
Copy
rig

ht
Prot

ect
ed

Chapter 1

Linear Algebra

1.1 Vector Spaces
Definition 1.1 (Vector spaces). A vector space V over a scalar field F is a set of elements
called vectors, together with two operations + : V ˆ V Ñ V and ¨ : F ˆ V Ñ V , called the
vector addition and scalar multiplication respectively, such that

1. v + w = w + v for all v,w P V .

2. (u + v) + w = u + (v + w) for all u, v,w P V .

3. There is a zero vector 0 such that v + 0 = v for all v P V .

4. For every v in V , there is a vector w such that v + w = 0.

5. α ¨ (v + w) = α ¨ v + α ¨ w for all α P F and v,w P V .

6. α ¨ (β ¨ v) = (αβ) ¨ v for all α, β P F and v P V .

7. (α + β) ¨ v = α ¨ v + β ¨ v for all α, β P F and v P V .

8. 1 ¨ v = v for all v P V .

For notational convenience, we often drop the ¨ and write αv instead of α ¨ v.

Remark 1.2. In property 4 of the definition above, it is easy to see that for each v, there
is only one vector w such that v + w = 0. We often denote this w by ´v, and the vector
substraction ´ : V ˆ V Ñ V is then defined (or understood) as v ´ w = v + (´w).
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2 CHAPTER 1. Linear Algebra

Example 1.3. Let F be a scalar field. The space Fn is the collection of n-tuple v =

(v1, v2, ¨ ¨ ¨ , vn) with vi P F with addition + and scalar multiplication ¨ defined by

(v1, ¨ ¨ ¨ , vn) + (w1, ¨ ¨ ¨ ,wn) ” (v1 + w1, ¨ ¨ ¨ , vn + wn) ,

α(v1, ¨ ¨ ¨ , vn) ” (αv1, ¨ ¨ ¨ , αvn) .

Then Fn is a vector space.

Example 1.4. Let F = R or C, and V be the collection of all R-valued continuous functions
on [0, 1]. The vector addition + and scalar multiplication ¨ is defined by

(f + g)(x) = f(x) + g(x) @ f, g P V ,

(α ¨ f)(x) = αf(x) @ f P V , α P F .

Then V is a vector space, and is denoted by C ([0, 1];F). When the scalar field under
consideration is clear, we simply use C ([0, 1]) to denote this vector space.

Definition 1.5 (Vector subspace). Let V be a vector space over scalar field F. A subset
W Ď V is called a vector subspace of V if itself is a vector space over F.

1.1.1 The linear independence of vectors

Definition 1.6. Let V be a vector space over a scalar field F. k vectors v1, v2, ¨ ¨ ¨ , vk in V
is said to be linearly dependent if there exists (α1, ¨ ¨ ¨ , αk) Ď Fk, (α1, ¨ ¨ ¨ , αk) ‰ 0 such
that α1v1 + α2v2 + ¨ ¨ ¨ + αkvk = 0. k vectors v1, v2, ¨ ¨ ¨ , vk in V is said to be linearly
independent if they are not linearly dependent. In other words, tv1, ¨ ¨ ¨ , vku are linearly
independent if

α1v1 + α2v2 + ¨ ¨ ¨ + αkvk = 0 ñ α1 = α2 = ¨ ¨ ¨ = αk = 0 .

Example 1.7. The k vectors t1, x, x2, ¨ ¨ ¨ , xk´1u are linearly independent in C ([0, 1]) for
all k P N.

1.1.2 The dimension of a vector space

Definition 1.8. The dimension of a vector space V is the number of maximum linearly
independent set in V , and in such case V is called an n-dimensional vector space, where
n the the dimension of V . If for every number n P N there exists n linearly independent
vectors in V , the vector space V is said to be infinitely dimensional.
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§1.2 Inner Products and Inner Product Spaces 3

Example 1.9. The space Fn is n-dimensional, and C ([0, 1]) is infinitely dimensional (since
1, x, ¨ ¨ ¨ , xn´1 are n linearly independent vectors in C ([0, 1])).

1.1.3 Bases of a vector space

Definition 1.10 (Basis). Let V be a vector space over F. A set of vectors tviuiPI in V is
called a basis of V if for every v P V , there exists a unique tαiuiPI Ď F such that

v =
ÿ

αPI
αivi .

For a given basis B = tviuiPI , the coefficients tαiuiPI given in the above relation is denoted
by [v]B.

Example 1.11 (Standard Basis of Fn). Let ei = (0, , ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0), where 1 locates at
the i-th slot. Then the collection teiun

i=1 is a basis of the vector space Fn over F since

(α1, ¨ ¨ ¨ , αn) =
n
ÿ

i=1

αiei @αi P F.

The collection teiun
i=1 is called the standard basis of Fn.

Example 1.12. Even though
␣

1, x, ¨ ¨ ¨ , xk, ¨ ¨ ¨
(

is a set of linearly independent vectors, it
is not a basis of C ([0, 1]). However, let P([0, 1]) be the collection of polynomials defined on
[0, 1]. Then P([0, 1]) is still a vector space, and

␣

1, x, ¨ ¨ ¨ , xk, ¨ ¨ ¨
(

is a basis of P([0, 1]).

1.2 Inner Products and Inner Product Spaces
Definition 1.13 (Inner product space). Let F = R or C. A vector space V over a scalar
field F with a bilinear form (¨, ¨) : V ˆ V Ñ F is called an inner product space if the
bilinear form satisfies

1. (v, v) ě 0 for all v P V .

2. (v, v) = 0 if and only if v = 0.

3. (v,w) = (w, v) for all v, w P V , where the bar over the scalar (w, v) is the complex
conjugate.

4. (v + w,u) = (v,u) + (w,u) for all u, v,w P V .
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4 CHAPTER 1. Linear Algebra

5. (αv,w) = α(v,w) for all α P F and v,w P V .

The bilinear form (¨, ¨) is called an inner product on V .

Example 1.14 (Standard Inner Product on Fn). Let F = R or C, and Fn be the vector
space defined in Example 1.3. A special inner product on the vector space Fn over F, called
the standard inner product on Fn, is defined by

(v,w) ”

n
ÿ

i=1

viwi ,

where vi and wi are the i-th component of v and w, respectively, and wi is the complex
conjugate of wi. We sometimes use v ¨ w to denote (v,w).

Example 1.15. Let V = C ([0, 1];R). Define

(f, g) =

ż 1

0

f(x)g(x)dx .

Then
(
C ([0, 1];R), (¨, ¨)

)
is an inner product space. The norm induced by this inner product

is given by

}f} =
[ ż 1

0

|f(x)|2dx
] 1

2
,

and is called the L2-norm.

Proposition 1.16. Let V be an inner product space with inner product (¨, ¨). The inner
product (¨, ¨) on V induces a norm defined by

}v} ”
a

(v, v)

satisfying

1. }v} ě 0 for all v P V.

2. }v} = 0 if and only if v = 0.

3. }αv} = |α|}v} for all α P F and v P V.

4. }v + w} ď }v} + }w} for all v,w P V.

5. |(v,w)| ď }v}}w} for all v,w P V.



Copy
rig

ht
Prot

ect
ed

§1.3 Normed Vector Spaces 5

Proof. Properties 1 through 3 are obvious. We focus on proving property 5 first, and as we
will see, property 4 is a direct consequence of property 5.

Let α P F satisfy α(v,w) = |(v,w)|. Then |α| = 1. For all λ P R,

(λαv + w, λαv + w) = (λαv, λαv) + (λαv,w) + (w, λαv) + (w,w)

= λ2}v}2 + λα(v,w) + λα(v,w) + }w}2

= λ2}v}2 + 2λ|(v,w)| + }w}2 .

Since the left-hand side of the quantity above is always non-negative for all λ P R, we must
have

|(v,w)|2 ´ }v}2}w}2 ď 0

which implies property 5. To prove property 4, we note that

}v + w} ď }v} + }w} ô }v + w}2 ď (}v} + }w})2

ô (v + w, v + w) ď }v}2 + 2}v}}w} + }w}2

ô Re(v,w) ď }v}}w}

while the last inequality is valid because of property 5. ˝

Remark 1.17. The inequality in property 5 is called the Cauchy-Schwarz inequality.

Definition 1.18. Let
(
V , (¨, ¨)

)
be an inner product space. A basis B of V is called orthog-

onal if u ¨ v = 0 if u, v P B and u ‰ v, and is called orthonormal if it is an orthogonal
basis such that }v} = 1 for all v P B.

Definition 1.19 (Orthogoanl complement). Let
(
V , (¨, ¨)

)
be an inner product space over

scalar field F, and W Ď V be a vector subspace of V . The orthogonal complement of
W , denoted by WK, is the set

WK =
␣

v P V
ˇ

ˇ (v,w) = 0 for all w P W
(

.

Proposition 1.20. Let
(
V , (¨, ¨)

)
be an inner product space over scalar field F, and W be a

vector subspace of V. Then WK is a vector subspace of V.
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1.3 Normed Vector Spaces
The norm introduced in Proposition 1.16 is a good way of measure the magnitude of vectors.
In general if a real-valued function can be used as a measurement of the magnitude of vectors
if certain properties are satisfied.

Definition 1.21. Let V be a vector space over scalar field F. A real-valued function } ¨ } :

V Ñ R is said to be a norm of V if

1. }v} ě 0 for all v P V .

2. }v} = 0 if and only if v = 0.

3. }αv} = |α|}v} for all v P V and α P F.

4. }v + w} ď }v} + }w} for all v,w P V .

The pair (V , } ¨ }) is called a normed vector space.

Example 1.22. Let V = Fn, and } ¨ }p be defined by

}x}p =

$

’

&

’

%

[ n
ÿ

i=1

|xi|
p
] 1
p if 1 ď p ă 8 ,

max
1ďiďn

|xi| if p = 8 ,

where x = (x1, ¨ ¨ ¨ , xn). The function } ¨ }p is a norm of Fn, and is called the p-norm of Fn.

Theorem 1.23 (Hölder’s inequality). Let 1 ď p ď 8. Then
ˇ

ˇ(x,y)
ˇ

ˇ ď }x}p}y}p1 @ x,y P Fn , (1.1)

where (¨, ¨) is the standard inner product on Fn and p 1 is the conjugate of p satisfying
1

p
+

1

p 1
= 1.

Proof. Let x = (x1, ¨ ¨ ¨ , xn) and y = (y1, ¨ ¨ ¨ , yn) be given. Without loss of generality we
can assume that x ‰ 0 and y ‰ 0. Define rx = x/}x}p and ry = y/}y}p1 . Then }rx}p = 1 and
}ry}p1 = 1. By Young’s inequality

ab ď
1

p
ap +

1

p 1
bp

1

@ a, b ě 0 ,
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we find that for 1 ă p ă 8,

ˇ

ˇ(rx, ry)
ˇ

ˇ =
ˇ

ˇ

ˇ

n
ÿ

k=1

xk
}x}p

yk
}y}p1

ˇ

ˇ

ˇ
ď

n
ÿ

k=1

|xk|

}x}p

|yk|

}y}p1

ď

n
ÿ

k=1

(1
p

|xk|p

}x}
p
p
+

1

p 1

|yk|p
1

}y}
p1

p1

)
=

1

p}x}
p
p

n
ÿ

k=1

|xk|p +
1

p 1}y}
p1

p1

n
ÿ

k=1

|yk|p
1

=
}x}pp

p}x}
p
p
+

}y}p
1

p 1}y}
p1

p1

= 1

which conclude the case for 1 ă p ă 8. The proof for the case that p = 1 or p = 8 is
trivial, and is left to the reader. ˝

Corollary 1.24 (Minkowski inequality). Let 1 ď p ď 8. Then

}x + y}p ď }x}p + }y}p @ x,y P Fn .

Proof. We only prove the case that 1 ă p ă 8. First we note that

}x + y}pp =
n
ÿ

k=1

|xk + yk|p ď

n
ÿ

k=1

|xk + yk|p´1
(
|xk| + |yk|

)
=

n
ÿ

k=1

|xk + yk|p´1|xk| +
n
ÿ

k=1

|xk + yk|p´1|yk| .

Let u =
(
|x1|, |x2|, ¨ ¨ ¨ , |xn|

)
and v =

(
|x1+y1|p´1, |x2+y2|

p´1, ¨ ¨ ¨ , |xn+yn|p´1
)
. By Hölder’s

inequality,
n
ÿ

k=1

|xk + yk|p´1|xk| = (u, v) ď }u}p}v}p1 = }x}p

( n
ÿ

k=1

|xk + yk|(p´1)p1
) 1
p1

= }x}p

( n
ÿ

k=1

|xk + yk|p
) p´1

p
= }x}p}x + y}p´1

p .

Similarly, we have
n
ř

k=1

|xk + yk|p´1|yk| ď }y}p}x + y}p´1
p ; thus

}x + y}pp ď
(
}x}p + }y}p

)
}x + y}p´1

p

which concludes the Minkowski inequality. ˝

Theorem 1.25. Let 1 ď p ď 8, and p1 be the conjugate of p; that is, 1

p
+

1

p 1
= 1. Then

}x}p = sup
}y}p1=1

ˇ

ˇ(x,y)
ˇ

ˇ @ x P Fn .
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Proof. By Hölder’s inequality, it is clear that }x}p ě sup
}y}p1=1

ˇ

ˇ(x,y)
ˇ

ˇ for all x P Fn. On the

other hand, note that |xk|p = xk ¨xk|xk|p´2; thus letting yk =
xk|xk|p´2

}x}
p´1
p

we find that }y}p1 = 1

which implies that
ˇ

ˇ(x,y)
ˇ

ˇ =
1

}x}
p´1
p

n
ÿ

k=1

|xk|p = }x}p

which implies that sup
}y}p1=1

ˇ

ˇ(x,y)
ˇ

ˇ ě }x}p. ˝

Making use of Hölder’s inequality (1.1) and the Riemann sum approximation of the
Riemann integral, we can conclude the following

Theorem 1.26. Let 1 ď p ď 8. If p 1 is the conjugate of p; that is, 1

p
+

1

p 1
= 1, then

ˇ

ˇ

ˇ

ż 1

0

f(x)g(x) dx
ˇ

ˇ

ˇ
ď }f}p}g}p1 @ f, g P C ([0, 1];R) ,

where

}f}p =

$

’

’

&

’

’

%

( ż 1

0

|f(x)|pdx
) 1
p if 1 ď p ă 8 ,

max
xP[0,1]

|f(x)| if p = 8 .

Remark 1.27. The Minkowski inequality implies that

}f + g}p ď }f}p + }g}p @ f, g P C ([0, 1];R) .

In other words, the function } ¨ }p : C ([0, 1];R) Ñ R is a norm on C ([0, 1];R), and is called
the Lp-norm.

1.4 Matrices
Definition 1.28 (Matrix). Let F be a scalar field. The space M(m, n;F) is the collection
of elements, called an m-by-n matrix or m ˆ n matrix over F, of the form

A =


a11 a12 ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2n
... ... . . . ...
am1 am2 ¨ ¨ ¨ amn

 ,
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§1.4 Matrices 9

where aij P F is called the (i, j)-th entry of A, and is denoted by [A]ij. We write A =

[aij]1ďiďm;1ďjďn or simply A = [aij]mˆn to denote that A is an m ˆ n matrix whose (i, j)-th
entry is aij. A is called a square matrix if m = n. The 1 ˆ m matrix

ai˚ =
[
ai1 ai2 ¨ ¨ ¨ ain

]
is called the i-th row of A, and the m ˆ 1 matrix

a˚j =


a1j
a2j
...
amj


is called the j-th column of A.

Definition 1.29 (Matrix addition). Let A = [aij]mˆn and B = [bij]mˆn be two m ˆ n
matrices over a scalar field F. The sum of A and B, denoted by A + B, is another m ˆ n
matrix defined by A + B = [aij + bij]mˆn or more precisely,

A + B =


a11 + b11 a12 + b12 ¨ ¨ ¨ a1n + b1n

a21 + b21 a22 + b22 ¨ ¨ ¨ a2n + b2n
... ... . . . ...

am1 + bm1 am2 + bm2 ¨ ¨ ¨ amn + bmn

 .
Definition 1.30 (Scalar multiplication). Let A = [aij]mˆn be an m ˆ n matrix over a scalar
field F, and α P F. The scalar multiplication of α and A, denoted by αA, is an m ˆ n matrix
defined by αA = [αaij]mˆn or more precisely,

αA =


αa11 αa12 ¨ ¨ ¨ αa1n

αa21 αa22 ¨ ¨ ¨ αa2n
... ... . . . ...

αam1 αam2 ¨ ¨ ¨ αamn

 .
Proposition 1.31. The space M(m,n;F) is a vector space over F under the matrix addition
and scalar multiplication defined in previous two definitions.

Definition 1.32 (Matrix product). Let A P M(m,n;F) and B P M(n, ℓ;F) be two matrices
over a scalar field F. The matrix product of A and B, denoted by AB, is an m ˆ ℓ matrix
given by AB = [cij]mˆn with cij =

n
ř

k=1

aikbkj. In other words, the (i, j)-th entry of the

product AB is the inner product of the i-th row of A and the j-th column of B.
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Remark 1.33. The matrix product AB is only defined if the number of columns of A is
the same as the number of rows of B. Therefore, even if AB is defined, BA might not make
sense. When A and B are both nˆ n square matrix, AB and BA are both defined; however,
in general AB ‰ BA.

Remark 1.34. Let v P Fn be a vector such that the k-th component of v is the same as
the (i, k)-th entry of A P M(m,n;F), and w P Fn be a vector such that the k-th component
of w is the same as the (k, j)-th entry of B P M(n, ℓ;F). Then the (i, j)-th entry of AB is
simply the inner product of v and w in Fn.

Example 1.35. Let A =

[
1 0 2
0 ´1 1

]
and B =

 2 ´1 1
3 0 2

´1 1 0

. Then

AB =

[
0 1 1

´4 1 ´2

]
but BA is not defined.

Proposition 1.36. Let A P M(m, n;F), B P M(n, ℓ;F) and C P M(ℓ, k;F). Then

A(BC) = (AB)C .

Definition 1.37 (The range and the null space of matrices). Let A P M(m, n;F). The
range of A, denoted by R(A), is the subset of Fm given by

R(A) =
␣

Ax P Fm ˇ

ˇx P Fn( ,

and the null space of A, denoted by null(A), is the subset of Fn given by

null(A) =
␣

x P Fn ˇ
ˇAx = 0

(

.

Proposition 1.38. Let A P M(m, n;F). Then R(A) and null(A) are vector subspaces of Fn

and Fm, respectively.

Definition 1.39 (Kronecker’s delta). The Kronecker delta is a function, denoted by δ, of
two variables (usually positive integers) such that the function is 1 if the two variables are
equal, and 0 otherwise. When the two variables are i and j, the value δ(i, j) is usually
written as δij; that is,

δij =

"

0 if i ‰ j ,
1 if i = j .
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Definition 1.40 (Identity matrix). The identity matrix of size n, denoted by In, is the nˆn
square matrix with ones on the main diagonal and zeros elsewhere. In other words,

In = [δij]nˆn ,

where δij is the Kronecker delta.

When the size is clear from the context, In is sometimes denoted by I.

Definition 1.41 (Transpose). Let A = [aij]mˆn be a m ˆ n matrix over scalar field F. The
transpose of A, denoted by AT, is the n ˆ m matrix given by [AT]ij = aji.

By the definition of product of matrices, we can easily derive the following two proposi-
tions.

Proposition 1.42. Let A P M(m, n;F) and B P M(n, ℓ;F). Then (AB)T = BTAT.

Proposition 1.43. Let A = [aij]mˆn be a m ˆ n matrix over scalar field F, and (¨, ¨)Fn and
(¨, ¨)Fm be the standard inner products on Fn and Fm, respectively. Then

(Ax,y)Fm = (x,ATy)Fn @ x P Fn,y P Fm .

Definition 1.44 (Rank and nullity of matrices). The rank of a matrix A, denoted by
rank(A), is the dimension of the vector space generated (or spanned) by its columns. The
nullity of a matrix A, denoted by nullity(A), is the dimension of the null space of A.

Remark 1.45. The matrix AT is often called the conjugate transpose of the matrix A.

Remark 1.46. The rank defined above is also referred to the column rank, and the row
rank of a matrix is the dimension of the vector space spanned by its rows. One should
immediately notice that the column rank of A equals the dimension of R(A) and the row
rank of A equalis the dimension of R(AT).

Theorem 1.47. Let A P M(m, n;F). Then rank(A) + nullity(A) = n.

Proof. Without loss of generality, we assume that nulltiy(A) = k ă n, and
␣

v1, ¨ ¨ ¨ , vk
(

be
a basis of null(A). Then there exists n ´ k vectors

␣

vk+1, ¨ ¨ ¨ , vn
(

such that
␣

v1, ¨ ¨ ¨ , vn
(

is a basis of Fn. We conclude the theorem by showing that
␣

Avk+1, ¨ ¨ ¨ ,Avn
(

is a basis of
R(A).
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First, we claim that
␣

Avk+1, ¨ ¨ ¨ ,Avn
(

is a linearly independent set of vectors. To see
this, suppose that αk+1, ¨ ¨ ¨ , αn P F such that

αk+1Avk+1 + ¨ ¨ ¨ + αnAvn = 0 .

Then A(αk+1vk+1 + ¨ ¨ ¨ + αnvn) = 0 which implies that αk+1vk+1 + ¨ ¨ ¨ + αnvn P null(A).
Since

␣

v1, ¨ ¨ ¨ , vk
(

is a basis of null(A), there exist α1, ¨ ¨ ¨ , αk P F such that

α1v1 + αkvk = αk+1vk+1 + ¨ ¨ ¨ + αnvn .

By the linear independence of
␣

v1, ¨ ¨ ¨ , vn
(

, we must have α1 = ¨ ¨ ¨ = αn = 0 which shows
the linear independence of

␣

Avk+1, ¨ ¨ ¨ ,Avn
(

.
Let w P R(A). Then w = Av for some v P Fn. Since

␣

v1, ¨ ¨ ¨ , vn
(

is a basis of Fn, there
exist β1, ¨ ¨ ¨ , βn P F such that v = β1v1 + ¨ ¨ ¨ + βnvn. As a consequence, by the fact that
Avj = 0 for 1 ď j ď k,

w = Av = A(β1v1 + ¨ ¨ ¨ + βnvn) = β1Av1 + ¨ ¨ ¨ βnAvn = βk+1Avk+1 + ¨ ¨ ¨ + βnAvn ;

thus w can be written as a linear combination of
␣

Avk+1, ¨ ¨ ¨ ,Avn
(

. ˝

Theorem 1.48. The rank of a matrix is the same as the rank of its transpose. In other
words, for a given matrix the row rank equals the column rank.

Proof. Let A be a m ˆ n matrix, and (¨, ¨)Fn , (¨, ¨)Fm be the standard inner products on Fn,
Fm, respectively. Then Proposition 1.43 implies that

y P R(A)K ô (y,Ax)Fm = 0 for all x P Fn ô (ATy,x)Fn = 0 for all x P Fn

ô ATy = 0 ô y P null(AT) .

In other words, R(A)K = null(AT). Since the column rank of A is the dimension of R(A),
we must have

nullity(AT) = nullity(AT) = dim
(
R(A)K

)
= m ´ the column rank of A .

On the other hand, Theorem 1.47 implies that

rank(AT) + nullity(AT) = m ;

thus the column rank of A is the same as the row rank of A. ˝
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Definition 1.49. Let A P M(n, n;F) be a square matrix. A is said to be invertible if there
exists B P M(n, n;F) such that AB = In. The matrix B is called the inverse matrix of A,
and is usually denoted by A´1.

Proposition 1.50. Let A P M(n, n;F) be invertible. Then rank(A) = rank(A´1) = n.

Proof. Since A(A´1b) = (AA´1)b = b for all b P Fn, R(A) = Fn which implies that
rank(A) = n. We next show that R(A´1) = Fn. Denote A´1 by B, and let b P Fn.
Then BT(ATb) = (BTAT)b = b since BTAT = (AB)T = In. This observation implies that
R(BT) = Fn, and the theorem is then concluded by Theorem 1.48. ˝

Proposition 1.51. Let A P M(n, n;F) be invertible. Then A´1A = AA´1 = In.

Proof. We show that for all b P Fn, A´1Ab = b. Since A is invertible, rank(A´1) = n; thus
R(A´1) = Fn which implies that for each b P Fn, there exists x P F such that A´1x = b. As
a consequence,

(A´1A)b = (A´1A)(A´1x) = A´1(AA´1)x = A´1x = b . ˝

1.4.1 Elementary Row Operations and Elementary Matrices

Definition 1.52 (Elementary row operations). For an n ˆ m matrix A, three types of
elementary row operations can be performed on A:

1. The first type of row operation on A switches all matrix elements on the i-th row with
their counterparts on j-th row.

2. The second type of row operation on A multiplies all elements on the i-th row by a
non-zero scalar λ.

3. The third type of row operation on A adds j-th row multiplied by a scalar µ to the
i-th row.

The elementary row operation on an n ˆ m matrix A can be done by multiplying A by
an n ˆ n matrix, called an elementary matrix, on the left. The elementary matrices are
defined in the following

Definition 1.53 (Elementary matrices). An elementary matrix is a matrix which differs
from the identity matrix by one single elementary row operation.
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1. Switching the i0-th and j0-th rows of A, where i0 ‰ j0, is done by left multiplied A
by the matrix E = [eij]nˆn given by

eij =

"

1 if (i, j) = (i0, j0) or (i, j) = (j0, i0) or i = j = k0 for some k0 ‰ i0, j0,
0 otherwise,

or in the matrix form,

E =



1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

0
. . . 0

...
... . . . 1

. . . ...
... 0 0 0 1

...
... . . . 1

. . . ...
... 0

. . . 0
...

... . . . 1
. . . ...

... 1 0 0 0
...

0
. . . 1

. . . ...
0 0

. . . 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1



Ð the i0-th row

Ð the j0-th row

Ò Ò

the i0-th column the j0-th column

2. Multiplying the k0-th row of A by a non-zero scalar λ is done by left multiplied A by
the matrix E = [eij]nˆn given by

eij =

$

&

%

0 if i ‰ j,
λ if i = j = k0,
1 otherwise,

or in the matrix form,

E =



1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

0 1 0
...

... . . . . . . . . . ...

... 0 1 0
...

... 0 λ 0
...

... 0 1 0
...

... . . . . . . . . . ...

... 0 1 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1



Ð the k0-th row
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3. Adding the j0-th row of A multiplied by a scalar µ to the i0-th row, where i0 ‰ j0, is
done by left multiplied A by the matrix E = [eij]nˆn given by

eij =

$

&

%

1 if i = j,
µ if (i, j) = (i0, j0),
0 otherwise,

or in the matrix form,

E =



1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
0 1 0 0
... . . . . . . . . . µ 0
... . . . . . . . . . 0
... 0 1 0

...
... . . . . . . . . . ...
... . . . . . . . . . ...
... 0 1 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1



Ð the i0-th row

Ò

the j0-th column

Proposition 1.54. Every elementary matrix is invertible.

Theorem 1.55. Let A P M(n, n;F) be a square matrix. The following statements are
equivalent:

1. R(A) = Fn.

2. rank(A) = n.

3. Ax = b has a unique solution x for all b P Fn.

4. A is invertible.

5. A = EkEk´1 ¨ ¨ ¨ E2E1 for some elementary matrices E1, ¨ ¨ ¨ , Ek.

Proof. Note that by definition 1,2,3 are equivalent, and Proposition 1.50 shows that 4 ñ 2.
The implication from 3 to 4 is due to the fact that the map b ÞÑ x, where x is the unique
solution to Ax = b, is the inverse of A. Proposition 1.54 provides that 5 ñ 4. That 3 ñ 5

follows from that at most n(n + 1) elementary row operations has to be applied on A to
reach the identity matrix. ˝
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1.5 Determinants

In order to introduce the notion of the determinant of square matrices, we need to talk
about permutations first. Note that there are many other ways of defining determinants,
but it is quite elegant to use the notion of permutations, and we can derive a lot of useful
results via this definition.

Definition 1.56 (Permutations). A sequence (k1, k2, ¨ ¨ ¨ , kn) of positive integers not ex-
ceeding n, with the property that no two of the ki are equal, is called a permutation of
degree n. The collection of all permutations of degree n is denoted by P(n).

A sequence (k1, k2, ¨ ¨ ¨ , kn) can be obtained from the sequence (1, 2, ¨ ¨ ¨ , n) by a finite
number of interchanges of pairs of elements. For example, if k1 ‰ 1, we can transpose 1

and k1, obtaining (k1, ¨ ¨ ¨ , 1, ¨ ¨ ¨ ). Proceeding in this way we shall arrive at the sequence
(k1, k2, ¨ ¨ ¨ , kn) after n or less such interchanges of pairs.

In general, a permutation (k1, k2, ¨ ¨ ¨ , kn) can be expressed as

τ(iN ,jN ) ¨ ¨ ¨ τ(i2,j2)τ(i1,j1)(1, 2, ¨ ¨ ¨ , n) = (k1, k2, ¨ ¨ ¨ , kn),

where τ(i,j) is a “pair-interchange operator” which swaps the i-th and the j-th elements (of
the object fed into), and N is the number of pair interchanges. We call such pair-interchange
operators the permutation operator. Since τ(i,j) is the inverse operator of itself, we also have

τ(i1,j1)τ(i2,j2) ¨ ¨ ¨ τ(iN ,jN )(k1, k2, ¨ ¨ ¨ , kn) = (1, 2, ¨ ¨ ¨ , n).

We remark here that the number of pair interchanges (from (1, 2, ¨ ¨ ¨ , n) to (k1, k2, ¨ ¨ ¨ , kn))
is not unique; nevertheless, if two processes of pair interchanges lead to the same permuta-
tion, then the numbers of interchanges differ by an even number. This leads to the following

Definition 1.57 (Even and odd permutations). A permutation (k1, ¨ ¨ ¨ , kn) is called an
even (odd) permutation of degree n if the number required to interchange pairs of
(1, 2, ¨ ¨ ¨ , n) in order to obtain (k1, k2, ¨ ¨ ¨ , kn) is even (odd).

Example 1.58. If n = 3, the permutation (3, 1, 2) can be obtained by interchanging pairs
of (1, 2, 3) twice:

(1, 2, 3)
τ(1,3)
ÝÑ (3, 2, 1)

τ(2,3)
ÝÑ (3, 1, 2);
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thus (3, 1, 2) is an even permutation of (1, 2, 3). On the other hand, (1, 3, 2) is obtained by
interchanging pairs of (1, 2, 3) once:

(1, 2, 3)
τ(2,3)
ÝÑ (1, 3, 2);

thus (1, 3, 2) is an odd permutation of (1, 2, 3).

Odd permutationsEven permutations

1

2 3

1

2 3

Figure 1.1: Even and odd permutations of degree 3

For n = 3, the even and odd permutations can also be viewed as the orientation of the
permutation (k1, k2, k3). To be more precise, if (1, 2, 3) is arranged in a counter-clockwise
orientation (see Figure 1.1), then an even permutation of degree 3 is a permutation in the
counter-clockwise orientation, while an odd permutation of degree 3 is a permutation in the
clockwise orientation. From figure 1.1, it is easy to see that (3, 1, 2) is an even permutation
of degree 3 and (1, 3, 2) is an odd permutation of degree 3.

Definition 1.59 (The permutation symbol). The permutation symbol εk1k2¨¨¨kn is a function
of permutations of degree n defined by

εk1k2¨¨¨kn =

"

1 if (k1, k2, ¨ ¨ ¨ , kn) is an even permutation of degree n,
´1 if (k1, k2, ¨ ¨ ¨ , kn) is an odd permutation of degree n.

Remark 1.60. One can extend the domain the permutation symbol to all the sequence
(k1, k2, ¨ ¨ ¨ , kn) by defining that εk1k2¨¨¨kn = 0 if (k1, k2, ¨ ¨ ¨ , kn) is not a permutation of degree
n.

Definition 1.61 (Determinants). Given an n ˆ n matrix A = [aij], the determinants of A,
denoted by det(A), is defined by

det(A) =
ÿ

(k1,¨¨¨ ,kn)PP(n)
εk1k2¨¨¨kn

n
ź

ℓ=1

aℓkℓ .

We note that the product
n
ś

ℓ=1

aℓkℓ in the definition of the determinant is formed by
multiplying n-elements which appears exactly once in each row and column.
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Proposition 1.62. Let E be an elementary matrix. Then

1. det(E) ‰ 0.

2. det(E) = det(ET).

3. If A is an n ˆ n matrix, then det(EA) = det(E) det(A).

The proof of the proposition above is not difficult, and is left as an exercise.

Corollary 1.63. Let v1, ¨ ¨ ¨ , vn P Rn be (column) vectors, c P R, and

A =
[
v1

... ¨ ¨ ¨
... vn

]
,

B =
[
v1

... ¨ ¨ ¨
...vj´1

...λvj
...vj+1

... ¨ ¨ ¨
... vn

]
,

C =
[
v1

... ¨ ¨ ¨
...vj´1

... vj + µvi
...vj+1

... ¨ ¨ ¨
... vn

]
for some i ‰ j .

Then det(B) = λ det(A), and det(C) = det(A).

Proof. The corollary is easily concluded since B = E1A and C = E2A for some elementary
matrices E1 and E2 with det(E1) = c and det(E2) = 1. ˝

Corollary 1.64. Let A be an n ˆ n matrix. Then A is invertible if and only if det(A) ‰ 0.

Proof. (ñ) Since A is invertible, Theorem 1.55 implies that

A = EkEk´1 ¨ ¨ ¨ E2E1

for some elementary matrices E1, ¨ ¨ ¨ , Ek, and this corollary follows from Proposition
1.62.

(ð) Note that A is invertible if and only if rank(A) = rank(AT) = n. Therefore, if A is not
invertible, the row vectors of A are linearly dependent; thus there exists a non-zero
vectors (α1, ¨ ¨ ¨ , αn) P Fn such that

α1v1 + α2v2 + ¨ ¨ ¨αnvn = 0 ,

where AT =
[
v1

... ¨ ¨ ¨
... vn

]
. Suppose that αj ‰ 0. Then

vj = β1v1 + ¨ ¨ ¨ βj´1vj´1 + βj+1vj+1 + ¨ ¨ ¨ βnvn ;
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thus after applying (n ´ 1)-times elementary row operations of the third type (adding
some multiple of certain row to another row) on A we reach a matrix whose j-th row
is a zero (row) vector. Thereofre, for some elementary matrices E1, ¨ ¨ ¨ ,En´1 we have

det(En´1 ¨ ¨ ¨ E1A) = 0

which implies that det(A) = 0. ˝

Corollary 1.65. Let A be an nˆn matrix. Then the determinant of A and AT, the transpose
of A, are the same; that is,

det(A) = det(AT).

Proof. If A is not invertible, then AT is not invertible either because of Theorem 1.48.
Therefore, det(A) = 0 = det(AT).

Now suppose that A is invertible. Then Theorem 1.55 implies that

A = EkEk´1 ¨ ¨ ¨ E2E1

for some elementary matrices E1, ¨ ¨ ¨ , Ek. Since all ET
j ’s are also elementary matrices, by

Proposition 1.62 we conclude that

det(AT) = det(ET
1 ¨ ¨ ¨ ET

k ) = det(ET
1 ) ¨ ¨ ¨ det(ET

k )

= det(ET
k ) ¨ ¨ ¨ det(ET

1 )

= det(Ek) ¨ ¨ ¨ det(E1) = det(Ek ¨ ¨ ¨ E1) = det(A) . ˝

Corollary 1.66. Let A,B be n ˆ n matrices. Then det(AB) = det(A) det(B).

Proof. If A is not invertible, then AB is not invertible either; thus in this case det(A) det(B) =
0 = det(AB).

Now suppose that A is invertible. Then Theorem 1.55 implies that

A = EkEk´1 ¨ ¨ ¨ E2E1

for some elementary matrices E1, ¨ ¨ ¨ , Ek. As a consequence, Proposition 1.62 implies that

det(AB) = det(Ek ¨ ¨ ¨ E1B) = det(Ek) det(Ek´1 ¨ ¨ ¨ E1B)
= ¨ ¨ ¨ = det(Ek) ¨ ¨ ¨ det(E1) det(B)

= det(Ek ¨ ¨ ¨ E1) det(B) = det(A) det(B) . ˝
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Definition 1.67 (Minor, Cofactor, and Adjoint matrices). Let A be an n ˆ n matrix, and
A(̂i, ĵ) be the (n ´ 1)ˆ (n ´ 1) matrix obtained by eliminating the i-th row and j-th column
of A; that is,

A(̂i, ĵ) =



a11 a12 ¨ ¨ ¨ a1(j´1) a1(j+1) ¨ ¨ ¨ a1n
... . . . ... ... ...

a(i´1)1 a(i´1)2 ¨ ¨ ¨ a(i´1)(j´1) a(i´1)(j+1) ¨ ¨ ¨ a(i´1)n

a(i+1)1 a(i+1)2 ¨ ¨ ¨ a(i+1)(j´1) a(i+1)(j+1) ¨ ¨ ¨ a(i+1)n
... ... ... ... . . . ...
an1 an2 ¨ ¨ ¨ an(j´1) an(j+1) ¨ ¨ ¨ ann


.

The (i, j)-th minor of A is the determinant of A(̂i, ĵ), and the (i, j)-th cofactor, is the
(i, j)-th minor of A multiplied by (´1)i+j. The adjoint matrix of A, denoted by Adj(A),
is the transpose of the cofactor matrix; that is,[

Adj(A)
]
ij
= (´1)i+j det

(
A(ĵ, î)

)
.

Example 1.68. Let A =

 1 2 3
3 ´1 2
0 2 ´1

. Then the minor matrix of A is

´3 ´3 6
´8 ´1 2
7 ´7 ´7

,

the cofactor matrix of A is

´3 3 6
8 ´1 ´2
7 7 ´7

, and the adjoint matrix of A is

´3 8 7
3 ´1 7
6 ´2 ´7

.

The following lemma provides a way of computing the minors of a matrix.

Lemma 1.69. Let A be an n ˆ n matrix. Then

det
(
A(̂i, ĵ)

)
= (´1)i+j

ÿ

(k1,¨¨¨ ,kn)PP(n),ki=j
εk1k2¨¨¨kn

ź

1ďℓďn
ℓ‰i

aℓkℓ .

Proof. Fix (i, j) P t1, 2, ¨ ¨ ¨ , nuˆt1, 2, ¨ ¨ ¨ , nu. The matrix A(̂i, ĵ) is given by A(̂i, ĵ) = [bαβ],
where α, β = 1, 2, ¨ ¨ ¨ , n ´ 1, and

bαβ =

$

’

’

’

’

&

’

’

’

’

%

aαβ if α ă i and β ă j,
a(α+1)β if α ą i and β ă j,
aα(β+1) if α ă i and β ą j,

a(α+1)(β+1) if α ą i and β ą j.

Each permutation (σ1, σ2, ¨ ¨ ¨ , σn´1) of degree n ´ 1 corresponds a unique permutation
(k1, k2, ¨ ¨ ¨ , kn) of degree n such that
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1. ki = j;

2. for each τ P t1, ¨ ¨ ¨ , i ´ 1u and ι P ti, i+ 1, ¨ ¨ ¨ , n ´ 1u,

kτ =

"

στ if στ ă j ,
στ + 1 if στ ě j ,

and kι+1 =

"

σι if σι ă j ,
σι + 1 if σι ě j .

We now determine the sign of εσ1σ2¨¨¨σn´1 and εk1k2¨¨¨kn . Note that if a process of pair inter-
changes of the permutation (σ1, σ2, ¨ ¨ ¨ , σn´1) leads to (1, 2, ¨ ¨ ¨ , n ´ 1), then similar process
of pair interchanges of the permutation (k1, k2, ¨ ¨ ¨ , ki´1, j, ki+1, ¨ ¨ ¨ , kn), by leaving the i-th
slot fixed, leads to the permutation of degree n

$

’

&

’

%

(1, 2, ¨ ¨ ¨ , j ´ 1, j + 1, ¨ ¨ ¨ , i ´ 1, j, i, ¨ ¨ ¨ , n) if i ą j,
(1, 2, ¨ ¨ ¨ , i ´ 1, j, i, ¨ ¨ ¨ , j ´ 1, j + 1, ¨ ¨ ¨ , n) if i ă j,

(1, 2, ¨ ¨ ¨ , n) if j = i.

For the case that i ‰ j, another |i ´ j|-times of pair interchanges leads to (1, 2, ¨ ¨ ¨ , n). To
be more precise, suppose that i ą j. We first interchange the (i´ 2)-th and the (i´ 1)-th
components, and then interchange that (i´ 3)-th and the (i´ 2)-th components, and so on.
After (i´ j)-times of pair interchanges, we reach (1, 2, ¨ ¨ ¨ , n). Symbolically,

(1, 2, ¨ ¨ ¨ , j ´ 1, j + 1, ¨ ¨ ¨ , i´
ò

1, j , i, ¨ ¨ ¨ ,n)
Ó τ(i ´ 2, i ´ 1)

(1, 2, ¨ ¨ ¨ , j ´ 1, j + 1, ¨ ¨ ¨ , i´
ò

2, j , i´ 1, ¨ ¨ ¨ ,n)
Ó τ(i ´ 3, i ´ 2)

(1, 2, ¨ ¨ ¨ , j ´ 1, j + 1, ¨ ¨ ¨ , i´
ò

3, j , i´ 2 ¨ ¨ ¨ ,n)
Ó
...
Ó

(1, 2, ¨ ¨ ¨ , n).

Similar argument applies to the case i ă j; thus

εσ1σ2¨¨¨σn´1 = (´1)|i´j|εk1k2¨¨¨kn = (´1)i+jεk1k2¨¨¨kn .

As a consequence,

det
(
A(̂i, ĵ)

)
=

ÿ

(σ1,σ2,¨¨¨ ,σn´1)PP(n´1)

εσ1σ2¨¨¨σn´1

n´1
ź

τ=1

bτστ

= (´1)i+j
ÿ

(k1,¨¨¨ ,kn)PP(n),ki=j
εk1k2¨¨¨kn

ź

1ďℓďn
ℓ‰i

aℓkℓ . ˝
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Theorem 1.70. Let A be an n ˆ n matrix. Then

Adj(A)A = AAdj(A) = det(A)In.

Proof. Let A = [aij]. By definition of matrix multiplications,(
Adj(A)A

)
ij
=

n
ÿ

m=1

(
Adj(A)

)
im
amj =

n
ÿ

m=1

[
ÿ

(k1,¨¨¨ ,kn)PP(n),km=i

εk1k2¨¨¨kn

ź

1ďℓďn
ℓ‰m

aℓkℓ

]
amj

=

$

’

’

&

’

’

%

ÿ

(k1,¨¨¨ ,kn)PP(n)
εk1k2¨¨¨kn

n
ź

ℓ=1

aℓkℓ if i = j,

0 if i ‰ j.

The conclusion then follows from the definition of the determinant. ˝

Corollary 1.71. Let A = [aij] be an n ˆ n matrix, and C = [cij] be the adjoint matrix of
A. Then

det(A) =
n
ÿ

j=1

aijcji =
n
ÿ

j=1

ajicij @ 1 ď i ď n .

Corollary 1.72. Let A be an n ˆ n matrix and det(A) ‰ 0. Then the matrix Adj(A)

det(A)
is the

inverse matrix of A, or equivalently,

Adj(A) = det(A)A´1. (1.2)

1.5.1 Variations of determinants

Let δ be an operator satisfying the “product rule” δ(fg) = fδg+ (δf)g. Typically δ will be
differential operators. By the definition of the determinant,

δ det(A) =
ÿ

(k1,¨¨¨ ,kn)PP(n)
εk1k2¨¨¨knδ

n
ź

ℓ=1

aℓkℓ

=
n
ÿ

i=1

[
ÿ

(k1,¨¨¨ ,kn)PP(n)
εk1k2¨¨¨knδaiki

ź

1ďℓďn
ℓ‰i

aℓkℓ

]

=
n
ÿ

i,j=1

[
ÿ

(k1,¨¨¨ ,kn)PP(n),ki=j
εk1k2¨¨¨knδaiki

ź

1ďℓďn
ℓ‰i

aℓkℓ

]

=
n
ÿ

i,j=1

(´1)i+j det
(
A(̂i, ĵ)

)
δaij .

Therefore, we obtain the following
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Theorem 1.73. Let A be an nˆn matrix, and δ be an operator satisfying δ(fg) = fδg+(δf)g

whenever the product makes sense. Then

δ det(A) = tr
(
Adj(A)δA

)
, (1.3)

where δA ” [δaij]nˆn if A = [aij]nˆn. In particular, if A is invertible,

δ det(A) = det(A)tr(
(
A´1δA

)
.

Example 1.74. Let A(x) =

[
f(x) g(x)
h(x) k(x)

]
and δ =

d

dx
. Then

δ det(A) = tr
([

k ´g
´h f

] [
f 1 g 1

h 1 k 1

])
= tr

([
kf 1 ´ gh 1 kg 1 ´ gk 1

´hf 1 + fh 1 ´hg 1 + fk 1

])
= kf 1 ´ gh 1 ´ hg 1 + fk 1 .

1.6 Bounded Linear Maps
Definition 1.75 (Linear map). Let V and W be two vector spaces over a scalar field F. A
map L : V Ñ W is called a linear map from V into W if

L(αv + w) = αL(v) + L(w) @α P F and v,w P V .

For notational convenience, we often write Lv instead of L(v). When V and W are finite
dimensional, linear maps (from V into W) are sometimes called linear transformations
(from V into W).

Let L1, L2 : V Ñ W be two linear maps, and α P F be a scalar. It is easy to see that
αL1 + L2 : V Ñ W is also a linear map. This is equivalent to say that the collection of
linear maps is a vector space, and this induces the following

Definition 1.76. The vector space L (V ,W) is the collection of linear maps from V to W .

Definition 1.77 (Boundedness of linear maps). Let (V , }¨}V) and (W , }¨}W) be two normed
vector spaces over a scalar field F. A linear map L : V Ñ W is said to be bounded if the
number

}L}B(V,W) ” sup
}v}V=1

}Lv}W = sup
v‰0

}Lv}W

}v}V
(1.4)

is finite. The collection of all bounded linear map from V to W is denoted by B(V ,W),
and B(V ,V) is also denoted by B(V) for simplicity.
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Remark 1.78. When the domain V and the target W under consideration are clear, we
use } ¨ } instead of } ¨ }B(V,W) to simplify the notation of operator norm.

Remark 1.79. If V is finite dimensional, then L (V ,W) = B(V ,W).

Proposition 1.80. Let (V , } ¨ }V) and (W , } ¨ }W) be two normed vector spaces over a scalar
field F. Then

(
B(V ,W), } ¨}) with } ¨} defined by (1.4) is a normed vector space. (Therefore,

} ¨ } is also called an operator norm).

Definition 1.81 (Dual space). Let (V , } ¨ }) be a normed vector space over field F. An
element in B(V ,F) is called a bounded linear functional on V , and the space

(
B(V ,F), } ¨

}B(V,F)
)

is called the dual space of (V , } ¨ }), and is usually denoted by V 1.

Definition 1.82. Let (V , } ¨ }V) and (W , } ¨ }W) be two normed vector spaces over a scalar
field F, and L P B(V ,W). The collection of all elements v P V such that Lv = 0 is called
the kernel (or the null space) of L and is denoted by ker(L) or Null(L). In other words,

ker(L) =
␣

v P V
ˇ

ˇLv = 0
(

.

Theorem 1.83 (Riesz Representation Theorem). Let (V , (¨, ¨)V) be an inner product space,
and f : V Ñ R be a bounded linear map. Then there exists a unique w P V such that
f(v) = (v,w)V for all v P V.

Proof. The uniqueness for such a vector w is simply due to the fact that there is no non-
trivial vector which is orthogonal to itself.

Now we show the existence of w. If f(v) = 0 for all v P V , then w = 0 does the job.
Now suppose that ker(f) Ĺ V . Then there exists u P ker(f)K such that }u}V = 1.

For v P V , consider the vector y = f(v)u ´ f(u)v. Then y P ker(f); thus y ¨ u = 0.
Therefore,

0 = f(v)}u}2V ´ f(u)(v,u)V = f(v) ´ (v,Ęf(u)u)V

which implies that f(v) = (v,w)V with w = Ęf(u)u. ˝

By the Riesz representation theorem, we conclude the following

Theorem 1.84. Let (V , (¨, ¨)V) and (W , (¨, ¨)W) be two inner product spaces. Then for all
L P B(V ,W), there exists a unique L˚ P B(W ,V) such that

(Lv,w)W = (v, L˚w)V @ v P V ,w P W .
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Definition 1.85 (Dual operator). Let V and W be two inner product spaces, and L : V Ñ

W be a bounded linear map. The dual operator of L, denoted by L˚, is the unique linear
map from W into V satisfying

(Lv,w)W = (v, L˚w)V @ v P V ,w P W ,

where (¨, ¨)V and (¨, ¨)W are inner products on V and W , respectively.

Definition 1.86 (Symmetry of linear maps). An linear map L P B(H) is said to be
symmetric if L = L˚ .

The last part of this section contributes to the following theorem which states that every
bounded linear maps near by (measured by the operator norm) an invertible bounded linear
map is also invertible.

Theorem 1.87. Let GL(n) be the set of all invertible linear maps on (Rn, } ¨ }2); that is,

GL(n) =
␣

L P L (Rn,Rn)
ˇ

ˇL is one-to-one (and onto)
(

.

1. If L P GL(n) and K P B(Rn,Rn) satisfying }K ´ L}}L´1} ă 1 , then K P GL(n).

2. The mapping L ÞÑ L´1 is continuous on GL(n); that is,

@ ε ą 0 , D δ ą 0 Q }K´1 ´ L´1} ă ε whenever }K ´ L} ă δ .

Proof. 1. Let }L´1} =
1

α
and }K ´ L} = β. Then β ă α; thus for every x P Rn,

α}x}Rn = α}L´1Lx}Rn ď α}L´1}}Lx}Rn = }Lx}Rn ď }(L ´ K)x}Rn + }Kx}Rn

ď β}x}Rn + }Kx}Rn .

As a consequence, (α ´ β)}x}Rn ď }Kx}Rn and this implies that K : Rn Ñ Rn is
one-to-one hence invertible.

2. Let L P GL(n) and ε ą 0 be given. Choose δ = min
!

1

2}L´1}
,

ε

2}L´1}2

)

. If }K´L} ă δ,

then K P GL(n). Since L´1 ´ K´1 = K´1(K ´ L)L´1, we find that if }K ´ L} ă δ,

}K´1} ´ }L´1} ď }K´1 ´ L´1} ď }K´1}}K ´ L}}L´1} ă
1

2
}K´1}

which implies that }K´1} ă 2}L´1}. Therefore, if }K ´ L} ă δ,

}L´1 ´ K´1} ď }K´1}}K ´ L}}L´1} ă 2}L´1}2δ ă ε . ˝
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1.6.1 Matrix norms

Each m ˆ n matrix A P M(m, n;F) induces a linear map L : Fn Ñ Fm in a natural way: let
A = [aij]mˆn be a m ˆ n matrix, B = tejun

j=1 and rB = trekum
k=1 be the standard basis of Fn

and Fm, respectively. We define the linear map L : Fn Ñ Fm by

Lx =
m
ÿ

i=1

n
ÿ

j=1

aijxjrei P Fm, where x =
n
ÿ

j=1

xjej P Fn ,

or equivalently, [Lx]
rB = A[x]B. The linear map L is called the linear map induced by

the matrix A.
By matrix norms it means the operator norm of the induced linear map. However,

as introduced in Section 1.6, the operator norm of a linear map depends on the norms
equipped on the vector spaces. In particular, we have introduced p-norm on Fn, and we
have the following

Definition 1.88. Let A P M(m, n;F) with induced linear map L : Fn Ñ Fm. The p-norm
of A, denoted by }A}p, is the operator norm of L : (Fn, } ¨ }p) Ñ (Fm, } ¨ }p) given by

}A}p = sup
}x}p=1

}Lx}p = sup
x‰0

}Lx}p

}x}p
.

Remark 1.89. We can also choose different p in the domain and the co-domain. In other
words, the (p, q)-norm of A P M(m, n,F) is the operator norm of the induced linear map
L : (Fn, } ¨ }p) Ñ (Fm, } ¨ }q) given by

}A}(p,q) = sup
}x}p=1

}Lx}q = sup
x‰0

}Lx}q

}x}p
.

From now on, for notational simplicity we use Ax to denote [Lx]
rB if rB is the

standard basis of the co-domain.

Example 1.90. Consider the case p = 1 and p = 8, respectively.

1. p = 8: }A}8 = sup
}x}8=1

}Ax}8 = max
!

m
ÿ

j=1

|a1j|,
m
ÿ

j=1

|a2j|, ¨ ¨ ¨

m
ÿ

j=1

|anj|
)

.

Reason: Let x = (x1, x2, ¨ ¨ ¨ , xn)
T and A =

[
aij

]
nˆm. Then

Ax =


a11x1 + ¨ ¨ ¨ + a1mxm
a21x1 + ¨ ¨ ¨ + a2mxm

...
an1x1 + ¨ ¨ ¨ + anmxm


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Assume max
1ďiďn

m
ÿ

j=1

|aij| =
m
ÿ

j=1

|akj| for some 1 ď k ď n. Let

x = (sgn(ak1), sgn(ak2), ¨ ¨ ¨ , sgn(akn)) .

Then }x}8 = 1, and }Ax}8 =
m
ř

j=1

|akj|.

On the other hand, if }x}8 = 1, then

|ai1x1 + ai2x2 + ¨ ¨ ¨ aimxm| ď

m
ÿ

j=1

|aij| ď max
!

m
ÿ

j=1

|a1j|,
m
ÿ

j=1

|a2j|, ¨ ¨ ¨

m
ÿ

j=1

|anj|
)

;

thus }A}8 = max
!

m
ÿ

j=1

|a1j|,
m
ÿ

j=1

|a2j|, ¨ ¨ ¨

m
ÿ

j=1

|anj|
)

. In other words, }A}8 is the largest

sum of the absolute value of row entries.

2. p = 1: }A}1 = max
!

n
ÿ

i=1

|ai1|,
n
ÿ

i=1

|ai2|, ¨ ¨ ¨ ,
n
ÿ

i=1

|aim|

)

.

Reason: Let (¨, ¨) denote the inner product in Rm. Then for x P Rn with }x}1 = 1, by
Hölder’s inequality (1.1) and Theorem 1.25 we have

}Ax}1 = sup
}y}8=1

(Ax, y) = sup
}y}8=1

(x,ATy) ď sup
}y}8=1

}x}1}A
Ty}8

= sup
}y}8=1

}ATy}8 = }AT}8 ;

thus }A}1 = sup
}x}1=1

}Ax}1 ď }AT}8. Similarly, if y P Rm and }y}8 = 1, then

}ATy}8 = sup
}x}1=1

(x,ATy) = sup
}x}1=1

(Ax, y) ď sup
}x}1=1

}Ax}1}y}8

= sup
}x}1=1

}Ax}1 = }A}1

which implies that }AT}8 = sup
}y}8=1

}ATy}8 ď }A}1. As a consequence,

}A}1 = }AT}8 = max
!

n
ÿ

i=1

|ai1|,
n
ÿ

i=1

|ai2|, ¨ ¨ ¨ ,
n
ÿ

i=1

|aim|

)

.



Copy
rig

ht
Prot

ect
ed

28 CHAPTER 1. Linear Algebra

1.7 Representation of Linear Transformations
In Section 1.6.1, we see that any m ˆ n matrix is associated with a linear map. On the
other hand, suppose that V is a n-dimensional vector space with basis B = tvjun

j=1, and
W is a m-dimensional vector space with basis rB = twiu

m
i=1. Define V =

[
v1

... ¨ ¨ ¨
... vn

]
and

W =
[
w1

... ¨ ¨ ¨
... wm

]
, and let L P L (V ,W). Since Lvj P W , for each 1 ď j ď n we can write

Lvj =
m
ř

i=1

aijwi for some coefficients aij. Moreover, if u P V , then

u =
n
ÿ

j=1

cjvj or c = [u]B or u = Vc ,

and by the linearity of L,

Lu = L
( n
ÿ

j=1

cjvj
)
=

n
ÿ

j=1

cjLvj =
n
ÿ

j=1

m
ÿ

i=1

cjaijwi =
m
ÿ

i=1

( n
ÿ

j=1

aijcj

)
wi .

Let bi =
n
ř

j=1

aijcj, and b = [b1, ¨ ¨ ¨ , bm]
T. Then

[Lu]
rB = b = Ac = A[u]B .

The discussion above induces the following

Definition 1.91. Let V ,W be two vector spaces, dim(V) = n and dim(W) = m, and
B, rB are basis of V ,W , respectively. For L P L (V ,W), the matrix representation of L
relative to bases B and rB, denoted by [L]

rB,B, is the matrix satisfying

[Lu]
rB = [L]

rB,B[u]B @ u P V .

If L P L (V ,V), we simply use [L]B to denote [L]B,B.

1.8 Matrix Diagonalization
Definition 1.92 (Eigenvalues and Eigenvectors). Let V be a finite dimensional vector spaces
over a scalar field F, and L P B(V). A scalar λ P F is said to be an eigenvalue of L if
there is a non-zero vector v P V such that Lv = λv. The collection of all eigenvalues of L
is denoted by σ(L).

For an eigenvalue λ P F of L, a non-zero vector v P V satisfying Lv = λv is called an
eigenvector associated with the eigenvalue λ, and the collection of all v P V such that
Lv = λv is called the eigenspace associated with λ.
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Let dim(V) = n and B be a basis of V . Then if λ P F is an eigenvalue of L P B(V),
there exists non-zero vector v P V such that

[L]B[v]V = [Lv]B = λ[v]B ;

thus the matrix representation [L]B of L satisfies that [L]B ´λIn is singular (not invertible).
Therefore, det([L]B ´ λIn) = 0 which motivates the following

Definition 1.93. Let A P M(n, n;F) be a n ˆ n matrix over scalar field F. An eigenvalue
of A is a scalar λ P F such that det(A ´ λIn) = 0.

Theorem 1.94. Let L P B(Fn) be symmetric. Then σ(L) Ď R.

Proof. Let λ P σ(L), and v be an eigenvector associated with λ. Then

λ(v, v)Fn = (λv, v)Fn = (Lv, v)Fn = (v, L˚v)Fn = (v, Lv)Fn = (v, λv) = sλ(v, v)Fn

which implies that λ P R. ˝

Lemma 1.95. Let L P B(Fn) be symmetric, and (¨, ¨)Fn be the standard inner product on
Fn. Then the two numbers

m ” inf
}u}Fn=1

(Lu, u)Fn and M ” sup
}u}Fn=1

(Lu, u)Fn

belong to σ(L).

Proof. Suppose that M R σ(L). Let [u, v] = (Mu´ Lu, v)Fn . Then [¨, ¨] is an inner product
on Fn; thus the Cauchy-Schwarz inequality (Proposition 1.16) implies that

ˇ

ˇ[u, v]
ˇ

ˇ ď
ˇ

ˇ[u, u]
ˇ

ˇ

1/2ˇ
ˇ[v, v]

ˇ

ˇ

1/2
.

By Theorem 1.25, we find that

}Mu ´ Lu}Fn = sup
}v}Fn=1

ˇ

ˇ(Mu ´ Lu, v)Fn
ˇ

ˇ = sup
}v}Fn=1

ˇ

ˇ[u, v]
ˇ

ˇ ď sup
}v}Fn=1

ˇ

ˇ[u, u]
ˇ

ˇ

1/2ˇ
ˇ[v, v]

ˇ

ˇ

1/2

ď (M ´ m)1/2(Mu ´ Lu, u)
1/2
Fn @u P Fn , (1.5)

where we use the fact that sup
}v}Fn=1

ˇ

ˇ[v, v]
ˇ

ˇ

1/2
= (M ´ m)1/2 to conclude the last inequality.
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Let B be the standard basis of Fn, and tuku8
k=1 be a sequence of vectors in Fn such that

}uk}Fn = 1 , and lim
kÑ8

(Luk,uk)Fn = M . Then (1.5) implies }Muk ´ Luk}Fn Ñ 0 as k Ñ 8 .
Since M R σ(L) , MIn ´ [L]B is invertible; thus

[uk]B = (MIn ´ [L]B)
´1(M [uk]B ´ [L]B[uk]B) Ñ 0 in Fn

which contradicts to }uk}Fn = 1 for all k P N. Hence M P σ(L). Similarly, m P σ(L). ˝

Definition 1.96 (Diagonalizable linear maps). Let V be a finite dimensional vector spaces
over a scalar field F. A linear map L : V Ñ V is said to be diagonalizable if there is a
basis B of V such that each v P B is an eigenvector of L.

Theorem 1.97. Let L P B(Rn) be symmetric. Then there exists an orthonormal basis of
Rn consisting of eigenvectors of L.

Example 1.98 (The 2-norm of matrices). Let (¨, ¨)Rk denote the inner product in Euclidean
space Rk, and A P M(m, n;R). Since ATA is a symmetric n ˆ n matrix, it is diagonalizable
by an orthonormal matrix P ; that is, ATA = PΛPT for some orthonormal n ˆ n matrix P
and diagonal n ˆ n matrix Λ = [λiδij]. Therefore,

}Ax}22 = (Ax,Ax)Rm = (x,ATAx)Rn = (x, PΛPTx)Rn = (PTx,ΛPTx)Rn

which implies that

sup
}x}2=1

}Ax}22 = sup
}x}2=1

(PTx,ΛPTx)Rn = sup
}y}2=1

(y,Λy)Rn (Let y = PTx, then }y}2 = 1)

= sup
}y}2=1

(λ1y
2
1 + λ2y

2
2 + ¨ ¨ ¨ + λny

2
n)

= max
␣

λ1, ¨ ¨ ¨ , λn
(

= maximum eigenvalue of ATA .

As a consequence, }A}2 =
a

maximum eigenvalue of ATA.

1.9 The Einstein Summation Convention
In mathematics, especially in applications of linear algebra to physics, the Einstein sum-
mation convention is a notational convention that implies summation over a set of indexed
terms in a formula, thus achieving notational brevity. According to this convention, when
an index variable appears twice in a single term it implies summation of that term over all
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the values of the index. For example, with this convention, the inner product u ¨ v of two
vectors u, v P Rn, where u = (u1, ¨ ¨ ¨ , un) and v = (v1, ¨ ¨ ¨ , vn), can be expressed as uivi,
and the i-th component of the cross product u ˆv of two vectors u, v P R3 can be expressed
as εijkujvk.

In this book, we make a further convention that repeated Latin indices are summed
from 1 to n, and repeated Greek indices are summed from 1 to n ´ 1, where n is the space

dimension. In other words, we use the symbol figi to denote the sum
n
ř

i=1

figi, and the symbol

fαgα to denote the sum
n´1
ř

i=1

fαgα. Starting from the next Chapter, we use such summation

convention for notational simplicity.
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