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Chapter 2

Differentiation of Functions of Several
Variables

2.1 Functions of Several Variables

Definition 2.1. Let V be a vector space (over a scalar field F). A V-valued function
f of n real variables is a rule that assigns a unique vector f(x1, ¨ ¨ ¨ , xn) P V to each point
(x1, ¨ ¨ ¨ , xn) in some subset A of Rn. The set A is called the domain of f , and usually is
denoted by Dom(f). The set of vectors f(x1, ¨ ¨ ¨ , xn) obtained from points in the domain
is called the range of f and is denoted by Ran(f). We write f : A Ñ V if f is a V-valued
function defined on A Ď Rn.

If V = R, we simply call f : Dom(f) Ñ R a real-valued function, while if V = Rm,
we simply call f : Dom(f) Ñ V as a vector-valued function.

A vector field is a vector-valued function f : Dom(f) Ñ V such that Dom(f) Ď V = Rn

for some n P N.

Definition 2.2. Let V be a vector space over R, A Ď Rn be a set, and f, g : A Ñ V be
V-valued functions, h : A Ñ R be a real-valued function. The functions f + g, f ´ g and
hf , mapping from A to V , are defined by

(f + g)(x) = f(x) + g(x) @x P A ,

(f ´ g)(x) = f(x) ´ g(x) @x P A ,

(hf)(x) = h(x)f(x) @x P A .

32
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§2.1 Functions of Several Variables 33

The map f

h
: Aztx P A |h(x) = 0u Ñ V is defined by

(f
h

)
(x) =

f(x)

h(x)
@x P Aztx P A |h(x) = 0u .

Definition 2.3. A set U Ď Rn is said to be open in Rn if for each x P U , there exists r ą 0

such that B(x, r), the ball centered at x with radius r given by

B(x, r) =
␣

y P Rn ˇ
ˇ }x ´ y}Rn ă r

(

,

is contained in U . A set F Ď Rn is said to be closed in Rn if F A, the complement of F , is
open in Rn.

Let A Ď Rn be a set. A point x0 is said to be

1. an interior point of A if there exists r ą 0 such that B(x0, r) Ď A;

2. an isolated point of A if there exists r ą 0 such that B(x0, r) X A = tx0u;

3. an exterior point of A if there exists r ą 0 such that B(x0, r) Ď AA;

4. a boundary point of A if for each r ą 0, B(x0, r) X A ‰ H and B(x0, r) X AA ‰ H.

The collection of all interior points of A is called the interior of A and is denoted by Å.
The collection of all exterior points of A is called the exterior of A, and the collection of all
boundary point of A is called the boundary of A. The boundary of A is denoted by BA.
The closure of A is defined as A Y BA and is denoted by A. The derived set of A, denoted
by A 1, is the collection of all points in A that are not isolated points.

A is said to be bounded in Rn if there exists a constant M ą 0 such that

}x}Rn ă M @x P A
(

ô A Ď B(0,M)
)
.

A is said to be unbounded if A is not bounded.

The following theorem is a fundamental result in point-set topology. We omit the proof
since it is not the main concern in vector analysis; however, the result should look intuitive
and the proof of this theorem is not difficult. Interested readers can try to establish this
result by yourselves.

Theorem 2.4. Let A Ď Rn be a set. Then
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1. A is open if and only if A = Å;

2. A is closed if and only if A = A;

3. A is closed if and only if BA Ď A.

Definition 2.5 (Level Sets, and Graphs). Let A Ñ Rn be a set, and f : A Ñ R be a
real-valued function. The collection of points in A where f has a constant value is called a
level set of f . The collection of all points

(
x, f(x)

)
is called the graph of f .

Remark 2.6. A level surface is conventionally called a level curve when n = 2.

2.2 Limits and Continuity
Definition 2.7. Let A Ď Rn be a set, and f : A Ñ Rm be a vector-valued function. For a
given x0 P A 1, we say that b P Rm is the limit of f at x0, written

lim
xÑx0

f(x) = b or f(x) Ñ b as x Ñ x0 ,

if for each ε ą 0, there exists δ = δ(x0, ε) ą 0 such that

}f(x) ´ b}Rm ă ε whenever 0 ă }x ´ x0}Rn ă δ and x P A .

By the definition above, it is easy to see the following

Proposition 2.8. Let A Ď Rn be a set, and f, g : A Ñ Rm be a vector-valued functions.
Suppose that x0 P A 1, f(x) = g(x) for all x P Aztx0u, and lim

xÑx0
f(x) exists. Then lim

xÑx0
g(x)

exists and
lim
xÑx0

g(x) = lim
xÑx0

f(x) .

The following proposition is standard, and we omit the proof.

Proposition 2.9. Let A Ď Rn be a set, and f, g : A Ñ Rm be vector-valued functions,
h : A Ñ R be a real-valued function. Suppose that x0 P A1, and lim

xÑx0
f(x) = a, lim

xÑx0
g(x) = b,

lim
xÑx0

h(x) = c. Then

lim
xÑx0

(f + g)(x) = a+ b , lim
xÑx0

(f ´ g)(x) = a ´ b ,

lim
xÑx0

(hf)(x) = ca , lim
xÑx0

(f ¨ g)(x) = a ¨ b ,

lim
xÑx0

(f
h

)
=
a

c
if c ‰ 0 .
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Example 2.10. By Proposition 2.9,

lim
(x,y)Ñ(0,1)

x´ xy + 3

x2y + 5xy ´ y3
=

0 ´ (0)(1) + 3

(0)2(1) + 5(0)(1) ´ (1)3
= ´3 .

Example 2.11. Let f : (0,8) ˆ (0,8) Ñ R be given by f(x, y) =
x2 ´ xy

?
x´

?
y

. We can-

not apply Proposition 2.9 to compute the limit lim
(x,y)Ñ(0,0)

f(x, y), if the limit exists, since

lim
(x,y)Ñ(0,0)

(
?
x ´

?
y) = 0. Nevertheless, if (x, y) ‰ (0, 0),

f(x, y) =
x2 ´ xy

?
x ´

?
y
=

x(x ´ y)(
?
x+

?
y)

(
?
x ´

?
y)(

?
x+

?
y)

= x(
?
x+

?
y) ;

thus Proposition 2.8 and 2.9 imply that

lim
(x,y)Ñ(0,0)

f(x, y) = lim
(x,y)Ñ(0,0)

x(
?
x+

?
y) = 0 .

Definition 2.12. Let A Ď Rn be a set, and f : A Ñ Rm be a vector-valued function. The
function f is said to be continuous at x0 P A X A 1 if lim

xÑx0
f(x) = f(x0). In other words, f

is continuous at x0 if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q }f(x) ´ f(x0)}Rm ă ε whenever }x ´ x0}Rn ă δ and x P A .

If f is continuous at each point of B Ď A X A 1, then f is said to be continuous on B.

Remark 2.13. 1. The notation δ = δ(x0, ε) means that the number δ could depend on x0

and ε.

2. Another way of interpreting the continuity of f at x0 is as follows: f : A Ñ Rm is
continuous at x0 P U if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q f
(
B(x0, δ) X A

)
Ď B(f(x0), ε) .

3. If A = U is an open set, we can assume that δ is chosen small enough so that
B(x0, δ) Ď U in both Definition 2.7 and 2.12. In other words, lim

xÑx0
f(x) = b if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q }f(x) ´ b}Rm ă ε whenever 0 ă }x ´ x0}Rn ă δ ,

and f : U Ñ Rm is continuous at x0 P U if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q }f(x) ´ f(x0)}Rm ă ε whenever }x ´ x0}Rn ă δ .
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4. If A Ď Rn is closed and bounded, and f : A Ñ Rm is continuous, then for each ε ą 0

we can choose δ depending only on ε such that

}f(x) ´ f(y)}Rm ă ε whenever }x ´ y}Rn ă δ and x, y P A .

The property (that δ can be chosen independent of the point x0) is called uniform
continuity.

Theorem 2.14. Let U Ď Rn be open, and f : U Ñ Rm be a vector-valued function. Then
the following assertions are equivalent:

1. f is continuous on U .

2. For each open set V Ď Rm, f´1(V) Ď U is open, where f´1(V) is the pre-image of V
under f defined by

f´1(V) ”
␣

x P U
ˇ

ˇ f(x) P V
(

.

Proof. Before proceeding, we recall that B Ď f´1(f(B)) for all B Ď U and f(f´1(B)) Ď B

for all B Ď Rm.

“1 ñ 2” Let a P f´1(V). Then f(a) P V . Since V is open in Rm, D εf(a) ą 0 such that
B(f(a), εf(a)) Ď V . By continuity of f (and Remark 2.13), there exists δa ą 0 such
that

f
(
B(a, δa)

)
Ď B

(
f(a), εf(a)

)
.

Therefore, for each a P f´1(V), D δa ą 0 such that

B(a, δa) Ď f´1
(
f
(
B(a, δa)

))
Ď f´1

(
B
(
f(a), εf(a)

))
Ď f´1(V) .

Therefore, f´1(V) is open.

“2 ñ 1” Let a P U and ε ą 0 be given. Define V = B(f(a), ε), then V is open. Since
a P f´1(V) and f´1(V) is open by assumption, there exists δ ą 0 such that B(a, δ) Ď

f´1(V). Therefore,

f
(
B(a, δ)

)
Ď f(f´1(V)) Ď V = B(f(a), ε)

which (with the help of Remark 2.13) implies that f is continuous at a. ˝
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2.3 Definition of Derivatives and the Matrix Represen-
tation of Derivatives

Definition 2.15. Let U Ď Rm be an open set. A function f : U Ñ Rm is said to be
differentiable at x0 P A if there is a linear transformation from Rn to Rm, denoted by
(Df)(x0) and called the derivative of f at x0, such that

lim
xÑx0

›

›f(x) ´ f(x0) ´ (Df)(x0)(x ´ x0)
›

›

Rm

}x ´ x0}Rn
= 0 ,

where (Df)(x0)(x´ x0) denotes the value of the linear transformation (Df)(x0) applied to
the vector x´ x0. In other words, f is differentiable at x0 P U if there exists L P B(Rn,Rm)

such that

@ ε ą 0, D δ ą 0 Q }f(x) ´ f(x0) ´ L(x ´ x0)}Rm ď ε}x ´ x0}Rn whenever }x ´ x0}Rn ă δ .

If f is differentiable at each point of U , we say that f is differentiable on U .

Example 2.16. Let L : Rn Ñ Rm be a linear transformation; that is, there is a matrix
[L]mˆn such that L(x) = [L]mˆn[x]n for all x P Rn. Then L is differentiable. In fact,
(DL)(x0) = L for all x0 P X since

lim
xÑx0

}Lx ´ Lx0 ´ L(x ´ x0)}Rm

}x ´ x0}Rn
= 0 .

Example 2.17. Let f : R2 Ñ R be given by f(x, y) = x2+2y. Define L(a,b)(x, y) = 2ax+2y.
Then L(a,b) is a linear transformation (from R2 to R) and

ˇ

ˇx2 + 2y ´ a2 ´ 2b ´ L(a,b)(x ´ a, y ´ b)
ˇ

ˇ

a

(x ´ a)2 + (y ´ b)2

=

ˇ

ˇx2 + 2y ´ a2 ´ 2b ´ 2a(x ´ a) ´ 2(y ´ b)
ˇ

ˇ

a

(x ´ a)2 + (y ´ b)2

=
(x ´ a)2

a

(x ´ a)2 + (y ´ b)2
ď |x ´ a| ;

thus
lim

(x,y)Ñ(a,b)

ˇ

ˇx2 + 2y ´ a2 ´ 2b ´ L(a,b)(x ´ a, y ´ b)
ˇ

ˇ

a

(x ´ a)2 + (y ´ b)2
= 0 .

Therefore, f is differentiable at (a, b) and (Df)(a, b) = L(a,b).
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Remark 2.18. Adopting the standard basis of Rn and Rm, a linear transformation L :

Rn Ñ Rm has a matrix representation [L]mˆn such that L(x) = [L]mˆn[x]n for all x P Rn. In
the following, we will always use the standard basis for Rn and Rm and use L and L(x) to
denote [L]mˆm and [L]mˆn[x]n, respectively, if L is a linear transformation from Rn to Rm

and x P Rn.

Proposition 2.19. Let U Ď Rn be an open set, and f : U Ñ Rm be differentiable at x0 P U .
Then (Df)(x0), the derivative of f at x0, is uniquely determined by f .

Proof. Suppose L1, L2 P B(Rn,Rm) are derivatives of f at x0. Let ε ą 0 be given and
e P Rn be a unit vector; that is, }e}Rn = 1. Since U is open, there exists r ą 0 such that
B(x0, r) Ď U . By Definition 2.15, there exists 0 ă δ ă r such that

}f(x) ´ f(x0) ´ L1(x´ x0)}Rm

}x´ x0}Rn
ă
ε

2
and }f(x) ´ f(x0) ´ L2(x´ x0)}Rm

}x´ x0}Rn
ă
ε

2

if 0 ă }x ´ x0}Rn ă δ. Letting x = x0 + λe with 0 ă |λ| ă δ, we have

}L1e ´ L2e}Rm =
1

|λ|
}L1(x ´ x0) ´ L2(x ´ x0)}Rm

ď
1

|λ|

(›
›f(x) ´ f(x0) ´ L1(x ´ x0)

›

›

Rm +
›

›f(x) ´ f(x0) ´ L2(x ´ x2)
›

›

Rm

)
=

›

›f(x) ´ f(x0) ´ L1(x ´ x0)
›

›

Rm

}x ´ x0}Rn
+

›

›f(x) ´ f(x0) ´ L2(x ´ x0)
›

›

Rm

}x ´ x0}Rn

ă
ε

2
+
ε

2
= ε .

Since ε ą 0 is arbitrary, we conclude that L1e = L2e for all unit vectors e P Rn which
guarantees that L1 = L2 (since if x ‰ 0, L1x = }x}RnL1

( x

}x}Rn

)
= }x}RnL2

( x

}x}Rn

)
= L2x). ˝

Example 2.20. (Df)(x0) may not be unique if the domain of f is not open. For example,
let A =

␣

(x, y)
ˇ

ˇ 0 ď x ď 1, y = 0
(

be a subset of R2, and f : A Ñ R be given by f(x, y) = 0.
Fix x0 = (a, 0) P A, then both of the linear maps

L1(x, y) = 0 and L2(x, y) = ay @ (x, y) P R2

satisfy Definition 2.15 since

lim
(x,0)Ñ(a,0)

ˇ

ˇf(x, 0) ´ f(a, 0) ´ L1(x´ a, 0)
ˇ

ˇ

›

›(x, 0) ´ (a, 0)
›

›

R2

= lim
(x,0)Ñ(a,0)

ˇ

ˇf(x, 0) ´ f(a, 0) ´ L2(x´ a, 0)
ˇ

ˇ

›

›(x, 0) ´ (a, 0)
›

›

R2

= 0 .
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Definition 2.21. Let tekun
k=1 be the standard basis of Rn, U Ď Rn be an open set, a P U

and f : U Ñ R be a function. The partial derivative of f at a with respect to xj, denoted

by Bf

Bxj
(a), is the limit

lim
hÑ0

f(a+ hej) ´ f(a)

h

if it exists. In other words, if a = (a1, ¨ ¨ ¨ , an), then

Bf

Bxj
(a) = lim

hÑ0

f(a1, ¨ ¨ ¨ , aj´1, aj + h, aj+1, ¨ ¨ ¨ , an) ´ f(a1, ¨ ¨ ¨ , an)

h
.

Theorem 2.22. Suppose U Ď Rn is an open set and f : U Ñ Rm is differentiable at a P U .
Then the partial derivatives Bfi

Bxj
(a) exists for all i = 1, ¨ ¨ ¨m and j = 1, ¨ ¨ ¨n, and the matrix

representation of the linear transformation Df(a) (with respect to the standard basis of Rn

and Rm) is given by

[
Df(a)

]
=


Bf1
Bx1

(a) ¨ ¨ ¨
Bf1
Bxn

(a)

... . . . ...
Bfm
Bx1

(a) ¨ ¨ ¨
Bfm
Bxn

(a)

 or
[
Df(a)

]
ij
=

Bfi
Bxj

(a) .

Proof. Since U is open and a P U , there exists r ą 0 such that B(a, r) Ď U . By the
differentiability of f at a, there is L P B(Rn,Rm) such that for any given ε ą 0, there exists
0 ă δ ă r such that

}f(x) ´ f(a) ´ L(x ´ a)}Rm ď ε}x ´ a}Rn whenever x P B(a, δ) .

In particular, for each i = 1, ¨ ¨ ¨ ,m,
ˇ

ˇ

ˇ

fi(a+ hej) ´ fi(a)

h
´ (Lej)i

ˇ

ˇ

ˇ
ď

›

›

›

f(a+ hej) ´ f(a)

h
´ Lej

›

›

›

Rm
ď ε @ 0 ă |h| ă δ, h P R ,

where (Lej)i denotes the i-th component of Lej in the standard basis. As a consequence,
for each i = 1, ¨ ¨ ¨ ,m,

lim
hÑ0

fi(a+ hej) ´ fi(a)

h
= (Lej)i exists

and by definition, we must have (Lej)i =
Bfi
Bxj

(a). Therefore, Lij =
Bfi
Bxj

(a). ˝
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Definition 2.23. Let U Ď Rn be an open set, and f : U Ñ Rm. The matrix

(Jf)(x) ”


Bf1
Bx1

¨ ¨ ¨
Bf1
Bxn

... . . . ...
Bfm
Bx1

¨ ¨ ¨
Bfm
Bxn

 (x) ”


Bf1
Bx1

(x) ¨ ¨ ¨
Bf1
Bxn

(x)

... . . . ...
Bfm
Bx1

(x) ¨ ¨ ¨
Bfm
Bxn

(x)


is called the Jacobian matrix of f at x (if each entry exists).

Remark 2.24. A function f might not be differential even if the Jacobian matrix Jf exists;
however, if f is differentiable at x0, then (Df)(x) can be represented by (Jf)(x); that is,
[(Df)(x)] = (Jf)(x).

Example 2.25. Let f : R2 Ñ R3 be given by f(x1, x2) = (x21, x
3
1x2, x

4
1x

2
2). Suppose that f

is differentiable at x = (x1, x2), then

[
(Df)(x)

]
=

 2x1 0
3x21x2 x31
4x31x

2
2 2x41x2

 .
Remark 2.26. For each x P A, Df(x) is a linear transformation, but Df in general is not
linear in x.

Example 2.27. Let f : R2 Ñ R be given by

f(x, y) =

# xy

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then Bf

Bx
(0, 0) =

Bf

By
(0, 0) = 0; thus if f is differentiable at (0, 0), then (Df)(0, 0) =

[
0 0

]
.

However,
ˇ

ˇ

ˇ
f(x, y) ´ f(0, 0) ´

[
0 0

] [x
y

]
ˇ

ˇ

ˇ
=

|xy|

x2 + y2
=

|xy|

(x2 + y2)
3
2

a

x2 + y2 ;

thus f is not differentiable at (0, 0) since |xy|

(x2 + y2)
3
2

cannot be arbitrarily small even if x2+y2

is small.

Example 2.28. Let f : R2 Ñ R be given by

f(x, y) =

$

&

%

x if y = 0 ,
y if x = 0 ,
1 otherwise .
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Then Bf

Bx
(0, 0) = lim

hÑ0

f(h, 0) ´ f(0, 0)

h
= lim

hÑ0

h

h
= 1. Similarly, Bf

By
(0, 0) = 1; thus if f is

differentiable at (0, 0), then (Df)(0, 0) =
[
1 1

]
. However,

ˇ

ˇ

ˇ
f(x, y) ´ f(0, 0) ´

[
1 1

] [x
y

]
ˇ

ˇ

ˇ
=
ˇ

ˇf(x, y) ´ (x+ y)
ˇ

ˇ ;

thus if xy ‰ 0,
ˇ

ˇf(x, y) ´ (x+ y)
ˇ

ˇ = |1 ´ x ´ y| Û 0 as (x, y) Ñ (0, 0), xy ‰ 0.

Therefore, f is not differentiable at (0, 0).

2.4 Conditions for Differentiability
Proposition 2.29. Let U Ď Rn be open, a P U , and f = (f1, ¨ ¨ ¨ , fm) : U Ñ Rm. Then f is
differentiable at a if and only if fi is differentiable at a for all i = 1, ¨ ¨ ¨ ,m. In other words,
for vector-valued functions defined on an open subset of Rn,

Componentwise differentiable ô Differentiable.

Proof. “ñ” Let (Df)(a) be the Jacobian matrix of f at a. Then

@ ε ą 0, D δ ą 0 Q
›

›f(x)´f(a)´ (Df)(a)(x´a)
›

›

Rm ď ε}x´a}Rn if }x´a}Rn ă δ .

Let tejumj=1 be the standard basis of Rm, and Li P L (Rn,R) be given by Li(h) =

eT
i [(Df)(a)]h. Then Li P B(Rn,R) by Remark 1.79, and if }x ´ a}Rn ă δ,

ˇ

ˇfi(x) ´ fi(a) ´ Li(x ´ a)
ˇ

ˇ =
ˇ

ˇei ¨
(
f(x) ´ f(a) ´ (Df)(a)(x ´ a)

)ˇ
ˇ

ď
›

›f(x) ´ f(a) ´ (Df)(a)(x ´ a)
›

›

Rm ď ε}x ´ a}Rn ;

thus fi is differentiable at a with derivatives Li.

“ð” Suppose that fi : U Ñ R is differentiable at a for each i = 1, ¨ ¨ ¨ ,m. Then there exists
Li P B(Rn,R) such that

@ ε ą 0, D δi ą 0 Q
ˇ

ˇfi(x) ´ fi(a) ´ Li(x ´ a)
ˇ

ˇ ď
ε

m
}x ´ a}Rn if }x ´ a}Rn ă δi .

Let L P L (Rn,Rm) be given by Lx = (L1x, L2x, ¨ ¨ ¨ , Lmx) P Rm if x P Rn. Then
L P B(Rn,Rm) by Remark 1.79, and

›

›f(x) ´ f(a) ´ L(x ´ a)
›

›

Rm ď

m
ÿ

i=1

ˇ

ˇfi(x) ´ fi(a) ´ Li(x ´ a)
ˇ

ˇ ď ε}x ´ a}Rn

if }x ´ a}Rn ă δ = min
␣

δ1, ¨ ¨ ¨ , δm
(

. ˝



Copy
rig

ht
Prot

ect
ed

42 CHAPTER 2. Differentiation of Functions of Several Variables

Theorem 2.30. Let U Ď Rn be open, a P U , and f : U Ñ R. If

1. the Jacobian matrix of f exists in a neighborhood of a, and

2. at least (n ´ 1) entries of the Jacobian matrix of f are continuous at a,

then f is differentiable at a.

Proof. W.L.O.G. we can assume that Bf

Bx1
, Bf

Bx2
, ¨ ¨ ¨ , Bf

Bxn´1
are continuous at a. Let tejun

j=1

be the standard basis of Rn, and ε ą 0 be given. Since Bf

Bxi
is continuous at a for i =

1, ¨ ¨ ¨ , n ´ 1,

D δi ą 0 Q

ˇ

ˇ

ˇ

Bf

Bxi
(x) ´

Bf

Bxi
(a)

ˇ

ˇ

ˇ
ă

ε
?
n

whenever }x ´ a}Rn ă δi .

On the other hand, by the definition of the partial derivatives,

D δn ą 0 Q

ˇ

ˇ

ˇ

f(a+ hen) ´ f(a)

h
´

Bf

Bxn
(a)

ˇ

ˇ

ˇ
ă

ε
?
n

whenever 0 ă |h| ă δn .

Let k = x ´ a and δ = min
␣

δ1, ¨ ¨ ¨ , δn
(

. Then
ˇ

ˇ

ˇ
f(x) ´ f(a) ´

[
Bf

Bx1
(a)(x1 ´ a1) + ¨ ¨ ¨ +

Bf

Bxn
(a)(xn ´ an)

]ˇ
ˇ

ˇ

=
ˇ

ˇ

ˇ
f(a+ k) ´ f(a) ´

Bf

Bx1
(a)k1 ´ ¨ ¨ ¨ ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ
f(a1 + k1, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , an) ´

Bf

Bx1
(a)k1 ´ ¨ ¨ ¨ ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
f(a1 + k1, ¨ ¨ ¨ , an + kn) ´ f(a1, a2 + k2, ¨ ¨ ¨ , an + kn) ´

Bf

Bx1
(a)k1

ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ
f(a1, a2 + k2, ¨ ¨ ¨ , an + kn) ´ f(a1, a2, a3 + k3, ¨ ¨ ¨ , an + kn) ´

Bf

Bx2
(a)k2

ˇ

ˇ

ˇ

+ ¨ ¨ ¨ +
ˇ

ˇ

ˇ
f(a1, ¨ ¨ ¨ , an´1, an + kn) ´ f(a1, ¨ ¨ ¨ , an) ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ
.

By the mean value theorem,

f(a1, ¨ ¨ ¨ , aj´1, aj + kj, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , aj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)

= kj
Bf

Bxj
(a1, ¨ ¨ ¨ , aj´1, aj + θjkj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)

for some 0 ă θj ă 1; thus for j = 1, ¨ ¨ ¨ , n ´ 1, if }x ´ a}Rn = }k}Rn ă δ,
ˇ

ˇ

ˇ
f(a1, ¨ ¨ ¨ , aj´1, aj + kj, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , aj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn) ´

Bf

Bxj
(a)kj

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

Bf

Bxj
(a1, ¨ ¨ ¨ , aj´1, aj + θjkj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn) ´

Bf

Bxj
(a)

ˇ

ˇ

ˇ
|kj| ď

ε
?
n

|kj| .
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Moreover, if }x ´ a}Rn ă δ, then |kn| ď }k}Rn = }x ´ a}Rn ă δ ď δn; thus
ˇ

ˇ

ˇ
f(a1, ¨ ¨ ¨ , an´1, an + kn) ´ f(a1, ¨ ¨ ¨ , an) ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ
ď

ε
?
n

|kn| .

As a consequence, if }x ´ a}Rn ă δ, by Cauchy’s inequality,
ˇ

ˇ

ˇ
f(x) ´ f(a) ´

[
Bf

Bx1
(a)(x1 ´ a1) + ¨ ¨ ¨ +

Bf

Bxn
(a)(xn ´ an)

]ˇ
ˇ

ˇ

ď
ε

?
n

n
ÿ

j=1

|kj| ď ε}k}Rn = ε}x ´ a}Rn

which implies that f is differentiable at a. ˝

Remark 2.31. When two or more components of the Jacobian matrix
[

Bf

Bx1
¨ ¨ ¨

Bf

Bxn

]
of a

scalar function f are discontinuous at a point x0 P U , in general f is not differentiable at x0.
For example, both components of the Jacobian matrix of the functions given in Example
2.27, 2.28, 2.44 are discontinuous at (0, 0), and these functions are not differentiable at
(0, 0).

Example 2.32. Let U = R2z
␣

(x, 0) P R2
ˇ

ˇx ě 0
(

, and f : U Ñ R be given by

f(x, y) = arg(x+ iy) =

$

’

’

’

’

&

’

’

’

’

%

cos´1 x
a

x2 + y2
if y ą 0 ,

π if y = 0 ,

2π ´ cos´1 x
a

x2 + y2
if y ă 0 .

Then

Bf

Bx
(x, y) =

$

&

%

´
y

x2 + y2
if y ‰ 0 ,

0 if y = 0 ,
and Bf

By
(x, y) =

$

’

&

’

%

x

x2 + y2
if y ‰ 0 ,

1

x
if y = 0 .

Since Bf

Bx
and Bf

By
are both continuous on U , f is differentiable on U .

Definition 2.33. Let U Ď Rn be open, and f : U Ñ Rm be differentiable on U . f is
said to be continuously differentiable on U if the partial derivatives Bfi

Bxj
exist and

are continuous on U for i = 1, ¨ ¨ ¨ ,m and j = 1, ¨ ¨ ¨ , n. The collection of all continuously
differentiable functions from U to Rm is denoted by C 1(U ;Rm). The collection of all bounded
differentiable functions from U to Rm whose partial derivatives are continuous and bounded
is denoted by C 1

b (U ;Rm).
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Example 2.34. If f : R Ñ R is differentiable at x0, must f 1 be continuous at x0? In other
words, is it always true that lim

xÑx0
f 1(x) = f 1(x0)?

Answer: No! For example, take

f(x) =

$

&

%

x2 sin 1

x
if x ‰ 0,

0 if x = 0.

1˝ Show f(x) is differentiable at x = 0:

f 1(0) = lim
hÑ0

f(0 + h) ´ f(0)

h
= lim

hÑ0

h2 sin 1
h

h
= lim

hÑ0
h sin 1

h
= 0 .

2˝ We compute the derivative of f and find that

f 1(x) =

$

&

%

2x sin 1

x
´ cos 1

x
if x ‰ 0,

0 if x = 0.

However, lim
xÑ0

f 1(x) does not exist.

Definition 2.35. Let U Ď Rn be open, and f : U Ñ R be a function. If the partial
derivative Bf

Bxj
exists in U and has partial derivatives (at every point in U) with respect to

xi, then the second-order partial derivatives B

Bxi

(
Bf

Bxj

)
is denoted by B 2f

BxiBxj
.

In general, if the k-th order partial derivatives B kf

BxikBxik´1
¨ ¨ ¨ Bxi1

exists in U and has

partial derivatives (at every point in U) with respect to xik+1
, then the (k + 1)-th order

partial derivatives B

Bxik+1

(
B kf

BxikBxik´1
¨ ¨ ¨ Bxi1

)
is denoted by B k+1f

Bxik+1
Bxik ¨ ¨ ¨ Bxi1

; that is,

B k+1f

Bxik+1
Bxik ¨ ¨ ¨ Bxi1

=
B

Bxik+1

(
B kf

BxikBxik´1
¨ ¨ ¨ Bxi1

)
.

Theorem 2.36. Let U Ď Rn be open, a P U , and f : U Ñ R be a real-valued function.

Suppose that for some 1 ď i, j ď n, Bf

Bxi
, Bf

Bxj
, B 2f

BxjBxi
and B 2f

BxiBxj
exist in a neighborhood

of a and are continuous at a. Then

B 2f

BxiBxj
(a) =

B 2f

BxjBxi
(a) .
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Proof. W.L.O.G., we assume that f is a function of two variables; that is, n = 2. For fixed
h, k P R, define φ(x, y) = f(x, y + k) ´ f(x, y) and ψ(x, y) = f(x+ h, y) ´ f(x, y). Then

φ(a+ h, b) ´ φ(a, b) = f(a+ h, b+ k) ´ f(a+ h, b) ´ f(a, b+ k) + f(a, b)

= ψ(a, b+ k) ´ ψ(a, b) .

By the mean value theorem (Theorem A.9), for h, k ‰ 0 and sufficiently small,

φ(a+ h, b) ´ φ(a, b) = φx(a+ θ1h, b)h =
[
fx(a+ θ1h, b+ k) ´ fx(a+ θ1h, b)

]
h

= (fx)y(a+ θ1h, b+ θ2k)hk

for some θ1, θ2 P (0, 1), and similarly, for some θ3, θ4 P (0, 1),

ψ(a, b+ k) ´ ψ(a, b) = (fy)x(a+ θ3h, b+ θ4k)hk .

Therefore, for h, k ‰ 0 and sufficiently small, there exist θ1, θ2, θ3, θ4 P (0, 1) such that

(fx)y(a+ θ1h, b+ θ2k) = (fy)x(a+ θ3h, b+ θ4k) . (2.1)

Let ε ą 0 be given. Since (fx)y and (fy)x are continuous at (a, b), there exist δ1, δ2 ą 0

such that

ˇ

ˇ(fx)y(x, y) ´ (fx)y(a, b)
ˇ

ˇ ă
ε

2
if

a

(x ´ a)2 + (y ´ b)2 ă δ1 ,
ˇ

ˇ(fx)y(x, y) ´ (fx)y(a, b)
ˇ

ˇ ă
ε

2
if

a

(x ´ a)2 + (y ´ b)2 ă δ2 .

In particular, if δ = mintδ1, δ2u and h, k ‰ 0 satisfying
?
h2 + k2 ă δ,

ˇ

ˇ(fx)y(a+ θ1h, b+ θ2k) ´ (fx)y(a, b)
ˇ

ˇ+
ˇ

ˇ(fx)y(a+ θ3h, b+ θ4k) ´ (fx)y(a, b)
ˇ

ˇ ă ε ,

where θ1, θ2, θ3, θ4 P (0, 1) are chosen to validate (2.1). As a consequence,

ˇ

ˇ(fx)y(a, b) ´ (fy)x(a, b)
ˇ

ˇ

=
ˇ

ˇ(fx)y(a, b) ´ (fx)y(a+ θ1h, b+ θ2k) + (fx)y(a+ θ3h, b+ θ4k) ´ (fx)y(a, b)
ˇ

ˇ

ď
ˇ

ˇ(fx)y(a+ θ1h, b+ θ2k) ´ (fx)y(a, b)
ˇ

ˇ+
ˇ

ˇ(fx)y(a+ θ3h, b+ θ4k) ´ (fx)y(a, b)
ˇ

ˇ ă ε

which concludes the theorem (since ε ą 0 is given arbitrarily). ˝
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Example 2.37. Let f : R2 Ñ R be defined by

f(x, y) =

$

&

%

xy(x2 ´ y2)

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then

fx(x, y) =

$

&

%

x4y + 4x2y3 ´ y5

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

and

fy(x, y) =

$

&

%

x5 ´ 4x3y2 ´ xy4

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

It is clear that fx and fy are continuous on R2; thus f is differentiable on R2. However,

fxy(0, 0) = lim
kÑ0

fx(0, k) ´ fx(0, 0)

k
= ´1 ,

while
fyx(0, 0) = lim

hÑ0

fy(h, 0) ´ fy(0, 0)

h
= 1 ;

thus the Hessian matrix of f at the origin is not symmetric.

Definition 2.38. Let U Ď Rn be open, and f : U Ñ Rm be a vector-valued function. The
function f is said to be of class C 2 if f P C 1(U ;Rm) and the second partial derivatives

B 2fi
BxjBxk

exists and is continuous in U for all 1 ď i ď m and 1 ď j, k ď n. The collection of

all C 2-functions f : U Ñ Rm is denoted by C 2(U ;Rm).
In general, the function f is said to be of class C k if f P C k´1(U ;Rm) and the k-th order

partial derivatives B kf

BxikBxik´1
¨ ¨ ¨ Bxi1

exists and is continuous in U for all 1 ď i ď m and

1 ď i1, ¨ ¨ ¨ , ik ď n. The collection of all C k-functions f : U Ñ Rm is denoted by C k(U ;Rm).
A function is said to be smooth or of class C 8 if it is of class C k for all positive

integer k.

Corollary 2.39. Let U Ď Rn be open, and f P C 2(U ;R). Then

B 2f

BxiBxj
(a) =

B 2f

BxjBxi
(a) @ a P U and 1 ď i, j ď n .
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2.5 Properties of Differentiable Functions
2.5.1 Continuity of Differentiable Functions

Theorem 2.40. Let U Ď Rn be open, and f : U Ñ Rm be differentiable at x0 P U . Then f

is continuous at x0.

Proof. Since f is differentiable at x0, there exists L P B(Rn,Rm) such that

D δ1 ą 0 Q
›

›f(x) ´ f(x0) ´ L(x ´ x0)
›

›

Rm ď }x ´ x0}Rn @x P B(x0, δ1) .

As a consequence,
›

›f(x) ´ f(x0)
›

›

Rm ď
(
}L} + 1

)
}x ´ x0}Rn @x P B(x0, δ1) . (2.2)

For a given ε ą 0, let δ = min
!

δ1,
ε

2(}L} + 1)

)

. Then δ ą 0, and if x P B(x0, δ),

›

›f(x) ´ f(x0)
›

›

Rm ď
ε

2
ă ε . ˝

Remark 2.41. In fact, if f is differentiable at x0, then f satisfies the “local Lipschitz
property”; that is,

DM =M(x0) ą 0 and δ = δ(x0) ą 0 Q if }x´x0}X ă δ, then }f(x)´f(x0)}Y ď M}x´x0}X

since we can choose M = }L} + 1 and δ = δ1 (see (2.2)).

Example 2.42. Let f : R2 Ñ R be given in Example 2.27. We have shown that f is not
differentiable at (0, 0). In fact, f is not even continuous at (0, 0) since when approaching
the origin along the straight line x2 = mx1,

lim
(x1,mx1)Ñ(0,0)

f(x1,mx1) = lim
x1Ñ0

mx21
(m2 + 1)x21

=
m2

m2 + 1
‰ f(0, 0) if m ‰ 0 .

Example 2.43. Let f : R2 Ñ R be given in Example 2.28. Then f is not continuous at
(0, 0); thus not differentiable at (0, 0).

Example 2.44. Let f : R2 Ñ R be given by

f(x, y) =

$

&

%

x3

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .
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Then fx(0, 0) = 1 and fy(0, 0) = 0. However,
ˇ

ˇ

ˇ
f(x, y) ´ f(0, 0) ´

[
1 0

] [x
y

]
ˇ

ˇ

ˇ

a

x2 + y2
=

|x|y2

(x2 + y2)
3
2

Û 0 as (x, y) Ñ (0, 0).

Therefore, f is not differentiable at (0, 0). On the other hand, f is continuous at (0, 0) since
ˇ

ˇf(x, y) ´ f(0, 0)
ˇ

ˇ =
ˇ

ˇf(x, y)
ˇ

ˇ ď |x| Ñ 0 as (x, y) Ñ (0, 0).

2.5.2 The Product Rules

Proposition 2.45. Let U Ď Rn be an open set, and f : U Ñ Rm and g : U Ñ R be
differentiable at x0 P A. Then gf : A Ñ Rm is differentiable at x0, and

D(gf)(x0)(v) = g(x0)(Df)(x0)(v) + (Dg)(x0)(v)f(x0) . (2.3)

Moreover, if g(x0) ‰ 0, then f

g
: A Ñ Rm is also differentiable at x0, and D(

f

g
)(x0) : Rn Ñ

Rm is given by

D
(f
g

)
(x0)(v) =

g(x0)
(
(Df)(x0)(v)

)
´ (Dg)(x0)(v)f(x0)

g2(x0)
. (2.4)

Proof. We only prove (2.3), and (2.4) is left as an exercise.
Let A be the Jacobian matrix of gf at x0; that is, the (i, j)-th entry of A is

B (gfi)

Bxj
(x0) = g(x0)

Bfi
Bxj

(x0) +
Bg

Bxj
(x0)fi(x0) .

Then Av = g(x0)(Df)(x0)(v) + (Dg)(x0)(v)f(x0); thus

(gf)(x) ´ (gf)(x0) ´ A(x ´ x0) = g(x0)
(
f(x) ´ f(x0) ´ (Df)(x0)(x ´ x0)

)
+
(
g(x) ´ g(x0) ´ (Dg)(x0)(x ´ x0)

)
f(x)

+
(
(Dg)(x0)(x ´ x0)

)(
f(x) ´ f(x0)

)
.

Since (Dg)(x0) P B(Rn,R), }(Dg)(x0)}B(Rn,R) ă 8; thus using the inequality
ˇ

ˇ(Dg)(x0)(x ´ x0)
ˇ

ˇ ď
›

›(Dg)(x0)
›

›

B(Rn,R)}x ´ x0}Rn

and the continuity of f at x0 (due to Theorem 2.40), we find that

lim
xÑx0

ˇ

ˇ

ˇ

ˇ

ˇ(Dg)(x0)(x´ x0)
ˇ

ˇ

}x´ x0}Rn

›

›f(x) ´ f(x0)
›

›

Rm

ˇ

ˇ

ˇ
ď lim

xÑx0

›

›(Dg)(x0)
›

›

B(Rn,R)

›

›f(x) ´ f(x0)
›

›

Rm = 0 .
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As a consequence,

lim
xÑx0

›

›(gf)(x) ´ (gf)(x0) ´A(x´ x0)
›

›

Rm

}x´ x0}Rn

ď
ˇ

ˇg(x0)
ˇ

ˇ lim
xÑx0

›

›f(x) ´ f(x0) ´ (Df)(x0)(x´ x0)
›

›

Rm

}x´ x0}Rn

+ lim
xÑx0

[ ˇ
ˇg(x) ´ g(x0) ´ (Dg)(x0)(x´ x0)

ˇ

ˇ

}x´ x0}Rn
}f(x)}Rm

]
+ lim

xÑx0

[ ˇ
ˇ(Dg)(x0)(x´ x0)

ˇ

ˇ

}x´ x0}Rn

›

›f(x) ´ f(x0)
›

›

Rm

]
= 0

which implies that gf is differentiable at x0 with derivative D(gf)(x0) given by (2.3). ˝

‚ The differentiation of the Jacobian

Before going into the next section, we study the differentiation of a special determinant, the
Jacobian.

Example 2.46. Suppose that ψ : Ω Ď Rn Ñ ψ(Ω) Ď Rn is a given diffeomorphism
(thus det(∇ψ) ‰ 0). Let M = ∇ψ, and J = det(M). By Corollary 1.72, the adjoint
matrix of M is JM´1. Letting δ be a (first order) partial differential operator which satisfies
δ(fg) = fδg + (δf)g, by Theorem 1.73 we find that

δJ = tr(JM´1δM) =
n
ÿ

i,j=1

JAj
iδψ

i
,j

Einstein’s summation
convention

” JAj
iδψ

i
,j , (2.5)

where Aj
i = aji with M´1 = [aji]nˆn, and f,j ”

Bf

Bxj
.

Remark 2.47. From now on we sometimes write the row index of a matrix as a super-script
for the following reason: if ψ : Ω Ď Rn Ñ Rm is a differentiable vector-valued function, then
∇ψ is usually expressed by

∇ψ =



Bψ1

Bx1

Bψ1

Bx2
¨ ¨ ¨

Bψ1

Bxn
Bψ2

Bx1

Bψ2

Bx2
¨ ¨ ¨

Bψ2

Bxn
...

... . . . ...
Bψm
Bx1

Bψm
Bx2

¨ ¨ ¨
Bψm
Bxn


;

thus the (i, j) element of ∇ψ is Bψi
Bxj

, and the row index i appears “above” the column index
j.
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Theorem 2.48 (Piola’s identity). Let ψ : Ω Ď Rn Ñ ψ(Ω) Ď Rn be a C 2-diffeomorphism,
and [aij]nˆn be the adjoint matrix of ∇ψ. Then

aji,j

Einstein’s summation
convention

”

n
ÿ

j=1

B

Bxj
aji = 0. (2.6)

In other words, each column of the adjoint matrix of the Jacobian matrix of ψ is divergence-
free (see Definition 4.74).

Proof. Let J = det(∇ψ) and A = (∇ψ)´1. Then aji = JAj
i . Moreover, since A∇ψ = In,

n
ř

r=1

Aj
rψ

r
,s = δjs; thus

0 =
[ n
ÿ

r=1

Aj
rψ

r
,s

]
,k=

n
ÿ

r=1

[
Aj
r,kψ

r
,s + Aj

rψ
r
,sk

]
which, after multiplying the equality above by As

i and then summing over s, implies that

Aj
i,k = ´

n
ÿ

r,s=1

Aj
rψ

r
,skAs

i . (2.7)

As a consequence, by Theorem 2.36 we conclude that
n
ÿ

j=1

B

Bxj
(JAj

i ) =
n
ÿ

j=1

n
ÿ

r,s=1

[
JAr

sψ
s
,rjA

j
i ´ JAj

rψ
r
,sjAs

i

]
= 0 . ˝

2.5.3 The Chain Rule

Theorem 2.49. Let U Ď Rn and V Ď Rm be open sets, f : U Ñ Rm and g : V Ñ Rℓ be
vector-valued functions, and f(U) Ď V. If f is differentiable at x0 P U and g is differentiable
at f(x0), then the map F = g ˝ f defined by

F (x) = g
(
f(x)

)
@x P U

is differentiable at x0, and

(DF )(x0)(h) = (Dg)
(
f(x0)

)(
(Df)(x0)(h)

)
or in component, [

(DF )(x0)
]
ij
=

m
ÿ

k=1

Bgi
Byk

(
f(x0)

)Bfk
Bxj

(x0) .
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Proof. To simplify the notation, let y0 = f(x0), A = (Df)(x0) P B(Rn,Rm), and B =

(Dg)(y0) P B(Rm,Rℓ). Let ε ą 0 be given. By the differentiability of f and g at x0 and y0,
there exists δ1, δ2 ą 0 such that if }x ´ x0}Rn ă δ1 and }y ´ y0}Rm ă δ2, we have

}f(x) ´ f(x0) ´ A(x ´ x0)}Rm ď min
␣

1,
ε

2(}B} + 1)

(

}x ´ x0}Rn ,

}g(y) ´ g(y0) ´ B(y ´ y0)}Rℓ ď
ε

2(}A} + 1)
}y ´ y0}Rm .

Define

u(h) = f(x0 + h) ´ f(x0) ´ Ah @ }h}Rn ă δ1 ,

v(k) = g(y0 + k) ´ g(y0) ´ Bk @ }k}Rm ă δ2 .

Then if }h}Rn ă δ1 and }k}Rm ă δ2,

}u(h)}Rm ď }h}Rn , }u(h)}Rm ď
ε

2(}B} + 1)
}h}Rn and }v(k)}Rℓ ď

ε

2(}A} + 1)
}k}Rm .

Let k = f(x0 + h) ´ f(x0) = Ah+ u(h). Then lim
hÑ0

k = 0; thus there exists δ3 ą 0 such that

}k}Rm ă δ2 whenever }h}Rn ă δ3 .

Since

F (x0 + h) ´ F (x0) = g(y0 + k) ´ g(y0) = Bk + v(k) = B
(
Ah+ u(h)

)
+ v(k)

= BAh+Bu(h) + v(k) ,

we conclude that if }h}Rn ă δ = mintδ1, δ3u,

}F (x0 + h) ´ F (x0) ´ BAh}Rℓ ď }Bu(h)}Rℓ + }v(k)}Rℓ ď }B}}u(h)}Rm +
ε

2(}A} + 1)
}k}Rm

ď
ε

2
}h}Rn +

ε

2(}A} + 1)

(
}A}}h}Rn + }u(h)}Rm

)
ď
ε

2
}h}Rn +

ε

2
}h}Rn = ε}h}Rn

which implies that F is differentiable at x0 and
[
(DF )(x0)

]
= BA. ˝

Example 2.50. Consider the polar coordinate x = r cos θ, y = r sin θ. Then every function
f : R2 Ñ R is associated with a function F : [0,8) ˆ [0, 2π) Ñ R satisfying

F (r, θ) = f(r cos θ, r sin θ) .
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Suppose that f is differentiable. Then F is differentiable, and the chain rule implies that

[
BF

Br

BF

Bθ

]
=

[
Bf

Bx

Bf

By

]Bx

Br

Bx

Bθ
By

Br

By

Bθ

 =

[
Bf

Bx

Bf

By

][cos θ ´r sin θ
sin θ r cos θ

]
.

Therefore, we arrive at the following form of chain rule
B

Br
=

Bx

Br

B

Bx
+

By

Br

B

By
and B

Bθ
=

Bx

Bθ

B

Bx
+

By

Bθ

B

By

which is commonly seen in Calculus textbook.

Example 2.51. Let f : R Ñ R and F : R2 Ñ R be differentiable, and F
(
x, f(x)

)
= 0 and

BF

By
‰ 0. Then f 1(x) = ´

Fx
(
x, f(x)

)
Fy

(
x, f(x)

) , where Fx =
BF

Bx
and Fy =

BF

By
.

Example 2.52. Let γ : (0, 1) Ñ Rn and f : Rn Ñ R be differentiable. Let F (t) = f
(
γ(t)

)
.

Then F 1(t) = (Df)
(
γ(t)

)
γ 1(t).

Example 2.53. Let f(u, v, w) = u2v + wv2 and g(x, y) = (xy, sinx, ex). Let h = f ˝ g :

R2 Ñ R. Find Bh

Bx
.

Way I: Compute Bh

Bx
directly: Since

h(x, y) = f(g(x, y)) = f(xy, sinx, ex) = x2y2 sinx+ ex sin2 x ,

we have
Bh

Bx
= 2xy2 sinx+ x2y2 cosx+ ex sin2 x+ 2ex sinx cosx .

Way II: Use the chain rule:
Bh

Bx
=

Bf

Bu

Bg1
Bx

+
Bf

Bv

Bg2
Bx

+
Bf

Bw

Bg3
Bx

= 2uv ¨ y + (u2 + 2wv) ¨ cosx+ v2 ¨ ex

= 2xy2 sinx+ (x2y2 + 2ex sinx) cosx+ ex sin2 x.

Example 2.54. Let F (x, y) = f(x2+y2), f : R Ñ R, F : R2 Ñ R. Show that xBF

By
= y

BF

Bx
.

Proof: Let g(x, y) = x2 + y2, g : R2 Ñ R, then F (x, y) = (f ˝ g)(x, y). By the chain rule,[
BF

Bx

BF

By

]
= f 1(g(x, y)) ¨

[
Bg

Bx

Bg

By

]
= f 1(g(x, y))

[
2x 2y

]
which implies that

BF

Bx
= 2xf 1(g(x, y)),

BF

By
= 2yf 1(g(x, y)) .

So y BF

Bx
= f 1(g(x, y))2xy = x

BF

By
.
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2.5.4 The Mean Value Theorem

Theorem 2.55. Let U Ď Rn be open, and f : U Ñ Rm with f = (f1, ¨ ¨ ¨ , fm). Suppose that
f is differentiable on U and the line segment joining x and y lies in U . Then there exist
points c1, ¨ ¨ ¨ , cm on that segment such that

fi(y) ´ fi(x) = (Dfi)(ci)(y ´ x) @ i = 1, ¨ ¨ ¨ ,m.

Moreover, if U is convex and sup
xPU

}(Df)(x)}B(Rn,Rm) ď M , then

}f(x) ´ f(y)}Rm ď M}x ´ y}Rn @x, y P U .

Proof. Let γ : [0, 1] Ñ Rn be given by γ(t) = (1´ t)x+ ty. Then by Theorem 2.49, for each
i = 1, ¨ ¨ ¨ ,m, (fi ˝ γ) : [0, 1] Ñ R is differentiable on (0, 1); thus the mean value theorem
(Theorem A.9) implies that there exists ti P (0, 1) such that

fi(y) ´ fi(x) = (fi ˝ γ)(1) ´ (fi ˝ γ)(0) = (fi ˝ γ)1(ti) = (Dfi)(ci)
(
γ 1(ti)

)
,

where ci = γ(ti). On the other hand, γ 1(ti) = y ´ x.
Let g(t) = (f ˝ γ)(t). Then the chain rule implies that g 1(t) = (Df)(γ(t))(y ´ x); thus

}g 1(t)}Rm ď }(Df)(γ(t))}B(Rn,Rm)}y ´ x}Rm ď M}x ´ y}Rn .

Define h(t) =
(
g(1) ´ g(0)

)
¨ g(t). Then h : [0, 1] Ñ R is differentiable; thus by the mean

value theorem (Theorem A.9) we find that there exists ξ P (0, 1) such that

h(1) ´ h(0) = h 1(ξ) =
(
g(1) ´ g(0)

)
¨ g 1(ξ) ;

thus by the fact that g(0) = f(x) and g(1) = f(y),

}f(x) ´ f(y)}2Rm = h(1) ´ h(0) ď }g(1) ´ g(0)}Rm}g 1(ξ)}Rm

ď M}f(x) ´ f(y)}Rm}x ´ y}Rn

which concludes the theorem. ˝

Example 2.56. Let f : [0, 1] Ñ R2 be given by f(t) = (t2, t3). Then there is no s P (0, 1)

such that
(1, 1) = f(1) ´ f(0) = f 1(s)(1 ´ 0) = f 1(s)

since f 1(s) = (2s, 3s2) ‰ (1, 1) for all s P (0, 1).
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Example 2.57. Let f : R Ñ R2 be given by f(x) = (cosx, sinx). Then f(2π) ´ f(0) =

(0, 0); however, f 1(x) = (´ sinx, cosx) which cannot be a zero vector.

Example 2.58. Let f be given in Example 2.32, and U be a small neighborhood of the
curve

C =
␣

(x, y)
ˇ

ˇx2 + y2 = 1, x ď 0
(

Y
␣

(x,˘1) | 0 ď x ď 1
(

.

Then
f(1,´1) ´ f(1, 1) =

3π

2
.

On the other hand,

(Df)(x, y)(0,´2) =
[

´y

x2 + y2
x

x2 + y2

] [ 0
´2

]
= ´

2x

x2 + y2

which can never be 3π

2
since

ˇ

ˇ

2x

x2 + y2

ˇ

ˇ ď 3 if (x, y) P U while 3π

2
ą 3. Therefore, no point

(x, y) in U validates

(Df)(x, y)
(
(1,´1) ´ (1, 1)

)
= f(1,´1) ´ f(1, 1) .

Example 2.59. Suppose that U Ď Rn is an open convex set, and f : U Ñ Rm is differen-
tiable and Df(x) = 0 for all x P U . Then f is a constant; that is, for some α P Rm we have
f(x) = α for all x P U .
Reason: Since U is convex, then the Mean Value Theorem can be applied to any x, y P U
such that fi(x)´fi(y) = Dfi(ci)(x´y) = 0 (7 Dfi = 0) for i = 1, 2, ¨ ¨ ¨ ,m; thus f(x) = f(y)

for any x, y P U . Let α = f(x) P Rm, then we reach the conclusion.

2.6 The Inverse Function Theorem（反函數定理）
反函數定理是用來探討一個函數的反函數是否存在的問題。只要一個函數不是一對一的，

一般來說都不能定義其反函數，例如三角函數中，正弦、餘弦及正切函數都是周期函

數，所以全域的反函數不存在。但是我們也知道有所謂的反三角函數 sin´1 （或 arcsin）,
cos´1 （或 arctan）及 tan´1（或 arctan），這是因為我們限制了原三角函數的定義域使其
在新的定義域上是一對一的（因此反函數存在）。因此，要討論一個定在某一個（大範圍

的）定義域的函數的反函數，常常我們最多只能說反函數只在某一小塊區域上存在。

如何知道一個函數在一小塊區域上的反函數存在，我們首先該問的是在定義域是一維

（或是指單變數函數）的情況下發生什麼事？由一維的反函數定理 (Theorem A.10) 我們知
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道首先應該要保留的條件是類似於微分不為零的這個條件。但是在多變數函數之下，微

分不為零的條件該怎麼呈現，這是第一個問題。而當我們觀察 (A.1)，應該可以猜出在多
變數版本裡面所該對應到的條件，即是 (Df)(x) 這個 bounded linear map 的可逆性。
另外，假設 f P C 1，那麼由 Theorem 1.87 我們知道在一個點 x0 如果 (Df)(x0) 可逆

的話，那麼在一個鄰域裡 (Df)(x) 都可逆。所以下面這個反函數定理的條件中只有 (Df)

在一個點可逆這個條件，因為我們暫時也只能討論在小區域的反函數存不存在。

Before proceeding, we first prove the following important proposition which is used
crucially in the proof of the inverse function theorem.

Proposition 2.60 (Contraction Mapping Principle). Let F Ď Rn be a closed subset (on
which every Cauchy sequence converges), and Φ : F Ñ F be a contraction mapping; that
is, there is a constant θ P [0, 1) such that

›

›Φ(x) ´ Φ(y)
›

›

Rn ď θ}x ´ y}Rn .

Then there exists a unique point x P F , called the fixed-point of Φ, such that Φ(x) = x.

Proof. Let x0 P F , and define xk+1 = Φ(xk) for all k P N Y t0u. Then

}xk+1 ´ xk}Rn =
›

›Φ(xk) ´ Φ(xk´1)
›

›

Rn ď θ}xk ´ xk´1}Rn ď ¨ ¨ ¨ ď θk}x1 ´ x0}Rn ;

thus if ℓ ą k,

}xℓ ´ xk}Rn ď }xk ´ xk+1}Rn + }xk+1 ´ xk+2}Rn + ¨ ¨ ¨ + }xℓ´1 ´ xℓ}Rn

ď (θk + θk+1 + ¨ ¨ ¨ + θℓ´1)}x1 ´ x0}Rn

ď θk(1 + θ + θ2 + ¨ ¨ ¨ )}x1 ´ x0}Rn =
θk

1 ´ θ
}x1 ´ x0}Rn . (2.8)

Since θ P [0, 1), lim
kÑ8

θk

1 ´ θ
}x1 ´ x0}Rn = 0; thus

@ ε ą 0, DN ą 0 Q }xk ´ xℓ}Rn ă ε @ k, ℓ ě N .

In other words, txku8
k=1 is a Cauchy sequence in F . By assumption, xk Ñ x as k Ñ 8 for

some x P F . Finally, since Φ(xk) = xk+1 for all k P N, by the continuity of Φ we obtain that

Φ(x) = lim
kÑ8

Φ(xk) = lim
kÑ8

xk+1 = x

which guarantees the existence of a fixed-point.
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Suppose that for some x, y P M , Φ(x) = x and Φ(y) = y. Then

}x ´ y}Rn =
›

›Φ(x) ´ Φ(y)
›

›

Rn ď θ}x ´ y}Rn

which suggests that }x ´ y}Rn = 0 or x = y. Therefore, the fixed-point of Φ is unique. ˝

Now we state and prove the inverse function theorem.

Theorem 2.61 (Inverse Function Theorem). Let D Ď Rn be open, x0 P D, f : D Ñ Rn be
of class C 1, and (Df)(x0) be invertible. Then there exist an open neighborhood U of x0 and
an open neighborhood V of f(x0) such that

1. f : U Ñ V is one-to-one and onto;

2. The inverse function f´1 : V Ñ U is of class C 1;

3. If x = f´1(y), then (Df´1)(y) =
(
(Df)(x)

)´1;

4. If f is of class C r for some r ą 1, so is f´1.

Proof. We will omit the proof of 4 since it requires more knowledge about differentiation.
Assume that A = (Df)(x0). Then }A´1}B(Rn,Rn) ‰ 0. Choose λ ą 0 such that

2λ}A´1}B(Rn,Rn) = 1. Since f P C 1, there exists δ ą 0 such that
›

›(Df)(x) ´ A
›

›

B(Rn,Rn)
=
›

›(Df)(x) ´ (Df)(x0)
›

›

B(Rn,Rn)
ă λ whenever x P B(x0, δ) X D .

By choosing δ even smaller if necessary, we can assume that B(x0, δ) Ď D. Let U = B(x0, δ).
Claim: f : U Ñ Rn is one-to-one (hence f : U Ñ f(U) is one-to-one and onto).
Proof of claim: For each y P Rn, define φy(x) = x+A´1

(
y ´ f(x)

)
(and we note that every

fixed-point of φy corresponds to a solution to f(x) = y). Then

(Dφy)(x) = Id ´ A´1(Df)(x) = A´1
(
A ´ (Df)(x)

)
,

where Id is the identity map on Rn. Therefore,
›

›(Dφy)(x)
›

›

B(Rn,Rn)
ď }A´1}B(Rn,Rn)

›

›A ´ (Df)(x)
›

›

B(Rn,Rn)
ă

1

2
@x P B(x0, δ) .

By the mean value theorem (Theorem 2.55),
›

›φy(x1) ´ φy(x2)
›

›

Rn ď
1

2
}x1 ´ x2}Rn @x1, x2 P B(x0, δ), x1 ‰ x2 ; (2.9)
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thus at most one x satisfies φy(x) = x; that is, φy has at most one fixed-point. As a
consequence, f : B(x0, δ) Ñ Rn is one-to-one.
Claim: The set V = f(U) is open.
Proof of claim: Let b P V . Then there is a P V with f(a) = b. Choose r ą 0 such that
B(a, r) Ď U . We observe that if y P B(b, λr), then

}φy(a) ´ a}Rn ď }A´1
(
y ´ f(a)

)
}Rn ď }A´1}B(Rn,Rn)}y ´ b}Rn ă λ}A´1}B(Rn,Rn)r =

r

2
;

thus if y P B(b, λr) and x P B(a, r),

}φy(x) ´ a}Rn ď
›

›φy(x) ´ φy(a)
›

›

Rn + }φy(a) ´ a}Rn ă
1

2
}x ´ a}Rn +

r

2
ă r .

Therefore, if y P B(b, λr), then φy : B(a, r) Ñ B(a, r). By the continuity of φy,

φy : B(a, r) Ñ B(a, r) .

On the other hand, (2.9) implies that φy is a contraction mapping if y P B(b, λr); thus by the
contraction mapping principle (Proposition 2.60) φy has a unique fixed-point x P B(a, r).
As a result, every y P B(b, λr) corresponds to a unique x P B(a, r) such that φy(x) = x or
equivalently, f(x) = y. Therefore,

B(b, λr) Ď f
(
B(a, r)

)
Ď f(U) = V .

Next we show that f´1 : V Ñ U is differentiable. We note that if x P B(x0, δ),

}(Df)(x0) ´ (Df)(x)}B(Rn,Rn)}A
´1}B(Rn,Rn) ă λ}A´1}B(Rn,Rn) =

1

2
;

thus Theorem 1.87 implies that (Df)(x) is invertible if x P B(x0, δ).
Let b P V and k P Rn such that b + k P V . Then there exists a unique a P U and

h = h(k) P Rn such that a + h P U , b = f(a) and b + k = f(a + h). By the mean value
theorem and (2.9),

›

›φy(a+ h) ´ φy(a)
›

›

Rn ă
1

2
}h}Rn ;

thus the fact that f(a+ h) ´ f(a) = k implies that

}h ´ A´1k}Rn ă
1

2
}h}Rn

which further suggests that
1

2
}h}Rn ď }A´1k}Rn ď }A´1}B(Rn,Rn)}k}Rn ď

1

2λ
}k}Rn . (2.10)
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As a consequence, if k is such that b+ k P V ,
›

›f´1(b+ k) ´ f´1(b) ´
(
(Df)(a)

)´1
k
›

›

Rn

}k}Rn
=

›

›a+ h ´ a ´
(
(Df)(a)

)´1
k
›

›

Rn

}k}Rn

ď
›

›

(
(Df)(a)

)´1›
›

B(Rn,Rn)

›

›k ´ (Df)(a)(h)
›

›

Rn

}k}Rn

ď
›

›

(
(Df)(a)

)´1›
›

B(Rn,Rn)

›

›f(a+ h) ´ f(a) ´ (Df)(a)(h)
›

›

Rn

}h}Rn

}h}Rn

}k}Rn

ď

›

›

(
(Df)(a)

)´1›
›

B(Rn,Rn)

λ

›

›f(a+ h) ´ f(a) ´ (Df)(a)(h)
›

›

Rn

}h}Rn
.

Using (2.10), h Ñ 0 as k Ñ 0; thus passing k Ñ 0 on the left-hand side of the inequality
above, by the differentiability of f we conclude that

lim
kÑ0

›

›f´1(b+ k) ´ f´1(b) ´
(
(Df)(a)

)´1
k
›

›

Rn

}k}Rn
= 0 .

This proves 3. ˝

Remark 2.62. Since f´1 : V Ñ U is continuous, for any open subset W of U f(W) =

(f´1)´1(W) is open relative to V , or f(W) = O X V for some open set O Ď Rn. In other
words, if U is an open neighborhood of x0 given by the inverse function theorem, then
f(W) is also open for all open subsets W of U . We call this property as f is a local open
mapping at x0.

Remark 2.63. Since (Df)(x0) P B(Rn,Rn), the condition that (Df)(x0) is invertible can
be replaced by that the determinant of the Jacobian matrix of f at x0 is not zero; that is,

det
([
(Df)(x0)

])
‰ 0 .

The determinant of the Jacobian matrix of f at x0 is called the Jacobian of f at x0. The
Jacobian of f at x sometimes is denoted by Jf (x) or B (f1, ¨ ¨ ¨ , fn)

B (x1, ¨ ¨ ¨ , xn)
.

Example 2.64. Let f : R Ñ R be given by

f(x) =

#

x+ 2x2 sin 1

x
if x ‰ 0 ,

0 if x = 0 .

Let 0 P (a, b) for some (small) open interval (a, b). Since f 1(x) = 1 ´ 2 cos 1

x
+ 4x sin 1

x
for

x ‰ 0, f has infinitely many critical points in (a, b), and (for whatever reasons) these critical
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points are local maximum points or local minimum points of f which implies that f is not
locally invertible even though we have f 1(0) = 1 ‰ 0. One cannot apply the inverse function
theorem in this case since f is not C 1.

Corollary 2.65. Let U Ď Rn be open, f : U Ñ Rn be of class C 1, and (Df)(x) be invertible
for all x P U . Then f(W) is open for every open set W Ď U .

在證明了小區域的（local）反函數定理 (Theorem 2.61) 之後，我們接下來要問的是全
域的（global）反函數在什麼條件之下會存在。如果照一維的反函數定理，我們會猜測是
不是只要 (Df)(x) 在整個區域都可逆就能得到在全域的反函數都存在。以下給個反例說

單單在這個條件之下，函數不一定會有一對一的性質。

Example 2.66. Let f : R2 Ñ R2 be given by

f(x, y) = (ex cos y, ex sin y) .

Then [
(Df)(x, y)

]
=

[
ex cos y ´ex sin y
ex sin y ex cos y

]
.

It is easy to see that the Jacobian of f at any point is not zero (thus (Df)(x) is invertible for
all x P R2), and f is not globally one-to-one (thus the inverse of f does not exist globally)
since for example, f(x, y) = f(x, y + 2π).

要再加什麼條件進來才能得到反函數在全域都存在是個不容易的問題。在一維的情

況下，導數是 sign definite 就表示函數在全域是嚴格單調的。在高維度的情況，即使是
(Df)(x) 到處都可逆，仍然有很多情況可能發生（如上例）。下面這個定理（全域的反函

數存在定理），從某種角度來說並沒有真的加了什麼條件以確保全域的反函數存在，只是

多要求了在所考慮的區域邊界上函數是一對一的。這個條件在一維的情況之下是自動成

立的：因為如果一單變數函數的導數是 sign definite，那麼函數在邊界上必定是一對一的
（因為嚴格單調的關係）。

Theorem 2.67 (Global Existence of Inverse Function). Let D Ď Rn be open, f : D Ñ Rn

be of class C 1, and (Df)(x) be invertible for all x P K. Suppose that K is a connected（連
通，即只有一塊）, closed and bounded subset of D, and f : BK Ñ Rn is one-to-one. Then
f : K Ñ Rn is one-to-one.

全域的反函數定理的證明需要更多關於點拓的知識，所以不在這門課中證明。
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2.7 The Implicit Function Theorem（隱函數定理）
Theorem 2.68 (Implicit Function Theorem). Let D Ď Rn ˆ Rm be open, and F : D Ñ Rm

be a function of class C 1. Suppose that for some (x0, y0) P D, where x0 P Rn and y0 P Rm,
F (x0, y0) = 0 and

[
(DyF )(x0, y0)

]
=


BF1

By1
¨ ¨ ¨

BF1

Bym
... . . . ...

BFm
By1

¨ ¨ ¨
BFm
Bym

 (x0, y0)

is invertible. Then there exists an open neighborhood U Ď Rn of x0, an open neighborhood
V Ď Rm of y0, and f : U Ñ V such that

1. F
(
x, f(x)

)
= 0 for all x P U ;

2. y0 = f(x0);

3. (Df)(x) = ´
(
(DyF )(x, f(x))

)´1
(DxF )

(
x, f(x)

)
for all x P U ;

4. f is of class C 1;

5. If F is of class C r for some r ą 1, so is f .

Proof. Let z = (x, y) and w = (u, v), where x, u P Rn and y, v P Rm. Define w = G(z),
where G is given by G(x, y) =

(
x, F (x, y)

)
. Then G : D Ñ Rn+m, and

[
(DG)(x, y)

]
=

[
In 0

(DxF )(x, y) (DyF )(x, y)

]
,

where In is the nˆ n identity matrix and (DxF )(x, y) P B(Rn,Rm) whose matrix represen-
tation is given by

[
(DxF )(x, y)

]
=


BF1

Bx1
¨ ¨ ¨

BF1

Bxn
... . . . ...

BFm
Bx1

¨ ¨ ¨
BFm
Bxn

 (x, y) .

We note that the Jacobian of G at (x0, y0) is det
(
[(DyF )(x0, y0)]

)
which does not vanish

since (DyF )(x0, y0) is invertible, so the inverse function theorem implies that there exists
open neighborhoods O of (x0, y0) and W of

(
x0, F (x0, y0)

)
= (x0, 0) such that
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(a) G : O Ñ W is one-to-one and onto;

(b) the inverse function G´1 : W Ñ O is of class C r;

(c) (DG´1)
(
x, F (x, y)

)
=

(
(DG)(x, y)

)´1.

By Remark 2.62, W.L.O.G. we can assume that O = U ˆ V , where U Ď Rn and V Ď Rm

are open, and x0 P U , y0 P V .
Write G´1(u, v) =

(
φ(u, v), ψ(u, v)

)
, where φ : W Ñ U and ψ : W Ñ V . Then

(u, v) = G
(
φ(u, v), ψ(u, v)

)
=

(
φ(u, v), F (u, ψ(u, v))

)
which implies that φ(u, v) = u and v = F (u, ψ(u, v)). Let f(x) = ψ(x, 0). Then

(
u, f(u)

)
P

U ˆ V is the unique point satisfying F
(
u, f(u)

)
= 0 if u P U . Therefore, f : U Ñ V , and

F
(
x, f(x)

)
= 0 @x P U .

Since G(x0, y0) = (x0, 0) = G
(
x0, f(x0)

)
, (x0, y0),

(
x0, f(x0)

)
P O, and G : O Ñ W is

one-to-one, we must have y0 = f(x0).
By (b) and (c), we have G´1 is of class C 1, and

(DG´1)(u, v) =
(
(DG)(x, y)

)´1
.

As a consequence, ψ P C 1, and[
(Duφ)(u, v) (Dvφ)(u, v)

(Duψ)(u, v) (Dvψ)(u, v)

]
=

[
In 0

(DxF )(x, y) (DyF )(x, y)

]´1

=

[
In 0

´
(
(DyF )(x, y)

)´1
(DxF )(x, y)

(
(DyF )(x, y)

)´1

]
.

Evaluating the equation above at v = 0, we conclude that

(Df)(u) = (Duψ)(u, 0) = ´
(
(DyF )(u, f(u))

)´1
(DxF )

(
u, f(u)

)
which implies 3. We also note that 4 follows from (b) and 5 follows from 3. ˝

Example 2.69. Let F (x, y) = x2 + y2 ´ 1.

1. If (x0, y0) = (1, 0), then Fx(x0, y0) = 2 ‰ 0; thus the implicit function theorem implies
that locally x can be expressed as a function of y.
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2. If (x0, y0) = (0,´1), then Fy(x0, y0) = ´2 ‰ 0; thus the implicit function theorem
implies that locally y can be expressed as a function of x.

3. If (x0, y0) =
(

´
1

2
,

?
3

2

)
, then Fx(x0, y0) = ´1 ‰ 0 and Fy(x0, y0) =

?
3 ‰ 0; thus the

implicit function theorem implies that locally x can be expressed as a function of y
and locally y can be expressed as a function of x.

Example 2.70. Suppose that (x, y, u, v) satisfies the equation
"

xu+ yv2 = 0

xv3 + y2u6 = 0

and (x0, y0, u0, v0) = (1,´1, 1,´1). Let F (x, y, u, v) = (xu + yv2, xv3 + y2u6). Then
F (x0, y0, u0, v0) = 0.

1. Since (Dx,yF )(x0, y0, u0, v0) =


BF1

Bx

BF1

By
BF2

Bx

BF2

By

 (x0, y0, u0, v0) =

[
1 1

´1 ´2

]
is invertible,

locally (x, y) can be expressed in terms of u, v; that is, locally x = x(u, v) and y =

y(u, v).

2. Since (Dy,uF )(x0, y0, u0, v0) =


BF1

By

BF1

Bu
BF2

By

BF2

Bu

 (x0, y0, u0, v0) =

[
1 1

´2 6

]
is invertible,

locally (y, u) can be expressed in terms of x, v.

Example 2.71. Let f : R3 Ñ R2 be given by

f(x, y, z) = (xey + yez, xez + zey) .

Then f is of class C 1, f(´1, 1, 1) = (0, 0) and

[
(Df)(x, y, z)

]
=

[
ey xey + ez yez

ez zey xez + ey

]
.

Since (Dy,zf)(´1, 1, 1) =

[
0 e
e 0

]
is invertible, the implicit function theorem implies that the

system
"

xey + yez = 0
xez + zey = 0
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can be solved for y and z as continuously differentiable function of x for x near ´1 and (y, z)

near (1, 1). Furthermore, if we write (y, z) = g(x) for x near ´1, then

g1(x) =

[
xey + ez yez yez

zey xez + ey

]´1 [
ey

ez

]
.

2.8 Directional Derivatives and Gradient Vectors

Definition 2.72 (Directional Derivatives). Let f be real-valued and defined on a neighbor-
hood of x0 P Rn, and let v P Rn be a unit vector. Then

(Dvf)(x0) ”
d

dt

ˇ

ˇ

ˇ

t=0
f(x0 + tv) = lim

tÑ0

f(x0 + tv) ´ f(x0)

t

is called the directional derivative（方向導數）of f at x0 in the direction v.

Remark 2.73. Let tejun
j=1 be the standard basis of Rn. Then the partial derivative Bf

Bxj
(x0)

(if it exists) is the directional derivative of f at x0 in the direction ej.

Remark 2.74. Let f be a real-valued differentiable function defined on a neighborhood
of x0 P Rn, and let v P Rn be a unit vector. For a curve γ : (´δ, δ) Ñ Rn satisfying that
γ(0) = x0 and γ 1(0) = v, the chain rule shows that

d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ γ)(t) = (Df)(x0)(v) = (Dvf)(x0) .

In other words, for a differentiable function f in a neighborhood of x0, the derivative
d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ γ) is independent of γ as long as γ(0) = x0 and γ 1(0) = v. Therefore, direc-

tional derivative of a differential function f at x0 in the direction v can also be defined by
the value d

dt

ˇ

ˇ

ˇ

t=0
(f ˝ γ)(t), where γ : (´δ, δ) Ñ Rn is any curve satisfying γ(0) = x0 and

γ 1(0) = v.

Theorem 2.75. Let U Ď Rn be open, and f : U Ñ R be differentiable at x0. Then the
directional derivative of f at x0 in the direction v is (Df)(x0)(v).

Proof. Since f is differentiable at x0, @ ε ą 0, Q δ ą 0 such that

ˇ

ˇf(x) ´ f(x0) ´ (Df)(x0)(x ´ x0)
ˇ

ˇ ď
ε

2
}x ´ x0}Rn whenever }x ´ x0}Rn ă δ .
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In particular, if x = x0 + tv with v being a unit vector in Rn and 0 ă |t| ă δ, then
ˇ

ˇ

ˇ

f(x0 + tv) ´ f(x0)

t
´ (Df)(x0)(v)

ˇ

ˇ

ˇ
=

ˇ

ˇf(x0 + tv) ´ f(x0) ´ (Df)(x0)(tv)
ˇ

ˇ

|t|

=

ˇ

ˇf(x) ´ f(x0) ´ (Df)(x0)(x ´ x0)
ˇ

ˇ

|t|
ď
ε

2
ă ε ;

thus (Dvf)(x0) = (Df)(x0)(v). ˝

Remark 2.76. When v P Rn but 0 ă }v}Rn ‰ 1, we let v =
v

}v}Rn
. Then the direction

derivatives of a function f : U Ď Rn Ñ R at a P U in the direction v is

(Dvf)(a) = lim
tÑ0

f(a+ tv) ´ f(a)

t
.

Making a change of variable s = t

}v}Rn
. Then

(Df)(x0)(v) = }v}Rn(Df)(x0)(v) = }v}Rn lim
tÑ0

f(a+ tv) ´ f(a)

t
= lim

sÑ0

f(a+ sv) ´ f(a)

s
.

We sometimes also call the value (Df)(x0)(v) the “directional derivative” of f in the “direc-
tion” v.

Example 2.77. The existence of directional derivatives of a function f at x0 in all directions
does not guarantee the differentiability of f at x0. For example, let f : R2 Ñ R be given as
in Example 2.44, and v = (v1, v2) P R2 be a unit vector. Then

(Dvf)(0) = lim
tÑ0

f(tv1, tv2) ´ f(0, 0)

t
= v3

1 .

However, f is not differentiable at (0, 0). We also note that in this example, (Dvf)(0) ‰

(Jf)(0)v, where (Jf)(0) =

[
Bf

Bx
(0, 0)

Bf

By
(0, 0)

]
is the Jacobian matrix of f at (0, 0).

Example 2.78. The existence of directional derivatives of a function f at x0 in all directions
does not even guarantee the continuity of f at x0. For example, let f : R2 Ñ R be given by

f(x, y) =

$

&

%

xy2

x2 + y4
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

and v = (v1, v2) P R2 be a unit vector. Then if v1 ‰ 0,

(Dvf)(0) = lim
tÑ0

f(tv1, tv2) ´ f(0, 0)

t
= lim

tÑ0

t3v1v2
2

t(t2v2
1 + t4v4

2)
=

v2
2

v1
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while if v1 = 0,

(Dvf)(0) = lim
tÑ0

f(tv1, tv2) ´ f(0, 0)

t
= 0 .

However, f is not continuous at (0, 0) since if (x, y) approaches (0, 0) along the curve x = my2

with m ‰ 0, we have

lim
yÑ0

f(my2, y) = lim
yÑ0

my4

m2y4 + y4
=

m

m2 + 1

which depends on m. Therefore, f is not continuous at (0, 0).

Example 2.79. Here comes another example showing that a function having directional
derivative in all directions might not be continuous. Let f : R2 Ñ R be given by

f(x, y) =

# xy

x+ y2
if x+ y2 ‰ 0 ,

0 if x+ y2 = 0 ,

and v = (v1, v2) P R2 be a unit vector. Then if v1 ‰ 0,

(Dvf)(0) = lim
tÑ0

f(tv1, tv2) ´ f(0, 0)

t
= lim

tÑ0

t2v1v2

t(tv1 + t2v2
2)

= v2

while if v1 = 0,

(Dvf)(0) = lim
tÑ0

f(tv1, tv2) ´ f(0, 0)

t
= 0 .

However, f is not continuous at (0, 0) since if (x, y) approaches (0, 0) along the polar curve

θ(r) =
π

2
+ sin´1(r ´ mr2) 0 ă r ! 1 ,

we have

lim
(x,y)Ñ(0,0)

x=r cos θ(r),y=r sin θ(r)

f(x, y) = lim
rÑ0+

r2 cos θ(r) sin θ(r)
r2 sin2 θ(r) + r cos θ(r)

= lim
rÑ0+

r(´r +mr2) sin θ(r)
r sin2 θ(r) ´ r +mr2

= lim
rÑ0+

(´r +mr2) sin θ(r)
sin2 θ(r) ´ 1 +mr

=
´1

m

which depends on m. Therefore, f is not continuous at (0, 0).

Definition 2.80. Let U Ď Rn be an open set. The derivative of a scalar function f : U Ñ R
is called the gradient of f and is denoted by gradf or ∇f .
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Let U Ď Rn be an open set, a P U and f : U Ñ R be a real-valued function. Suppose
that f P C 1(U ;R) and (∇f)(a) ‰ 0. Then Bf

Bxk
(a) ‰ 0 for some 1 ď k ď n. W.L.O.G.,

we can assume that Bf

Bxn
(a) ‰ 0. By the implicit function theorem, there exists an open

neighborhood V Ď Rn´1 of (a1, ¨ ¨ ¨ , an´1) and an open neighborhood W Ď R of an, as well as
a C 1-function φ : V Ñ R such that in a neighborhood of a the level set

␣

x P U
ˇ

ˇ f(x) = f(a)
(

can be represented by xn = φ(x1, ¨ ¨ ¨ , xn´1); that is,

f
(
x1, ¨ ¨ ¨ , xn´1, φ(x1, ¨ ¨ ¨ , xn´1)

)
= f(a) @ (x1, ¨ ¨ ¨ , xn´1) P V .

Moreover,

φxj(x1, ¨ ¨ ¨ , xn´1) = ´
fxj

(
x1, ¨ ¨ ¨ , xn´1, φ(x1, ¨ ¨ ¨ , xn´1)

)
fxn

(
x1, ¨ ¨ ¨ , xn´1, φ(x1, ¨ ¨ ¨ , xn´1)

) @ (x1, ¨ ¨ ¨ , xn´1) P V .

Consider the collection of vectors tvju
n´1
j=1 given by

vj =
B

Bxj

ˇ

ˇ

ˇ

x=a

(
x1, ¨ ¨ ¨ , xn´1, φ(x1, ¨ ¨ ¨ , xn´1)

)
(x1, ¨ ¨ ¨ , xn´1) P V .

Then v1
js are tangent vectors of the level surface. If tejun

j=1 is the standard basis of Rn, then

vj = ej +
(
0, ¨ ¨ ¨ , 0, φxj(a1, ¨ ¨ ¨ , an´1)

)
= ej ´

(
0, ¨ ¨ ¨ , 0,

fxj (a)

fxn(a)

)
.

Therefore, the gradient vector (∇f)(a) is perpendicular to vj for all 1 ď j ď n ´ 1 which
conclude the following

Proposition 2.81. Let U Ď Rn be open and f P C 1(U ;R); that is, f : U Ñ R is contin-

uously differentiable. Then if (∇f)(x0) ‰ 0, the vector (∇f)(x0)
}(∇f)(x0)}Rn

is the unit normal to

the level set
␣

x P U
ˇ

ˇ f(x) = f(x0)
(

at x0.

Example 2.82. Find the normal to S =
␣

(x, y, z)
ˇ

ˇx2 + y2 + z2 = 3
(

at (1, 1, 1) P S.
Solution: Take f(x, y, z) = x2 + y2 + z2 ´ 3. Then (∇f)(x, y, z) = (2x, 2y, 2z); thus
(∇f)(1, 1, 1) = (2, 2, 2) is normal to S at (1, 1, 1).

Example 2.83. Consider the surface

S =
␣

(x, y, z) P R3
ˇ

ˇx2 ´ y2 + xyz = 1
(

.

Find the tangent plane of S at (1, 0, 1).
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Solution: Let f(x, y, z) = x2 ´ y2 + xyz. Then

S =
␣

(x, y, z) P R3 | f(x, y, z) = f(1, 0, 1)
(

;

that is, S is a level set of f . Since (∇f)(1, 0, 1) = (2, 1, 0) ‰ (0, 0, 0), (2, 1, 0) is normal to
S at (1, 0, 1); thus the tangent plane of S at (1, 0, 1) is 2(x ´ 1) + y = 0. ˝

Proposition 2.84. Let f : Rn Ñ R be differentiable. If (∇f)(x0) ‰ 0, then ˘
(∇f)(x0)

}(∇f)(x0)}Rn

is the direction in which the function f increases/decreases most rapidly（最速上升／下降
方向）at x0.

Proof. Let x0 P Rn be given. Suppose that f increases most rapidly in the direction v,
then (Dvf)(x0) = sup

}w}Rn=1

(Dwf)(x0). Since f is differentiable, (Dwf)(x0) = (Df)(x0)(w) =

(∇f)(x0) ¨ w which is maximized in the direction (∇f)(x0)
}(∇f)(x0)}Rn

. ˝

Example 2.85. Let f : R3 Ñ R be given by f(x, y, z) = x2y sin z. Find the direction of
the greatest rate of change at (3, 2, 0).
Solution: We compute the gradient of f at (3, 2, 0) as follows:

(∇f)(3, 2, 0) =
(Bf

Bx
(3, 2, 0),

Bf

By
(3, 2, 0),

Bf

Bz
(3, 2, 0)

)
= (2xy sin z, x2 sin z, x2y cos z)

ˇ

ˇ

(x,y,z)=(3,,2,0)
= (0, 0, 18).

Therefore, the direction of the greatest rate of change of f at (3, 2, 0) is (0, 0, 1).
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