. (4.2)

By choosing of a refinement of P if necessary, we can assume that }P} ă δ. Let si, ri P

[ti´1, ti] be such that

sup
tP[ti´1,ti]

(
f(γ(t))}γ 1(t)}Rn

)
= f(γ(si))

›

›γ 1(si)
›

›

Rn and sup
ξPγ([ti´1,ti])

f(ξ) = f(γ(ri)) .

Moreover, by Theorem 4.10 and the mean value theorem for integrals, there exists qi P

[ti´1, ti] such that

ℓ(γ([ti´1, ti])) =

ż ti

ti´1

›

›γ 1(s)
›

›

Rn ds =
›

›γ 1(qi)
›

›

Rn |ti ´ ti´1| ;

thus
ˇ

ˇ

ˇ
ℓ(γ([ti´1, ti])) ´

›

›γ 1(si)
›

›

Rn |ti ´ ti´1|

ˇ

ˇ

ˇ
ď

ε

8(M + 1)(b ´ a)
|ti ´ ti´1| .

Therefore, by the fact that si, ri, qi P [ti´1, ti] and |ti ´ ti´1| ă δ,
ˇ

ˇ

ˇ
sup

sP[ti´1,ti]

(
f(γ(s))}γ 1(s)}Rn

)
|ti ´ ti´1| ´ sup

ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti]))
ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ
f(γ(si))

›

›γ 1(si)
›

›

Rn ´ f(γ(ri))}γ
1(qi)

›

›

Rn

ˇ

ˇ

ˇ
|ti ´ ti´1|

ď
ˇ

ˇf(γ(si)) ´ f(γ(ri)
ˇ

ˇ

›

›γ 1(si)
›

›

Rn |ti ´ ti´1| +
ˇ

ˇf(γ(ri))
ˇ

ˇ}γ 1(si) ´ γ 1(qi)
›

›

Rn |ti ´ ti´1|

ă
ε

4(b ´ a)
|ti ´ ti´1| ,

and summing the inequality above over i we obtain that
ˇ

ˇ

ˇ

k
ÿ

i=1

sup
sP[ti´1,ti]

(
f(γ(s))}γ 1(s)}Rn

)
|ti ´ ti´1| ´

k
ÿ

i=1

sup
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti]))
ˇ

ˇ

ˇ
ă
ε

4
.

Similarly,
ˇ

ˇ

ˇ

k
ÿ

i=1

inf
sP[ti´1,ti]

(
f(γ(s))}γ 1(s)}Rn

)
|ti ´ ti´1| ´

k
ÿ

i=1

inf
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti]))
ˇ

ˇ

ˇ
ă
ε

4
;
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thus using (4.2) we find that

ż b

a

(f ˝ γ)(t)}γ 1(t)}Rn dt ´ ε ă L
(
(f ˝ γ)}γ 1}Rn ,P) ´

ε

4

ď

k
ÿ

i=1

inf
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti])) ď

k
ÿ

i=1

sup
ξPγ([ti´1,ti])

f(ξ)ℓ(γ([ti´1, ti]))

ď U
(
(f ˝ γ)}γ 1}Rn ,P) +

ε

4
ă

ż b

a

(f ˝ γ)(t)}γ 1(t)}Rn dt+ ε .

Since ε ą 0 is chosen arbitrary, we conclude (4.1). ˝

Example 4.24. Let C be the upper half part of the circle centered at the origin with radius
R ą 0 in the xy-plane. Evaluate the line integral

ż

C
y ds.

First, we parameterize C by

γ(t) = (R cos t, R sin t) t P [0, π] .

Then
ż

C

y ds =

ż π

0

R sin t
›

›(´R sin t, R cos t)
›

›

R2dt =

ż π

0

R2 sin t dt = 2R2 .

Example 4.25. Find the mass of a wire lying along the first octant part of the curve of
intersection of the elliptic paraboloid z = 2 ´ x2 ´ 2y2 and the parabolic cylinder z = x2

between (0, 1, 0) and (1, 0, 1) if the density of the wire at position (x, y, z) is ϱ(x, y, z) = xy.
Note that we can parameterize the curve C by

γ(t) = (t,
?
1 ´ t2, t2) t P [0, 1] .

Therefore, the mass of the curve can be computed by

ż

C

ϱ ds =

ż 1

0

t
?
1 ´ t2

›

›(1,
´t

?
1 ´ t2

, 2t)
›

›

R3dt =

ż 1

0

t
?
1 ´ t2

a

1 ´ t2 + t2 + 4t2(1 ´ t2)
?
1 ´ t2

dt

=

ż 1

0

t
a

2 ´ (1 ´ 2t2)2 dt =
1

4

ż 1

´1

?
2 ´ u2du =

1

4

ż π
4

´π
4

2 cos2 θ dθ

=
1

4

[
θ +

sin(2θ)
2

]ˇ
ˇ

ˇ

θ=π
4

θ=´π
4

=
π

8
+

1

4
.
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Line integrals of vector fields

We recall that a vector field is a vector-valued function whose domain and co-domain are
subsets of identical Euclidean space Rn.

Let C be a simple regular curve parameterized by γ : I Ñ Rn, and F : C Ñ Rn be a
vector field. The line integral of F along C in the direction of γ (or the oriented
line integral of F along C) is defined as the line integral of the scalar function F ¨ T
along C, where T is the unit tangent of C given by

T =
γ 1

}γ 1}Rn
˝ γ´1 on C . (4.3)

Given another parametrization ϕ : rI Ñ Rn of C such that (ϕ 1 ˝ϕ´1) ¨ (γ 1 ˝ γ´1) ą 0 (that is,
the orientation of C given by ϕ and γ are the same), using the chain rule we obtain that

γ 1 =
d

dt
(ϕ ˝ ϕ´1 ˝ γ)(t) = (ϕ 1 ˝ ϕ´1 ˝ γ)(t)(ϕ´1 ˝ γ) 1(t) . (4.4)

Since ϕ´1 ˝ γ : I Ñ rI, (ϕ´1 ˝ γ) 1 is a scalar function; thus (4.4) and the fact that (ϕ 1 ˝ ϕ´1) ¨

(γ 1 ˝ γ´1) ą 0 imply that γ 1 ˝ γ´1 = c(ϕ 1 ˝ ϕ´1) for some positive scalar function c : C Ñ R.
Therefore,

ϕ 1

}ϕ 1}Rn
˝ ϕ´1 =

γ 1

}γ 1}Rn
˝ γ´1 on C . (4.5)

In other words, the tangent vector T is well-defined on C; thus the line integral of F along
C in the direction of the parametrization γ is a well-defined quantity.

Suppose that I = [a, b]. Using (4.1), we find that
ż

C

F ¨ T ds =
ż b

a

(F ˝ γ)(t) ¨
γ 1(t)

}γ 1(t)}Rn
}γ 1(t)}Rn dt =

ż b

a

(F ˝ γ)(t) ¨ γ 1(t) dt .

Let r : rI Ñ Rn be an arc-length parametrization of C such that (r 1 ˝ r´1) ¨ (γ 1 ˝ γ´1) ą 0

on C. Then (4.5) implies that T =
dr
ds

. In terms of notation, we also write T ds as dr; thus
ż

C

F ¨ dr =

ż

C

F ¨ T ds =
ż b

a

(F ˝ γ)(t) ¨ γ 1(t) dt .

Remark 4.26 (The interpretation of line integrals of vector fields). Consider the work done
by moving an object along a smooth curve C parameterized by γ : I Ñ Rn with a continuous
variable force F : C Ñ Rn from γ(a) to γ(b) (that is, in the direction of the parametrization
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of γ). Since the work done by a constant force is the inner product of the displacement and
the force, we find the the work done by the force F along the small portion γ([ti, ti+1]), from
γ(ti) to γ(ti+1), of the curve, where |ti ´ ti+1| ! 1, is approximately

(F ¨ T)(γ(ti))ℓ
(
γ([ti, ti+1])

)
” F(γ(ti)) ¨ T(γ(ti))ℓ

(
γ([ti, ti+1])

)
.

Summing over all the portions, we conclude that the work done by the force F along the
curve C, in the direction of the parametrization γ, is approximately

k´1
ÿ

i=0

(F ¨ T)(γ(ti))ℓ
(
γ([ti, ti+1])

)
which converges to the line integral

ż

C
(F ¨T) ds. Therefore, the line integral of vector fields

F along C in the direction of the parametrization γ is simply the work done by the force F
in moving an object along the curve C from the starting point to the end point.

Example 4.27. Let F(x, y) = (y2, 2xy). Evaluate the line integral
ż

C
F ¨ dr from (0, 0) to

(1, 1) along

1. the straight line y = x,

2. the curve y = x2, and

3. the piecewise smooth path consisting of the straight line segments from (0, 0) to (0, 1)

and from (0, 1) to (1, 1).

For the straight line case, we parameterize the path by γ(t) = (t, t) for t P [0, 1]. Then
ż

C

F ¨ dr =

ż 1

0

(t2, 2t2) ¨ (1, 1)dt =

ż 1

0

3t2dt = 1 .

For the case of parabola, we parameterize the path by γ(t) = (t, t2) for t P [0, 1]. Then
ż

C

F ¨ dr =

ż 1

0

(t4, 2t3) ¨ (1, 2t)dt =

ż 1

0

5t4dt = 1 .

For the piecewise linear case, we let C1 denote the line segment joining (0, 0) and (0, 1),
and let C2 denote the line segment joining (0, 1) and (1, 1). Note that we can parameterize
C1 and C2 by

γ1(t) = (0, t) t P [0, 1] and γ2(t) = (t, 1) t P [0, 1] ,
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respectively. Therefore,
ż

C

F ¨ dr =

ż

C1

F ¨ dr +

ż

C2

F ¨ dr =

ż 1

0

(t2, 0) ¨ (0, 1) dt+

ż 1

0

(1, 2t) ¨ (1, 0) dt = 1 .

We note that in this example the line integrals of F over three different paths joining (0, 0)

and (1, 1) are identical.

Example 4.28. Let F(x, y) = (y,´x). Evaluate the line integral
ż

C
F ¨ dr from (1, 0) to

(0,´1) along

1. the straight line segment joining these points, and

2. three-quarters of the circle of unit radius centered at the origin and traversed counter-
clockwise.

For the first case, we parameterize the path by γ(t) = (1 ´ t,´t) for t P [0, 1]. Then
ż

C

F ¨ dr =

ż 1

0

(´t, t ´ 1) ¨ (´1,´1) dt =

ż 1

0

1 dt = 1 .

For the second case, we parameterize the path by γ(t) = (cos t, sin t) for t P
[
0,

3π

2

]
.

Then
ż

C

F ¨ dr =

ż 3π
2

0

(sin t,´ cos t) ¨ (´ sin t, cos t) dt =
ż 3π

2

0

(´1) dt = ´
3π

2
.

We note that in this example the line integrals of F over different paths joining (1, 0) and
(0,´1) might be different.

4.2 Conservative Vector Fields
In the previous section, we define the line integral of a force along a curve in a given
orientation. In Example 4.27, we see that the line integrals along three different paths
connecting two given points are the same, while in Example 4.28 the line integrals along
two different paths (connecting two given points) are different. In this section, we are
interested in the rule of judging whether the line integral is path independent or not.

Definition 4.29 (Conservative Fields). A vector field F : D Ď Rn Ñ Rn is said to be
conservative if F = ∇ϕ for some scalar function φ : D Ñ R. Such a ϕ is called a (scalar)
potential for F on D.
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Theorem 4.30. Let D be an open, connected domain in Rn, and let F be a smooth vector
field defined on D. Then the following three statements are equivalent:

(1) F is conservative in D.

(2)
¿

C
F ¨ dr = 0 for every piecewise smooth, closed curve C in D.

(3) Given any two point P0, P1 P D,
ż

C
F ¨ dr has the same value for all piecewise smooth

curves in D starting at P0 and ending at P1.

Proof. (1) ñ (2): Suppose that F = ∇ϕ in D for some scalar function ϕ : D Ñ R. Let
C Ď Rn be a piecewise smooth closed curve parameterized by γ : [a, b] Ñ Rn such
that γ : [ti´1, ti] Ñ Rn is smooth for all 1 ď i ď N , where a = t0 ă t1 ă ¨ ¨ ¨ ă tN = b.
Let Ci = γ([ti´1, ti]). Then the chain rule implies that
¿

C

F ¨ dr =
N
ÿ

i=1

ż

Ci

∇ϕ ¨ dr =
N
ÿ

i=1

ż ti

ti´1

(∇ϕ ˝ γ)(t) ¨ γ 1(t) dt

=
N
ÿ

i=1

ż ti

ti´1

d

dt
(ϕ ˝ γ)(t) dt =

N
ÿ

i=1

(ϕ ˝ γ)(t)
ˇ

ˇ

ˇ

t=ti

t=ti´1

= ϕ(γ(b)) ´ ϕ(γ(a)) = 0 .

(2) ñ (3): Let C1 and C2 be two piecewise smooth curves in D starting at P0 and ending
at P1 parameterized by γ1 : [a, b] Ñ Rn and γ2 : [c, d] Ñ Rn, respectively. Define
γ : [a, b+ d ´ c] Ñ Rn by

γ(t) =

"

γ1(t) if t P [a, b] ,

γ2(b+ d ´ t) if t P [b, b+ d ´ c] .

Then C = γ([a, b+ d ´ c]) is a piecewise smooth closed curve; thus

0 =

¿

C

F ¨ dr =

ż b

a

(F ˝ γ1)(t) ¨ γ 1
1(t) dt ´

ż b+d´c

b

(F ˝ γ2)(b+ d ´ t)γ 1
2(b+ d ´ t) dt

=

ż

C1

F ¨ dr ´

ż d

c

(F ˝ γ2)(t)γ
1
2(t)dt =

ż

C1

F ¨ dr ´

ż

C2

F ¨ dr .

(3) ñ (1): Let P0 P D. For x P D, define ϕ(x) =
ż

C
F ¨ dr, where C is any piecewise

smooth curve starting at P0 and ending at x. Note that by assumption, ϕ : D Ñ R is
well-defined.
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Choose δ ą 0 such that B(x, δ) Ď D. Let C be a piecewise smooth curve joining
P0, and L be the line segment joining x and x + hej, where 0 ă h ă δ and ej =

(0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0) is the unit vector whose j-th component is 1. Then with the
parametrization of L: γ(t) = x+ tej for t P [0, h], we have

ϕ(x+ hej) ´ ϕ(x)

h
=

1

h

ż

L

F ¨ dr =
1

h

ż h

0

F(x+ tej) ¨ ej dt ;

thus passing to the limit as h Ñ 0, we find that

Bϕ

Bxj
(x) = F(x) ¨ ej .

As a consequence, F(x) = (∇ϕ)(x) which implies that F is conservative. ˝

Let D Ď R2, and F = (M,N) : D Ñ R2. If F is conservative, then M = ϕx and N = ϕy

for some scalar function ϕ : D Ñ R; thus if ϕ is of class C 2, we must have My = Nx. In
other words, if F : D Ñ R2 is a smooth vector field, then it is necessary that My = Nx. The
converse statement is not true in general, and we have the following counter-example.

Example 4.31. Let D Ď R2 be the annular region D =
␣

(x, y)
ˇ

ˇ 1 ă x2 + y2 ă 4
(

, and
consider the vector field F(x, y) =

( y

x2 + y2
,

´x

x2 + y2

)
. Then

B

By

y

x2 + y2
=

x2 ´ y2

(x2 + y2)2
=

B

Bx

´x

x2 + y2
;

however, if F = ∇ϕ for some differentiable scalar function ϕ : D Ñ R, we must have

ϕx(x, y) =
y

x2 + y2

which further implies that
ϕ(x, y) = arctan x

y
+ f(y) .

Using that ϕy(x, y) =
y

x2 + y2
, we conclude that f is a constant function; thus

ϕ(x, y) = arctan x
y
+ C .

Since ϕ is not differentiable on the positive x-axis, F ‰ ∇ϕ.
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Definition 4.32. A connected domain D is said to be simply connected if every simple
closed curve can be continuously shrunk to a point in D without any part ever passing out
of D.

Theorem 4.33. Let D Ď R2 be simply connected, and F = (M,N) : D Ñ R2 be of class
C 1. If My = Nx, then F is conservative.

The theorem above can be proved using Theorem 4.30 and Green’s theorem (Theorem
4.90), and is left till Section 4.8 (where Green’s theorem is introduced).

4.3 The Surface Integrals

4.3.1 Surfaces

Definition 4.34. A subset Σ Ď R3 is called a surface if for each p P Σ, there exist an open
neighborhood U Ď Σ of p, an open set V Ď R2, and a continuous map φ : U Ñ V such
that φ : U Ñ V is one-to-one, onto, and its inverse ψ = φ´1 is also continuous. Such a
pair tU , φu is called a coordinate chart (or simply chart) at p, and tV , ψu is called a (local)
parametrization at p.

Remark 4.35. In some literatures the surface is defined in the following equivalent but
reversed way: A subset Σ Ď R3 is a surface if for each p P Σ, there exists a neighborhood
U Ď R3 of p and a map ψ : V Ñ U XΣ of an open set V Ď R2 onto U XΣ Ď R3 such that ψ is
a homeomorphism; that is, ψ has an inverse φ = ψ´1 : U XΣ Ñ V which is continuous. The
mapping ψ is called a parametrization or a system of (local) coordinates in (a neighborhood
of) p.

Definition 4.36 (Regular surfaces). A surface Σ Ď R3 is said to be regular if for each
p P Σ, there exists a differentiable local parametrization tV , ψu of Σ at p such that Dψ(q),
the derivative of ψ at q, has full rank for all q P V ; that is, Dψ(q) : R2 Ñ R3 is one-to-one
for all q P V . The range of the map Dψ

(
ψ´1(p)

)
is called the tangent plane of Σ at p,

and is denoted by TpΣ.

In the following, we always assume that Dψ(q) has full rank for all q P V if tV , ψu

is a local parametrization of a regular surface Σ Ď R3.
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Remark 4.37. Write ψ : V Ñ Σ as

ψ(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
.

Then if q = (u0, v0),

[
(Dψ)(q)

]
=

 xu(u0, v0) xv(u0, v0)
yu(u0, v0) yv(u0, v0)
zu(u0, v0) zv(u0, v0)

 =
[
[ψ,1(u0, v0)]

...[ψ,2(u0, v0)]
]
.

The injectivity of Dψ(q) is then translated to that the two vectors

ψ,1 (u0, v0) ” ψu(u0, v0) =
(
xu(u0, v0), yu(u0, v0), zu(u0, v0)

)
ψ,2 (u0, v0) ” ψv(u0, v0) =

(
xv(u0, v0), yv(u0, v0), zv(u0, v0)

)
are linearly independent. Therefore, the range of Dψ(q) is the span of the two vectors ψ,1 (q)
and ψ,2 (q) and is indeed a plane for all q P V .

Let p P Σ and q = ψ´1(p). Since Dψ(q) is injective, each v P TpΣ corresponds a
unique vector (a, b) P R2 such that v = aψ,1 (q) + bψ,2 (q). This vector (a, b) P R2 satisfies
[v] =

[
Dψ(q)

]
[a, b]T, and can be computed by[

a
b

]
=

([
Dψ(q)

]T[
Dψ(q)

])´1[
Dψ(q)

]T
[v] .

Example 4.38. Let S2 =
␣

(x, y, z) P R3
ˇ

ˇx2 + y2 + z2 = 1
(

be the unit sphere in R3.
If p = (x0, y0, z0) P S2, then either x0, y0 or z0 is non-zero. Suppose that z0 ‰ 0. Let
r = 1 ´

a

x20 + y20 ą 0. Define

ψ(x, y) =

#

(x, y,
a

1 ´ x2 ´ y2) if z0 ą 0 ,

(x, y,´
a

1 ´ x2 ´ y2) if z0 ă 0 ,

V = B
(
(x0, y0), r

)
, and U = ψ(V). Then ψ : V Ñ U is a bijection. Let φ = ψ´1. Then

tU , φu is a coordinate chart at p; thus S2 is a surface.
There exists another coordinate chart. Let U1 = S2z(0, 0,´1) and U2 = S2z(0, 0, 1).

Define the map φ1 : U1 Ñ R2 by that φ1(p) is the unique point on R2 such that (0, 0,´1),
φ1(p) and (x, y, 0) are on the same straight line. Similarly, define φ2 : U2 Ñ R2 by that φ2(p)

is the unique point on R2 such that (0, 0, 1), φ2(p) and (x, y, 0) are on the same straight
line. It is easy to check that if p P S2, then either tU1, φ1u or tU2, φ2u is a coordinate chart
at p.
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A third kind of coordinate chart is given as follows. Let U = (0, 2π) ˆ (0, π), and define

ψ(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ).

Then ψ : U Ñ S2zt(x, 0, z) | 0 ď x ď 1, x2 + z2 = 1u is a continuous bijection with a contin-
uous inverse. We note that for any U = (θ0, θ0 + 2π) ˆ (ϕ0, ϕ0 + π), ψ is a homeomorphism
between U and an open subset of S2.

Next, we would like to define the derivative of f when f : Σ Ñ R3 is a vector-valued
function. We first talk about what the directional derivative is. Let Σ Ď R3 be a regular
surface, p P Σ, and v P TpΣ. It is intuitive to define the directional derivative of f at p in
the direction v by

d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ x)(t) , (4.6)

if the derivative exists, where x : (´δ, δ) Ñ Σ is a C 1-parametrization of a curve on Σ such
that x(0) = p and x 1(0) = v. The first question arising naturally is that if the derivative
in (4.6) depends on the choices of x. Suppose that y : (´δ, δ) Ñ Σ is a C 1-parametrization
of another curve on Σ such that y(0) = p and y 1(0) = v (note that the curve x((´δ, δ))
and y((´δ, δ)) in general are different). Let tV , ψu be a parametrization of Σ at p, and
q = ψ´1(p). Then the chain rule (Theorem 2.49) implies that

v = x 1(0) =
d

dt

ˇ

ˇ

ˇ

t=0
(ψ ˝ ψ´1 ˝ x)(t) = (Dψ)(q)

( d
dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ x)(t)

)
and similarly, v = (Dψ)(q)

(
d

dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ y)(t)

)
. Therefore,

(Dψ)(q)
(
d

dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ x)(t)

)
= (Dψ)(q)

(
d

dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ y)(t)

)
.

The injectivity of (Dψ)(ψ´1(p)) then shows that
d

dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ x)(t) = d

dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ y)(t) .

Using the chain rule again,

d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ x)(t) = d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ ψ ˝ ψ´1 ˝ x)(t) = D(f ˝ ψ)(ψ´1(p))

( d
dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ x)(t)

)
= D(f ˝ ψ)(ψ´1(p))

( d
dt

ˇ

ˇ

ˇ

t=0
(ψ´1 ˝ y)(t)

)
=

d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ y)(t) .

In other words, the derivative in (4.6) is independent of the choice of x as long as x(0) = p

and x 1(0) = v. This observation implies the following



Copy
rig

ht
Prot

ect
ed

§4.3 The Surface Integrals 113

Theorem 4.39. Let Σ Ď R3 be a regular surface, tV1, ψ1u and tV2, ψ2u be two local C 1-
parameterizations of Σ at a point p P Σ, and U = ψ1(V1) X ψ2(V2) Ď Σ. Then for (i, j) =

(1, 2) and (2, 1), the transition function ψ´1
j ˝ ψi : ψ

´1
i (U) Ñ ψ´1

j (U) is of class C 1.

Proof. We first note that ψ´1
j ˝ψi is continuous on ψ´1

i (U). Moreover, by the chain rule we

find that
B (ψ´1

j ˝ ψi)

Bu
is the unique 2-vector satisfying[

Bψi
Bu

(u, v)
]
=

[
B

Bu
(ψj ˝ ψ´1

j ˝ ψi)(u, v)
]
=

[
(Dψj)(ψ

´1
j ˝ ψi)(u, v)

][B (ψ´1
j ˝ ψi)

Bu
(u, v)

]
.

Similarly,
B (ψ´1

j ˝ ψi)

Bv
is the unique 2-vector satisfying

[
Bψi
Bv

(u, v)
]
=

[
B

Bv
(ψj ˝ ψ´1

j ˝ ψi)(u, v)
]
=

[
(Dψj)(ψ

´1
j ˝ ψi)(u, v)

][B (ψ´1
j ˝ ψi)

Bv
(u, v)

]
.

Therefore, we obtain that

[
Dψi

]
=

[
(Dψj) ˝ (ψ´1

j ˝ ψi)
][[B (ψ´1

j ˝ ψi)

Bu

]...[B (ψ´1
j ˝ ψi)

Bv

]]
. (4.7)

Since
[
Dψj

]
has full rank,

[
Dψj

]T[
Dψj

]
is an invertible 2ˆ 2 matrix (for if ATAx = 0 then

}Ax}2Rn = xTATAx = 0 which implies x = 0 since A has full rank); thus (4.7) implies that[[B (ψ´1
j ˝ψi)

Bu

]...[B (ψ´1
j ˝ψi)

Bv

]]
=
(([

Dψj
]T[
Dψj]

)
˝ (ψ´1

j ˝ψi)
)́ 1[

(Dψj)˝ (ψ´1
j ˝ψi)

]T[
Dψi] ;

thus the partial derivatives of ψ´1
j ˝ψi exist and are continuous. Theorem 2.30 then implies

that ψ´1
j ˝ ψi is of class C 1. ˝

Similar to how the directional derivative is defined, we intend to define the differentia-
bility of f through the differentiability of the function f ˝ ψ : V Ñ Rn, where tV , ψu is a
local parametrization of Σ (at some point). Again, we need to talk about if this definition
depends on the choice of local parameterizations. Nevertheless, if tV1, ψ1u and tV2, ψ2u

are two C 1-local parametrization of Σ at p, and f ˝ ψ1 is differentiable at ψ´1
1 (p), then

the chain rule and Theorem 4.39 imply that f ˝ ψ2 is also differentiable at ψ´1
2 (p) since

f ˝ ψ2 = (f ˝ ψ1) ˝ (ψ´1
1 ˝ ψ2). This induces the following

Definition 4.40. Let Σ Ď R3 be a C 1-regular surface. A scalar function f : Σ Ñ R is
said to be differentiable at p P Σ if for every parametrization tV , ψu of Σ at p, the function
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f ˝ ψ : V Ñ Rn is differentiable at ψ´1(p). The derivative of f at p, denoted by dfp, is a
linear map on TpΣ satisfying

(dfp)(v) =
d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ x)(t) ,

where x : (´δ, δ) Ñ Σ is a C 1-parametrization of a curve on Σ such that x(0) = p and
x 1(0) = v. A scalar function f : Σ Ñ R is said to be of class C 1 if f ˝ ψ is of class C 1 for
all local parametrization tV , ψu.

4.3.2 The metric tensor and the first fundamental form

Definition 4.41 (Metric). Let Σ Ď R3 be a regular surface. The metric tensor associated
with the local parametrization tV , ψu (at p P Σ) is the matrix g = [gαβ]2ˆ2 given by

gαβ = ψ,α ¨ψ,β =
3
ÿ

i=1

Bψi

Byα

Bψi

Byβ
in V

or equivalently, g = [Dψ]T[Dψ].

Proposition 4.42. Let Σ Ď R3 be a regular surface, and g = [gαβ]2ˆ2 be the metric tensor
associated with the local parametrization tV , ψu (at p P Σ). Then the metric tensor g is
positive definite; that is,

2
ÿ

α,β=1

gαβv
αvβ ą 0 @ v =

2
ÿ

γ=1

vγ
Bψ

Byγ
‰ 0 .

Proof. Since Dψ has full rank on V , every tangent vector v can be expressed as the linear

combination of
!

Bψ

By1
,

Bψ

By2

)

. Write v =
2
ř

γ=1

vγ
Bψ

Byγ
. Then if v ‰ 0,

0 ă }v}2R3 =
3
ÿ

i=1

2
ÿ

α,β=1

vα
Bψi

Byα
vβ

Bψi

Bψβ
=

2
ÿ

α,β=1

gαβv
αvβ . ˝

Definition 4.43 (The first fundamental form). Let Σ Ď R3 be a regular surface, and
g = [gαβ]2ˆ2 be the metric tensor associated with the local parametrization tV , ψu (at
p P Σ). The first fundamental form associated with the local parametrization tV , ψu (at
p P Σ) is the scalar function g = det(g).

Theorem 4.44. Let Σ Ď R3 be a regular surface, and tV , ψu be a local parametrization at
p P Σ. Then

?g = }ψ,1 ˆψ,2 }R3 . (4.8)
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Proof. Using the permutation symbol and Kronecker’s delta, we have

}ψ,1 ˆψ,2 }2R3 =
3
ÿ

i=1

( 3
ÿ

j,k=1

εijkψ
j,1 ψ

k,2
)( 3

ÿ

r,s=1

εirsψ
r,1 ψ

s,2
)

=
3
ÿ

j,k,r,s=1

[( 3
ÿ

i=1

εijkεirs
)
ψj,1 ψ

k,2 ψ
r,1 ψ

s,2

]
=

3
ÿ

j,k,r,s=1

(
δjrδks ´ δjsδkr

)
ψj,1 ψ

k,2 ψ
r,1 ψ

s,2 ,

where we use the identity
3
ÿ

i=1

εijkεirs = δjrδks ´ δjsδkr (4.9)

to conclude the last equality. Therefore,

}ψ,1 ˆψ,2 }2R3 =
3
ÿ

j,k=1

(
ψj,1 ψ

k,2 ψ
j,1 ψ

k,2 ´ψj,1 ψ
k,2 ψ

j,2 ψ
k,1

)
= g11g22 ´ g12g21 = det(g) = g .

Finally, (4.8) is concluded from the fact that g is positive definite. ˝

Remark 4.45. Let L P B(R2;TpΣ) be given by

L(ae1 + be2) = aψ,1+bψ,2 ,

where B2 = te1, e2u is the standard basis of R2. Let B1 = te1, e2u be an orthonormal basis
of TpΣ, and B3 = te1, e2, e3u be the standard basis of R3. Then

[L]B2,B1 =

[
ψ,1 ¨e1 ψ,2 ¨e1
ψ,1 ¨e2 ψ,2 ¨e2

]
=

[
[e1]TB3

[e2]TB3

] [
[ψ,1 ]B3

...[ψ,2 ]B3

]
.

By the fact that te1, e2u is an orthonormal basis,

[L]TB2,B1 [L]B2,B1 =

[
[ψ,1 ]TB3

[ψ,2 ]TB3

] [
[e1]B3

...[e2]B3

] [ [e1]TB3

[e,2 ]TB3

] [
[ψ,1 ]B3

...[ψ,2 ]B3

]
=

[
[ψ,1 ]TB3

[ψ,2 ]TB3

] [
[ψ,1 ]B3

...[ψ,2 ]B3

]
=

[
g11 g12
g21 g22

]
,

where [gαβ]2ˆ2 is the metric tensor associated with the parametrization tV , ψu. Therefore,
det([L]B2,B1) =

?g as long as B1 is an orthonormal basis of TpΣ.
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Since a natural way to write Lv, where v = ae1 + be2 P R2, is

Lv =
[
[ψ,1

]...[ψ,2 ]] [ a
b

]
=

[
∇ψ

] [ a
b

]
,

sometimes we also use ∇ψ to denote L, and then write ?g as det(∇ψ) (even though [∇ψ]
is a 3 ˆ 2 matrix) and call ?g the Jacobian of the map ψ.

Example 4.46. Let Σ be the sphere centered at the origin with radius R. Consider the local
parametrization ψ(θ, ϕ) = (R cos θ sinϕ,R sin θ sinϕ,R cosϕ) with (θ, ϕ) P V ” (0, 2π) ˆ

(0, π). Then

ψ,1 (θ, ϕ) = ψθ(θ, ϕ) = (´R sin θ sinϕ,R cos θ sinϕ, 0) ,
ψ,2 (θ, ϕ) = ψϕ(θ, ϕ) = (R cos θ cosϕ,R sin θ cosϕ,´R sinϕ) ;

thus the metric tensor and the first fundamental form associated with the parametrization
tV , ψu are

g(θ, ϕ) =
[
Dψ

]T[
Dψ

]
(θ, ϕ) =

[
R2 sin2 ϕ 0

0 R2

]
and g = det(g) = R4 sin2 ϕ.

What does the first fundamental form do for us?

Let p = ψ(u0, v0) be a point in Σ. Then the surface area of the region ψ
(
[u0, u0 + h] ˆ

[v0, v0 + k]
)
, where h, k are very small, can be approximated by the sum of the area of two

triangles, one with vertices ψ(u0, v0), ψ(u0+h, v0), ψ(u0, v0+k) and the other with vertices
ψ(u0 + h, v0), ψ(u0, v0 + k), ψ(u0 + h, v0 + k).

ψ(u0, v0)

ψ(u0, v0 + k)

ψ(u0 + h, v0)

ψ(u0 + h, v0 + k)

Here we remark that the approximation of the surface area of a regular C 1-surface obeys

lim
(h,k)Ñ(0,0)

the surface area of ψ
(
[u0, u0 + h] ˆ [v0, v0 + k]

)
the sum of area of the two triangles given in the context = 1 . (4.10)
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The area of the triangle with vertices ψ(u0, v0), ψ(u0 + h, v0), ψ(u0, v0 + k) is

A1 =
1

2

›

›

(
ψ(u0 + h, v0) ´ ψ(u0, v0)

)
ˆ
(
ψ(u0, v0 + k) ´ ψ(u0, v0)

)›
›

R3 .

By the mean value theorem, for each component j P t1, 2, 3u, we have

ψj(u0 + h, v0) ´ ψj(u0, v0) = ψ,1 (u0 + θj1h, v0)h ,

ψj(u0, v0 + k) ´ ψj(u0, v0) = ψ,2 (u0, v0 + θj2k)k

for some θji P (0, 1); thus if ψ is of class C 1,

ψ(u0 + h, v0) ´ ψ(u0, v0) = ψ,1 (u0, v0)h+ E1(u0, v0;h)h ,

ψ(u0, v0 + k) ´ ψ(u0, v0) = ψ,2 (u0, v0)k + E2(u0, v0; k)k ,

where E1 and E2 are bounded vector-valued functions satisfying that lim
hÑ0

E1(u0, v0;h) = 0

and lim
kÑ0

E2(u0, v0; k) = 0. Therefore,

lim
(h,k)Ñ(0,0)

(
ψ(u0+h, v0)´ψ(u0, v0)

)
ˆ
(
ψ(u0, v0+k)´ψ(u0, v0)

)
hk

´ψ,1 (u0, v0)ˆψ,2 (u0, v0) = 0 .

Since ?g = }ψ,1 ˆψ,2 }R3 , we have

A1 =
1

2

a

g(u0, v0)hk + f1(u0, v0;h, k)hk

for some function f1 which converges to 0 as (h, k) Ñ (0, 0) and is bounded since ∇ψ
is bounded. Similarly, the area of the triangle with vertices ψ(u0 + h, v0), ψ(u0, v0 + k),
ψ(u0 + h, v0 + k) is

A2 =
1

2

a

g(u0, v0)hk + f2(u0, v0;h, k)hk .

Taking (4.10) into account, we find that

the surface area of ψ
(
[u0, u0 + h] ˆ [v0, v0 + k]

)
=
a

g(u0, v0)hk + f(u0, v0;h, k)hk (4.11)

for some bounded function f(¨, ¨; ¨, ¨) which converges to 0 as the last two variables h, k
approach 0.

Now consider the surface area of ψ([a, a+ L] ˆ [b, b+W ]). Let ε ą 0 be given. Choose
N ą 0 such that

ˇ

ˇf(u, v;h, k)
ˇ

ˇ ă
ε

2LW
@ 0 ă h ă

L

N
, 0 ă k ă

W

N
and (u, v) P [a, a+ L] ˆ [b, b+W ] ,
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and
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

c

g
(
a+

i´ 1

n
L, b+

j ´ 1

m
M

)L
n

W

m
´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ
ă
ε

2
if n,m ě N .

Then for n,m ě N , with (h, k) denoting
(L
n
,
W

m

)
(4.11) implies that

ˇ

ˇ

ˇ
the surface area of ψ([a, a+ L] ˆ [b, b+W ]) ´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

the surface area of ψ([a+ (i´ 1)h, a+ ih] ˆ [b+ (j ´ 1)k, b+ jk])

´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

b

g
(
a+ (i´ 1)h, b+ (j ´ 1)k

)
hk ´

ż

[a,a+L]ˆ[b,b+W ]

?g dA
ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

m
ÿ

j=1

n
ÿ

i=1

f(a+ (i´ 1)h, b+ (j ´ 1)k;h, k)hk
ˇ

ˇ

ˇ

ă
ε

2
+

ε

2LW

m
ÿ

j=1

n
ÿ

i=1

hk = ε .

The discussion above verifies the following

Theorem 4.47. Let Σ Ď R3 be a regular C 1-surface, tV , ψu be a local C 1-parametrization
of Σ at p, and g be the first fundamental form associated with tV , ψu. Then

the surface area of ψ(V) =
ż

V

?g dA .

Example 4.48. Recall from Example 4.46 that the first fundamental form g of the parametriza-
tion tV , ψu of the 2-sphere centered at the origin with radius R, where

ψ(θ, ϕ) = (R cos θ sinϕ,R sin θ sinϕ,R cosϕ)

and V = (0, 2π) ˆ (0, π), is given by g(θ, ϕ) = R4 sin2 ϕ. Therefore,

the surface area of ψ
(
(0, 2π) ˆ (0, π)

)
=

ż

(0,2π)ˆ(0,π)

R2 sinϕ d(θ, ϕ)

= R2

ż 2π

0

ż π

0

sinϕ dϕdθ = 4πR2 .

Since the difference of the 2-sphere and ψ
(
(0, 2π) ˆ (0, π)

)
has zero area, we find that the

surface area of the 2-sphere with radius R is 4πR2.
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Example 4.49. Let Σ Ď R3 be the upper half sphere; that is, Σ =
␣

(x, y, z) P R3
ˇ

ˇx2+ y2+

z2 = R2, z ą 0
(

, and tV , ψu be a global parametrization of Σ given by

ψ(u, v) = (u, v,
?
R2 ´ u2 ´ v2) , (u, v) P V =

␣

(u, v) P R2
ˇ

ˇu2 + v2 ď R2
(

.

To find the surface area using this parametrization, we first compute tψ,1 , ψ,2 u as follows:

ψ,1 (u, v) =
(
1, 0,

´u
?
R2 ´ u2 ´ v2

)
and ψ,2 (u, v) =

(
0, 1,

´v
?
R2 ´ u2 ´ v2

)
,

thus the first fundamental form associated with the parametrization tV , ψu is

g(u, v) = }ψ,1 (u, v) ˆ ψ,2 (u, v)}
2
R3 =

›

›

›

( u
?
R2 ´ u2 ´ v2

,
v

?
R2 ´ u2 ´ v2

, 1
)›
›

›

2

R3

=
R2

R2 ´ u2 ´ v2
.

Therefore, the surface area of Σ is
ż

Σ

dS =

ż

V

R
?
R2 ´ u2 ´ v2

dA =

ż R

´R

ż

?
R2´u2

´
?
R2´u2

R
?
R2 ´ u2 ´ v2

dvdu

= R

ż R

´R

arcsin v
?
R2 ´ u2

ˇ

ˇ

ˇ

v=
?
R2´u2

v=´
?
R2´u2

du = R

ż R

´R

π du = 2πR2 .

Note the the computation above also shows that the surface area of the sphere in R3 with
radius R is 4πR2 which is the same as what we have conclude in Example 4.48.

Remark 4.50. The example above provides one specific way of evaluating the surface
integrals: if the surface Σ is in fact a subset of the graph of a function f : D Ď R2 Ñ R;
that is, Σ Ď

␣

x, y, f(x, y))
ˇ

ˇ (x, y) P D
(

, then Σ has a global parametrization

ψ(x, y) =
(
x, y, f(x, y)

)
, (x, y) P V ,

where V is the projection of Σ onto the xy-plane along the z-direction. Then the first
fundamental form associated to this parametrization is

g(x, y) = }ψ,1 (x, y) ˆ ψ,2 (x, y)}
2
R3 = 1 +

ˇ

ˇ

Bf

Bx
(x, y)

ˇ

ˇ

2
+
ˇ

ˇ

Bf

By
(x, y)

ˇ

ˇ

2
;

thus the surface area of Σ is
ż

Σ

dS =

ż

V

c

1 +
ˇ

ˇ

Bf

Bx
(x, y)

ˇ

ˇ

2
+
ˇ

ˇ

Bf

By
(x, y)

ˇ

ˇ

2
d(x, y) .
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Example 4.51. Let C be a smooth curve parameterized by

r(t) = (cos t sin t, sin t sin t, cos t) , t P

[
´
π

2
,
π

2

]
.

The clearly C is on the unit sphere S2 since }r(t)}R3 = 1 for all t P

[
´
π

2
,
π

2

]
. Since C is a

closed curve, C divides S2 into two parts. Let Σ denote the part with smaller area (see the
following figure), and we are interested in finding the surface area of Σ.

Solution:

(a) Let
⇀

F (x, y, z) = (0, f(x, y, z), 0). By the divergence theorem,

∫∫

Σ

f(x, y, z)n2(x, y, z)dS =

∫∫

Σ

⇀

F (x, y, z)· ⇀
n (x, y, z)dS =

∫∫∫

D

div
⇀

F (x, y, z)dV

=

∫∫∫

D

∂f

∂y
(x, y, z)dV .

(b) On the sphere x2 + y2 + z2 = 9, the outward point normal vector
⇀
n (x, y, z) = 1

3
(x, y, z).

Therefore, by (0.1) (with f(x, y, z) = 3yez in mind),

∫∫

Σ

y2ezdS =

∫∫

Σ

3yez
y

3
dS =

∫∫∫

D

∂

∂y
(3yez)dV =

∫

3

0

∫

2π

0

∫ π

0

3eρ cosφρ2 sinφdφdθdρ

= 3

∫ 3

0

∫ 2π

0

−ρeρ cosφ
∣

∣

∣

φ=π

φ=0

dθdρ

= 6π

∫ 3

0

(ρeρ − ρe−ρ)dρ

= 6π(ρ− 1)eρ
∣

∣

∣

ρ=3

ρ=0

− 6π(−ρ− 1)e−ρ
∣

∣

∣

ρ=3

ρ=0

= 12π(e3 + 2e−3) .

Problem 5. Let C be a smooth curve parametrized by

⇀
r (t) = (cos t sin t, sin t sin t, cos t) , −π

2
≤ t ≤ π

2
.

x
y

z

1. (10%) Show that the corresponding curve of
⇀
r (t) on θφ-plane consists of two line segments L1

and L2 given by

L1 =
{

(θ, φ)
∣

∣

∣
θ = φ , 0 ≤ φ ≤ π

2

}

, L2 =
{

(θ, φ)
∣

∣

∣
θ = π − φ , 0 ≤ φ ≤ π

2

}

.

2. (10%) Plot L1 and L2 on the θφ-plane. The curve C divides the unit sphere into two parts,

and let Σ be the part with smaller area. Identify the corresponding region of Σ on θφ-plane.

3. (15%) Find the surface area of Σ.

To compute the surface area of Σ, we need to find a way to parameterize Σ. Naturally we
try to parameterize Σ using the spherical coordinate. In other words, let R = (0, 2π)ˆ (0, π)

and ψ : R Ñ R3 be defined by

ψ(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ) ,

and we would like to find a region D Ď R such that ψ(D) = Σ.

Suppose that γ(t) =
(
θ(t), φ(t)

)
, t P

[
´
π

2
,
π

2

]
, is a curve in R such that (ψ ˝γ)(t) = r(t).

Then for t P
[
0,
π

2

]
, the identity cos t = cosϕ(t) implies that ϕ(t) = t; thus the identities

cos t sin t = cos θ(t) sinϕ(t) and sin t sin t = sin θ(t) sinϕ(t) further imply that θ(t) = t.

On the other hand, for t P
[

´
π

2
, 0
]
, the identity cos t = cosϕ(t), where ϕ(t) P (0, π),

implies that ϕ(t) = ´t; thus the identities cos t sin t = cos θ(t) sinϕ(t) and sin t sin t =

sin θ(t) sinϕ(t) further imply that θ(t) = π + t.
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θ

ϕ

R

D = ψ´1(Σ)
θ = ϕ

θ + ϕ = π

Since the first fundamental form associate with tR, ψu is the first fundamental form
associated with tR, ψu is

g(u, v) =
›

›(ψθ ˆ ψϕ)(u, v)
›

›

2

R3

=
›

›(´ sin θ sinϕ, cos θ sinϕ, 0) ˆ (cos θ cosϕ, sin θ cosϕ,´ sinϕ)
›

›

2

R3

=
›

›(´ cos θ sin2 ϕ,´ sin θ sin2 ϕ,´(sin2 θ + cos2 θ) sinϕ cosϕ)
›

›

2

R3

= (cos2 θ + sin2 θ) sin4 ϕ+ sin2 ϕ cos2 ϕ = sin2 ϕ ,

the area of the desired surface can be computed by
ż

Σ

dS =

ż

ψ´1(Σ)

?g dA =

ż π
2

0

ż π´ϕ

ϕ

sinϕ dθdϕ =

ż π
2

0

(π ´ 2ϕ) sinϕ dϕ

=
(

´ π cosϕ+ 2ϕ cosϕ ´ 2 sinϕ)
ˇ

ˇ

ˇ

ϕ=π
2

ϕ=0
= π ´ 2 .

Another way to parameterize Σ is to view Σ as the graph of function z =
a

1 ´ x2 ´ y2

over D, where D is the projection of Σ along z-axis onto xy-plane. We note that the
boundary of D can be parameterized by

rr(t) = (cos t sin t, sin t sin t) , t P

[
´
π

2
,
π

2

]
.

Let (x, y) P BD. Then x2+ y2 = y; thus Σ can also be parameterized by ψ : D Ñ R3, where

ψ(x, y) =
(
x, y,

a

1 ´ x2 ´ y2
)

and D =
␣

(x, y)
ˇ

ˇx2 + y2 ď y
(

.

Therefore, with f denoting the function f(x, y) =
a

1 ´ x2 ´ y2, Remark 4.50 implies that
the surface area of Σ can be computed by

ż

D

b

1 + f 2
x + f 2

y dA =

ż 1

0

ż

?
y´y2

´
?
y´y2

1
a

1 ´ x2 ´ y2
dxdy

=

ż 1

0

arcsin x
a

1 ´ y2

ˇ

ˇ

ˇ

x=
?
y´y2

x=´
?
y´y2

dy = 2

ż 1

0

arcsin
?
y

?
1 + y

dy ;
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thus making a change of variable y = tan2 θ we conclude that

the surface area of Σ = 2

ż π
4

0

arcsin tan θ
sec θ d(tan2 θ) = 2

ż π
4

0

θ d
(

tan2 θ)

= 2
[
θ tan2 θ

ˇ

ˇ

ˇ

θ=π
4

θ=0
´

ż π
4

0

tan2 θdθ
]

= 2
[π
4

´

ż π
4

0

(sec2 θ ´ 1) dθ
]
= 2

[π
4

´ (tan θ ´ θ)
ˇ

ˇ

ˇ

θ=π
4

θ=0

]
= 2

[π
4

´

(
1 ´

π

4

)]
= π ´ 2 .

4.3.3 The surface element and the surface integral

Let Σ Ď R3 be a regular surface, and tV , ψu be a parametrization of Σ such that ψ(V) = Σ.
If f : Σ Ñ R is a bounded continuous function, the surface integral of f over Σ, denoted by
ż

Σ
f dS, is defined by

ż

Σ

f dS =

ż

V
(f ˝ ψ)

?g dA . (4.12)

In particular, if f ” 1, the number
ż

Σ
dS ”

ż

Σ
1 dS is the surface area of Σ.

Since the surface integrals defined by (4.12) seems to depend on a given parametrization,
before proceeding we show that the surface integral is indeed independent of the choice of the
parameterizations. Suppose that tV1, ψ1u and tV2, ψ2u are two local C 1-parameterizations
of a regular surface Σ at p, g1, g2 denote the metric tensors associated with the parameter-
izations tV1, ψ1u, tV2, ψ2u, respectively, and g1 = det(g1), g2 = det(g2) are corresponding
first fundamental forms. Let Ψ = ψ´1

2 ˝ψ1. Then the change of variables formula (Theorem
3.31) implies that

ż

V2

(f ˝ ψ2)
?g2 dA =

ż

V1

(f ˝ ψ2 ˝ Ψ)
(?g2 ˝ Ψ

)
|JΨ| dA =

ż

V1

(f ˝ ψ1)
(?g2 ˝ Ψ

)
|JΨ| dA ,

where JΨ is the Jacobian of the map Ψ. Using (4.7), we find that[
DΨ

]T[
(Dψ2) ˝ Ψ

]T[
(Dψ2) ˝ Ψ

][
DΨ

]
=

[
Dψ1

]T[
Dψ1

]
;

thus by the fact that g1 = det
(
[Dψ1]

T[Dψ1]
)

and g2 = det
(
[Dψ2]

T[Dψ2]
)
, we obtain that

det
(
[DΨ]

)2
(g2 ˝ Ψ) = g1 .
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Since JΨ = det
([
DΨ

])
, the identity above implies that |JΨ|(

?g2˝Ψ) =
?g1, so we conclude

that
ż

V1

(f ˝ ψ1)
?g1 dA =

ż

V2

(f ˝ ψ2)
?g2 dA . (4.13)

Therefore, the surface integral of f over Σ is independent of the choice of parameterizations
of Σ. In particular, the surface area of a regular C 1-surface which can be parameterized by
a global parametrization is also independent of the choice of parameterizations.

As noticed in Remark 4.45, the first fundamental form ?g associated with the parametriza-
tion tV , ψu can be viewed as the Jacobian of the map ψ. Therefore, we arrive at the con-
clusion that dS ‘‘= ”?g dA. dS is called the surface element. Moreover, similar to the
reason provided in Remark 4.22, the surface integral of a positive continuous function f

over Σ, where f is considered as the mass density of the surface given by

f(x) = lim
diam(∆)Ñ0

ψ´1(x)P∆

the mass of ψ(∆)

the surface area of ψ(∆)

is the total mass of the surface.
Next, we study the surface area of general regular surfaces that cannot be parameterized

using a single pair tV , ψu. Let Σ Ď R3 be a regular surface, and tVi, ψiuiPI be a collection
of local parameterizations satisfying that for each p P Σ there exists i P I such that tVi, ψiu
is a local parametrization of Σ at p. If there exists a countable collection of non-negative
functions tζjujPJ defined on Σ such that

1. For each j P J , spt(ζj) ” the closure of
␣

x P Σ
ˇ

ˇ ζj(x) ‰ 0
(

Ď Vi for some i P I;

2.
ř

jPJ ζj(x) = 1 for all x P Σ,

then intuitively we can compute the surface area by
ż

Σ

dS =
ÿ

jPJ

ż

Σ

ζj dS , (4.14)

where the surface integral of ζj over Σ is defined by (4.12) since spt(ζj) Ď ψ(Vi) and ζj = 0

outside spt(ζj). In other words, each term on the right-hand side of (4.14) can be evaluated
by

ż

Σ

ζj dS =

ż

Vi
(ζj ˝ ψi)

?gi dS .
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if spt(ζj) Ď ψi(Vi). Similarly, for a bounded continuous function f defined on Σ, the surface
integral of f over Σ can be defined by

ż

Σ

f dS =
ÿ

jPJ

ż

Σ

(ζjf) dS =
ÿ

jPJ

ÿ

choose one i such that
spt(ζj) Ď ψi(Vi)

ż

Vi
(ζjf) ˝ ψi

?gi dS . (4.15)

Remark 4.52. Defining the surface integrals of a function as above, a question arises natu-
rally: is the surface integral given by (4.15) independent of the choice of the parametrization
and the partition-of-unity? In other words, if a regular C k-surface Σ admits two collections
of local parametrization tUi, φiuiPI and tVj, ψjujPJ , and tζiuiPI and tλjujPJ are C k-partition-
of-unity subordinate to tUiuiPI and tVjujPJ , respectively. Is it true that

ÿ

iPI

ÿ

choose one i such that
spt(ζj) Ď φi(Ui)

ż

Ui
(ζif) ˝ φi

?gi dS =
ÿ

jPJ

ÿ

choose one j such that
spt(λk) Ď ψj(Vj)

ż

Vj
(λjf) ˝ ψj

?
gj dS ,

where gi and gj are the first fundamental form associated with the parametrization tUi, φiu
and tVj, ψju, respectively.

The answer to the question above is affirmative, and the surface integral given by (4.15)
is indeed independent of the choice of parametrization of the surface and the partition-of-
unity; however, we will not prove this and only treat this as a known fact.

Now we focus on the existence of a collection of functions tζjujPJ discussed above.

Definition 4.53. A collection of subsets of Rn is said to be locally finite if for every point
x P Rn there exists r ą 0 such that B(x, r), the ball centered at x with radius r, intersects
at most finitely many sets in this collection.

Definition 4.54 (Partition of Unity). Let A Ď Rn be a subset. A collection of functions
tζjujPJ is said to be a partition-of-unity of A if

1. 0 ď ζj ď 1 for all j P J .

2. The collection of sets
␣

spt(ζj)
(

jPJ is locally finite.

3.
ř

jPJ
ζj(x) = 1 for all x P A.

Let tUjujPJ be an open cover of A; that is, Uj is open for all j P J and A Ď
Ť

jPJ Uj.
A partition-of-unity tζjujPJ of A is said to be subordinate to tUjujPJ (or tUjujPJ has a
subordinate partition-of-unity of A) if spt(ζj) Ď Uj for all j P J .
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We note the if tζjujPJ is a partition-of-unity of A, then the property of local finiteness of
tspt(ζj)ujPJ ensures that for each point x P A has a neighborhood on which all but finitely
many λj’s are zero.

Lemma 4.55. Let A Ď Rn be a subset, tUiuiPI be an open cover of A, and tVjujPJ be a
collection of open sets such that each Vj is a subset of some Ui; that is, for each j P J ,
Vj Ď Ui for some i P I. If tVjujPJ has a subordinate C k-partition-of-unity of A, so has
tUiuiPI.

Proof. Let tζjujPJ be a partition-of-unity of A subordinate to tVjujPJ , and f : J Ñ I
be a map such that Vj Ď Uf(j) (we note that such f in general is not unique). Define
χi : Rn Ñ [0, 1] by

χi(x) =
ÿ

jPf´1(i)

ζj(x) . (4.16)

Then clearly spt(χi) Ď Ui and
ř

iPI
χi(x) = 1 for all x P A. Moreover, since the sum (4.16)

is a finite sum, χi is of class C k for all i P I since ζj if of class C k for all j P J . Now
we show that

␣

spt(χi)
(

iPI is locally finite. Let x P Rn be given. By the local finiteness of
␣

spt(ζj)
(

jPJ there exists r ą 0 such that #
␣

j P J
ˇ

ˇB(x, r) X spt(ζj) ‰ H
(

ă 8. By the
fact that f´1(i1) X f´1(i2) = H if i1 ‰ i2 (that is, each j P J belongs to f´1(i) for exactly
one i P I) and that

y P B(x, r) X spt(χi) ô y P B(x, r) X spt(ζj) for some j P f´1(i) ,

we must have

#
␣

i P I
ˇ

ˇB(x, r) X spt(χi) ‰ H
(

ď #
␣

j P J
ˇ

ˇB(x, r) X spt(ζj) ‰ H
(

ă 8 . ˝

Theorem 4.56. Let Σ Ď R3 be a regular C k-surface. Then every open cover of Σ has a
subordinate C k-partition-of-unity of Σ.

Proof. Let tOiuiPI be a given open cover of Σ. Let tUj, φjujPJ be a collection of C k-charts
of Σ such that tUjujPJ is a locally finite open cover of Σ and for each j P J , U j Ď Oi for
some i P I. By Lemma 4.55, it suffices to find a C k-partition-of-unity of Σ subordinate to
tUjujPJ .

W.L.O.G., we can assume that Uj and Vj ” φ(Uj) is bounded for all j P J . Define
ψj = φ´1

j . Then tVj, ψjujPJ is a collection of local parametrization of Σ. Choose a collection
of open sets tWjujPJ such that Wj Ď Vj for all j P J and

␣

ψj(Wj)
(

jPJ is still an open cover
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of Σ. For each j P J , let
␣

B
(j)
k

(Nj

k=1
be a collection of open balls satisfying Wj Ď

Nj
Ť

k=1

B
(j)
k

and cl(B(j)
k ) Ď Vj for all k P t1, ¨ ¨ ¨ , Nju. For j P J and k P t1, ¨ ¨ ¨ , Nju, with cj,k and rj,k

denoting the center and the radius of B(j)
k , respectively, let

µ(j,k)(x) =

$

&

%

exp
(

1

}x´ cj,k}2R2 ´ r2j,k

)
if x P B

(j)
k ,

0 if x R B
(j)
k ,

and then define χj : R2 Ñ R by χj(x) =
Nj
ř

k=1

µ(j,k)(x). Then χj ą 0 in Wj, and χj = 0

outside
Nj
Ť

k=1

B
(j)
k . Further define

λj(x) =

#

(χj ˝ φj)(x) if x P Uj ,
0 if x P U A

j .

Then λj ą 0 on ψj(Wj) which implies that
ř

jPJ
λj ą 0. Finally, we define ζj =

λj
ř

jPJ λj
.

Then tζjujPJ is a C k-partition-of-unity subordinate to the open cover tUjujPJ . ˝

Definition 4.57 (Piecewise Regular Surface). A surface Σ Ď R3 is said to be piecewise

regular if there are finite many curves C1, ¨ ¨ ¨ , Ck such that Σz
k
Ť

i=1

Ci is a disjoint union of
regular surfaces.

Definition 4.58. Let Σ Ď R3 be a piecewise regular surface such that Σ is the disjoint
union of regular surfaces Σi, where i P I for some finite index set I. For a continuous
function f : Σ Ñ R, the surface integral of f over Σ, still denoted by

ż

Σ
f dS, is defined by

ż

Σ

f dS =
ÿ

iPI

ż

Σi

f dS .

Definition 4.59. Let RΣ be the collection of piecewise regular surfaces in R3. The surface
element is a set function S : RΣ Ñ R that satisfies the following properties:

1. S (Σ) ą 0 for all Σ P RΣ.

2. If Σ is the union of finitely many regular surfaces Σ1, ¨ ¨ ¨ ,Σk that do not overlap
except at their boundaries, then

S (Σ) = S (Σ1) + ¨ ¨ ¨ + S (Σk) .

3. The value of S agrees with the area on planar surfaces; that is,

S (P) = A(P) for all planar surfaces P .
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4.4 Oriented Surfaces
In the study of surfaces, orientability is a property that measures whether it is possible to
make a consistent choice of surface normal vector at every point. A choice of surface normal
allows one to use the right-hand rule to define a “counter-clockwise” direction of loops in
the surface that is required in the presentation of the Stokes theorem (Theorem 4.86), a
main result in vector calculus which will be introduced later in Section 4.7.2.

Definition 4.60. A regular surface Σ Ď R3 is said to be oriented if there exists a contin-
uous vector-valued function N : Σ Ñ R3 such that }N}R3 = 1 and for all p P Σ, N(p) ¨ v = 0

for all v P TpΣ. Such a vector-field N is called a unit normal of Σ.

Suppose that Σ Ď R3 is a connected regular surface. Since at each p P Σ the tangent
plane TpΣ of Σ at p has two normal directions, Σ has at most two continuous unit normal
vector fields. If in addition that Σ is oriented, there are exactly two continuous unit normal
vector fields of Σ, and one is the opposite of the other. The two unit normal vector fields
define two sides of the surface.

Suppose further that this oriented surface Σ is the boundary of an open set Ω Ď R3

(for example, a sphere is the boundary of a ball), then one of the unit normal vector fields
N : BΩ Ñ R3 has the property that p + tN(p) R Ω for all small but positive t. Such
a normal is called the outward-pointing unit normal of BΩ, and the opposite of the
outward-pointing unit normal of BΩ is called the inward-pointing unit normal of BΩ.

Example 4.61. Consider the unit sphere S2 =
␣

(x, y, z) P R3
ˇ

ˇx2 + y2 + z2 = 1
(

. Then
N : S2 Ñ R3 defined by N(p) = p, where the right-hand side is treated as the vector
p ´ 0, is a continuous unit normal vector field on Σ; thus S2 is an oriented surface. Let
B(0, 1) =

␣

(x, y, z) P R3
ˇ

ˇx2 + y2 + z2 ă 1
(

be the unit ball in R3. Then N is the outward-
pointing unit normal of BB(0, 1).

Let Σ Ď R3 be a regular surface, p P Σ, and tV , ψu be a local parametrization of Σ at p.
Since ψ,1 and ψ,2 are linearly independent, ψ,1 ˆψ,2 ‰ 0; thus the vector n given by

n =
ψ,1 ˆψ,2

}ψ,1 ˆψ,2 }R3

˝ ψ´1

is a unit normal vector field on ψ(V). As a consequence, a regular C 1-surface that can be
parameterized by one single parametrization tV , ψu; that is, Σ = ψ(V), is always oriented.
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Such a normal vector fields is said to be compatible with the parametrization tV , ψu. To be
more precise, we have the following

Definition 4.62. Let Σ Ď R3 be an oriented C 1-surface, and N : Σ Ñ R3 be a continuous
unit normal vector field of Σ. For each p P V , N is said to be compatible with a local
parametrization tV , ψu of Σ at p if det

(
[ψ, 1

...ψ,2
... N ˝ ψ]

)
ą 0.

The following example provides a famous regular surface which is not oriented.

Example 4.63. A Möbius strip/band is a surface obtained, conceptually, by half-twisting a
paper strip and then joining the ends of the strip together to form a loop (see the following
figure for the idea).

Figure 4.1: Normal vector fields on a Möbius strip

As one can see from Figure 4.1, a Möbius strip is not oriented. To see this mathemati-
cally, consider the following Möbius strip

M =
!(

´(2 + v cos u
2
) sinu, (2 + v cos u

2
) cosu, v sin u

2

) ˇ
ˇ

ˇ
(u, v) P [0, 2π] ˆ (´1, 1)

)

and choose a local parametrization ψ : V Ñ R3 given by

ψ(u, v) =
(

´(2 + v cos u
2
) sinu, (2 + v cos u

2
) cosu, v sin u

2

)
,

where (u, v) P V ” (0, 2π) ˆ (´1, 1).

x y

z

Figure 4.2: The Möbius strip/band ψ([0, 2π] ˆ [´1, 1])
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Then the unit normal vector field on ψ(V) compatible with the parametrization tV , ψu is

(N ˝ ψ)(u, v) =
ψ,1 ˆψ,2

}ψ,1 ˆψ,2 }R3

=
2

a

v2 + (4 + 2v cos(u/2))2
ˆ

ˆ

(
v

2
cosu+ (2 + v sin u

2
) sin u

2
sinu,

´
v

2
sinu+ (2 + v cos u

2
) sin u

2
cosu,´(2 + v cos u

2
) cos u

2

)
,

but N does not have a continuous extension on M since if rN is a continuous extension of
N; that is, rN is a unit normal vector field on M and N = rN on ψ(V), then

(0, 0,´1) = lim
uÑ0+

(N ˝ ψ)(u, 0) = rN(2, 0, 0) = lim
uÑ2π´

(N ˝ ψ)(u, 0) = (0, 0, 1)

which is a contradiction.
Another way of seeing that M is not oriented is the following. Let r(t) = G(t, 0) =

(´2 sin t, 2 cos t, 0), and C = r([0, 2π]) Ď M be a closed curve on M. If there is a continuous
unit normal vector field rN on M, then rN is also continuous on C. However, rN is never
continuous on C since by moving N continuously along C, starting from r(0) and moving
along C in the direction r 1 and back to r(0) = r(2π), we obtain a different vector which
implies that rN ˝ r is not continuous at r(0) = r(2π) = (2, 0, 0).

Definition 4.64. An open set Ω Ď R3 is said to be of class C k if the boundary BΩ is a
regular C k-surface.

Theorem 4.65. Let Ω Ď R3 be a bounded open set of class C 1. Then BΩ is oriented.

4.5 Manifolds, Charts, Atlas and Differentiable Struc-
ture

In the following, we introduce a more abstract concept, the so-called manifolds, which is a
generalization of regular surfaces.

Definition 4.66. A topological space M is called an n-dimensional manifold if it is
locally homeomorphic to Rn; that is, there is an open cover U = tUiuiPI of M such that
for each i P I there is a map φi : Ui Ñ Rn which maps Ui homeomorphically onto an open
subset of Rn. The pair tUi, φiu is called a chart (or coordinate system) with domain Ui, and
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␣

φi(Ui), φ´1
i

(

is called a local parametrization of M. The collection of charts Φ = tUi, φiuiPI
is called an atlas.

Two charts tUi, φiu and tUj, φju are said to be C r-compatible or have C r-overlap if
the coordinate change

φj ˝ φ´1
i : φi(Ui X Uj) Ñ φj(Ui X Uj)

is of class C r. An atlas Φ on M is called C r if every pair of its charts is C r-compatible.
A maximal C r-atlas α on M is called a differentiable structure, and the pair tM,αu is
called a manifold of class C r.

A function f : M Ñ R is said to be of class C r if f ˝ φ´1
i : Ui Ñ R is of class C r for all

charts tUi, φiu.

In particular, a regular C 1-curve C Ď R3 is a one-dimensional C 1-manifold, and a regular
C 1-surface Σ Ď R3 is a two-dimensional C 1-manifold.

Definition 4.67 (Metric). Let Σ Ď Rn be a (n´1)-dimensional manifold. The metric tensor
associated with the local parametrization tV , ψu (at p P Σ) is the matrix g = [gαβ](n´1)ˆ(n´1)

given by

gαβ = ψ,α ¨ψ,β =
n
ÿ

i=1

Bψi

Byα

Bψi

Byβ
in V .

Proposition 4.68. Let Σ Ď Rn be a (n´ 1)-dimensional manifold, and g = [gαβ](n´1)ˆ(n´1)

be the metric tensor associated with the local parametrization tV , ψu (at p P Σ). Then the
metric tensor g is positive definite; that is,

n´1
ÿ

α,β=1

gαβv
αvβ ą 0 @ v =

n´1
ÿ

γ=1

vγ
Bψ

Byγ
‰ 0 .

Definition 4.69 (The first fundamental form). Let Σ Ď Rn be a (n´ 1)-dimensional mani-
fold, and g = [gαβ](n´1)ˆ(n´1) be the metric tensor associated with the local parametrization
tV , ψu (at p P Σ). The first fundamental form associated with the local parametrization
tV , ψu (at p P Σ) is the scalar function g = det(g).

Definition 4.70 (Surface integrals). Let M be an (n´1)-dimensional C 1-manifold, tUiuiPI
be a collection of charts of M and tζiuiPI is a partition-of-unity of M subordinate to tUiuiPI .
The “surface integral” (or simply integral) of a scalar function f : M Ñ R over M, denoted
by

ż

M
f dS, is defined by

ż

M
f dS =

ÿ

iPI

ż

φi(Ui)

[
(ζif) ˝ φ´1

]?gi dx ,
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where gi is the first fundamental form associated with the parametrization
␣

φi(Ui), φ´1
(

.

Remark 4.71. Let C Ď R3 be a regular C 1-curve. The line integral of a scalar function
f : C Ñ R over C is the “surface integral” of f over C defined in (4.70). In other words,
dS = ds in the case that M is a one-dimensional manifold.

4.5.1 Some useful identities

Let Σ Ď Rn be the boundary of an open set Ω (thus an oriented surface), tV , ψu be a local
parametrization of Σ, and N : Σ Ñ Rn be the normal vector on Σ which is compatible with
the parametrization ψ; that is,

det
([
ψ,1

...ψ,2
... ¨ ¨ ¨

...ψ,n´1
... N ˝ ψ

])
ą 0 .

Define Ψ(y 1, yn) = ψ(y 1) + yn(N ˝ ψ)(y 1). Then Ψ : V ˆ (´ε, ε) Ñ T for some tubular
neighborhood T of Σ.

Ψ

ψ = φ´1

φ

Φ = Ψ´1

y1 = (y1, ¨ ¨ ¨ , yn´1) P Rn´1

Ω

BΩO+

ψ(y1) P BΩ

Φ(O+)

Figure 4.3: The map Ψ constructed from the local parametrization tV , ψu

Since (∇Ψ)
ˇ

ˇ

tyn=0u
=

[
ψ,1

...ψ,2
... ¨ ¨ ¨

...ψ,n´1
... N˝ψ

]
, Corollary 1.65 and 1.66 implies that

det(∇Ψ)2
ˇ

ˇ

tyn=0u
=

[
det

(
(∇Ψ)T) det(∇Ψ)

]ˇ
ˇ

ˇ

tyn=0u
= det

(
(∇Ψ)T∇Ψ

)ˇ
ˇ

ˇ

tyn=0u

= det
(


g11 g12 ¨ ¨ ¨ g(n´1)1 0
g21 g22 ¨ ¨ ¨ g(n´1)2 0
... ... . . . ... ...

g(n´1)1 g(n´1)2 ¨ ¨ ¨ g(n´1)(n´1) 0
0 0 ¨ ¨ ¨ 0 1


)
= g .

Defining J as the Jacobian of the map Ψ; that is, J = det(∇Ψ), then the identity above
implies that

J =
?g on tyn = 0u .
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Moreover, letting A denote the inverse of the Jacobian matrix of Ψ; that is, A = (∇Ψ)´1,
and letting

[
gαβ

]
(n´1)ˆ(n´1)

be the inverse matrix of
[
gαβ

]
(n´1)ˆ(n´1)

, we find that

A
ˇ

ˇ

tyn=0u
=

[
n´1
ÿ

α=1

g1αψ,α
... ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

...
n´1
ÿ

α=1

g(n´1)αψ,α
... N ˝ ψ

]T

.

As a consequence,
(JATen)

ˇ

ˇ

tyn=0u
=

?g (N ˝ ψ) . (4.17)

4.6 The Divergence Theorem
Two differential operators play important roles in vector calculus. The first one is called
the divergence operator which measures the flux of a vector field, and the second one is
called the curl operator which measures the circulation (the speed of rotation) of a vector
field. We will study this two operators in the following two sections.

4.6.1 Flux integrals

Let Σ Ď R3 be an oriented surface with a fixed unit normal vector field N : Σ Ñ R3, and
u : Σ Ñ R3 be a vector-valued function. The flux integral of u over Σ with given orientation
N is the surface integral of u ¨ N over Σ.

Physical interpretation

Let Ω Ď R3 be an open set which stands for a fluid container and fully contains some liquid
such as water, and u : Ω Ñ R3 be a vector-field which stands for the fluid velocity; that is,
u(x) is the fluid velocity at point x P Ω. Furthermore, let Σ Ď Ω be a surface immersed in
the fluid with given orientation N, and c : Ω Ñ R be the concentration of certain material
dissolving in the liquid. Then the amount of the material carried across the surface in the
direction N by the fluid in a time period of ∆t is

∆t ¨

ż

Σ

cu ¨ N dS .

Therefore,
ż

Σ
cu ¨N dS is the instantaneous amount of the material carried across the surface

in the direction N by the fluid.
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Example 4.72. Find the flux integral of the vector field F(x, y, z) = (x, y2, z) upward
through the first octant part Σ of the cylindrical surface x2 + z2 = a2, 0 ă y ă b.

x y

z

a

a

b

Figure 4.4: The surface Σ

Fist, we parameterize Σ by

ψ(u, v) = (u, v,
?
a2 ´ u2), (u, v) P V = (0, a) ˆ (0, b) .

Since the first fundamental form g associated with tV , ψu is g = }ψ,1 ˆψ,2 }2R3 =
a2

a2 ´ u2
,

and the upward-pointing unit normal is N(x, y, z) = (
x

a
, 0,

z

a
), we have

ż

Σ

F ¨ N dS =

ż

V

1

a
(u2 + a2 ´ u2)

a
?
a2 ´ u2

d(u, v) = a2
ż

V

1
?
a2 ´ u2

d(u, v)

= a2
ż b

0

ż a

0

1
?
a2 ´ u2

dudv = a2b arcsin u
a

ˇ

ˇ

ˇ

u=a

u=0
=
πa2b

2
.

4.6.2 Measurements of the flux - the divergence operator

Let Ω Ď R3 be an open set, and u : Ω Ñ R3 be a C 1 vector field. Suppose that O is a
bounded open set of class C 1 such that O Ď Ω with outward-pointing unit normal vector
field N. Then the flux integral of u over BO in the direction N is

ż

BO
u ¨ N dS .

Consider a special case that O = B(a, r) for some ball in R3 centered at a with radius r.
We first compute

ż

BB(a,r)
u3N3 dS. Consider

ψ+(x1, x2) =
(
x1, x2, a3 +

a

r2 ´ (x1 ´ a)2 ´ (x2 ´ a2)2
)
, (x1, x2) P D(a, r) ,

ψ´(x2, x2) =
(
x1, x2, a3 ´

a

r2 ´ (x1 ´ a)2 ´ (x2 ´ a2)2
)
, (x1, x2) P D(a, r) ,
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where D(a, r) is the disk in R2 given by
␣

(x1, x2) P R2
ˇ

ˇ (x1 ´ a1)
2 + (x2 ´ a2)

2 ď r2
(

. Since
BB(a, r)z

(
ψ+(D(a, r)) Y ψ´(D(a, r)) is the equator of the sphere BB(a, r) which has zero

area, we must have
ż

BB(a,r)

u3N3 dS =

ż

ψ+(D(a,r))

u3N3 dS +

ż

ψ´(D(a,r))

u3N3 dS .

Note that (N ˝ ψ˘)(x1, x2) =
1

r

(
ψ˘(x1, x2) ´ a

)
. In view of Example 4.49, we have

ż

ψ+(D(a,r))

u3N3 dS

=

ż

D(a,r)

u3(ψ+(x1, x2))

a

r2 ´ (x1 ´ a1)2 ´ (x2 ´ a2)2

r

r
a

r2 ´ (x1 ´ a1)2 ´ (x2 ´ a2)2
dA

=

ż

D(a,r)

u3(ψ+(x1, x2)) dA .

and similarly,
ż

ψ+(D(a,r))

u3N3 dS = ´

ż

D(a,r)

u3(ψ´(x1, x2)) dA .

Therefore,
ż

BB(a,r)

u3N3 dS =

ż

D(a,r)

[
u3(ψ+(x1, x2)) ´ u3(ψ´(x1, x2))

]
dA

=

ż

D(a,r)

( ż a3+
?
r2´(x1´a1)2´(x2´a2)2

a3´
?
r2´(x1´a1)2´(x2´a2)2

Bu3

Bx3
(x1, x2, x3) dx3

)
dA

=

ż

B(a,r)

Bu3

Bx3
dx .

Similarly,
ż

BB(a,r)

u1N1 dS =

ż

B(a,r)

Bu1

Bx1
dx and

ż

BB(a,r)

u2N2 dS =

ż

B(a,r)

Bu2

Bx2
dx ;

thus we conclude that
ż

BB(a,r)

u ¨ N dS =

ż

B(a,r)

3
ÿ

i=1

Bui
Bxi

dx .

The computation above motivates the following

Definition 4.73 (The divergence operator). Let u : Ω Ď Rn Ñ Rn be a vector field. The
divergence of u is a scalar function defined by

divu =
n
ÿ

i=1

Bui

Bxi
.
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Definition 4.74. A vector field u : Ω Ď Rn Ñ Rn is called solenoidal or divergence-free if
divu = 0 in Ω.

4.6.3 The divergence theorem

Theorem 4.75 (The divergence theorem). Let Ω Ď Rn be a bounded Lipschitz domain, and
v P C 1(Ω) X C (Ω). Then

ż

Ω

divv dx =

ż

BΩ

v ¨ N dS ,

where N is the outward-pointing unit normal of Ω.

Proof. To embrace the beauty of geometry (and the context that we have introduced), we
prove the case that Ω is a bounded open set of class C 3.

Let tUmuKm=1 be an open cover of BΩ such that for each m P t1, ¨ ¨ ¨ , Ku there exists
a C 3-parametrization ψm : Vm Ď Rn´1 Ñ Um which is compatible with the orientation N;
that is,

det
(
[ψm,1

... ¨ ¨ ¨
...ψm,n´1

... N ˝ ψm]
)

ą 0 on Vm .

Define ϑm(y1, yn) = ψm(y
1) + yn(N ˝ ψm)(y

1) as in Section 4.5.1. Then there exists εm ą 0

such that ϑm : Vm ˆ (´εm, εm) Ñ Wm is a C 2-diffeomorphism for some open set in Rn such
that ϑm : Vm ˆ (´εm, 0) Ñ Ω X Wm while ϑm : Vm ˆ (0, εm) Ñ int(ΩA) X Wm.

Choose an open set W0 Ď Rn such that W0 Ď Ω and Ω Ď
K
Ť

m=0

Wm, and define ϑ0 as the

identity map. Let 0 ď ζm ď 1 in C 8
c (Um) denote a partition-of-unity of Ω subordinate to

the open covering tWmuKm=0; that is,

K
ÿ

m=0

ζm = 1 and spt(ζm) Ď Um @m.

Let Jm = det(∇ϑm), Am = (∇ϑm)´1, and gm denote the first fundamental form associated
with tVm, ψmu. Using (4.17), ?gm(N ˝ ϑm) = Jm(Am)

Ten on Vm ˆ t0u for m P t1, ¨ ¨ ¨ , Ku.
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Therefore, making change of variable x = ϑm(y) in each Wm we find that
ż

BΩ

v ¨ N dS =
K
ÿ

m=1

ż

BΩXWm

ζm(v ¨ N) dS

=
K
ÿ

m=1

n
ÿ

i=1

ż

Vmˆtyn=0u

(ζm ˝ ϑm)(vi ˝ ϑm)(Ni ˝ ϑm)
?gm dy 1

=
K
ÿ

m=1

n
ÿ

i=1

ż

Vmˆtyn=0u

(ζm ˝ ϑm)(vi ˝ ϑm)Jm(Am)
n
i dy

1

=
K
ÿ

m=1

n
ÿ

i=1

ż

Vmˆ(´εm,0)

B

Byn

[
(ζm ˝ ϑm)Jm(Am)

n
i (vi ˝ ϑm)

]
dy .

On the other hand, for α P t1, ¨ ¨ ¨ , n ´ 1u and i P t1, ¨ ¨ ¨ , nu,
ż

Vmˆ(´εm,0)

B

Byα

[
(ζm ˝ ϑm)Jm(Am)

α
i (vi ˝ ϑm)

]
dy = 0 ;

thus the Piola identity (2.6) implies that
ż

BΩ

v ¨ N dS =
K
ÿ

m=1

n
ÿ

i,j=1

ż

Vmˆ(´εm,0)

B

Byj

[
(ζm ˝ ϑm)Jm(Am)

j
i (vi ˝ ϑm)

]
dy

=
K
ÿ

m=1

n
ÿ

i,j=1

ż

Vmˆ(´εm,0)

Jm(Am)
j
i (ζm ˝ ϑm),j (vi ˝ ϑm) dy

+
K
ÿ

m=1

n
ÿ

i,j=1

ż

Vmˆ(´εm,0)

(ζm ˝ ϑm)Jm(Am)
j
i (vi ˝ ϑm),j dy .

Making change of variable y = ϑ´1
m (x) in each Vm ˆ (´εm, 0) again, by the fact that

n
ÿ

i,j=1

(Am)
j
i (vi ˝ θm),j = (divv) ˝ θm and

ż

W0

div
(
ζ0v) dx = 0 ,

we conclude that
ż

BΩ

v ¨ N dS =

ż

W0

div
(
ζ0v) dx+

K
ÿ

m=1

ż

Wm

(v ¨ ∇x)ζm dx+
K
ÿ

m=1

ż

Wm

ζmdivv dx

=
K
ÿ

m=0

ż

Wm

(v ¨ ∇x)ζm dx+
K
ÿ

m=0

ż

Wm

ζmdivv dx

=

ż

Ω

(v ¨ ∇x)1 dx+

ż

Ω

divv dx =

ż

Ω

divv dx . ˝

Letting v = (0, ¨ ¨ ¨ , 0, f, 0, ¨ ¨ ¨ , 0) = fei, we obtain the following
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Corollary 4.76. Let Ω Ď Rn be a bounded Lipschitz domain, and f P C 1(Ω)X C (Ω). Then
ż

Ω

Bf

Bxi
dx =

ż

BΩ

f Ni dS ,

where Ni is the i-th component of the outward-pointing unit normal N of Ω.

Letting v be the product of a scalar function and a vector-valued function in Theorem
4.75, we conclude the following

Corollary 4.77. Let Ω Ď Rn be a bounded Lipschitz domain, and v P C 1(Ω;Rn)XC (Ω;Rn)

be a vector-valued function and φ P C 1(Ω) X C (Ω) be a scalar function. Then
ż

Ω

φ divv dx =

ż

BΩ

(v ¨ N)φdS ´

ż

Ω

v ¨ ∇φdx , (4.18)

where N is the outward-pointing unit normal on BΩ.

Example 4.78. Let Ω be the the first octant part bounded by the cylindrical surface
x2 + z2 = a2 and the plane y = b, and F : Ω Ñ R3 be a vector-valued function defined by
F(x, y, z) = (x, y2, z).

x y

z

a

a

b

Figure 4.5: The domain Ω and its five pieces of boundaries

With N denoting the outward-pointing unit normal of BΩ,
ż

Ω

divF d(x, y, z) =

ż a

0

ż b

0

ż

?
a2´x2

0

(2 + 2y) dzdydx = (b2 + 2b)

ż a

0

ż

?
a2´x2

0

dzdx

=
πa2(b2 + 2b)

4
.

On the other hand, we note that the boundary of Ω has five parts: Σ as given in Example
4.72, two rectangles R1 = tx = 0u ˆ [0, b] ˆ [0, a], R2 = [0, a] ˆ [0, b] ˆ tz = 0u, and two
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quarter disc D1 =
␣

(x, 0, z) P R3
ˇ

ˇx2 + z2 ď a2, x, z ě 0
(

and D2 =
␣

(x, b, z) P R3
ˇ

ˇx2 + z2 ď

a2, x, z ě 0
(

. Therefore,
ż

R1

F ¨ N dS =

ż a

0

ż b

0

(0, y2, z) ¨ (´1, 0, 0) dydz = 0 ,

ż

R2

F ¨ N dS =

ż a

0

ż b

0

(x, y2, 0) ¨ (0, 0,´1) dydx = 0 ,

ż

D1

F ¨ N dS =

ż a

0

ż

?
a2´x2

0

(x, 0, z) ¨ (0,´1, 0) dzdx = 0 ,

and
ż

D1

F ¨ N dS =

ż a

0

ż

?
a2´x2

0

(x, b2, z) ¨ (0, 1, 0) dzdx = b2
ż a

0

ż

?
a2´x2

0

dzdx =
πa2b2

4
.

Together with the result in Example 4.72, we find that
ż

BΩ

F ¨ N dS =
( ż

Σ

+

ż

R1

+

ż

R2

+

ż

D1

+

ż

D2

)
F ¨ N dS =

πa2b2

4
+
πa2b

2
=
πa2(b2 + 2b)

4

=

ż

Ω

divF d(x, y, z) .

4.6.4 The divergence theorem on surfaces with boundary

This section is devoted to the divergence theorem on surfaces in R3 instead of domains of
Rn. To do so, we need to define what the divergence operator on a surface is, and this
requires that we first define the vector fields on which the surface divergence operator acts.

Definition 4.79. Let Σ Ď R3 be an open C 1-surface; that is, Σ is of class C 1 and ΣXBΣ =

H. A vector field u defined on Σ is called a tangent vector field on Σ, denoted by u P TΣ,
if u ¨ N = 0 on Σ, where N : Σ Ñ S2 is a unit normal vector field on Σ.

Having established (4.18), we find that the divergence operator div is the formal adjoint
of the operator ´∇. The following definition is motivated by this observation.

Definition 4.80 (The surface gradient and the surface divergence). Let Σ Ď Rn be a
regular C 1-surface. The surface gradient of a function f : Σ Ñ R, denoted by ∇Σf , is a
vector-valued function from Σ to TpΣ given, in a local parametrization tV , ψu, by

(∇Σf) ˝ ψ =
n´1
ÿ

α,β=1

gαβ
B (f ˝ ψ)

Byα

Bψ

Byβ
,
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where [gαβ] is the inverse matrix of the metric tensor [gαβ] associated with tV , ψu, and
!

Bψ

Byβ

)n

β=1
are tangent vectors to Σ.

The surface divergence operator divΣ is defined as the formal adjoint of ´∇Σ; that is, if
u P TΣ, then

´

ż

Σ

u ¨ ∇Σf dS =

ż

Σ

f divΣu dS @ f P C 1
c (Σ;R) .

In a local parametrization (V , ψ),

(divΣu) ˝ ψ =
1

?g

n´1
ÿ

α,β=1

B

Byα

[?ggαβ
(
(u ˝ ψ) ¨

Bψ

Byβ

)]
,

where g = det(g) is the first fundamental form associated with tV , ψu.

Remark 4.81. Suppose that f : O Ď R3 Ñ R for some open set containing Σ. Then the
surface gradient of f at p P Σ is the projection of the gradient vector (∇f)(p) onto the
tangent plane TpΣ. In other words, let N : Σ Ñ R3 be a continuous unit normal vector field
on Σ, then

(∇Σf)(p) = (∇f)(p) ´
[
(∇f)(p) ¨ N(p)

]
N(p) (or simply ∇Σf = ∇f ´ (∇f ¨ N)N) .

Definition 4.82 (Surfaces with Boundary). An oriented C k-surface Σ Ď R3 is said to have
C ℓ-boundary BΣ if there exists a collection of pairs tVm, ψmuKm=1, called a collection of local
parametrization of Σ, if

1. Vm Ď R2 is open and ψm : Vm Ñ R3 is one-to-one map of class C k for all m P

t1, ¨ ¨ ¨ , Ku;

2. ψm(Vm) X Σ ‰ H for all m P t1, ¨ ¨ ¨ , Ku and Σ Ď
ŤK
m=1 ψm(Vm);

3. ψm : Vm Ñ ψm(Vm) is a C k-diffeomorphism if ψm(Vm) Ď Σ;

4. ψm : V+
m ” Vm X ty2 ą 0u Ñ ψm(Vm) X Σ is a C k-diffeomorphism if Um X BΣ ‰ H;

5. ψm : Vm X ty2 = 0u Ñ Um X BΣ is of class C ℓ if Um X BΣ ‰ H.

Now we are in the position of stating the divergence theorem on surfaces with boundary.
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Theorem 4.83. Let Σ Ď R3 be an oriented C 1-surface with C 1-boundary BΣ, N : Σ Ñ S2

be a continuous unit normal vector field on Σ, and T : BΣ Ñ S2 be tangent vector on BΣ

such that T is compatible with N (which means T ˆ N points away from Σ). Then
ż

BΣ

u ¨ (T ˆ N) ds =

ż

Σ

divΣu dS @ u P TΣ X C 1(Σ;R3) X C (Σ;R3) ,

where divΣ is the surface divergence operator.

Proof. Let tVm, ψmuKm=1 denote a collection of local parametrization of Σ such that ψm(Vm)X
BΣ = H for 1 ď m ď J , and ψm(Vm)X BΣ is non-empty and connected for J +1 ď m ď K.
W.L.O.G., we can assume that Vm = Bm ” B(0, rm) for some rm ą 0. Write Um = ψm(Vm),
and let tgmuKm=1 be the associated metric tensor, as well as the associated first fundamental
form gm = det(gm). Let tζmuKm=1 be a partition-of-unity of Σ subordinate to tUmuKm=1.
Then

ż

Σ

divΣu dS =
K
ÿ

m=1

ż

UmXΣ

ζmdivΣu dS

=
J
ÿ

m=1

2
ÿ

α,β=1

ż

Bm

(ζm ˝ ψm)
B

Byα

[?gmgαβm
(
(u ˝ ψm) ¨

Bψm
Byβ

)]
dy

+
K
ÿ

m=J+1

2
ÿ

α,β=1

ż

B+
m

(ζm ˝ ψm)
B

Byα

[?gmgαβm
(
(u ˝ ψm) ¨

Bψm
Byβ

)]
dy .

Let n denote the outward-pointing unit normal on either BBm for 1 ď m ď J or BB+
m for

J + 1 ď m ď K. Since ζm ˝ ϑm = 0 on BB(0, rm) for 1 ď m ď J , and ζm ˝ ϑm = 0 on
ty2 ą 0u X BB(0, rm) for J + 1 ď m ď K, the divergence theorem (on R2) implies that

ż

Σ

divΣu dS = ´

K
ÿ

m=1

2
ÿ

α,β=1

ż

ψ´1
m (UmXΣ)

[?gmgαβm
(
(u ˝ ψm) ¨

Bψm
Byβ

)] B

Byα
(ζm ˝ ψm) dy

+
K
ÿ

m=J+1

2
ÿ

α,β=1

ż

BmXty2=0u

(ζm ˝ ψm)nα

[?gmgαβm
(
(u ˝ ψm) ¨

Bψm
Byβ

)]
dy1

= ´

K
ÿ

m=1

ż

ψ´1
m (UmXΣ)

(u ¨ ∇Σζm) ˝ ψm
?gm dy

+
K
ÿ

m=J+1

ż

BmXty2=0u

(ζm ˝ ψm)(u ˝ ψm) ¨

[ 2
ÿ

α,β=1

nα

?gmgαβm
Bψm
Byβ

]
dy1 .
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Since
K
ÿ

m=1

ż

ψ´1
m (UmXΣ)

(u ¨∇Σζm) ˝ ψm
?gm dy =

K
ÿ

m=1

ż

UmXΣ

(u ¨∇Σζm) dS =

ż

Σ

(u ¨∇
K
ÿ

m=1

ζm) dS = 0 ,

we conclude that
ż

Σ

divΣu dS =
K
ÿ

m=J+1

ż

BmXty2=0u

(ζm ˝ ψm)(u ˝ ψm) ¨

[ 2
ÿ

α,β=1

nα

?gmgαβm
Bψm
Byβ

]
dy1 .

On the other hand,
ż

BΣ

u ¨ (T ˆ N) ds =
K
ÿ

m=J+1

ż

BΣXUm
ζmu ¨ (T ˆ N) ds

=
K
ÿ

m=J+1

ż

BmXty2=0u

(ζm ˝ ψm)(u ˝ ψm) ¨

[
(T ˆ N) ˝ ψm

ˇ

ˇ

ˇ

Bψm
By1

ˇ

ˇ

ˇ

]
dy1 .

Therefore, the theorem can be concluded as long as we can show that

2
ÿ

α,β=1

nα

?gm gαβm
Bψm
Byβ

= (T ˆ N) ˝ ψm

ˇ

ˇ

ˇ

Bψm
By1

ˇ

ˇ

ˇ
on Bm X ty2 = 0u . (4.19)

Let τm =
2
ř

α,β=1

nα
?gmgαβm

Bψm
Byβ

on BmXty2 = 0u. Since nα = ´δ2α, we find that τm ¨
Bψm
By1

=

0 on Bm X ty2 = 0u; thus

τm ¨ (T ˝ ψm) = 0 on Bm X ty2 = 0u .

Moreover, noting that τm is a linear combination of tangent vectors Bψm
Byβ

, we must have

τm ¨ (N ˝ ψm) = 0 on Bm X ty2 = 0u .

As a consequence,
τm � (T ˆ N) ˝ ψm on Bm X ty2 = 0u .

Since (T ˆ N) points away from Σ, while Bψm
By2

˝ ψ´1
m

ˇ

ˇ

ˇ

BΣ
points toward Σ, by the fact that

τm ¨
Bψm
By2

=
2
ÿ

α,β=1

nα

?gmgαβm
Bψm
Byβ

¨
Bψm
By2

= ´
?gmg22m ă 0 ,
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we must have τm ¨ (T ˆ N) ˝ ψm ą 0 on Bm X ty2 = 0u. In other words,

τm = |τm|(T ˆ N) ˝ ψm on Bm X ty2 = 0u .

Finally, since

τm ¨ τm =
2
ÿ

α,β,γ,δ=1

gm nα nγ g
αβ
m gγδm

Bψm
Byβ

¨
Bψm
Byδ

= gmg22m = gm11 =
ˇ

ˇ

ˇ

Bψm
By1

ˇ

ˇ

ˇ

2

,

we conclude that τm =
ˇ

ˇ

ˇ

Bψm
By1

ˇ

ˇ

ˇ
(T ˆ N) ˝ ψm on ty2 = 0u; thus (4.19) is established. ˝

Remark 4.84. On BΣ, the vector T ˆ N is “tangent” to Σ and points away from Σ. In
other words, T ˆ N can be treated as the “outward-pointing” unit “normal” of BΣ which
makes the divergence theorem on surfaces more intuitive.

4.7 The Stokes Theorem
4.7.1 Measurements of the circulation - the curl operator

We consider the circulation or the speed of rotation of a vector field u about an axis in the
direction N. Let P be a plane passing thorough a point a and having normal N, and Cr be
a circle on the plane P centered at a with radius r. Pick the orientation of the unit tangent
vector T which is compatible with the unit normal N (see Figure 4.6 for reference).

T

P

T

r

T

N

T
a

Figure 4.6: the circulation about an axis in direction N

Since the instantaneous angular velocity of a vector field u along the circle Cr is measured
by u ¨ T

r
, it is quite reasonable to measure the circulation of u along Cr by averaging the

angular velocity; that is, we consider the quantity

1

2πr

¿

Cr

u ¨ T
r

ds (4.20)
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as a (constant multiple of) measurement of the speed of rotation. The limit of the quantity
above, as r Ñ 0, is then a good measurement of the rotation speed of u at the point a about
the axis in the direction N.

We start from the case that N = e3 so that P be parallel to the x1x2-plane. With
u1, u2, u3 denoting respectively the first, the second and the third components of u, by the
change of variable ds = rdθ and the L’Hôspital rule (to obtain the second “=”) we find that

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds

= lim
rÑ0

1

2πr

ż 2π

0

[
u2
(
a + (r cos θ, r sin θ, 0)

)
cos θ ´ u1

(
a+(r cos θ, r sin θ, 0)

)
sin θ

]
dθ

=
1

2π

d

dr

ˇ

ˇ

ˇ

r=0

ż 2π

0

[
u2
(
a + (r cos θ, r sin θ, 0)

)
cos θ ´ u1

(
a+(r cos θ, r sin θ, 0)

)
sin θ

]
dθ

=
1

2π

ż 2π

0

[
Bu2
Bx1

(a) cos2 θ + Bu2
Bx2

(a) cos θ sin θ ´
Bu1
Bx1

(a) cos θ sin θ ´
Bu1
Bx2

(a) sin2 θ
]
dθ

=
1

2

[
Bu2
Bx1

(a) ´
Bu1
Bx2

(a)
]
=

1

2

2
ÿ

i,j=1

ε3ij
Buj
Bxi

(a) . (4.21)

Now suppose the general case that N ‰ e3. Let pe3 = N and choose pe1 and pe2 so that
␣

pe1,pe2,pe3
(

is an orthonormal basis following the right-hand rule (that is, pe1 ˆ pe2 = pe3).
Then the vector field u has two representations

u = u1e1 + u2e2 + u3e3 = v1pe1 + v2pe2 + v3pe3 . (4.22)

Let O =
[
pe1

...pe2
...pe3

]
, and introduce a new Cartesian coordinate system y = OTx. Note

that y is the coordinate with coordinate axis parallel to the basis
␣

pe1,pe2,pe3
(

. In this new
Cartesian coordinate system, (4.21) implies that

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

[
Bv2
By1

(b) ´
Bv1
By2

(b)
]
,

where b = OTa.
Now we transform the result above back to the original coordinate system (so that the

limit is in terms of derivatives of uj w.r.t. xi). Note that (4.22) implies that v = OTu so
that vj = pej ¨ u. Moreover, with ejk denoting the k-th component (w.r.t. the ordered basis
te1, e2, e3u) of pej; that is, pej = ej1e1 + ej2e2 + ej3e3, the chain rule provides that

B

By1
= e11

B

Bx1
+ e12

B

Bx2
+ e13

B

Bx3
and B

By2
= e21

B

Bx1
+ e22

B

Bx2
+ e23

B

Bx3
;
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thus

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

3
ÿ

j=1

[
e1j

B (u ¨ pe2)
Bxj

(a) ´ e2j
B (u ¨ pe1)

Bxj
(a)

]
=

1

2

3
ÿ

j,k=1

(
e1je2k ´ e2je1k

)Buk
Bxj

(a) = 1

2

3
ÿ

j,k,r,s=1

(δjrδks ´ δjsδkr)e1re2s
Buk
Bxj

(a) ,

where δ¨¨’s are the Kronecker deltas. Using (4.9), we further conclude that

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

3
ÿ

i,j,k,r,s=1

εijkεirse1re2s
Buk
Bxj

(a) .

Since pe1 ˆ pe2 = pe3, we have e3i =
3
ř

r,s=1

εirse1re2s; thus the identity above shows that

lim
rÑ0

1

2πr

¿

Cr

u ¨ T
r

ds =
1

2

3
ÿ

i,j,k=1

εijke3i
Buk
Bxj

(a) = 1

2

3
ÿ

i=1

( 3
ÿ

j,k=1

εijk
Buk
Bxj

(a)
)
e3i .

(The blue expression of) (4.21) and the identity above motivate the following

Definition 4.85 (The curl operator). Let u : Ω Ď Rn Ñ Rn, n = 2 or n = 3, be a vector
field.

1. For n = 2, the curl of u is a scalar function defined by

curlu =
2
ÿ

i,j=1

ε3ijuj
,i .

2. For n = 3, the curl of u is a vector-valued function defined by

(curlu)i =
3
ÿ

j,k=1

εijkuk
,j .

The function curlu is also called the vorticity of u, and is usually denoted by one single
Greek letter ω.

Having the curl operator defined, for the three-dimensional case the circulation of a
vector field u on the plane with normal N is given by curlu ¨ N

2
.
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4.7.2 The Stokes theorem

The path we choose to circle around the point a does not have to be a circle. However, in
such a case the average of the angular velocity no longer makes sense (since u ¨ T might not
contribute to the motion in the angular direction), and we instead consider the limit of the
following quantity

lim
AÑ0

1

A

¿

C
u ¨ T ds,

where A is the area enclosed by C. This limit is always curlu ¨ N because of the famous
Stokes’ theorem.

Theorem 4.86 (The Stokes theorem). Let u : Ω Ď R3 Ñ R3 be a smooth vector field, and
Σ be a C 1-surface with C 1-boundary BΣ in Ω. Then

ż

BΣ

u ¨ T ds =
ż

Σ

curlu ¨ N dS ,

where N and T are compatible normal and tangent vector fields.

To prove the Stokes theorem, we first establish the following

Lemma 4.87. Let Ω Ď R3 be a bounded Lipschitz domain, and w : Ω Ñ Rn be a mooth
vector-valued function. If Σ Ď Ω is an oriented C 1-surface with normal N, then

curlw ¨ N = divΣ(w ˆ N) on Σ . (4.23)

Proof. Let O Ď Ω be a C 1-domain such that Σ Ď BO and N is the outward-pointing unit
normal on BO. In other words, Σ is part of the boundary of O. Since

(∇φ)i = Bφ

BNNi + (∇BOφ)
i on BO ,

by the divergence theorem we conclude that for all φ P C 1(O),
ż

BO
(curlw ¨ N)φdS =

ż

O
curlw ¨ ∇φdx =

ż

BO
(N ˆ w) ¨ ∇φdS

=

ż

BO
(N ˆ w) ¨ ∇BOφdS =

ż

BO
divBO(w ˆ N)φdS .

Identity (4.23) is concluded since φ can be chosen arbitrarily on Σ. ˝
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Proof of the Stokes theorem. Using (4.23) and then applying the divergence theorem on
surfaces with boundary (Theorem 4.83), we find that

ż

Σ

curlu ¨ N dS =

ż

Σ

divΣ(u ˆ N) dS =

ż

BΣ

(u ˆ N) ¨ (T ˆ N) ds =

ż

BΣ

(u ¨ T) ds

in which the identity (u ˆ N) ¨ (T ˆ N) = u ¨ T is used. ˝

Example 4.88. Let Σ be the surface given in Example 4.51, and F : R3 Ñ R3 be a vector-
valued function given by F(x, y, z) = (y,´x, 0). Then by the definition of line integral,

¿

C

F ¨ dr =

ż π
2

´π
2

(sin2 t,´ cos t sin t, 0) ¨
(

cos2 t ´ sin2 t, 2 sin t cos t,´ sin t
)
dt

=

ż π
2

´π
2

(
sin2 t cos2 t ´ sin4 t ´ 2 sin2 t cos2 t

)
dt

= ´

ż π
2

´π
2

sin2 tdt = ´

ż π
2

´π
2

1 ´ cos 2t
2

dt = ´

( t
2

´
sin 2t

4

)ˇ
ˇ

ˇ

π
2

´π
2

= ´
π

2
.

while by the fact that curlF = (0, 0,´2), the Stokes theorem implies that
¿

C

F ¨ dr =

ż

Σ

(0, 0,´2) ¨ N dS =

ż

ψ´1(Σ)

´2 cosϕ sinϕ d(θ, ϕ) = ´2

ż π
2

0

ż π´ϕ

ϕ

sinϕ cosϕ dθdϕ

= ´

ż π
2

0

(π ´ 2ϕ) sin 2ϕ dϕ =
(π
2

cos 2ϕ ´ ϕ cos 2ϕ+
1

2
sin 2ϕ

)ˇ
ˇ

ˇ

ϕ=π
2

ϕ=0

= ´
π

2
´
π

2
+
π

2
= ´

π

2
.

Example 4.89. Let C be a smooth curve parameterized by

r(t) =
(

cos(sin t) sin t, sin(sin t) sin t, cos t
)
, t P [0, 2π] .

Then the curve C is a closed curve on S2, and divide S2 into two parts. Let Σ denote the
part with smaller area.

x y

z

2. Plot C1 and C2 on the θφ-plane. The curve C divides the unit sphere into two parts, and let Σ

be the part containing the point (0, 1, 0). Identify the corresponding region of Σ on θφ-plane.

3. Find the surface area of Σ.

4. Let
⇀

F (x, y, z) = (y,−x, 0) be a vector field in the space. Compute the line integral

∮

C

⇀

F ·
⇀

T ds

by the definition of the line integral.

5. Use Stokes’s Theorem to find the line integral

∮

C

⇀

F ·
⇀

T ds.
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As in Example 4.51 and Example 4.88, we would like to find the area of Σ, and verify
the Stokes theorem for the special case that F : R3 Ñ R3 given by

F(x, y, z) = (y,´x, 0) .

To find the surface area of Σ, we need to parameterize Σ. As in Example 4.51, we look
for γ(t) =

(
θ(t), ϕ(t)

)
, t P [0, 2π], such that ψ

(
γ(t)

)
= r(t), where ψ : R ” (0, 2π)ˆ (0, π) is

given by ψ(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ) .
For t P (0, π), since cos t = cosϕ(t) and ϕ(t) P (0, π), we must have ϕ(t) = t; thus the

two identities cos(sin t) sin t = cos θ(t) sinϕ(t) and sin(sin t) sin t = sin θ(t) sinϕ(t) further
imply that θ(t) = sin t. Therefore, the curve r

(
(0, π)

)
corresponds to θ = sinϕ, ϕ P (0, π),

on R.
On the other hand, for t P (π, 2π), the identity cosϕ(t) = cos t implies that ϕ(t) = 2π ´

t. The two identities cos(sin t) sin t = cos θ(t) sinϕ(t) and sin(sin t) sin t = sin θ(t) sinϕ(t)
further imply that

cos(sin t) = ´ cos θ(t) and sin(sin t) = ´ sin θ(t) t P (π, 2π) .

Therefore, θ(t) = π + sin t which implies that the curve r
(
(π, 2π)

)
corresponds to θ =

π ´ sinϕ, ϕ P (0, π), on R.

R

θ

ϕ

ψ´1(Σ)

θ = sinϕ
θ = π ´ sinϕ

Therefore, the surface area of Σ is
ż π

0

ż π´sinϕ

sinϕ
sinϕ dθdϕ =

ż π

0

(π ´ 2 sinϕ) sinϕ dϕ = ´

(
π cosϕ+ ϕ ´

sin(2ϕ)
2

)ˇ
ˇ

ˇ

ϕ=π

ϕ=0
= π .

Next, we compute the line integral
¿

C
F ¨ dr. First, we note that

r 1(t) = (´ sin(sin t) sin t cos t+ cos(sin t) cos t, cos(sin t) sin t cos t+ sin(sin t) cos t,´ sin t) ;
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thus

(F ˝ r)(t) ¨ r 1(t) = ´ sin2(sin t) sin2 t cos t+ sin(sin t) cos(sin t) sin t cos t
´ cos2(sin t) sin2 t cos t ´ sin(sin t) cos(sin t) sin t cos t

= ´ sin2 t cos t .

As a consequence,
¿

C

F ¨ dr = ´

ż 2π

0

sin2 t cos t dt = ´
1

3
sin3 t

ˇ

ˇ

ˇ

t=2π

t=0
= 0 .

On the other hand,
ż

Σ

curlF ¨ N dS =

ż π

0

ż π´sinϕ

sinϕ
(0, 0,´2) ¨ (cos θ sinϕ, sin θ sinϕ, cosϕ) sinϕ dθdϕ

= ´2

ż π

0

sinϕ cosϕ(π ´ 2 sinϕ) dϕ

=
(π
2

cos 2ϕ+
4

3
sin3 ϕ

)ˇ
ˇ

ˇ

ϕ=π

ϕ=0
= 0 .

4.8 Green’s Theorem
In most of materials Green’s theorem is introduced prior to the divergence theorem and the
Stokes theorem; however, we treat Green’s theorem as a corollary of the divergence theorem
(Theorem 4.75), the Stokes theorem (Theorem 4.86) and Theorem 4.83.

Theorem 4.90 (Green’s theorem). Let D be a bounded domain whose boundary BD is
piecewise smooth, and M,N : D Ñ R be of class C 1. Then

¿

BD
(M,N) ¨ dr =

ż

D
(Nx ´ My) dA ,

where the line integral (on the left-hand side of the identity above) is taken so that the curve
is counter-clockwise oriented.

Proof 1. Let u(x, y) =
(
N(x, y),´M(x, y)

)
be a vector-valued function defined on the 2-

dimensional domain D. Suppose that BD is parameterized by r(t) =
(
x(t), y(t)

)
for t P [a, b],

where r 1 points in the counter-clockwise direction. Then with N denoting the outward-
pointing unit normal of BD, the divergence theorem implies that

¿

BD
(M,N) ¨ dr =

¿

BD
u ¨ N ds =

ż

D
divu dA =

ż

D
(Nx ´ My) dA . ˝
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Proof 2. Let F(x, y, z) =
(
M(x, y), N(x, y), 0

)
be a vector-valued function defined in a

subset of R3. Then
curlF = (0, 0, Nx ´ My) ;

thus the Stokes theorem implies that
¿

BD
(M,N) ¨ dr =

ż

BD
F ¨ T ds =

ż

D
curlF ¨ N dS =

ż

D
(0, 0, Nx ´ My) ¨ (0, 0, 1) dA

=

ż

D
(Nx ´ My) dA . ˝

Proof 3. Let Σ = D ˆ tz = 0u. Then Σ is a surface with boundary and the upward-
pointing unit normal N = (0, 0, 1). Let F : Σ Ñ R3 and u : D Ñ R2 be vector-valued
functions defined by F(x, y, z) =

(
N(x, y),´M(x, y), 0) and u(x, y) =

(
N(x, y),´M(x, y)

)
,

respectively. We note that if BD is parameterized by r(t) = (x(t), y(t), 0), then

T ˆ N =
1

}r 1(t)}R3

(
x 1(t), y 1(t), 0

)
ˆ (0, 0, 1) =

1

}r 1(t)}R3

(
y 1(t),´x 1(t), 0

)
;

thus by the fact that the surface divergence operator divΣ is the same as the 2-d divergence
operator (since Σ is flat), Theorem 4.83 implies that

¿

BD
(M,N) ¨ dr =

¿

BD
F ¨ (T ˆ N) ds =

ż

Σ

divΣF dS =

ż

D
divu dA =

ż

D
(Nx ´ My) dA . ˝

Corollary 4.91. Let R Ď R2 be a domain enclosed by a simple closed curve C which is
parameterized by r(t) =

(
x(t), y(t)

)
for t P [a, b]. Suppose r 1 points in the counter-clockwise

direction. Then
the area of R =

1

2

ż b

a

[
x(t)y 1(t) ´ y(t)x 1(t)

]
dt .

Proof. The corollary is concluded by applying Green’s theorem to the special case: M(x, y) =

´y and N(x, y) = x. ˝

Example 4.92. Compute the area enclosed by the Cardioid which has a polar representa-
tion r = (1 ´ sin θ) with θ P [0, 2π].

x

y

Figure 4.7: The Cardioid
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Given the polar representation r = (1 ´ sin θ), a parametrization of the Cardioid is

r(t) =
(
x(t), y(t)

)
=

(
(1 ´ sin t) cos t, (1 ´ sin t) sin t

)
t P [0, 2π] .

Then Corollary 4.91 implies that the area enclosed by the Cardioid is

1

2

ż 2π

0

[
(1 ´ sin t) cos t

(
´ cos t sin t+ (1 ´ sin t) cos t

)
´ (1 ´ sin t) sin t

(
´ cos2 t ´ (1 ´ sin t) sin t

)]
dt

=
1

2

ż 2π

0

(1 ´ sin t)
[

cos2 t ´ 2 sin t cos2 t+ sin t cos2 t+ sin2 t ´ sin3 t
]
dt

=
1

2

ż 2π

0

(1 ´ sin t)(1 ´ sin t cos2 t ´ sin3 t)dt =
1

2

ż 2π

0

(1 ´ sin t)2dt = 3π

2
.

Before finishing this chapter, we would like to establish an unproven theorem: Theorem
4.33. We recall Theorem 4.33 as follows.

Theorem 4.33. Let D Ď R2 be simply connected, and F = (M,N) : D Ñ R2 be of class
C 1. If My = Nx, then F is conservative.

Proof of Theorem 4.33. By Theorem 4.30, it suffices to show that
¿

C
F ¨ dr = 0 for all

piecewise smooth closed curve C P D. Nevertheless, if C is a piecewise closed curve and R
is the region enclosed by C, by the fact that D is simply connected, we must have BR = C.
Therefore, Green’s theorem implies that

¿

C

(M,N) ¨ dr =

ż

R
(Nx ´ My) dA = 0 . ˝
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