Chapter 3

Multiple Integrals

3.1 Integrable Functions

Let us start our discussion on the integrability of functions of two variables.

Definition 3.1. Let A < R? be a bounded set. Define

a; = inf {z € R | (z,y) € A'for some y € R},
blzsup{xeR‘(x,y)eAfor someyeR},
agzinf{yeR‘(x,y)eAfor somexeR},
bgzsup{yeR](q:,y)eAfor somea:eR}.

A collection of rectangles P is called a partition of A if there exists a partition P, of [ay, b;]

and a partition P, of [az, bal,

Px:{a1:x0<x1<---<xn:bl} and Py:{a2:y0<y1<---<ym:bg},
such that

P = {Aij‘Aij = [z, 1] X [Yj,Yj41) for i =0,1,--- ;n—1and j=0,1,--- ,m—l}.

The mesh size of the partition P, denoted by ||P|| and also called the norm of P, is defined
by

HPH :max{\/($1+1_xl)2+(y]+1_y])2 Z:0717 7n_17j:0717 Jm_l}

The number \/(xi+]_ — x;)? 4+ (yj4+1 — y;)? is often denoted by diam(A;;), and is called the

diameter of A;;.
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Definition 3.2. Let A € R? be a bounded set, and f : A — R be a bounded function. For
any partition P = {Aij ‘ Ny = (25, 2i41) X (Yj,Yj41),0 =0, ,n—=1,7=0,--- ,m— 1}, the
upper sum and the lower sum of f with respect to the partition P, denoted by U(f,P)
and L(f,P) respectively, are numbers defined by

U(f7 P) = Z sup TA(xa y>A(AU) 5

o<i<n—1 (T,Y)€A5
o<jsm—1

LUAPY = 20 b T y)AAy),

Oo<isn—1
o<jsm—1

where A(A;;) = (zi41 — ;) (yj41 —y;) is the area of the rectangle A;;, and 7" is an extension
of f, called the extension of f by zero outside A, given by

%@:{f@)xeA,

/ 0 z¢A.

The two numbers

f f(z,y)dA = inf{U(f,P)|P is a partition of A}
A

and
f f(z,y) dA = sup {L(f, P) ‘77 is a partition of A}
A

are called the upper integral and lower integral of f over A, respectively. The function
f is said to be Riemann (Darboux) integrable (over A) if f flx,y)dA = J f(z,y)dA,
A JA
and in this case, we express the upper and lower integral as J f(z,y)dA, called the double
A

integral of [ over A.

Similar to the case of double integrals, we can consider the integrability of a bounded

function f defined on a bounded set A < R" as follows

Definition 3.3. Let A < R" be a bounded set. Define the numbers ay,as,--- ,a, and
blvan"' 7bn by

ak:inf{xk.e]R‘x:(xl,"' ,Ty) € A for some xy, -+ Tp_1, Tpry, - ,xneR},

bk:sup{xke]R‘x:(a:l,-~ ,Ty) € A for some xy, -+, Tp_1, Tpr1, - ,xneR}.
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A collection of rectangles P is called a partition of A if there exists partitions P®*) of
[ar, br], k=1,--- ,n, P® = {ak = mék) < xgk) << x%clz = bk}, such that

Ajjigeiy, = [x(l) 2+ } y [x(z) ey ] o x [x(n) x(n+1):|7

i1 ) Vi +1 ig ) Vig+1 in ) Vingl

P ={ A,

z’kzo,L.--,Nk—l,kzl,m,n}.

The mesh size of the partition P, denoted by ||P|, is defined by

”,PH = maX{J Z($£,l:)+l _wgf)y g =0,1,--- 7Nk -Lk= L% ,TL}.
k=1

n

The number , | > (xff)H - xl(-f))Q is often denoted by diam(A;i.4,), and is called the di-
k=1

ameter of the rectangle A; ;,..i,-

Definition 3.4. Let A < R" be a bounded set, and f: A — R be a bounded function. For

any partition

P = {Ai1i2-"in Ailiz---in = [x(l) l’(l) } X [1‘(2) x(z) ] X oo X [QJ(H) :E(H—H)L

i1 ) Hag+1 ig ) Vig+1 in ? Vin41

ik:O,17"',Nk_17k:17"'7”},

the upper sum and the lower sum of f with respect to the partition P, denoted by
U(f,P) and L(f,P) respectively, are numbers defined by

U(f,P) =" sup [ (@)ra(A),

Aep V€A

L(f.P)= Y, inf [ (2)r(D),

AeP

where v,(A) is the n-dimensional volume of the rectangle A given by

1 1 2 2 n n
(D) = (@i, — 2 @Z, — 2Py @, — )

11 n

it A= [z — 2] > [P =2 ] x-ox [ = 2], and " is the extension of f by

zero outside A given by

(3.1)
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The two numbers
J f(z)dz = inf{U(f,P)|P is a partition of A},
A

and
f f(x)dz = sup {L(f,P) ‘73 is a partition of A}
Ja

are called the upper integral and lower integral of f over A, respective. The function
f is said to be Riemann (Darboux) integrable (over A) if J f(x)dx = j f(z)dx,
A A

and in this case, we express the upper and lower integral as | f(z)dz, called the n-tuple
A

integral of f over A.

Definition 3.5. A partition P’ of a bounded set A < R" is said to be a refinement of
another partition P of A if for any A’ € P’, there is A € P such that A’ < A. A partition
P of a bounded set A € R" is said to be the common refinement of another partitions
P1,Pa, -+, P of Aif

1. P is a refinement of P; for all 1 < j < k.
2. If P’ is a refinement of P; for all 1 < j < k, then P’ is also a refinement of P.

In other words, P is a common refinement of Py, Ps, - - - , Py if it is the coarsest refinement.

(14 b
_l’_

Figure 3.1: The common refinement of two partitions

Qualitatively speaking, P is a common refinement of Py, Py, -, Py if for each j =
1,---n, the j-th component ¢; of the vertex (ci,--- ,¢,) of each rectangle A € P belongs to
?i(j) for somei=1,--- k.

Proposition 3.6. Let A < R" be a bounded subset, and f: A — R be a bounded function.
If P and P’ are partitions of A and P’ is a refinement of P, then

L(f,P)<L(f,P)<U(f,P)<U(f,P).
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Corollary 3.7. Let A < R" be a bounded subset, and f: A — R be a bounded function. If
P1 and Py are partitions of A, then

L(f,P) < U(f, Pa).

Proof. Let P be the common refinement of P; and P,. Then Proposition 3.6 implies that
L(f,Pl)<L(f,P)<U(f,P)<U(f,P2) o

Corollary 3.8. Let A < R" be a bounded subset, and f : A — R be a bounded function.

Then _
_L f(z)dx < L f(x)dx

Proof. Noting that for each given partition P of A, L(f,P) is a lower bound for all possible

upper sum; thus

L(f,P) < J f(z)dx for all partitions P of A
A

which further implies that f f(z)dr < f flz)dz . o
Ja A

Proposition 3.9 (Riemann’s condition). Let A € R™ be a bounded set, and f : A — R be

a bounded function. Then f is Riemann integrable over A if and only if
Ve > 0,3 apartition P of A 2U(f,P) — L(f,P) <e

Proof. “=7" Let €. > 0 be given. By the definition of infimum and supremum, there exist
partition P; and Py of A such that

L F(z) dz — g < L(f,P,) and L f(z)da + g = U(f,Py).

Let P be a common refinement of P; and P,. Since f is Riemann integrable over A,

J f(z)dx = f f(z)dz; thus Proposition 3.6 implies that
JA A

U(f,P) = L. P) < UL P1) = L. P)

< | t@aes 5= (] reae-3) =<
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“<" Let € > 0 be given. By assumption there exists a partition P of A such that U(f,P)—
L(f,P) <e. Then

0 < Lf(x)dx—ff(a:)d:céU(f,P)—L(f,P)<5.

A

Since € > 0 is given arbitrary, we must have f f(z)dx = f f(x)dzx; thus f is Riemann
A A

integrable over A. =

Definition 3.10. Let P = {A;, Ay, .-+, Ax} be a partition of a bounded set A < R". A
collection of N points {£1, -+, &y} is called a sample set for the partition P if § € Ay for
all k=1,---, N. Points in a sample set are called sample points for the partition P.

Let A € R" be a bounded set, and f : A — R be a bounded function. A Riemann
sum of f for the the partition P = {Ay, Ag, -+, Ax} of Ads a.sum which takes the form

v —A
D (&) mmA),
k=1
where the set = = {£1,&,, -+ ,&n} is a sample set for the partition P.

Theorem 3.11 (Darboux). Let A € R" be a bounded set, and f : A — R be a bounded
function with extension ?A given by (3:1). Then f is Riemann integrable over A if and only
if there exists 1 € R such that for. every given € > 0, there exists § > 0 such that if P is a
partition of A satisfying ||P|| <9, then any Riemann sums for the partition P belongs to the
interval (I —e,1+4€). In otherwords, f is Riemann integrable over A if and only if there

exists I € R such that for every given € > 0, there exists 6 > 0 such that
N
—A
’ VT (A 1| <& (3.2)
k=1

whenever P = {Ay, -+, Ax} is a partition of A satisfying |P| < & and {&,&, - ,En} is a
sample set for P.

rr
, =

Proof. The boundedness of A guarantees that A < [—5 2]11 for some r > 0. Let R =
T Trin
53T
“<” Suppose the right-hand side statement is true. Let € > 0 be given. Then there exists
6 > 0 such that if P = {A;,---, Ay} is a partition of A satisfying |P| < 4, then for
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all sets of sample points {£;, -+ ,&n} for P, we must have

‘i:] v(Ag) _I<Z

Let P = {Ay,--- , Ay} be a partition of A with [P| < . Choose two sample sets
{&, - ,&n}and {n, -+ ,nn} for P such that

[©)

(a) sup f'(z) — W) < F(&) < sup F(2);

IEAk aSEAk

(b) inf @)+ o > T m) > inf F(@).

IEAk
Then
N N \
U(f.P) = 25 sup Fr(@w(Ae) < ), [F (&) + 1 (R)}V(Ak)
N _ N o
:kz:;f (&)v(Ag) + (R ;V(Ak) <I1+ Z+Z 14 :
and

L(fP) =3 jmf Tyt > 30 [Fm) = g v(A)

As a consequence, I—%<L(f,77) < U(f,P) <I+%; thus U(f,P) — L(f,P) <¢

“=7" Let [ = (D)j f(z)dz, and € > 0 be given. Since f is Darboux integrable on A, there
A

exists a partition Py of A such that U(f,Py) — L(f,P1) < % Suppose that P =
{yo ,yl , o yml} for 1 <7 < n. With M denoting the number my +mo + - - - + m,,,

we define
€

4rn=1(M +n)(sup f*(R) —inf f*(R) + 1)

Then 6 > 0.

Assume that P = {Aj, Ag,--- Ay} is a given partition of A with |P| < 4,
and = = {&, -, &N} is a set satisfying that & € Ay for all 1 < k < N. Let



§3.1 The Double Integrals 75

P’ be the common refinement of P and P;. Write P' = {A], AL, -+ A/} and
Ap = AP 5 AP o A as well as A = A x AP oo x A By the

definition of the upper sum,

N

—A
U(f.P) =), sup f(x)v(A)
k=1 :cEAk
—A —A
= Z sup [ (z)v(Ax) + 2 sup [ (z)v(Ax)
1<k<N with  TEAg 1<k<N with TEA
y§l)$A}(€Z) for all 7, j y§.i)EA}(€i)for some i, j
and similarly,
—a —A
U(f.P) = > sup [~ (z)v(Ay) + > sup [~ (z)v(Ay).
1<k<n’ with  TEAY 1<k<N/ with zeA}
yj(.i)ﬁﬁA;c(i)for all 7,5 yy)EA;C(i)for some 1, j

By the fact that Af € P if yi ¢ A for all 4, j.and Ay, € P’ if 3\ ¢ AL for all 4,5,

we must have

Y s Feman =" Y sw Faman

’
1<k<N’ with L€AY 1<k<N with TEAK
y§z)$A;€(Z)for all i, j yi-z)eEA;;)for all i, j

and

Ny = Y A,

J1SkSN with 1<k< N’ with
y;.Z)EAI(;)for some i, j y](.7'>eA;€<Z) for some %, j

The equalities above further imply that

UL P)-ULPY= > swpf@wd)— > sup [ (2)v(A))

!
) 1<k<N with  TE€AL 1<k<N’ with L€AY
k2
en

S

for some 1, j yg.z)eA;C(Z)for some 1, j

sPDeal
< (sup f(R) — inf ' (R)) > ().

ygl)eAS)for some i, j

Moreover, for each fixed 1, 7,

U des =557 < b =697 +8) x 5.5

272
l_SkSN
y;l)eA}(J)



76

thus
dIov(Ay) <26t VI<i<nl<j<my.
1§k§N With
y§l>€A}(€Z>
Therefore,

U(f,P)=U(f,P)

< (sup f*(R) — inf f( ZZ v

1= 1] 0 1<k<N with

sDea®d
< (SupTA( mff Z Z 26!
i=17=0
< 20r Y (my + mo + - +my, + 1) (sup f(R) —inf f(A)) < g :
and the fact that U(f,P1) — L(f,P1) < % shows that
U(f,P)=1<U(f,P) =1+ U(f, P1) =U(f, P1)
U(f,,])) - L(f7pl) + U(fvpl) - U(fapl) <¢€
Therefore,
ol —A
DG (A SU(f,P) <T+e.
k=1
Similar argument can be used to show that
Z L(f,P)>1—¢
which concludes the Theorem. =

Definition 3.12. A bounded set A < R" is said to have volume if the constant function

f(z) = 1for all z € A is Riemann integrable on A. The number J 1 dx is called the volume

A
of A and is denoted by v(A). If v(A) = 0, then A is said to have volume zero or be a set of
volume zero.

Remark 3.13. 1. For a set A € R", the characteristic function or indicator function of A,

denoted by 14 or x4, is given by

14(z) = {

Then a bounded set A has volume if and only if 1, is Riemann integrable on A.

1 ifzeA,

0 otherwise,
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2. Having defined the indicator function, then for a bounded function f : A — R with
bounded domain A, any given partition P of A we have TA = f14; thus

U(f,P)= Y, sup(fl)(@w(d)  and  L(f,P) = ) inf(fla)(@)v(A).

Aep €A AeP

3.2 Properties of the Integrals

Proposition 3.14. Let A < R" be bounded, and f,g: A — R be bounded.. Then

(a) If B< A, then L (f1p)(z)dx = JB f(z)dx and L (f1p)(z)dx = JB f(z)dx

0) [ f@)dot [ awydn < [ (Frowras < [ (oot = fadn [ gta)a

(¢) Ife=0, thenf( f)(x) x—cff da:andf (ef)(x dx—cjf x)de. If ¢ <0,

then J dx—cf x)dx and f (cf)(x dm—cf f(x

(d) If f <g on A, then f flz)dx < J g(x)dx and J flz)dr < J g(x) dx.
A Ja A A

(e) If A has volume zero, then f is Riemann integrable over A, and f f(z)dzr =0.
A
Proof. We only prove (a), (b), (¢) and (e) since (d) is trivial.

(a) Let € > 0'be given. By the definition of the lower integral, there exist partition P4 of
A and Pp of B such that

JA(fIB)(x)dm—5<L(fIB,PA) Z 1nffIB (x)v(A)

AEPA

and

| t@de =5 <LrPe) = 3wt P ma).
JB A€Pp

Let P!, be a refinement of P4 such that some collection of rectangles in P/, forms a
partition of B. Denote this partition of B by Pj. Since ing 7B (x) <0if A e Py\Pjg,
TE
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Proposition 3.6 implies that

L(le)(x) dr—c < L(f15,Pa) < L(f1.Ph) = Y. inf F;" (2)u(A)

AeP!,

> )t

AEP,\Py  AePy

< Z inf J"(@)p(A) = L(f, Pp) < Lf(x)dx_

On the other hand, let ﬁA be a partition of A such that Pg < P4 and
£
A< ———,
) VA) < 3G
AP A\Pp, AnBAY
where M > 0 is an upper bound of | f|. Then
. —B 9
) Z ;ggf (x)v(A) = -M ) Z v(A) = 3
AePA\Pp, AnB£Z AePA\Pg, AnB#y

which further implies that

| Groe) e = L1 B = B, int T ()

AEP

(XX v ¥ ) e

A€PB  AePs\Pp,AnB#Z AcPA\Pg,AnB=

L(f,P5) + > mff ff )dx —¢.

AeﬁA\PB,AnB;e@

Therefore, we establish that

JBf(ZC)dx—e < _L(le)(x)dx < fo(l‘)d:C—l—a.

Since ¢ > 0 is given arbitrarily, we conclude that f (f1p)(z)dx = f f(z)dz. Similar
argument can be applied to conclude that J (f1p)(x)dx = j flx

(b) Let € > 0 be given. By the definition of the lower integral, there exist partitions P;
and Py of A such that

_L f(x)dx — g < L(f,P1) and JA g(z)dx — % < L(g,Ps).
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Let P be a common refinement of P; and Ps. Then

JA f(z)dzx —I—J g(x)dx —e < L(f,Py) + L(f,P2) < L(f,P) + L(g, P)

= >, inf Fap(A) + ) infg(x)r(A)
AeP AeP

< ), nf(f+g)(a)v(d) = L(f +9,P J (f +9)(x
A€eP L4

Since € > 0 is given arbitrarily, we conclude that

| s | owydr< | 5+ o)
Similarly, we have f (f+9)(x)dr < f f(z)dx —|—f g(x) dz; thus (b) is established.

(c) It suffices to show the case ¢ = —1. Let € > 0 be given. Then there exist partitions
P and P, of A such that

J—f(:c)d:z:—e<L(—f,P1) and U(f,P2)<Jf(x)da:+5.
Ja A
Let P be the common refinement of P; and P,. Then

J —f(z)dr —e < L(=f,P1) < L(—f,P) < f —f(x)dx
Ja

A

and -

fﬂ@M<U@m<UUﬁﬂ<Jﬂ@M+a
A A

By the fact that

Z 1n£ Ww(A) = — 2 supTA(x)l/(A) =-U(f,P),
AeP e AeP TEA
we find that
J —f(z)dr —e < L(—f,P) = -U(f,P) < —J f(z)dx
JA A
and ~
f—f(x)dx}L(—f,P):— J z)dx —¢.
Ja
Therefore,

[ ~stayir—c < Lf(x) to< [ ~f)dose.

Since £ > 0 is given arbitrarily, we conclude (c).



30

(e) Since f is bounded on A, there exist M > 0 such that —M < f(z) < M for all z € A.

Therefore, —14 < % < 14 on A; thus (c) and (d) imply that

L 14(z) dz > L % do = % L @) da

which implies that f f(z)dz < 0. Similarly, f — f(z) dz < 0 which further implies
A A

0= L 14(z) dz

that f f(z)dx = 0. Therefore, by Corollary 3.8 we conclude that
Ja

0< J f(z)dx < f f(z)dz <0
A A

which implies that f is Riemann integrable over A and J f(z)dx =0. =
A

Remark 3.15. 1. Let A < R" be bounded, and f : A — R be bounded. Then (a) of

Proposition 3.14 shows that if B € A, then f is Riemann integrable on B if and only

if f15 is Riemann integrable on A.

2. Let A < R™ be bounded and f,g: A — R be bounded. Then (b) of Proposition 3.14

also implies that

_L(f—g)(:w dr < L f(z) doe— L g(x) dz and L f(x) d:c—L g(z)dz < L( f—g)(x) dx .

Corollary 3.16. Let A, B < R" be bounded such that A n B has volume zero, and f :
AU B — R be bounded. Then

_L (@) do + JB fla)dz < LUB f(z) da

N

LUB f(z)dr < L f(z)dz + L (o) dz.

Proof. Note that fla+ flg = flaop+ fla~p on AU B. Therefore, (a), (b) of Proposition
3.14 and Remark 3.15 implies that

f@ydet | f@)de= | (fla)(@)dat
[, J

r

(flp)(z)dx < J (fla+ f1p)(x)dx

AuB

| e

AuB AuB

_ ; (FLacs = (~fLans) (z)da
r‘U
<[ Faste)de j (= fLans) () da

AuB AuB

le.

leo

r

[ j@)de- f (—f)() dz

AuB AnB

[
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which, with the help of Proposition 3.14 (e), further implies that

J‘f dx—%t[ flx J;UBij)dx.

The case of the upper integral can be proved in a similar fashion. =

Having established Proposition 3.14, it is easy to see the following theorem (except (c)).

The proof is left as an exercise.

Theorem 3.17. Let A < R" be bounded, c € R, and f,g : A — R be Riemann integrable.
Then

(a) f+ g is Riemann integrable, and L (f+g)(z)dx = L f(z)dx+ Lg(m) dx.

(b) cf is Riemann integrable, and f (cf)(z)de = cf f(z)dz
A A

(¢) |f| is Riemann integrable, and ‘J f(x) dw’ < f |f(z)|dx.
A A

(d) If f < g, then L f(x)dr < L g(z)dx.

(e) If A has volume and |f| < M, then H f(2) dx‘ < Mv(A).
A

Definition 3.18. Let A < R" be a set and f : A — R be a function. For B < A, the
restriction of f to B is the function f‘B : A — R given by f|g = flp. In other words,

{f@)ﬁmeB,

Me(®) =17 if e A\B.

The following two theorems are direct consequences of (a) of Proposition 3.14 and Corol-
lary 3.16.
Theorem 3.19. Let A, B < R" be bounded, B < A, and f : A — R be a bounded function.

Then f is Riemann integrable over B if and only if f|p is Riemann integrable over A. In

Lf}B(z) dx = JB f(z)dx

Theorem 3.20. Let A, B be bounded subsets of R* be such that An B has volume zero, and
f:Au B — R be bounded such that f|A and f‘B are all Riemann integrable over A U B.

Then f is Riemann integrable over A U B, and

ngﬂ@dxzj;ﬂmdx+J;ﬂﬂdx

either cases,
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3.3 Integrability for Almost Continuous Functions

Lemma 3.21. Let A < R" be a bounded set of volume zero. If B < A, then B has volume

ZET0.

Proof. By (a), (d) and (e) of Proposition 3.14,

ozL1B(x)dx:L1B<x>dx: J 15(x) do

JB
and _ 3
O:J 15(z) dx = J 1p(z)dx = J 1p(x)dx.
A A B
Therefore, JB 15(z) dz = 0 which implies that B has volume zero. o

k
Lemma 3.22. Let Ay, -, Ay, € R" be bounded sets of volume zero. Then | J A; has volume

7j=1
ZEero.

Proof. Tt suffices to prove the case for £ = 2. Suppose that A; and A, are bounded sets
of volume zero, and A = A; U As. By Lemma 3.21, A; n A has volume zero; thus (e) of

Proposition 3.14 and Corollary 3.16 imply that

_L 14(z) dx = Llwb 14(z) dr > Ll 14(z)dx + J 1u(z)dz =0

J J JAg
and 3 _ _ _
J 14(x) dx:J () dr < f 14(x) dx+f 14(x) dz = 0.
A A1UAg Ay Ag
Therefore, L 14(z) dx = 0 which implies that A has volume zero. =

Theorem 3.23. Let A < R" be a bounded set such that 0 A has volume zero, and f : A - R
be a bounded function. If f is continuous except perhaps on a set of volume zero, then f is

Riemann integrable over A.

Proof. Let R be a closed cube such that A € R and 0AnJdR = . We show that ?A = flu

is Riemann integrable over R and by (a) of Proposition 3.14, we then obtain that

_L f(z)dx = JR(flA)($) de = JR(flA)($) do = L(flA)(x) de — L F(z) de
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which implies that f is Riemann integrable over A.

Let ¢ > 0 be given. Suppose that the collection of discontinuities of f is D, and
B =0AuD. Since 0A and D has volume zero, Lemma 3.22 implies that B has volume
zero; thus (a) of Proposition 3.14 then implies (with B € R in mind) that

_JRIB(J:) dr = JBIB(:U)dxzo and LlB(x)dx: L 1p(z)dz = 0.

Therefore, J 1p(x) dz = 0, so there exists a partition P; of R such that
R

£
v(A)=U(1p,P) < — — :
AephAZmB;ég 2[supfA(R) —mffA(R)#—l}
Let U = int U A). Then B < U. Since the discontinuity of TA is a subset of

AeP1,ANB#P
B, fA : RnU" - R is continuous. Since R n UL is closed and bounded, fA is uniformly

continuous; thus there exists § > 0 such that

’—A —A

[ (w)—f (372)} <

if 21,29 € RnU* and [z, — 25 < 9.

2v(R)

Let P be a refinement of P; such that |P| < ¢, and define two classes Cy, Cs of
rectangles in P by C} = {A’ eP ‘ A" ¢ A for all A € Py satisfying An B # @} and Cy =
{A"e P|A"¢ C1}. Then if A’ € C4, then A’ = R\U'; thus

U7 P) ~ LT P) = 3 [sup(F1w)(@) — inf (F'1n)() | r(a)

AleP e’

(2 + 2 )@ - 7))

AeC;  AeCy zel!

< 2;}{) o) + [supfA(R)—infTA(R)} 3 o)
_ QV?R)V(RH [sup7A<R)—inf7A(R)] Yoo

APy ANBAZ
. [sup?A(R) — inf?A(R)]e
2 Q[SUPTA(R) —inf 7 (R) + 1]

< <e,

and we conclude that f is Riemann integrable over A by Riemann’s condition. =
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3.4 The Fubini theorem

If f:[a,b] > R is continuous, the fundamental theorem of Calculus can be applied to
computed the integral of f over [a,b]. In the following two sections, we focus on how the

integral of f over A € R", where n > 2, can be computed if the integral exists.

Definition 3.24. Let A < R" and B < R™ be bounded sets, S = A x B be a product set in
R*™ and f : S — R be bounded. For each fixed x € A, the lower integral of the function

f(z,:) : B — R is denoted by f f(z,y) dy, and the upper integral of f(z,+): B — R is
JB

denoted by f f(z,y)dy. If for each z € A the upper integral and the lower integral of
B
f(z,:) : B — R are the same, we simply write f f(z,y) dy for the integrals of f(z,-) over
B

B. The integrals J f(z,y)dx, J f(z,y) dr and J f(z,y)dx are defined in a similar way.
A Ja A

Theorem 3.25 (Fubini’s Theorem). Let A < R and B < R™ be bounded sets, and f :
A x B — R be bounded. For x € R" and y € R™, write z = (x,y). Then

_LXB f(2)dz < _L (JB f(x,y)dy>d93 < L (L f(a:,y)dy)da: < LXBf(z) dz (3.3

and

_LxB f(z)dz < JB (L f(:v,y)dx>dy < J_B (L f(m,y)dm)dy < LXBf(z) dz.  (34)

In particular, if f : A x B — R is Riemann integrable, then

Jur@=], ffw Jaz = | ( ff(%y)dyd:c
f foy dy—f foy

Proof. Tt suffices to prove (3.3). Let ¢ > 0 be given. Choose a partition P of A x B such
that L(f,P) > f f(2)dz — . Since P is a partition of A x B, there exist partition P,
AxB

of A and partitizm P, of B such that P = {A =RxS ‘ ReP,,Se Py}. By Proposition
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3.14 and Corollary 3.16, we find that

_L (JBf(:C,y) dy)da:— f lA(SE)(J f(x,y)lB(y)dy)dx

SePy

R; L $ep, JfAXBfU y)dy>dx
53 [ (T e

ReP, SePy

2 inf TAXB(x, Y)Vm (S)vn(R)

ReP,,SePy (@y)eRxS

\%

WV

WV

=3t T gm(8) = L P)= | f(e)dz— e

Aep @WEA JAxB

Since € > 0 is given arbitrarily, we conclude that

LXB J(z)dz < JB <_L f(:my)da:) dy

Similarly, J J f(z,y) dy) dr < J f(z)dz; thus (3.3) is concluded. o
AxB

Corollary 3.26. Let S < R" be a closed and bounded set such that 0S has volume zero,
¢1,92 : S — R be continuous maps such that ¢1(x) < po(z) for allz € S, A = {(z,y) €
R® x R‘x € S,¢o1(x) <y < pa(a)}, and f : A — R be continuous. Then [ is Riemann

integrable over A, and
P2(z)
| s = | ([ s ). (35)
A S NJpi(a)

Proof. To establish that f is Riemann integrable over A, by Theorem 3.23 it suffices to show

that 0 A has volume zero. Let m = miép ¢1(x) and M = max wa(x). Since
xre e

A< {(z,01(x) |z e S} u{(z,pa2(x)) |z € S} u (S x [m, M]),
to see 0A has volume zero it suffices to show that 0.5 x [m, M], {(z, ¢1(z ’m € S} and
{( oo ‘ resd } have volume zero because of Lemma 3.21 and 3.22. Note that Theorem

3.23 implies that ¢, is Riemann integrable over S; thus for a given € > 0 there exists
partition P of S such that
U((,Ol,P) - L(Splvp) <E.
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Let B = U A x [infyen P1°(2), supyen P1°(2)]. Then C' = {(z,¢1(z)) |z € S} = B
AEP,ANS+D
and

0< f 1o(2)dz < f 15(2)dz < Z (suppr®(z) — inf o1°(2)) x va(A)
c B AePANSAY TEA el
< U(

01, P) — L(p1,P) < €.

Therefore, C' = {(z,1(z)) |z € S} has volume zero and similarly, {(z, p2(z)) |z € S} has
volume zero.
Now we show that 05 x [m, M] has volume zero. Since ¢S has volume zero in R*, for a

given € > 0 there exists a partition P of 0.S such that

3

Vs, P) < =31

Then 05 x [m, M| < U A x [m, M], and as above
AeP,ARIS#D

f Lsumn(2)dz < 3 w(A) % (M —m) < (M —m)U(15,P) <.
88 x[m,M] AEP,AND S+

Therefore, 0.S x [m, M] has volume zero; thus we establish that f is Riemann integrable
over A.

Next we prove (3.5). Note that A € S x [m, M]; thus Theorem 3.20 and the Fubini
Theorem imply that

M

L [z y)d(z,y) = Lx[m,m F(zy)d(z,y) = L ( (zy) dy) dx

m

= L (J_:[ 7A(x, Y) dy) dx .

Noting that [m, M] has a boundary of volume zero in R, and for each = € 5, ?A(x, )) is
continuous except perhaps at y = ¢1(z) and y = @o(x), Theorem 3.23 implies that TA(x, )

—A

M—
is Riemann integrable over [m, M| for each x € S; thus f fA(x,y) dy = f f(z,y)dy

which further implies that

L flz,y)d(z,y) = L (JM ) dy) da . (3.6)

m
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For each fixed z € S, let A, = {y € R|p1(z) <y < @a(x)}. Then T, y) = flz,y)la,(y)

for all (z,y) € S x [m, M] or equivalently, f"(z,-) = f(z,-)|, for all z € S; thus Proposition
3.14 (a) implies that

M_, w2(z)
f fﬁuwdy=J‘fﬂawdy=J‘ flr,y)dy  Vaes. (3.7)
m Ay

w1(z)

Combining (3.6) and (3.7), we conclude (3.5). o

Example 3.27. Let A = {(x,y) € ]R2|0 <z<ljzr<y< 1}, and f: A = R be given by
f(z,y) = zy. Then Corollary 3.26 implies that

Lf(a:,y)dA: f (Jlxydy>d:v - Ll%gﬁ

x

1 3

y=1 r X 1
dr = <———>dm=——
y=z 0 \2 2 4

On the other hand, since A = {(x, y) € R? ‘ 0<y<1l,0<z< y}, we can also evaluate the

integral of f over A by

1 y 1x2 1.3 1

y|r=y Y
xydA:f fxyd:z: dy:f— dyzf—dy:—.
L 0<0 ) 0 2 la=0 0 2 8

Example 3.28. Let A = {(:U,y) e R? | 0<r<1,y/r<y< 1}, and f: A — R be given by
f(z,y) = e¥’. Then Corollary 3.26 implies that

Lﬂmwmzf(ﬁfw@m.

Since we do not know how to compute the inner integral, we look for another way of finding
the integral. Observing that A = {(m, y) € R? ‘ 0<y<1l,0<x< y2}, we have

L, ry? 1 1 ) 1
| stepyan | ([ erar)ay= | yeray=ger| " ===
A o ~Jo 0 3 ly=0 3

Example 3.29. Let A < R? be the set {(:pl,xg,xg) e R3 } 1 =2 0,29 = 0,23 = 0,and =, +
To + 13 < 1}, and f : A — R be given by f(z1,79,23) = (21 + 22 + 23)%. Let S =
[0,1] x [0,1] x [0,1], and f : R® — R be the extension of f by zero outside A. Then

Theorem 3.23 implies that f is Riemann integrable. Write z; = (x9, z3), T2 = (21, x3) and

T3 = (21, 2). Theorem 3.20 implies that

LﬂwmzLﬂmw,
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and Theorem 3.25 implies that

J Flx)de = J ( J T (B, 23)dis ) dos.
S [0,1] [0,1]x[0,1]

Let A,, = {(xl,wQ) € R2’x1 >0,20 20,01 +22 < 1— xg}. Then for each z3 € [0, 1],

0 0

_ 1—x3 l—xz3—x9
f f(fg?n 5173)d553 = J f(/x\s, xs)du%s = J (J f($1, T2, $3)d$1)d$2 .
[0,1]x[0,1] Aqy

Computing the iterated integral, we find that

r*l - rl—xg 1—x3—x2
f f(z)dz = [‘ (J (21 + 20 + x3)2dx1>dx2} dxs
A Jo -Jo 0
rl - pl-es 3\ z1=1l—z3—2
= (‘ (xl o x?)) ' ’ Qd.’lfg] dl’g
Jo tJo 3 x1=0
(\1 1—x3 1 3
_ (5 - M)d@ iy
Jo Lo 3 3
[z, A1y o0 1
T \e 3 T 12" T4 660 60 10

Example 3.30. In this example we compute the volume w, of the n-dimensional unit ball.
By the Fubini theorem,

dr, -+ dxy .

2 2
R VA R

1 «/1790% w/lfxff---fxﬁ_l
oy = f f J
=1 J—y/1-22

n—1

dy - - dry is in fact wy_ (1 —2%) 2 | the

«/1730% J~ lf:pff---fmi_l

Note that the integral J .
=\/1-2} Vi—af——al
volume of (n — 1)-dimensional ball of radius 4/1 — z%; thus

n—1

> dr = 2wy, JZ) cos™ 0 df . (3.8)
0

1
Wy, = J wn_1(1 — 2?)
-1

Integrating by parts,

™

3 3 6=1 3
J cos" 0 df = J cos” 1 0 d(sinf) = cos" ! fsin 9‘9 +(n—1) J cos" 2 0 sin® 0 do)
0 0 =0

0

jus

=(n-1) JQ cos" 2 0(1 — cos? ) db
0
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which implies that

™

us -1 Z
JQ cos™ 0 d = — f2 cos" 2 4db.
0 nJo
As a consequence,
] (n_l)(n_s)'.'Z‘[Q cos 6 df if n is odd,
nn—2)---3 0

JQCOSHQdQZ .
0 m—1)(n—3)---1 (2

nn—2) 2 , db if n is even,
, o 2wy ,
and the recursive formula (3.8) implies that w, = “n=2 - Further computations shows
n
that
n—1
2m) 2 P
wn = n—2
ﬂw if n'is even
nn—2)---47° '

oe]

Let I' be the Gamma function defined by I'(t) = J ' te ™ dx for t > 0. Then I'(z +1) =
0

xl'(x) for all z > 0, I'(1) = 1 and F(%) = /7. By the fact that w; = 2 and wy = 7, we can
express wy as
32
Wole =y -
(%)

3.5 The Change of Variables Formula

Fubini theorem can be used to find the integral of a (Riemann integrable) function over a
rectangular domain if the iterated integrals can be evaluated. However, like the integral of
a function of one variable, in many cases we need to make use of several change of variables
in order to transform the integral to another integral that is easier to be evaluated. In this
section, we establish the change of variables formula for the integral of functions of several

variables.

Theorem 3.31 (Change of Variables Formula). Let 4 < R™ be an open set with volume,
and v : U — R™ be an one-to-one € -mapping with €*-inverse; that is, v~ : Y(U) - U
is also continuously differentiable. Assume that the Jacobian of 1, J = det([D1)]), does not
vanish in U. If f : p(U) — R is Riemann integrable, then (f o)J is Riemann integrable
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over U, and

0(1/11,--- 7wn) dr .

O(x1,-+ @)

f(y)dy = L(fow)(:v)!J(m)\dx - L(fow)(x)

YU)

The proof of Theorem 3.31 is very lengthy and requires a bit more knowledge about the

integration, so we only present the proof of a much simpler case.

Theorem 3.32. Let D € R® be an open rectangle, and 1) : R* — R™ be an one-to-one €*
mapping such that ¢ = 1d outside B(0,r) for some r > 0; that is, ¥(zx) = x if |x| = r.
Assume that the Jacobian of 1, J = det(V), does not vanish in'R*_If f : D — R is of
class €' and is compactly supported in D; that is, Cl({x eD ‘ f(x)+# 0}) c D, then

J;f@ﬁ@=itlmﬁfowﬂ@J@ﬁm.

Proof. W.L.O.G. we can assume that D = [-R, R]" is a cube and B(0,7)ccD (or equiva-
lently, 0 < r < R). Then ¢~!(D) = D'since ¢»= Id outside B(0, R). Define

Y1
g(yh”"yn)zf f(z7y27"'7yn)dz7
—R

[D(g o)
(D]
and M = [Dys] | By the property of determinants and the chain rule, we find that
| (D]
-, dg oY &, dg oY, L 09 ;7]
— O _— — O —_— .« .. — O _
]21 (6yj 1/)) 0y ]21 (0313‘ 1/)) 02 321 (ayj 1/)) oz,
det(M) = det ( a1 922 o )
Ot 2t N Ot
L 0x 0o oy -
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[/ 0Jg oY1, 0dg 01 dg oY1 ]
Gy Vam Gy " GV,
:det< (9.761 axz axn )
On, 0, 0P,

L o1 Oxy 0xy, J

ox1 Oxo 0xn
—(Bopyaer(| 20 | ) =(ew.

7 0 Ot 2vn
ox1 Oxo 0xn

On the other hand, letting A = (Dv)™!, then
Adj(M) ;; = (=1)" det (M(1, 7)) = Adj([Dy]);, = JA].

Computing the determinant by expanding along the first row, we obtain that

n

det(M) = Y My Adj(M),, =3 LI08) gag,

ox;j

Jj=1 Jj=1

thus we conclude the identity

(Fouyr= 120V s

j=1 axj

Therefore, with d/a?] denoting dx; ---dx;_idx;y; - - - dx,, the Fubini theorem and the Piola

identity imply that

L [(f o1)J]

V) A3 da Jda;

[(go1)JA]]

Since 1 = Id outside B(0,), we find that J = 1 and A/ = d1; on 0D; thus by the definition

of g,
L [(fov)I](z)dv = fR J_RR - ng(R, oy ) day = L flz)dz. 0
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1
Example 3.33. Suppose that f : [0, 1] — R is Riemann integrable and f (1—z)f(x)de =
0

1 prx
5. We would like to evaluate the iterated integral f f f(z —vy) dydz.
0 Jo

It is nature to consider the change of variables (u,v) = (v — y, ) or (u,v) = (x — y,y).
Suppose the later case. Then (z,y) = g(u,v) = (u + v,v); thus

11

Jg(u,v) = ‘O 1

-

Moreover, the region of integration is the triangle A with vertices (0,0), (1,0), (1,1), and
three sides y = 0, x = 1, x = y correspond to u = 0, u +v = 1 and v.= 0. Therefore, if
E denotes the triangle enclosed by u = 0, v = 0 and u + v = 1 on the (u,v)-plane, then

g(E)=A, and
Ll f:f(:v—y)dydm— flx T,y) = (E)f(x—y)d(fﬂ,y)

[ £
= Lf 91(u,v) = ga(u, v) )|y (u, v)] d(u,v) = J J f(u) dvdu
{-1

1—u du=25.

JO

Example 3.34. Let A be the triangular region with vertices (0,0), (4,0), (4,2), and f :
A — R be given by

flxy) =y —2y.

Let (u,v) = (z,z — 2y). Then (z,y) = g(u,v) = (u, %), thus
1 0 1
Jolu,v) =11 1 —5-
2 2
Define E' as the triangle with vertices (0,0), (4,0), (4,4). Then A = g(E).
v Y
9
~
E
A
u T

Figure 3.2: The image of F under g
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Therefore,

fay)dey) = [ ey dey) =2 | o) dwv)
JA J QJ
JJ u—v) \fdvdu— J [guvg—gvg}
e R e

0 105"
Example 3.35. Let A be the region in the first quadrant of the plane bounded by the
curves xy —x+y=0and x —y =1, and f : A — R be given by

N

fz,y) = 22y (x + y)e @7,

We would like to evaluate the integral J flz,y)d(z,y).
A

Let (u,v) = (xy — z + y,o — y). Unlike the previous two examples we do not want
to solve for (x,y) in terms of (u,v) but still assume that (z,y) = g(u,v). By the inverse

function theorem,

Jo(u,v =
g( ) (u,v)=g~(z,y)

(8(u,v)>1_y—l e+ 17 1 1
R -1  —y+l-z-1  a+y’

Moreover, the curve xy —x + y = 0 corresponds to u = 0, while the lines x —y = 1 and
y = 0 correspond to v = 1 and u + v = 0, respectively; thus if E is the region enclosed by
u=0,v=1and u+v =0, then A= g(E).

Figure 3.3: The image of E under ¢
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Therefore,

Lﬂxwww J‘fxw<xw onqumemmm

JJ u+v ”dudv—gf e dv

w=1

w 1 — — | - —
zéjowe dw = — 6(w—|—1) ’w:O— 6(6 1).

Example 3.36 (Polar coordinates). In R? when the domain over which the integral is taken
is a disk D, a particular type of change of variables is sometimes very useful for the purpose
= 1)(r,0), where (xq, o) is
the center of D under consideration. If the radius of D is R, then D, up to removing a line
(0,27) under 7). Note that the Jacobian of

of evaluating the integral. Let (z,y) = (x¢ + 7 cos @, yo + 7sinb)

segment with length R, is the image of (0, R) x

Y is
o1 0y \
1o(r.0) or 00 cosf ~—rsinf
r,0) = = =r.
v 02 02 sinf rcos6
or 00

Therefore, if f : D — R is Riemann integrable, then

| ey = | o pdln) = | (f 0 6)(r, )| (r,0)] (1, 0)
D ¥ ((0,R) % (0,27)) (0,R)x(0,27)
:J f(zog+rcosl yo+rsind)rd(r,6).
(0,R)x (0,27)

Example 3.37 (Cylindrical coordinates). In R, when the domain over which the integral
is taken is a cylinder C; that is, C = D x [a, b] for some disk D and —o0 < a < b < R, then

the change of variables

W(r,0,2) = (vo + rcosb,yo + rsinb, z) 0<r<R,0<f<2r,a<z<b,

where (x,%0) is the center of D and R is the radisu of D, is sometimes very useful for

evaluating the integral. Since the Jacobian of 1 is

oY1 0y dYn
or 00 0z cosf —rsinf 0
Jy(r,0,2) = 66% 96122 aa% = [sind rcosf O|=r,
T z
0Y3 03 03 0 0 1
or 00 0z
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we must have

.
f(x,y,2) d(z,y, 2)

¥((0,R)%(0,2m) x [a,b])

.

] (f o0)(r,0,2)|Ty(r,0,2)| d(r,0, 2)

(0,R)x(0,27) x [a,b]

,J fzo+rcosl,yo+rsinb, z)rd(r,0,z).

(0,R) % (0,27) x [a,b]

fcf<x,y,z> da,,2) = |

Example 3.38 (Spherical coordinates). In R?, when the domain over which the integral is

taken is a ball B, the change of variables
V(p, 0, ¢) = (xo+ pcoshsing,yo+ psinfsing, zg+pcosp) 0<p<R,0<0<2m,0< <,

where (zo, Yo, 20) is the center of B and R is the radius of B, is often used to evaluate the

integral a function over B. Since the Jacobian of 1 is

dyr d¢n dP

dp 00 09 cosfsing —psinfsing pcosbcos o
Ju(p,0,0) = 061/;2 6;22 8@122 = [sinfsin¢ pcosfsing psinfcos @

s O3 s cos ¢ 0 —psing

op 00 ¢

= —p?cos? Osin® ¢ — p*sin® @sin ¢ cos® ¢ — p® cos? @ sin ¢ cos® p — p® sin? O sin® ¢

= —p?sin® ¢ — p?sin pcos® p = —p*sin ¢,
if the radius of B is R, we must_have

fo@c,y, 2)d(f,y, 2) f(y, 2) d(z.y, 2)

L((O,R)X(O,QT() x (0,m))
(f o) (p,0,9)|Ju(p,0,9)| d(p, 0, ¢)

J;O,R) % (0,27) x (0,7)

f f(zo + pcosfsin g, yo + psinfsin @, zy + pcos @) p*sin @ d(r, 0, 2) .
(0,R)x(0,27) x (0,)
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