Chapter 2

Differentiation of Functions of Several
Variables

2.1 Functions of Several Variables

Definition 2.1. Let V be a vector space (over a scalar field F). A V-valued function
f of n real variables is a rule that assigns a unique vector f(zy,---,x,) € V to each point
(1, ,x,) in some subset A of R". The set A is called the domain of f, and usually is
denoted by Dom(f). The set of vectors f(zy,- -+ ,x,) obtained from points in the domain
is called the range of f and is denoted by Ran(f). We write f : A — V if f is a V-valued
function defined on A < R™.

If V =R, we simply call'f : Dom(f) — R a real-valued function, while if YV = R™,
we simply call f: Dom(f) — V as a vector-valued function.

A vector field is a vector-valued function f : Dom(f) — V such that Dom(f) € V = R"»

for some n € N.

Definition 2.2. Let V be a vector space over R, A < R" be a set, and f,g: A — V be
V-valued functions, h : A — R be a real-valued function. The functions f + ¢, f — g and
hf, mapping from A to V, are defined by
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The map % : A\{x € A|h(z) =0} — V is defined by

(%)(x):% Voee A\{ze A|h(z) =0}.

Definition 2.3. A set U/ < R" is said to be open in R" if for each x € U, there exists r > 0
such that B(z,r), the ball centered at x with radius r given by

B(z,r) = {yeR”!Hx—y

Re < T}a

is contained in U. A set F < R" is said to be closed in R" if F°, the complement of F, is
open in R".
Let A < R" be a set. A point z is said to be

1. an interior point of A if there exists r > 0 such that B(zo,7r) € A;

2. an isolated point of A if there exists r > 0 such that B(zq,7) n A = {z0};

3. an exterior point of A if there exists r >0 such that B(zg,r) < A%

4. a boundary point of A if for each r > 0, B(xg,7) n A # & and B(xg,r) n A* # .

The collection of all interior points of A is called the interior of A and is denoted by A.
The collection of all exterior points of A is called the exterior of A, and the collection of all
boundary point of A is called the boundary of A. The boundary of A is denoted by JA.
The closure of A is defined-as A U 0 A and is denoted by A. The derived set of A, denoted
by A’, is the collection of all points in A that are not isolated points.

A is said to be bounded in R" if there exists a constant M > 0 such that

|z|lgn < M VzeA (e A< B(0,M)).
A is said to be unbounded if A is not bounded.

The following theorem is a fundamental result in point-set topology. We omit the proof
since it is not the main concern in vector analysis; however, the result should look intuitive
and the proof of this theorem is not difficult. Interested readers can try to establish this

result by yourselves.

Theorem 2.4. Let A < R" be a set. Then
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1. A is open if and only if A = /Ol;
2. A is closed if and only if A= A;
3. A is closed if and only if 0A < A.

Definition 2.5 (Level Sets, and Graphs). Let A — R" be a set, and f : A — R be a
real-valued function. The collection of points in A where f has a constant value is called a
level set of f. The collection of all points (x, f(x)) is called the graph of f.

Remark 2.6. A level surface is conventionally called a level curve when n = 2.

2.2 Limits and Continuity

Definition 2.7. Let A < R" be a set, and f : A — R™ be a vector-valued function. For a

given xg € A’, we say that b € R™ is the limit of f at xg, written

lim f(x) =10 or f(zr) >basx— xg,

T—T0

if for each € > 0, there exists § = d(zp,e) > 0 such that
|f(z) — bllgm < & whenever 0 < ||z — zg|rs < 0 and z € A.
By the definition above, it is easy to see the following

Proposition 2.8. Let A < R" be a set, and f,g: A — R™ be a vector-valued functions.
Suppose that xog € A', f(x) =g(x) for all x € A\{xo}, and lim f(z) exists. Then lim g(z)
T—T0

T—To

exists and
lim g(z) = lim f(z).

T—T0 T—T0

The following proposition is standard, and we omit the proof.

Proposition 2.9. Let A < R" be a set, and f,g : A — R™ be vector-valued functions,

h: A — R be a real-valued function. Suppose that zg € A’, and lim f(z) = a, lim g(x) = b,
T—T0 T—x0

lim h(x) =c. Then

Jim (f +g)(2) = a+b, Jim (f —g)(z) =a—b,
lim (hf)(z) = ca, lim (f - g)(z) =a-b,

lim (%) =~ ifc#0.

T—T0
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Example 2.10. By Proposition 2.9,

lim r—zy+3 0—(0)(1)+3 _ 3
(z.)—(0,1) 2%y + 5y —y> — (0)2(1) +5(0)(1) - (1)° '
Example 2.11. Let f : (0,0) x (0,00) — R be given by f(x,y) = oy We can-
1. : (0, : , WA
not apply Proposition 2.9 to compute the limit  lim f (x,y), if the limit exists, since

(2,y)—(0,0)
. 1)1m (v —/y) = 0. Nevertheless, if (z,y) # (0,0),

ooy ale -yt E)
NN VRN NZRaN)

thus Proposition 2.8 and 2.9 imply that

flz,y) =

(VT +4/Y);

lim f(z,y)= lim z(Wz+y)=0.

(z,y)—(0,0) (z,y)—(0,0)
Definition 2.12. Let A < R" be a set, and f : A — R™ be a vector-valued function. The

function f is said to be continuous at zp € A A”if lim f(x) = f(xo). In other words, f
T—xTo

is continuous at zq if
Ve > 0,30 =0(xg,e) > 03| f(x) = f(xo)|pm < & whenever |z — zo|gn < d and x € A.

If f is continuous at each point of B € A A’, then f is said to be continuous on B.

Remark 2.13. 1. The notation § = d(xg,¢) means that the number ¢ could depend on x

and e.

2. Another way of interpreting the continuity of f at z( is as follows: f : A — R™ is

continuous at xy el if

Ve >0,30 =0d(zxg,2) > 03 f(B(xo,0) n A) < B(f(x0),¢).

3. If A = U is an open set, we can assume that ¢ is chosen small enough so that
B(zg,0) < U in both Definition 2.7 and 2.12. In other words, lim f(z) = b if

T—T0

Ve> 0,30 =06(xg,e) >03|f(z)—0b

grm < € whenever 0 < ||z — xq[|gn <0,
and f:U — R™ is continuous at xg € U if

Ve> 0,30 =6(xg,e) > 03| f(z) — flxo)

grm < € whenever |z — zg|gn < 0.
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4. If A < R" is closed and bounded, and f : A — R™ is continuous, then for each £ > 0

we can choose ¢ depending only on & such that
|f(z) = f(y)||rm < & whenever ||z — y|gn < § and z,y € A.

The property (that § can be chosen independent of the point zy) is called uniform

continuity.

Theorem 2.14. Let U < R be open, and f : U — R™ be a vector-valued. function. Then

the following assertions are equivalent:
1. f is continuous on U.

2. For each open set V < R™, f~YV) S U is open, where f~1(V) is the pre-image of V
under f defined by
') ={zeld|fla)e V}.

Proof. Before proceeding, we recall that B < f~(f(B)) for all B< U and f(f~'(B)) < B
for all B <€ R™.

“l = 27 Let a € f~'(V). Then f(a) € V. Since V is open in R™, e,y > 0 such that
B(f(a),ef@)) < V. By continuity of f (and Remark 2.13), there exists d, > 0 such
that

F(B(a,02)) < B(f(a) £5@) -
Therefore, for each a € f~4(V), 34, > 0 such that
B(a,d.) < [ (£(Bla.da))) = fH(B(f(a),55)) = F71(V).
Therefore, f~(V) is open.

“2= 1" Let a € U and € > 0 be given. Define V = B(f(a),e), then V is open. Since
a€ f~1(V) and f~'(V) is open by assumption, there exists § > 0 such that B(a,d) <
f71(V). Therefore,

f(B(a,0)) < f(f7'(V)) €V = B(f(a),e)

which (with the help of Remark 2.13) implies that f is continuous at a. =
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2.3 Definition of Derivatives and the Matrix Represen-
tation of Derivatives

Definition 2.15. Let 4 < R™ be an open set. A function f : U — R™ is said to be
differentiable at z(y € A if there is a linear transformation from R" to R™, denoted by
(Df)(zo) and called the derivative of f at x, such that

@) = f@0) = (D) )@ = 20)

2z |z — zo|gn

=0,

where (D f)(zo)(x — x¢) denotes the value of the linear transformation (D f)(xq) applied to
the vector x — xy. In other words, f is differentiable at zq € U if there exists L € Z(R",R™)
such that

Ve>0,30 >0 3 |f(x) — f(zo) — L(x — zo)|rm < &l|x — 20||gn whenever |z — zg|grs < 6.
If f is differentiable at each point of U, we say that f is differentiable on U.

Example 2.16. Let L : R® — R™ be a linear transformation; that is, there is a matrix
[L]mxn such that L(z) = [L]mxn|x], for all z € R*. Then L is differentiable. In fact,
(DL)(zo) = L for all zq € X since

lim HLI = LIO — L([E — xo)HRm

=0.
z—0 [z — zo|gn

Example 2.17. Let f : R2 > Rbe given by f(z,y) = 2*+2y. Define L, ) (z, y) = 2az+2y.

Then L,y is a linear transformation (from R? to R) and

224 2y — a® — 2b — Ly (z — a,y — b)|

Ve —a)?+(y - b)?
_ |22 + 2y — a® — 2b — 2a(z — a) — 2(y — b)|
Vo - tp
= Gl < |z —al;

Vi —ap+ (g bp

thus
_ |x2+2y—a2—2b—L(a’b)(q:—a,y—b)}
lim

(z,9)—(a,b) V(@ —a)?+ (y — b)?
Therefore, f is differentiable at (a,b) and (D f)(a,b) = L(ap)-

=0.
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Remark 2.18. Adopting the standard basis of R" and R™, a linear transformation L :
R™ — R™ has a matrix representation [L],x, such that L(x) = [L]nxu[z], for all z € R, In
the following, we will always use the standard basis for R" and R™ and use L and L(z) to
denote [L]mxm and [L]mxn[x]n, respectively, if L is a linear transformation from R™ to R™

and z € R®.

Proposition 2.19. LetU < R" be an open set, and f : U — R™ be differentiable at xq € U.
Then (D f)(xo), the derivative of [ at xq, is uniquely determined by f.

Proof. Suppose Ly, Ly € Z(R",R™) are derivatives of f at xy. Let ¢ > 0 be given and

re = 1. Since U is open, there exists r > 0 such that

e € R™ be a unit vector; that is, |e
B(zg,r) € U. By Definition 2.15, there exists 0 < § < r such that

|f(z) = f(zo) = Ln(z —zo) g _ e+ [f(&) = f(xo) = Lo(x —xo)|rm _ €
|z — o[ rn 2 lz ~ o[ rn 2

if 0 < ||z — zollgn < 0. Letting x = z9 + Ae with 0-< |A| <9, we have

1
|Lie — Loe|pm = ——|Li(x — z0) — Lo(z — zo)||rm

Al
< ﬁ(}f(x) — f(zo) = Li(z — xo)HRm + || (@) = fzo) — Lo(x — I2)HRm)
_ Hf(x) — f(zo) — La(z~ Qfo)HRm X Hf(m) — f(w0) — La(z — x0) Rm
. |2 — ol |z — @o|Rn
< 5 + 5 A

Since € > 0 is arbitrary, we conclude that Lie = Lse for all unit vectors e € R"™ which
guarantees thatl Ly = Ly (since if x # 0, Lz = ||$‘|R“Ll<ﬁ> = |@|go Lo (ﬁ) = Lyz). o
R» Rn

Example 2.20. (Df)(xg) may not be unique if the domain of f is not open. For example,
let A= {(x,y) }O <z<ly= O} be a subset of R?, and f : A — R be given by f(z,y) = 0.
Fix zg = (a,0) € A, then both of the linear maps

Li(r,y) =0 and Lo(z,y)=ay V(z,y)eR?

satisfy Definition 2.15 since

li |f(£l),0)—f(CL,O)—Ll(JI—CL,O)| _ li |f(l‘,0)—f((l,O)—LQ(SL'—(Z,O)| _
im = im =0.
(2,0)—(a,0) |(2,0) = (a,0)] g (2,0)—(a,0) | (,0) = (a,0)]
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Definition 2.21. Let {ex};_; be the standard basis of R*, &/ < R" be an open set, a € U
and f : U — R be a function. The partial derivative of f at a with respect to z;, denoted

of o
by ﬁ(a), is the limit

j
lim fla+ hej) — f(a)
h—0 h
if it exists. In other words, if a = (a1, - ,a,), then
a_f(a) — lim f(al,-.- ,aj—l,aj+h,aj+1’... ’an) —f(a,l’... aan) '
ox; h—0 3

Theorem 2.22. Suppose U < R" is an open set and f : U — R™ is differentiable at a € U.
dfi
é’xj
representation of the linear transformation D f(a) (with respect to the standard basis of R

Then the partial derivatives (a) exists for alli =1,---m and j = 1,---n, and the matriz

and R™) is given by

[ Of Ofi |7
7@ 5 (a) .
[Df(a)] = AT or [Df(a)],; = 5_9{;(@) :
0 frm O.fm
| o @ @)

Proof. Since U is open and a € U, there exists r > 0 such that B(a,r) < U. By the
differentiability of f at a, there is'L € Z(R", R™) such that for any given ¢ > 0, there exists
0 < < r such that

[f(x)y—f(a) —L(z — a)|rm < €|z — a|rn whenever z € B(a,J).

In particular, foreach i =1,--- ,m,

fila+ he;) — fi(a) - “f(@+hej) — f(a)
h h h

— (Lej)i

—LejH <e VO<|h| <d,heR,
Rm

where (Le;); denotes the i-th component of Le; in the standard basis. As a consequence,

foreacht=1,--- ,m,

lim fz(a + hej) — fl(a)
h—0 h
_ 0fi 0 fi

and by definition, we must have (Le;); = 3 (a). Therefore, L;; = a—(a). o
Lj Lj

= (Le;); exists
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Definition 2.23. Let &/ < R be an open set, and f : U4 — R™. The matrix

[ Jf ofr ] [ 0fi ofi T
(Jf)(z) = oo ()= : :
0 fm 0 fm 0 fm 0 fm

i 671»1 al‘n | i aiml(x) al‘n (ZE) |

is called the Jacobian matriz of f at x (if each entry exists).

Remark 2.24. A function f might not be differential even if the Jacobian matrix J f exists;
however, if f is differentiable at o, then (Df)(x) can be represented by (Jf)(x); that is,

[(Df)()] = (J ) ().
Example 2.25. Let f: R? — R3 be given by f(z1,7) = (22, a3x, x{23). Suppose that f
is differentiable at x = (x1, z3), then

214 0
[(Df)(@)] = | 3afws, i

da3x3 2xiws

Remark 2.26. For each x € A, Df(x) is a linear transformation, but D f in general is not

linear in z.

Example 2.27. Let f : R? — R be given by

flay) = { 332934?-/1/2 it (z,9)
’ 0 if (z,y)

[N N
~~ ~~
o o

==
S~— S~—

Then Z—i(o, 0) = %(0, 0) = 0; thus if f is differentiable at (0,0), then (Df)(0,0) = [0 0].
However,

f(x.y) — £0.0)— [0 0] MI_ ol bl s,

y 22+ y? (22 4 42)

|2y
(a2 +y2)2

2

thus f is not differentiable at (0, 0) since cannot be arbitrarily small even if 22+

is small.

Example 2.28. Let f : R? — R be given by

x ify=0,

flx,y)=1 vy ifz=0,
1 otherwise.
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aof _ o f(R0) = f(0,00 .k . of L e
Then 5:(:(0’0) = }111_% - = ilzlg(l)h = 1. Similarly, 8y(0’0) = 1; thus if f is

differentiable at (0,0), then (D f)(0,0) = [1 1]. However,

e = 100~ [ 1] 2] =17t~ e+
thus if xy # 0,
[f(z,y) = (@ +y)| =1 -2 —y| > 0as (z,3) - (0,0), 2y # 0.
Therefore, f is not differentiable at (0, 0).

2.4 Conditions for Differentiability

Proposition 2.29. LetU < R" be open, a €U, and f = (f1, <+ fm) : U —> R™. Then f is
differentiable at a if and only if f; is differentiable at a for alli="1,--- ,m. In other words,

for vector-valued functions defined on an open subset of R,
Componentwise differentiable < Differentiable.
Proof. “=" Let (Df)(a) be the Jacobian matrix of f at a. Then
Ve>0,36>053|f(z)— f(a)= (Df)(a)(x—a)HRm <elx—algn if |z —algn <.

Let {e;}7, be the standard basis of R™, and L; € Z(R" R) be given by L;(h) =
el [(Df)(a )]h Then L; € (R",R) by Remark 1.79, and if |z — aljg= < 6,

|fi(x) = fila) — Li(e ~ a)| = |e; - (f(x) = f(a) — (Df)(a)(x — a))|
< | f(z) = fla) = (Df)(a)(z — a)| g < gz — alrn;
thus f; is differentiable at a with derivatives L;.

<" Suppose that-f; : Y — R is differentiable at a for each i = 1,--- ,m. Then there exists
L; € B(R™ R) such that

Ve> 0,36 >03|fi(z) — fila) — Li(z — a)| < —H:z:—a

Rn if HI‘-CL Rn < 6

Let L € Z(R",R™) be given by Lz = (Lyz, Loz, ,Lyz) € R™ if x € R*. Then
L e B(R*, R™) by Remark 1.79, and

|f(z) = fla) = L(z — )| < Z!fz fila) = Li(z — a)| < el — afjps

if |2 — algs <0 =min{d1, - ,6n}. =
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Theorem 2.30. LetUd < R" be open, a €U, and f:U — R. If

1. the Jacobian matriz of f exists in a neighborhood of a, and

2. at least (n — 1) entries of the Jacobian matrixz of f are continuous at a,

then f is differentiable at a.

Proof. W.L.O.G. we can assume that of ﬁ7 e of
ox1’ Oxa 0Tn—_1

are continuous at a. Let {e; i1

is continuous at a for ¢ =

be the standard basis of R*, and € > 0 be given. Since
1, ,n—1,

a.%'i

P P
35>09](%{Z() ai()‘ﬂjﬁ

On the other hand, by the definition of the partial derivatives,

Rn < 51 .

whenever |z — a

15, > 05 f(a+he;:)—f(a) _;:Uf;m)‘<jﬁwhenever0<|h|<5n.

Letk:x—aandézmin{él,--‘,5n}. Then
0 0
fa) = f(@) - [ @@ —a)+ -+ aa;’;< )~ an)]|
_ o1 di
=@+ k) - fl0) - T @k~ Sk,
0 0
- f<a1+k1,---,an+kn>—f<a1,---,an>—agfl< R L
<[l b et ) = fanan+ k0 E) - jf< )hi|

0
+’f(alaa2+k2a"' 7an+kn)_f(&17a27a3+k37"' >an+kn) 5.];( )kZ‘

+‘f(ala"'7an—17an+kn)_f(a'l7"'aan) 6f()kn

By the mean value theorem,

flay, - yajn,a5 + Ky, an + k) = flan, a5, a500 + Kja, s an + k)

= k];i (ay,-- ,aj_1,a; +0;kj, 0500 + kjya, - an + k)
for some 0 < 0; < 1; thusfor j=1,--- ,n—1,if |z — a|gn = ||k|re < 0,
‘f<a1;"' st a5+ ke an k) = fla, s ag, a0+ K, an + k) — 552( k;
‘a% ay, a1, a5+ 05k a0 + ki, an + k) — (Lf,(a) ki < —=|k;] .

ox; \/_ﬁ
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rn < 0 < 0,; thus

of

S

Moreover, if |z — allgn < 9, then |k,| < |k|gn = ||z — @

(a)kn

‘f(ab'" 7an—17an+kn) - f(ah”' 7an> < %|kn| .

As a consequence, if |z — allgn < , by Cauchy’s inequality,

1) = £l0) = [ @) o)+ + @)~ an)]|

EE oxn
e n
_ ﬁ; k5] < ekl = €]z — alge

which implies that f is differentiable at a. =
of of

Remark 2.31. When two or more components of the Jacobian matrix [67 e (97] of a
1 n

scalar function f are discontinuous at a point zy € U, in general-f is not differentiable at x.
For example, both components of the Jacobian matrix of the functions given in Example
2.27, 2.28, 2.44 are discontinuous at (0,0), and these functions are not differentiable at

(0,0).

Example 2.32. Let & = R*\{(z,0) e R? |z > 0}, and f : U — R be given by

cosTl 2 ify>0,
Va2 +y?
[l y) = arg(z + iy) = ™ ify=0,
2 —cos! T ify<0.
/2 +y2 Y
Then
: T ify#£0
of T2+ 02 ify#0, of z2 + y? Y ’
a_(xay) — Y and a_(xay) = 1
v 0 if y=0, Y - ify=0.
€T
. of of . o .
Since Fp and 5, are both continuous on U, f is differentiable on U.
Yy

Definition 2.33. Let 4/ < R" be open, and f : U4 — R™ be differentiable on U. f is

said to be continuously differentiable on U if the partial derivatives gfl exist and
L

are continuous on U for e = 1,--- ,m and 5 = 1,--- ,n. The collection of all continuously
differentiable functions from ¢ to R™ is denoted by € (U; R™). The collection of all bounded
differentiable functions from U to R™ whose partial derivatives are continuous and bounded
is denoted by €' (U; R™).
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words, is it always true that lim f'(z) = f'(x¢)?
T—x0

Example 2.34. If f : R — R is differentiable at xy, must f’ be continuous at xy? In other
Answer: No! For example, take

91:2Sinl if x # 0,
flz) = z
0 it x =0.
1° Show f(x) is differentiable at x = 0:
h) — h?sin 5 1
£0) = tim LOFEN =SO) o PSE  hin s =g
h—0 h—0 h—0
2° We compute the derivative of f and find that
2xsinl — Cosl if x # 0,
Fa) = T
0 if x =0.
However, lir% f'(x) does not exist.

Lj

Definition 2.35. Let 4/ < R" be open,. and f : U — R be a function.
of

If the partial
. X of
x;, then the second-order partial derivatives

. 0% f
I (amj) is denoted by
In general, if the k-th order partial derivatives

derivative ——— exists in U and has partial derivatives (at every point in ) with respect to

6:&81‘]' '
orf o
exists in U and has
al’ikaxik71 tee 6:751-1
partial derivatives (at every point in U/) with respect to x;,,,, then the (k + 1)-th order
: o 0 o* : or :
partial derivatives ( / > is denoted by / ; that is,
6$ik+1 al‘ikaxi]ﬁl 6:@1 63%“63% 0le
ak—l—lf B o < 6kf
61’ik+1axik s 51’2'1 o 6xl-k+1

6:@,663:%71 s 61’11> '

Theorem 2.36. Let U < R" be open, a € U, and f : U — R be a real-valued function.
2 2

Suppose that for some 1 < 1,5 < n, a—f, a—f, oy and f

al‘i al'j (%cjé’xl

é’:pié’xj
of a and are continuous at a. Then

exist in a neighborhood
0% f o2 f
8xl-§:cj (a) N (91'36371 (a) .
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Proof. W.L.O.G., we assume that f is a function of two variables; that is, n = 2. For fixed
h,k € R, define o(z,y) = f(z,y + k) — f(z,y) and ¢(z,y) = f(z + h,y) — f(z,y). Then

ola+h,b) —pla,b) = fla+h,b+k)— fla+ h,b) — f(a,b+ k) + f(a,b)
=(a,b+ k) —(a,b).

By the mean value theorem (Theorem A.9), for h, k # 0 and sufficiently small,

pla+h,b) — (a,b) = p.(a+ 010, b)h = [fo(a+ 01k, b+ k) — fo(a +06:h,b)]h
= (fo)y(a+ 01k, b+ O:k)hk

for some 6,05 € (0,1), and similarly, for some 63,0, € (0, 1),
Y(a, b+ k) —(a,b) = (fy)s(a+ 0sh, b+ 04k)hk .

Therefore, for h, k # 0 and sufficiently small, there exist 61, 05,053,604 € (0,1) such that
(fo)y(a+ 01k, b+ 62k) = (fy)sla + O3h, b+ 04k). (2.1)

Let € > 0 be given. Since (f;), and (f,)s are continuous at (a, b), there exist 6,2 > 0
such that

[(Foyl,y) = (Fo)ilab)] < 5 i /(o —a)P +(y—b) < o1,
((f)uw, ) = (foaa)] < 5 if V(o —a)® +(y = b)? <.

In particular, if § = min{d;, d2} and h, k # 0 satisfying v/ h? + k2 < 4,
|(fo)y(a+01h, b+ b5k) — (fo)y(a,b)| + |(f2)y(a+ O3h, b+ 0sk) — (f2)y(a,b)| < e,

where 61,605, 05,0, € (0,1) are chosen to validate (2.1). As a consequence,

|(f2)y(a, %%h)(bﬂ
= |(fe)y(a,0) = (fa)y(a + 01h, b+ 02k) + (f2)y(a + O3h, b+ 04k) — (f.),(a,b)]
\thm+&mb+%m—«h (a,0)| + | (fo)y(a+ O3h, b+ 0sk) — (f2)y(a,b)| < e

which concludes the theorem (since € > 0 is given arbitrarily). =
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Example 2.37. Let f : R? - R be defined by

wy(@® —47) 4 (z,y) # (0,0),

flay) =4 =+
0 if (z,y) = (0,0).
Then A - .
Yy +dzxcy® —y° .
if (z,y) # (0,0),
Fay=q @ 000
0 if (z,y) = (0,0),
and

x® — 4a3y? — xy?
foy) = @
0 if (z,y) =(0,0),

if (x,y) # (0,0),

It is clear that f, and f, are continuous on R?; thus f is differentiable on R%. However,

. +(0,k) — f:(0,0
Fu0,0) = tig £OR) 000 )

while
fy(h,O) - fy(070) — 1 .
h Y

thus the Hessian matrix of f at the origin is not symmetric.

Definition 2.38. Let &/ < R" be open, and f : Y — R™ be a vector-valued function. The
function f is said to be of class 2 if f € €' (U;R™) and the second partial derivatives
2% f;
oxjoxy,

all ¢*-functions f : U — R™is denoted by €*(U; R™).
In general, the function f is said to be of class €% if f € €*1(U;R™) and the k-th order
oFf
0x;, 0x;y, -+ 0%y,
1 <y, -, i, < n. The collection of all €*-functions f : U/ — R™ is denoted by €*(U; R™).

A function is said to be smooth or of class €% if it is of class €* for all positive

exists and is continuous in U for all 1 <7 <m and 1 < j,k < n. The collection of

partial derivatives exists and is continuous in I/ for all 1 < ¢ < m and

integer k.

Corollary 2.39. Let U < R™ be open, and f € €*(U;R). Then

02 f o2 f
(9331‘6.1']' (a) N 61']8371 (a)

Vaeld and 1 <1, <n.
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2.5 Properties of Differentiable Functions

2.5.1 Continuity of Differentiable Functions

Theorem 2.40. Let U < R" be open, and f: U — R™ be differentiable at xo € U. Then f

18 continuous at xg.

Proof. Since f is differentiable at x(, there exists L € Z(R", R™) such that
361> 05 £(@) = Flw0) = L(w = 20) |y < o — 2ol Y€ Blag,b1).

As a consequence,

[F(@) = f(x0)]gm < (IL] + 1) |z = z0|an VY € Blwy,d1). (2:2)
For a gi 0,let § = min {6, ————{. Then § > 0,.and if z € B(zo, §
or a given € > 0, le mm{ bS] +1)} en 6 > 0, and if x € B(x,0),
£
7o) - Pl 3 e :

Remark 2.41. In fact, if f is differentiable at xg, then f satisfies the “local Lipschitz
property”; that is,

IM = M(xp) > 0 and § = d(xg) > 031if [|[x—xo|x <0, then | f(x)—f(zo)|y < M|z—x0|x
since we can choose M = |L| + 1.and 0 = d; (see (2.2)).

Example 2.42. Let f : R? — R be given in Example 2.27. We have shown that f is not
differentiable at (0,0). In fact, f is not even continuous at (0,0) since when approaching

the origin along the straight line zo = max,

lim f(z1,mzy) = lim mai __m # £(0,0) if m #0
(z1,mz1)—(0,0) b vV z1—0 (m2 + 1)I% - m? +1 ’ '

Example 2.43. Let f : R? — R be given in Example 2.28. Then f is not continuous at
(0,0); thus not differentiable at (0, 0).

Example 2.44. Let f : R? - R be given by
3

flay) =1 #*+?
0 if (z,y) = (0,0).

if (x,y) # (0,0),
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Then f,(0,0) =1 and f,(0,0) = 0. However,

(f(x,y)—f(o,o)—[l 0] M(: [y 038 (a.5) > (0.0)

N x? A+ 2 (22 +y2)2

Therefore, f is not differentiable at (0,0). On the other hand, f is continuous at (0, 0) since

|f(z,y) — f(0,0)] = | f(z,9)] < |z| = 0as (z,y) — (0,0).

2.5.2 The Product Rules

Proposition 2.45. Let U < R™ be an open set, and f : U — R™ and g : U — R be
differentiable at xqg € A. Then gf : A — R™ is differentiable at x¢, and

D(gf)(xo)(v) = g(x0)(Df)(w0)(v) + (Dg)(wa)(w) f (o) - (2.3)

Moreover, if g(xg) # 0, then g : A — R™ s also differentiable at xq, and D(g)(ﬂﬂo) (R —

R™ s given by

9(xo) ((Df)(ifo)(v)) — (Dg)(w0)(v) f(x0)
9*(x0) '

D)) - (2.4

Proof. We only prove (2.3), and (2.4) s left as an exercise.
Let A be the Jacobian matrix of gf at xo; that is, the (7, j)-th entry of A is

%(SL’ ) = Q(SEO)SQ (o) + ‘955] (o) fi(xo) .

Then Av = g(o) (D) (o) (@) + (Dg) (x0) (v) f (2); thus

(9£)(x) — (9.f)(w0) — A(x — x0) = g(wo) (f(x) — f(x0) — (Df)(wo)(w — 20))
+ (9(z) = g(x0) — (Dg)(x0)(x — 20)) f(2)
+ ((Dg)(zo)(x — 20)) (f(2) = f(x0)) -

Since (Dg)(xo) € B(R™,R), |(Dg)(x0)| zm@nr) < o0; thus using the inequality

|(Dg)(wo)(2 — 0)| < |(Dg)(x0)
and the continuity of f at xy (due to Theorem 2.40), we find that

|(Dg) (o) (x
| — onIRn

7 (RD,R) HCIJ o I’OHRD

im " (@) - Flao)ga| <

T—T0

lim H Dg)(o HJ Rn R) Hf f(IU)HRm =0.

T—>T0
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As a consequence,

|(9.0)(x) = (9£)(w0) — Az — 20) | g

lim
T—T0 Hx - I’OHRU
< lo(eo)| i WO =0~ DD 20
T—T0 lz — zo[rn
+ 1lim [’9 ) — g(x0) _(Dg)(:L‘o ’Hf( )& }
T—TQ HSL’ ZL‘()HR
. [|(Dg) (o) (z — z0)| _
+ Jim [ @ — xOHRn Hsta) O)HRH*] =0

which implies that gf is differentiable at z¢ with derivative D(gf)(z¢) given by (2.3). o
e The differentiation of the Jacobian

Before going into the next section, we study the differentiation of a special determinant, the

Jacobian.

Example 2.46. Suppose that ¢ : Q@ < R* — ¢(Q) < R" is a given diffeomorphism
(thus det(Vey) # 0). Let M = V4, and J'= det(M). By Corollary 1.72, the adjoint
matrix of M is JM~!. Letting ¢ be a (first order) partial differential operator which satisfies
d(fg) = fog+ (0f)g, by Theorem 1.73 we find that

n Einstein’s summation
03 = tr(IM16M) = > JAJgyl, N ALY (2.5)
ij=1
where A7 = a;; with M™" = [aji]uxn; and f; = ;5
j

Remark 2.47. From now on we sometimes write the row index of a matrix as a super-script
for the following reason: if ¢+ Q € R* — R™ is a differentiable vector-valued function, then

V) is usually expressed by

Con o o]
ox1 0x9 0%y
B PO

Vi = ory 0z 0xy :

Om Ow  Om

| 0x1 Oxo . 0xn

0t
al'j’

thus the (i, 7) element of V1 i
7.
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Theorem 2.48 (Piola’s identity). Let v : Q € R® — () € R" be a €>-diffeomorphism,
and [a;;]nxn be the adjoint matriz of V. Then

Einstein’s summation n

(‘onventzon
s Z @ = 0. (2.6)
Jirg Ji —
4 O,

In other words, each column of the adjoint matriz of the Jacobian matriz of 1 is divergence-
free (see Definition 4.74).

Pmof. Let J = det(Vy) and A = (Vi)~'. Then aj; = JA]. Moreover, since AVy = I,
Z AJy", = 0js; thus

0= [Z Ai%} k= [AL T + ATy
r=1

which, after multiplying the equality above by Af and then summing over s, implies that

Al == Ay, AL (2.7)
r,s=1
As a consequence, by Theorem 2.36 we conclude that

_ Z Z [JA’"WWA{ A ’;JA;’] —0. o

Jj=1r;s=1

-
D >

2.5.3 The Chain Rule

Theorem 2.49. Let U © R" and V < R™ be open sets, f: U — R™ and g : V — R’ be
vector-valued functions, and f(U) < V. If f is differentiable at xo € U and g is differentiable
at f(xo), then the map F = go f defined by

or in component,
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Proof. To simplify the notation, let yo = f(z9), A = (Df)(z9) € Z(R*,R™), and B =
(Dg)(yo) € B(R™,RY). Let ¢ > 0 be given. By the differentiability of f and g at zo and ¥,

there exists d1, dy > 0 such that if | — zg|ge < 01 and ||y — yo|lgm < d2, we have

|f(x) = f(x0) — A(z — 20) [ < min {1, m

£
lg(y) — 9(yo) — By — yo) |re < WHQ — Yol|rm -

Hiz = zofr=

Define

u(h) = f(wo+h) — f(wg) —Ah ¥V |[h]r: < 61,
v(k) = g(yo + k) — g(vo) — Bk v |k

Rm < (52 .
Then if |A|ge < 7 and ||k||gm < 0o,

[P g < [Allgn s Ju(h)|en < |7 and

e -

TEIESY o)l < o275y

Let k = f(xg+ h) — f(zo) = Ah+u(h). Then }llirr(l) k = 0; thus there exists d3 > 0 such that

|k||gm < o whenever |h|gs < d3.

Since

F(xo+ h) — F(x0) = g(yo + k) — g(yo) = Bk +v(k) = B(Ah + u(h)) + v(k)
= BAh + Bu(h) +v(k),

we conclude that if |hljgn < 6 = min{dy, d3},

|E'(wo + h) = F(w0) = BAh[ge < [Bu(h)|re + [[v(k)|re < [ Bl|u(h) g + WHM\R
£ £ € £
< Sl + g (AN + fu)aw) < Sl + S1hl = <lblie
which implies that F is differentiable at zo and [(DF)(zo)] = BA. o

Example 2.50. Consider the polar coordinate x = rcos 6, y = rsinf. Then every function
[ : R? - R is associated with a function F : [0,00) x [0,27) — R satisfying

F(r,0) = f(rcos,rsin@).
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Suppose that f is differentiable. Then F' is differentiable, and the chain rule implies that

or Ox '
[é’F é’F}_l@f M} or 00 _[af (9]0} cosf —rsind
or 00 ox 0y @ % or dy| |sin® rcosh |
or 00

Therefore, we arrive at the following form of chain rule
0 Odwd  Jdyo

0 ox 0 Gyi 0 _0r0 0yo
00  000x 000y

ar " arex ardy
which is commonly seen in Calculus textbook.

and

Example 2.51. Let f: R — R and F : R? — R be differentiable, and F(x, f(m)) =0 and
OF N 21 Cy {€9) _0F _0F

o # 0. Then f'(x) = By () where F, = 2 and F, = s

Example 2.52. Let v : (0,1) — R" and f : R® — R be differentiable. Let F(t) = f(y(t)).
Then /(1) = (DF) (+(1)'(0).

Example 2.53. Let f(u,v,w) = u?v + wv? and g(x;y) = (zy,sinz,e®). Let h = fog:
R? — R. Find &—h
ox
oh . .
Way I: Compute p directly: Since

hz,y) = f(g(z,y)) = f(zy,sinz, e”) = z?y?sinz + e sin® x,

we have
6_h
ox
Way II: Use the chain rule:
Oh _0feon  0f 092  Of 09s
or Oudxr Ov dr  Ow Ox

= 2xy*sinz + (2y® 4 2e” sinx) cos ¥ + €” sin® z.

= 2zy*sinx + 2°y* cosx + €“sin® x + 2e” sinx cos ¥ .

xT

=2uv -y + (u® + 2wv) - cosx + v - e

Example 2.54. Let F(z,y) = f(z*+v?), f: R > R, F: R? > R. Show that xaaj = yg—i

Proof: Let g(z,y) = 22 + y?, g : R? > R, then F(z,y) = (f o g)(z,y). By the chain rule,

{Z Zﬂ = ['(g(z,y)) - [Si 2‘;] = f(g(z.y)) [22 2y]
which implies that

=nfgay). 5 =20 (o).

oF _OF
Soy—=— = f'(g(z,y))2ry = x oy
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2.5.4 The Mean Value Theorem

Theorem 2.55. Let U < R™ be open, and f: U — R™ with f = (f1,---, fm). Suppose that
f is differentiable on U and the line segment joining x and y lies in U. Then there exist

points ci,- -+, Cm on that segment such that
fity) = fi(x) = (Df)(e)ly—x)  Vi=1,---,m.

Moreover, if U is convex and sup ||(Df)(x)|zm@rrm) < M, then
xeld

(@) = f@)|lgm < M|z —y|gn  YVa,yel.

Proof. Let 7 :[0,1] — R™ be given by v(t) = (1 —t)z +ty. Then by Theorem 2.49, for each
i=1,---,m, (fio~):[0,1] — R is differentiable on (0,1); thus the mean value theorem
(Theorem A.9) implies that there exists ¢; € (0, 1) such that

fily) = filx) = (fio (1) = (fio)(0) = (fis V(1) = (Dfi)(e) (v (t:)) ,

where ¢; = v(¢;). On the other hand, v'(¢;) = y — .
Let g(t) = (f o7)(t). Then the chain rule implies that ¢'(t) = (Df)(v(t))(y — x); thus

lg" @) em < [(DFYv (@) Vs momy |y — 2o < Mz = ylen

Define h(t) = (g(1) — g(0)) - g(¢). Then h : [0,1] — R is differentiable; thus by the mean
value theorem (Theorem A.9) we find that there exists £ € (0, 1) such that

thus by the fact that ¢(0) = f(x) and g(1) = f(y),

1£(x) = f()|Em = R(1) = h(0) < lg(1) = 9(0) [ren]lg" (&) |
< M||f(x) = ()| ]z = ylen

which concludes the theorem. o

Example 2.56. Let f : [0,1] — R? be given by f(t) = (¢?,¢*). Then there is no s € (0, 1)
such that

(1,1) = f(1) = f(0) = f'(s)(1 = 0) = f(s)
since f'(s) = (2s,3s%) # (1,1) for all s€ (0,1).
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Example 2.57. Let f : R — R? be given by f(z) = (cosz,sinz). Then f(27) — f(0) =

(0,0); however, f'(z) = (—sinz,cosx) which cannot be a zero vector.

Example 2.58. Let f be given in Example 2.32, and U be a small neighborhood of the
curve
C={(z,y) |2 +y’=12<0} u{(z,+1)|0 <z <1}.

Then

-1 - f) =2

On the other hand,

(DHE@O.-2) = |5 s ) [_02} e

. 3. 2 . o 93 .
which can never be g since }ﬂix < 3 if (z,y) € U while ?ﬂ > 3. Therefore, no point

+ y2 ‘
(x,y) in U validates

(D) y)((1,=1) = (1, 1)) = f(1,-1) = f(L,1).

Example 2.59. Suppose that &4 < R” is an open convex set, and f : U — R is differen-
tiable and D f(z) = 0 for all 2 € Y. Then f is a constant; that is, for some o € R™ we have
flz)=aforall zel.

Reason: Since U is convex, then the Mean Value Theorem can be applied to any z,y € U
such that f:(z)—fi(y) = Dfslel(a—y) = 0 (- Dfi = 0) fori = 1,2,- - ,m; thus f(z) = f(y)
for any z,y € U. Let a = f(x) € R™, then we reach the conclusion.

2.6 The Inverse Function Theorem ( x & #c¥ 32 )

FoBe @8 % RiFzd- Boficns S d 3 FamiP 3 P& - Bt & %-
SRR N LA R F Sl bl4rZ & Sfc? > D A T SEPLY Y S
fioo AT R St e REAPL drg G A 0k = & Sdiesin! (& aresin) |,
cos™! (& arctan) % tan ! (& arctan) > :ZE F] 5 AP R & SfkhE s H
BATOTRF P E - - h (FtF Sz ) e Flot > R - BLax- B (2 #H
1) TERBAOIENE Sl FEAPER S I RE Sl AR - JHRERY G A

defe i - Bl - JRFEL O SEG A AP AN OLATRFEL -4
(2 g ¥ Rfpdde) chiFm T2 AT 24 - Behkr 38 TL (Theorem A.10) 2 i 4
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lg'FT ARZRFEFTOEEIF L F G BER o L A RS T
SR RAFEEEATR B LE - B 8§ A PRE (AL BT R A3
RBEIR A G R iER > TE_ (Df)(x) & B bounded linear map ¥ i3 {4 o
¥ B fe€t 78B4 Theorem 1.87 A i i f— B8z 4o% (Df)(xo) ¥ i
G 0 PRB - BASEA (Df)(x) F8F e AT T R e BE JBOLGiEE Y R (Df)
h- BEEFFIEBEEDR S FEAPEEL DaHm ] R OF SBF A 5 o
Before proceeding, we first prove the following important proposition which is used

crucially in the proof of the inverse function theorem.

Proposition 2.60 (Contraction Mapping Principle). Let F' < R"® be a closed subset (on
which every Cauchy sequence converges), and ® : F' — F be a contraction mapping; that

is, there is a constant 6 € [0,1) such that

|(x) — 2(y)

Rn < QH.T - y”Rn :
Then there ezists a unique point x € F', called the fized-point of ©, such that ®(z) = x.

Proof. Let zq € F, and define xp1 = ®(xy) for all k € N U {0}. Then

|h1 — aillmn = | (k) — (apa) [ <Oz — 2pamn < -+ < 0%]21 — oo ;

thus if ¢ > k,

|lze — 21 |mn < |28 = 2Ry |re + |Zre1 — Trgollre + -+ [2o1 — 2|0
SO+ 0 -+ 07 |y — wo e
Qk
1—46

<OFA+0+60*+--)|rr — 20

Rn = Hxl - 1’0 Rn . (28)

k
1-0

Since 0 € [0,1), k}im |21 — 2o|re = 0; thus
—00

Ve>0,3N >05 |zr —zfllgn <€ VEk,{=N.

In other words, {zx}2, is a Cauchy sequence in F. By assumption, z; — z as k — oo for

some x € F. Finally, since ®(zy) = x4 for all £ € N, by the continuity of ® we obtain that

O(z) = klgglo O(zy) = l}grgo Tpp1 =T

which guarantees the existence of a fixed-point.
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Suppose that for some z,y € M, ®(z) = x and ®(y) = y. Then

|z = yllre = [@(2) = 2(y) | < Ollz — ylro
which suggests that |z — y[lgn = 0 or & = y. Therefore, the fixed-point of ® is unique.  ©

Now we state and prove the inverse function theorem.

Theorem 2.61 (Inverse Function Theorem). Let D < R™ be open, g € D, f: D — R" be
of class €*, and (D f)(xzo) be invertible. Then there exist an open neighborhood U of xo and
an open neighborhood V of f(xq) such that

1. f:U —V is one-to-one and onto;

2. The inverse function f=1:V — U is of class €*;

1

3. Ifw=f~'(y), then (Df)(y) = (Df)(x))
4. If f is of class €" for somer > 1, so is f L.

Proof. We will omit the proof of 4 since it requires more knowledge about differentiation.
Assume that A = (Df)(xg). Then A7} p®rorn)y # 0. Choose A > 0 such that
2A[| A7 p(rngny = 1. Since f € €', there exists § > 0 such that

|(Df) (@) — A

g = | (D) 5(Df) (o)

g(angny <A Whenever z € B(z9,0) nD.

By choosing 0 even smaller-if necessary, we can assume that B(xg,d) € D. Let U = B(xo,9).
Claim: f:U — R" is one-to-one (hence f : U — f(U) is one-to-one and onto).

Proof of claim: For each y € R", define ¢, (z) =z + A~ (y — f(z)) (and we note that every
fixed-point of ¢, corresponds to a solution to f(z) =y). Then

(Dgy)(x) =1d = ATH(Df)(x) = A7 (A — (Df)(2))
where Id is the identity map on R™. Therefore,

1
A— (Df)(x)H@(Ran) <3 Vz e B(xg,0).

(D) @) gy < 147 e

By the mean value theorem (Theorem 2.55),

1
Hapy(asl) — py(T2)||gn < §Hxl — Zo|gn V1,29 € B(xo,9), 1 # 2 (2.9)
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thus at most one z satisfies ¢,(x) = z; that is, ¢, has at most one fixed-point. As a
consequence, f : B(zg,d) — R" is one-to-one.

Claim: The set V = f(U) is open.

Proof of claim: Let b € V. Then there is a € V with f(a) = b. Choose r > 0 such that
Bla,r) = U. We observe that if y € B(b, Ar), then

we < JAT (y — f(a))

thus if y € B(b, A\r) and z € B(a,r),

- — T
e < [ A7 s oy |y = bl < AJA™ e oy = 55

ly(a) —a

1 r
et l2y(0) = allen < S lw = alfpr +5 <7

H‘Py(@ —afrn < HSOy(x) - ‘Py(a)

Therefore, if y € B(b, Ar), then ¢, : B(a,r) — B(a,r). By the continuity of ¢,

¢, : B(a,r) — Bla,r) .

On the other hand, (2.9) implies that ¢, is a contraction mapping if y € B(b, Ar); thus by the
contraction mapping principle (Proposition 2.60) ¢, has a unique fixed-point z € B(a,r).
As a result, every y € B(b, A\r) corresponds to a unique x € B(a,r) such that ¢,(z) = x or

equivalently, f(x) =y. Therefore,
B(b,Ar) = f(Bla,r)) < fU)=V.

Next we show that f~!:V —U is differentiable. We note that if z € B(xg,d),

_ _ 1

[(DF) (o) = (D) s ) | A |z oy < AIAT [pmn ey = 55
thus Theorem 1.87 implies that (D f)(z) is invertible if z € B(x,0).

Let b € V and k € R" such that b + k € V. Then there exists a unique a € U and

h = h(k) € R* such that a+ h e U, b = f(a) and b+ k = f(a + h). By the mean value

theorem and (2.9),

1
< —||h|lgn ;
LB

HQOy(CL + h) - Soy(a) Rn
thus the fact that f(a + h) — f(a) = k implies that

1
|h = A7 Elmn < S|Pz
which further suggests that

1 B B 1
Slhlee < JA™ Klen < JA™H | spgen [ Kl < o e (2.10)
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As a consequence, if k is such that b+ ke V,
If 0+ k) — f71(0) — (DF)(@)) K] Jath—a- (Df) (@) "'k

|l | |
(0h@) | D@

%(R" R™) | k||gn
1 |f(a+h) = fla) = (Df)(@)(R)|g. 2]
< ‘D a 7. n n
[((DH)@) | o g T s
-1
- H((Df)(a)) Z(R»R") fla+h)— f(a) = (Df)(a)(h)
A [ 2]l
Using (2.10), h — 0 as k — 0; thus passing £ — 0 on the left-hand side of the inequality
above, by the differentiability of f we conclude that

e k) = 170 — (D) @)k

IHO || k|| gn

Rn

]Rn

Rn

R —0.

This proves 3. o

Remark 2.62. Since f~! : V — U is continuous, for any open subset W of U f(W) =
(f~H71(W) is open relative to V, or f(W)'= O n V for some open set O < R™. In other
words, if ¢ is an open neighborhood of xy given by the inverse function theorem, then
F(W) is also open for all open subsets W of U. We call this property as f is a local open

mapping at xg.

Remark 2.63. Since (Df)(xg) € B(R™ R"), the condition that (Df)(x) is invertible can

be replaced by that the determinant of the Jacobian matrix of f at x( is not zero; that is,

det ([(Df)(w0)]) # 0.

The determinant of the Jacobian matrix of f at x( is called the Jacobian of f at xy. The

a(fla"' afn)

Jacobian of f at z sometimes is denoted by J¢(x) or ———2"1.
a(xlv"' ,{En)

Example 2.64. Let f : R — R be given by

flx) =

X

:15—1—2.7:2sin1 if x # 0,
0 ifx=0.

Let 0 € (a,b) for some (small) open interval (a,b). Since f'(x) =1 — 2 cos = + 4x smf for

x # 0, f has infinitely many critical points in (a,b), and (for whatever reasons) these Crltlcal
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points are local maximum points or local minimum points of f which implies that f is not
locally invertible even though we have f/(0) =1 # 0. One cannot apply the inverse function

theorem in this case since f is not €.

Corollary 2.65. Let U = R be open, f:U — R" be of class €', and (D f)(z) be invertible
for all x e U. Then f(W) is open for every open set W < U.

AP )RR (local) F S #icTIZ (Theorem 2.61) 2_ {8 > AP 4™ K& R and_>

E.
b (global) F Sflc e P A ERZ T ¢ g . ﬁr%ﬁ@— fE uﬁtiﬂ s A R
3 AR R (Df)(z) LI B R BT ﬁ; bR hE S o TS R DR
ﬁﬁi@#@ﬁiT’&ﬁl—ké . mﬁ?

Example 2.66. Let f : R? — R? be given by

f(z,y) = (e" cosy,e”siny).

Then

e*cosy —e¥siny
e*siny  e*cosy

[(Df)(,y)] = [
It is easy to see that the Jacobian of f‘at any point is not zero (thus (D f)(x) is invertible for
all z € R?), and f is not globally one-to-one (thus the inverse of f does not exist globally)
since for example, f(x,y) = f(z,y+ 27).

TR APARFERERA L FIF S 2B G LB 55 ORI - Dl
T He§sign definite ﬁ‘k»%\-‘r S HAIBIEREI N e A3 AR PR TR
(Df)(x) Pl FKP FoomAG IRV L (Aot b)) Ta B IR (2 DE S
Bor LFIL ) EEAER KRG B e PAEEREIBOF Sy o B

$$’L—v@m&béﬁim&mfﬁ—ﬁoé@&ﬁ@—ﬁﬁ%miwag@$
et Fl 4ok - H ¥ 8cS e ficdsign definite - 7R Sl B R P o 78 - H- on
(P15 Betb i enbl ) -

Theorem 2.67 (Global Existence of Inverse Function). Let D < R" be open, f: D — R"
be of class €*, and (D f)(x) be invertible for all x € K. Suppose that K is a connected (i
oo WEF - B) , closed and bounded subset of D, and f: 0K — R is one-to-one. Then

f: K — R" is one-to-one.

DR HF ST ILDEN ZR L MR TR Ae Y EP o
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2.7 The Implicit Function Theorem (*£ & #c % 32 )

Theorem 2.68 (Implicit Function Theorem). Let D < R™ x R™ be open, and F : D — R™
be a function of class €. Suppose that for some (xo,y0) € D, where o € R* and yy € R™,
F(zo,y0) =0 and

oy OYm
[(DyF)(%,yo)} = : : (%0, %0)

OFw = 0Fm

L dy1 OYm J

is invertible. Then there exists an open neighborhood U < R™ of xy, an_open neighborhood

YV < R™ of yg, and f : U — V such that

—_

. F(x, f(x)) =0 for all z € U;

2. yo = f(@0);

3. (Df)(x) = —((D,F)(x, f(x))) " (DF)(zf(x)) for all x € U;
4. fis of class C";

5. If F is of class € for some r >-1,50"is f.

Proof. Let z = (z,y) and w = (u,v), where x,u € R" and y,v € R™. Define w = G(z),
where G is given by G(z,y) = (x,F(x,y)) Then G : D — R™""™ and

I, 0
(DaF)(2,y)  (DyF)(x,y)

where [, is the n.x n identity matrix and (D, F)(z,y) € Z(R",R™) whose matrix represen-

[(DG)(z;y)] =

tation is given by

0xy 0%y,
[(DF)a,p)] =] : -~ |(zy).

oF,, oF,,

L 021 0y |

We note that the Jacobian of G at (xo,yo) is det ([(DyF)(zo,y0)]) which does not vanish
since (DyF)(zo,yo) is invertible, so the inverse function theorem implies that there exists
open neighborhoods O of (g, yo) and W of (x, F(zo,y0)) = (20,0) such that
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(a) G : O — W is one-to-one and onto;

(b) the inverse function G=! : W — O is of class €7;

-1

(c) (DGY)(z, F(z,y)) = ((DG)(z,y))
By Remark 2.62, W.L.O.G. we can assume that O = U x V, where Y < R" and ¥V < R™
are open, and xg € U, yo € V.

Write G (u,v) = (c,p(u, v), Y(u, v)), where o : W — U and ¢) : W — V. Then
(u,v) = G(p(u,v), ¥(u,v)) = (p(u,v), F(u, ¢ (u,v)))
which implies that ¢(u,v) = w and v = F(u, ¢ (u,v)). Let f(z) = (=, 0). Then (u, f(u)) €
U x V is the unique point satisfying F(u, f(u)) = 0 if u e U. Therefore, f : U — V, and
F(z, f(z)) =0 Vezel.

Since G(xo,10) = (20,0) = G(SCo,f(Io))y (20,%0); (%;f(xo)) € O,and G : O - W is
one-to-one, we must have yo = f ().
By (b) and (c), we have G™! is of class ¢!, and

-1

(DG (u,v) = ((DG)(z,y))

As a consequence, 1) € €', and

(Dup)(u,v) (Dyp)(u,2) _ I, 0
(D) (u,0) (Dyp)u,0)| |(DoF)(z,y) (DyF)(z,y)
i L, 0
(D F) () T (DF)xy) (DyF)(,y)

Evaluating the equation above at v = 0, we conclude that
-1
(Df)(u) = (Duh)(u,0) = = ((DyF)(u, f(u))) (D F) (u, f(u))
which implies 3. We also note that 4 follows from (b) and 5 follows from 3. o
Example 2.69. Let F(z,y) = 2% +y> — 1.

1. If (zo,y0) = (1,0), then F,(zo,y0) = 2 # 0; thus the implicit function theorem implies

that locally x can be expressed as a function of y.
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2. If (xo,y0) = (0,—1), then F,(z9,y0) = —2 # 0; thus the implicit function theorem

implies that locally y can be expressed as a function of x.

3. If (wo,y0) = (— %7 \f), then F,(7g,90) = —1 # 0 and F,(x0,90) = V'3 # 0; thus the

implicit function theorem implies that locally x can be expressed as a function of y

and locally y can be expressed as a function of x.

Example 2.70. Suppose that (z,y,u,v) satisfies the equation

zu+ yv? =0
v + y?u® =0

and (29,90, uo,v0) = (1,—1,1,—1). Let F(z,y,u,v) = (zu + yv*,2v*> + y*ub). Then
F(0, Yo, to, vo) = 0.

8F1 8F1
1. Since (D, F)(xo, Yo, uo, Vo) = oz 0y (20, Yo, U0, Vo) = { Lo } is invertible
» PR 0Fy O0F; N -1 -2 ’
o dy
locally (z,y) can be expressed in terms of wyv; that is, locally x = z(u,v) and y =
y(u,v).
0F, " 0F
2. Since (DyF)(xo, yo, uo, vo) = 0y Ju (20, Yo, wo, Vo) = [ L 1} is invertible
wk’)\ o, Yo, Uo, 0Fy, OF, | \TorYo,Uo, 96 )
Oy ou

locally (y,u) can be expressed in terms of z, v.

Example 2.71. Let f:R*— R? be given by
f(z,y,2) = (xe¥ + ye*, xe® + zeY).

Then f is of class €', f(—1,1,1) = (0,0) and

eY we¥ +e* ye®
e? zeY xe* +e¥|’

(D) (g, 2)] = {

Since (D, . f)(—1,1,1) = {2 8} is invertible, the implicit function theorem implies that the

system

xe¥ +ye* =0
re* 4+ ze¥ =0
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can be solved for y and z as continuously differentiable function of = for x near —1 and (y, 2)

near (1,1). Furthermore, if we write (y, z) = g(z) for  near —1, then

~1
rooN |xeY +ef ye* ye? ey
g(z) = zeY xe® + ¢e¥ } [ '

2.8 Directional Derivatives and Gradient Vectors

Definition 2.72 (Directional Derivatives). Let f be real-valued and defined on a neighbor-

hood of z¢ € R”, and let v € R* be a unit vector. Then

(Def)(o) jt _f(@o+tv) = lim Flzo+ t‘;) — f(ao)

IH

is called the directional derivative ( > = ¥ #c) of f at 2 in the direction v.

Remark 2.73. Let {e;}}_, be the standard basis of R". Then the partial derivative %(zo)
j

(if it exists) is the directional derivative of f at.ayin the direction e;.

Remark 2.74. Let f be a real-valued differentiable function defined on a neighborhood
of g € R", and let v € R" be a unit vector. For a curve 7 : (—§,d) — R" satisfying that

v(0) = o and 7/(0) = v, the chain rule shows that

d

7| _ (£ o0 (t) = (D) (20)(v) = (Def) (o)

In other words, for a differentiable function f in a neighborhood of z(, the derivative
d

dt li—
tional derivative of a differential function f at zy in the direction v can also be defined by

(f o~) is/independent of v as long as v(0) = xy and v/(0) = v. Therefore, direc-
0

the value —‘ ), where v : (—=4,6) — R" is any curve satisfying v(0) = zo and
7'(0)

Theorem 2.75. Let U < R" be open, and f : U — R be differentiable at xo. Then the

directional derivative of f at xo in the direction v is (D f)(xq)(v).

Proof. Since f is differentiable at zy, Ve > 0, 2 0 > 0 such that

[f(x) = f(w0) — (Df)(wo)(x — mo)| < —||95 — Zo[|ra whenever [z — zo[ps <.
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In particular, if x = z + tv with v being a unit vector in R* and 0 < |t| < 0, then

f(xo +tv) — f(mo) xo +1v) — f(w0) — (Df)(%)(t")’

~ )| = L

t i
_ |f@) = f(@o) — (Df) (o) (x — o) < e
It 2
thus (Dy f)(20) = (Df)(0)(v)- o
Remark 2.76. When v € R” but 0 < |v|ge # 1, we let v = Vﬂ) . Then the direction
RI’]

derivatives of a function f : U < R* — R at a € U in the direction v is

(Duf)(a) = lim L@+ = J(@).

t—0 t

Making a change of variable s = |t| Then
V|Rr

fla+tv) — f(a)

t s—0 S

(Df)(xo)(v) = [[v]ra(Df)(20)(v) =[]l lim

We sometimes also call the value (D f)(x¢)(v) the “directional derivative” of f in the “direc-

tion” v.

Example 2.77. The existence of directionalderivatives of a function f at xy in all directions
does not guarantee the differentiability of f at xy. For example, let f : R? — R be given as

in Example 2.44, and v = (v, vy) € R? be a unit vector. Then

(Dyf)(0) = lim f(tvi tve) — £(0,0) = v,

t—0 t

However, f is not differentiable at (0,0). We also note that in this example, (D, [f)(0) #
(Jf)(0)v, where (Jf)(0) = g;’;(o, 0) 2‘5(0, 0)| is the Jacobian matrix of f at (0,0).
Example 2.78. The existence of directional derivatives of a function f at x( in all directions
does not even guarantee the continuity of f at 5. For example, let f : R? — R be given by
.Z'yz
flay) =14 22+
0 if (x,y) = (0,0),

if (z,y) # (0,0),

Yy
and v = (v, vs) € R? be a unit vector. Then if v; # 0,

(D)) =ty 00D 2SO0y, Fvs Ve

t TS0 12V VY vy
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while if vi =0,
(D f)(0) = Tim L1 12) = f(0,0)

t—0 t

=0.

However, f is not continuous at (0, 0) since if (z, y) approaches (0, 0) along the curve z = my?
with m # 0, we have
4

. , my m
1 2 — 1 fr
yo0 Jmy™y) yo0 m?yt+yt m?+1

which depends on m. Therefore, f is not continuous at (0, 0).

Example 2.79. Here comes another example showing that a function having directional

derivative in all directions might not be continuous. Let f : R? — R be given by

xy .
f(z y)z{ z + 2 249" 20,

0 ifz+y?=0,
and v = (v1,vs) € R? be a unit vector. Then if'v; # 0,

e fvastve) < (0,00 Pvive
(Dof)(0) = lim t ey

while if v; =0,

=0.

o f(tve, tve) — £(0,0)

t—0

However, f is not continuous-at (0, 0) since if (z,y) approaches (0, 0) along the polar curve

6(r) = g +sin~H(r — mr?) O<r«l,
we have
lim f(z,y) = lim 7”'2 ‘;089(7”) sinf(r) 7"(.—7;+ mr?) sin 0(r)
(z:)=(0,0) r—0t r28in” 0(r) + rcosO(r)  r—0+ rsin”(r) — r + mr?

z=r cos 0(r),y=rsin 6(r)
= lim (fr;r mr?)sinf(r) _ —1
r—0+ sinf(r) —1+mr  m

which depends on m. Therefore, f is not continuous at (0, 0).

Definition 2.80. Let &/ < R" be an open set. The derivative of a scalar function f : U/ — R
is called the gradient of f and is denoted by gradf or V f.
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Let 4 < R™ be an open set, a € U and f : U — R be a real-valued function. Suppose

that f € €(U;R) and (Vf)(a) # 0. Then ;j(a) # 0 for some 1 < k < n. W.L.O.G,,
k

of

we can assume that

(a) # 0. By the implicit function theorem, there exists an open
n

neighborhood ¥V < R*! of (ay, -+, a,_1) and an open neighborhood W < R of a,, as well as
a ¢*-function ¢ : V — R such that in a neighborhood of a the level set {z € U | f(z) = f(a)}

can be represented by z, = ¢(xq, -+ ,x,_1); that is,

f(xla “ 5 Tn-1, (;0('1717 T 731711_1)) = f<a> V(xl, e 71:11—1) eV.
Moreover,

. f:ﬁj ('rla “t s Tn-1, 90(1:1’ T 7xn—1>>

f:pn (‘1:17 e 7']‘,11717%0('%17 e 7xn71))

Oa; (X1, Ty1) =

Consider the collection of vectors {v;}1—] given by

0

Vi = —
J .
o0x;j

(Ila e 7xn—1790(x17‘ te 7In—1>) (xla e JIn—l) € V

r=a

Then v}s are tangent vectors of the level surface. If {e;}7_, is the standard basis of R", then

fa?j(a)
" fan a,)) '

Therefore, the gradient vector (V f)(a) is perpendicular to v; for all 1 < j < n — 1 which

Uj:ej_'_(oa"' 7073096]'(&17"' aanfl)) =€ — (07 70

conclude the following

Proposition 2.81. Let- U = R" be open and f € €1 (U;R); that is, f : U — R is contin-

wously differentiable. Then if (V f)(x¢) # 0, the vector _(V/)lwo) is the unit normal to
(V) (o) e

the level set {z e U| f(z) = f(z0)} at zo.

Example 2.82. Find the normal to § = {(z,y,2) |2* + y* + 22 =3} at (1,1,1) € S.
Solution: Take f(z,y,z) = x® + y> + 22 — 3. Then (Vf)(z,y,2) = (2x,2y,2z); thus
(Vf)(1,1,1) =(2,2,2) is normal to S at (1,1, 1).

Example 2.83. Consider the surface
S ={(z,y,2) ERS‘ZL‘Z —y* +ayz = 1}.

Find the tangent plane of S at (1,0, 1).
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Solution: Let f(x,y,2) = 2% —y*> + zyz. Then

S = {(x,y7z)€]R3|f(l’7y,Z) :f<170’1)};

that is, S is a level set of f. Since (Vf)(1,0,1) = (2,1,0) # (0,0,0), (2,1,0) is normal to
S at (1,0, 1); thus the tangent plane of S at (1,0,1) is 2(z — 1) +y = 0. o

(Vf)(xo)
[(V ) (o) |

is the direction in which the function f increases/decreases most rapidly (Ei& ¥ = /7% 1%

Proposition 2.84. Let f: R" — R be differentiable. If (V f)(xo) # 0, then +

= %) at xg.

Proof. Let xy € R™ be given. Suppose that f increases most rapidly in the direction v,
then (Dyf)(zo) = sup (Duwf)(xo). Since f is differentiable, (D, f)(xo) = (Df)(zo)(w) =

[w]rn=1
(Vf)(xg) - w which is maximized in the direction (V)=o) o

[V £) (o) |

Example 2.85. Let f : R* — R be given by f(z,y,z) = z?ysinz. Find the direction of
the greatest rate of change at (3,2,0).
Solution: We compute the gradient of f at(3,2,0) as follows:
_ (9 of of
(vf)<3a 27 0) - <a$ (37 27 0)7 ay (37 2a 0)7 Oz (37 27 O))
= (2zysin 2, 2% sin z, 2%y cos 2))|

= (0,0,18).

(x,y,z):(3,,2,0)

Therefore, the direction of the greatest rate of change of f at (3,2,0) is (0,0, 1).
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