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Chapter 5

Applications on Partial Differential
Equations

5.1 Heat Conduction in a Rod
Consider the heat distribution on a rod of length L: Parameterize the rod by [0, L], and
let t be the time variable. Let ρ(x), s(x), κ(x) denote the density, specific heat, and the
thermal conductivity of the rod at position x P (0, L), respectively, and u(x, t) denote the
temperature at position x and time t. For 0 ă x ă L, and ∆x,∆t ! 1,
ż x+∆x

x

ρ(y)s(y)
[
u(y, t+∆t)´u(y, t)

]
dy =

ż t+∆t

t

[́
κ(x)ux(x, t

1)+κ(x+∆x)ux(x+∆x, t1)
]
dt1 ,

where the left-hand side denotes the change of the total heat in the small section (x, x+∆x),
and the right-hand side denotes the heat flows from outside. Divide both sides by ∆x∆t

and letting ∆x and ∆t approach zero, if all the functions appearing in the equation above
are smooth enough, we find that

ρ(x)s(x)ut(x, t) =
[
κ(x)ux(x, t)

]
x

0 ă x ă L , t ą 0 . (5.1)

Assuming uniform rod; that is, ρ, s, κ are constant, then (5.1) reduces to that

ut(x, t) = α2uxx(x, t) , 0 ă x ă L , t ą 0 , (5.2a)

where α2 =
κ

ρs
is called the thermal diffusivity. By re-scaling the length scale, we can

assume that α = 1.

To determine the state of the temperature, we need to impose that initial condition

u(x, 0) = u0(x) 0 ă x ă L (5.2b)

97
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98 CHAPTER 5. Applications on Partial Differential Equations

for some given function u0 : [0, L] Ñ R and a boundary condition. Usually one of the
following four types of boundary conditions is imposed:

1. Dirichlet boundary condition: The Dirichlet boundary condition is used to de-
scribe the phenomena that the temperature at the end points of the rod is known/
controable. Mathematically, it is expressed by

u(0, t) = a(t) and u(L, t) = b(t) @ t ą 0

for some given functions a(t) and b(t).

2. Neumann boundary condition: The Neumann boundary condition is used to
describe the phenomena of insulation; that is, there is no heat flow at the end points.
Mathematically, it is expressed by

ux(0, t) = ux(L, t) = 0 @ t ą 0 .

In general, we can consider the boundary condition

ux(0, t) = a(t) and ux(L, t) = b(t) @ t ą 0

for some given functions a(t) and b(t).

3. Mixed type boundary condition: We can also consider the case that at one end
point the temperature is known while there is no heat flow on the other end point. In
general, this is expressed by

u(0, t) = a(t) and ux(L, t) = b(t) @ t ą 0

or
ux(0, t) = a(t) and u(L, t) = b(t) @ t ą 0

for some given functions a(t) and b(t).

4. Periodic boundary condition: Suppose that instead of rods we consider modelling
the temperature distribution in a (big) ring (with perimeter L). Choosing a point on
the ring as the “left-end” point and parameterizing the point of the ring by arc-length,
we then have the “boundary” condition

u(0, t) = u(L, t) @ t ą 0 .

This is called the periodic boundary condition.
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5.1.1 The Dirichlet problem

In this sub-section we consider the heat equation with Dirichlet boundary condition:

ut ´ uxx = 0 in (0, L) ˆ (0,8) , (5.3a)
u = u0 on (0, L) ˆ tt = 0u , (5.3b)

u(0, t) = a , u(L, t) = b for all t ą 0 , (5.3c)

where a and b are given constants. Let v(x, t) = u(x, t) ´
b ´ a

L
x ´ a. Then v satisfies

vt ´ vxx = 0 in (0, L) ˆ (0,8) , (5.4a)
v = v0 on (0, L) ˆ tt = 0u , (5.4b)

v(0, t) = v(L, t) = 0 for all t ą 0 , (5.4c)

where v0 : [0, L] Ñ R is given by v0(x) = u0(x) ´
b ´ a

L
x ´ a. As long as the solution v to

(5.4) is found, the solution u to (5.3) can be constructed using u(x, t) = v(x, t)+
b ´ a

L
x+a.

Therefore, we focus on solving (5.4) (using the Fourier series method).

The idea of using the Fourier series to solve (5.4) is that for each fixed t ą 0 we express v
in terms of its Fourier series representation (using proper “basis”). Recall that for a function
f : [0, L] Ñ R, we have the Fourier representation

f(x) ‘‘=” c0
2
+

8
ÿ

k=1

ck cos 2πkx
L

+ sk sin 2πkx

L
x P [0, L] ,

where ck =
2

L

ż L

0
f(x) cos 2πkx

L
dx and sk =

2

L

ż L

0
f(x) sin 2πkx

L
dx, so

v(x, t) ‘‘=” c0(t)
2

+
8
ÿ

k=1

ck(t) cos 2πkx
L

+ sk(t) sin 2πkx

L
x P [0, L] ,

for some sequence of functions
␣

ck(t)
(8

k=0
and

␣

sk(t)
(8

k=1
. However, this particular Fourier

series of v is not a good choice of solving (5.4) since it is difficult to validate the boundary
condition (5.4c).

Note that for f : [0, L] Ñ R instead of the Fourier series representation above we can
also consider the “cosine” series or “sine” series that are obtained by treating f as the
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restriction of an even or an odd function defined on [´L,L] to [0, L]. In other words, define
fe, fo : [´L,L] Ñ R, called the even and odd extension of f respectively, by

fe(x) =

"

f(x) if x P [0, L] ,

f(´x) if x P [´L, 0) ,
and fo(x) =

"

f(x) if x P [0, L] ,

´f(´x) if x P [´L, 0) ,

then f = fo = fe on [0, L]. Since

fe(x) ‘‘=” c0
2
+

8
ÿ

k=1

ck cos πkx
L

and fo(x) ‘‘=”
8
ÿ

k=1

sk sin πkx
L

x P [´L,L] ,

where ck =
2

L

ż L

0
f(x) cos πkx

L
dx and sk =

2

L

ż L

0
f(x) sin πkx

L
dx, we have

f(x) ‘‘=” c0
2
+

8
ÿ

k=1

ck cos πkx
L

and f(x) ‘‘=”
8
ÿ

k=1

sk sin πkx
L

x P [0, L] .

Using the sine series, for each t ą 0 v(x, t) can be expressed as

v(x, t) ‘‘=”
8
ÿ

k=1

dk(t) sin πkx
L

x P [0, L] .

for some sequence of function
␣

dk(t)
(8

k=1
to be determined. We note that using this partic-

ular representation of v the boundary condition (5.4c) automatically holds. Therefore, it
suffices to find

␣

dk(t)
(8

k=1
such that (5.4a,b) hold.

Assume that the differentiation of the series can be obtained by term-by-term differen-
tiation; that is,

B

B t

8
ÿ

k=1

dk(t) sin πkx

L
=

8
ÿ

k=1

B

B t

(
dk(t) sin πkx

L

)
=

8
ÿ

k=1

d 1
k(t) sin πkx

L

and
B 2

Bx2

8
ÿ

k=1

dk(t) sin πkx

L
=

8
ÿ

k=1

B 2

Bx2

(
dk(t) sin πkx

L

)
= ´

8
ÿ

k=1

k2π2

L2
dk(t) sin πkx

L
.

Then (5.4a) implies that
8
ÿ

k=1

[
d 1
k(t) +

k2π2

L2
dk(t)

]
sin πkx

L
= 0 x P [0, L] .

As a consequence,

d 1
k(t) +

k2π2

L2
dk(t) = 0 @ k P N . (5.5a)
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To determine dk uniquely, an initial condition for dk has to be imposed. Noting that (5.4b)
implies that

v0(x) ‘‘=”
8
ÿ

k=1

dk(0) sin πkx

L
x P [0, L] ;

thus
dk(0) = pv0k ”

2

L

ż L

0

v0(x) sin πkx

L
dx . (5.5b)

Solving the initial value problem (5.5), we find that

dk(t) = pv0ke
´ k2π2

L2 t
@ k P N ;

thus the solution to (5.4) can be written as

v(x, t) =
8
ÿ

k=1

pv0ke
´ k2π2

L2 t sin kπx

L
.

Therefore, the solution to (5.3) can be written as

u(x, t) =
8
ÿ

k=1

pv0ke
´ k2π2

L2 t sin kπx

L
+

b ´ a

L
x+ a . (5.6)

‚ the long time behavior: Suppose that the temperature at the left-end and right-end points
are fixed as a and b (as described in the boundary condition (5.3c)). Then we expect that
no matter what the temperature distribution is given initially, the temperature distribution
approaches a linear distribution; that is, we expect that u(x, t) Ñ

b ´ a

L
x + a as t Ñ 8 for

all x P [0, L]. This expectation is in fact true, and we try to prove this here.
Using (5.6), we obtain that

ˇ

ˇu(x, t) ´
b ´ a

L
x ´ a

ˇ

ˇ ď

8
ÿ

k=1

ˇ

ˇ

pv0k
ˇ

ˇe´ k2π2

L2 t .

By the fact that
ˇ

ˇ

pv0k
ˇ

ˇ ď
2

L

ż L

0

ˇ

ˇv0(x)
ˇ

ˇ dx =
2

L
}v0}L1(0,L) ,

we find that
ˇ

ˇu(x, t) ´
b ´ a

L
x ´ a

ˇ

ˇ ď
2

L
}v0}L1(0,L)

8
ÿ

k=1

e´ k2π2

L2 t
ď

2

L
}v0}L1(0,L)

8
ÿ

k=1

e´ k2π2

L2 (t´1)e´ k2π2

L2

ď
2

L
}v0}L1(0,L)e

´ π2

L2 (t´1)
8
ÿ

k=1

e´ k2π2

L2 ;
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thus with C denoting the constant 2

L
}v0}L1(0,L)e

π2

L2

8
ř

k=1

e´ k2π2

L2 , we have

sup
xP[0,L]

ˇ

ˇu(x, t) ´
b ´ a

L
x ´ a

ˇ

ˇ ď Ce´ π2

L2 t . (5.7)

Since C ă 8, we conclude that the function u(¨, t) converges to the function b ´ a

L
x + a

uniformly on [0, L] as t Ñ 8.

5.1.2 The Neumann problem

In this sub-section we consider the heat equation with Neumann boundary condition:

ut ´ uxx = 0 in (0, L) ˆ (0,8) , (5.8a)
u = u0 on (0, L) ˆ tt = 0u , (5.8b)

ux(0, t) = a , ux(L, t) = b for all t ą 0 , (5.8c)

where a and b are given constants. Let v(x, t) = u(x, t)´
b ´ a

2L
(x2+2t)´ax. Then v satisfies

vt ´ vxx = 0 in (0, L) ˆ (0,8) , (5.9a)
v = v0 on (0, L) ˆ tt = 0u , (5.9b)

vx(0, t) = vx(L, t) = 0 for all t ą 0 , (5.9c)

where v0 : [0, L] Ñ R is given by v0(x) = u0(x) ´
b ´ a

2L
x2 ´ ax. As long as the solution v to

(5.9) is found, the solution u to (5.8) can be constructed using u(x, t) = v(x, t)+
b ´ a

2L
x2+ax.

Therefore, we focus on solving (5.9) (using the Fourier series method). We look for tdk(t)u
8
k=0

such that
v(x, t) =

d0(t)

2
+

8
ÿ

k=1

dk(t) cos πkx
L

validates (5.9a,b).
Assume that the differentiation of the series can be obtained by term-by-term differen-

tiation; that is,

B

B t

8
ÿ

k=1

dk(t) cos πkx

L
=

8
ÿ

k=1

B

B t

(
dk(t) cos πkx

L

)
=

8
ÿ

k=1

d 1
k(t) cos πkx

L
,

B

Bx

8
ÿ

k=1

dk(t) cos πkx

L
=

8
ÿ

k=1

B

Bx

(
dk(t) cos πkx

L

)
= ´

8
ÿ

k=1

kπ

L
dk(t) sin πkx

L
,
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and
B 2

Bx2

8
ÿ

k=1

dk(t) cos πkx

L
=

8
ÿ

k=1

B 2

Bx2

(
dk(t) cos πkx

L

)
= ´

8
ÿ

k=1

k2π2

L2
dk(t) cos πkx

L
.

Then (5.9c) holds automatically, and (5.9a) implies that

d 1
0(t)

2
+

8
ÿ

k=1

[
d 1
k(t) +

k2π2

L2
dk(t)

]
cos πkx

L
= 0 .

Therefore, d0 is a constant and dk satisfies (5.5) as well. Moreover, expressing v0 in terms
of cosine series, (5.9b) implies that

dk(0) = pv0k ”
2

L

ż L

0

v0(x) cos πkx

L
dx @ k P N Y t0u .

Solving (5.5) with the initial condition above, we obtain that

dk(t) = pv0ke
´ k2π2

L2 t
@ k P N ;

thus the solution to (5.9) can be written as

v(x, t) =
1

L

ż L

0

v0(x) dx+
8
ÿ

k=1

pv0ke
´ k2π2

L2 t cos kπx

L
.

Therefore, the solution to (5.3) can be written as

u(x, t) =
1

L

ż L

0

v0(x) dx+
8
ÿ

k=1

pv0ke
´ k2π2

L2 t cos kπx

L
+

b ´ a

2L
(x2 + 2t) + ax .

‚ the long time behavior: Suppose that the rod is insulated at the end-points; that is, the
temperature u satisfies ux(0, t) = ux(L, t) = 0 for all t ą 0. Then v0 = u0 and we expect that
no matter what the temperature distribution is given initially, the temperature distribution
approaches the average temperature; that is, we expect that u(x, t) Ñ

1

L

ż L

0
u0(x) dx as

t Ñ 8 for all x P [0, L]. Similar to the derivation of (5.7),

ˇ

ˇ

ˇ
u(x, t) ´

1

L

ż L

0
u0(x) dx

ˇ

ˇ

ˇ
ď

2

L
}v0}L1(0,L)

8
ÿ

k=1

e´ k2π2

L2 t
ď

2

L
}v0}L1(0,L)

8
ÿ

k=1

e´ k2π2

L2 (t´1)e´ k2π2

L2

ď
2

L
}v0}L1(0,L)e

´ π2

L2 (t´1)
8
ÿ

k=1

e´ k2π2

L2 ;
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thus with C denoting the constant 2

L
}v0}L1(0,L)e

π2

L2

8
ř

k=1

e´ k2π2

L2 , we have

sup
xP[0,L]

ˇ

ˇ

ˇ
u(x, t) ´

1

L

ż L

0
u0(x) dx

ˇ

ˇ

ˇ
ď Ce´ π2

L2 t . (5.10)

Since C ă 8, we conclude that the function u(¨, t) converges to the function 1

L

ż L

0
u0(x) dx

uniformly on [0, L] as t Ñ 8.

5.2 Heat Conduction on Rn

Consider the heat equation on Rn

ut ´ ∆u = 0 in Rn ˆ (0,8) , (5.11a)
u = u0 on Rn ˆ tt = 0u , (5.11b)

where ∆ is the Laplace operator, called Laplacian, defined by

∆u =
n
ÿ

k=1

B 2u

Bx2k
(= div∇u) .

For a function f of x (and probably also t), let F (f) = pf denote the Fourier transform
of f in x; that is,

F (f)(ξ, t) = pf(ξ, t) =
1

?
2π

n

ż

Rn

f(x, t)e´ix¨ξ dx .

Then by assuming that pu(¨, t) exists for all t ą 0, Lemma 3.11 implies that

F (∆u)(ξ, t) = F
( n
ÿ

k=1

B

Bxk

Bu

Bxk

)
(ξ, t) =

n
ÿ

k=1

F
(

B

Bxk

Bu

Bxk

)
(ξ, t)

=
n
ÿ

k=1

iξkF
(

Bu

Bxk

)
(ξ, t) =

n
ÿ

k=1

(iξk)
2
pu(ξ, t) = ´|ξ|2pu(ξ, t) .

Assume further that

B

B t
pu(ξ, t) =

B

B t

1
?
2π

n

ż

Rn

u(x, t)e´ix¨ξ dx =
1

?
2π

n

ż

Rn

B

B t
u(x, t)e´ix¨ξ dx

=
1

?
2π

n

ż

Rn

ut(x, t)e
´ix¨ξ dx = put(ξ, t) .
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Taking the Fourier transform of (5.11a), we find that
B

B t
pu(ξ, t) + |ξ|2pu(ξ, t) = F (ut ´ ∆u)(ξ, t) = 0 . (5.12)

Since pu(ξ, 0) = F (u(¨, 0))(ξ) = pu0(ξ), solving the ODE (5.12) with this initial condition we
obtain that

pu(ξ, t) = pu0(ξ)e
´|ξ|2t = pu0(ξ)xP2t(ξ) ,

where Pt(x) =
1

?
t
n e

´
|x|2

2t . By Theorem 3.26, we conclude that

u(x, t) = (u0˙P2t)(x) =
1

?
2π

n

ż

Rn

1
?
2t

n e
´

|x´y|2

4t u0(y) dy =
1

?
4πt

n

ż

Rn

e´
|x´y|2

4t u0(y) dy .

(5.13)
This induces the following

Definition 5.1. The function H(x, t) =
1

?
4πt

n e
´

|x|2

4t is called the heat kernel.

Having introduced the heat kernel, the solution to (5.11), given by (5.13) can be ex-
pressed by

u(x, t) =
(
H(¨, t)˙u0

)
(x) .

‚ Non-uniqueness of solutions: The Fourier transform method only picks up solutions whose
Fourier transform is defined, and it is possible that there are other solutions to (5.11).
Consider the function

u(x, t) =
8
ÿ

k=0

g(k)(t)

(2k)!
x2k , (5.14)

where g is given by

g(t) =

" exp(´t´2) if t ą 0 ,

0 if t = 0 .

Then there exists θ ą 0 such that
ˇ

ˇg(k)(t)
ˇ

ˇ ď
k!

(θt)k
exp

(
´

1

2
t´2

)
@ t ą 0 . (5.15)

In fact, using the Cauchy integral formula,

g(k)(t) =
k!

2πi

¿

|z´t|=θt

g(z)

(z ´ t)k+1
dz

where θ P (0, 1) is chosen so small such that
ˇ

ˇg(z)
ˇ

ˇ ď exp
(
´
1

2
t´2

)
on |z´ t| = θt. The choice

of such a θ is possible since by writing z = x+ iy,
ˇ

ˇg(x+ iy)
ˇ

ˇ =
ˇ

ˇ

ˇ
exp

(y2 ´ x2 + 2ixy

(x2 + y2)2

)ˇ
ˇ

ˇ
= exp

( y2 ´ x2

(x2 + y2)2

)
ď exp

( θ2 ´ (1 ´ θ)2

((1 + θ)2 + θ2)2
t´2

)
if θ ă

1

2
.
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By the fact that k!

(2k)!
ď

1

k!
, we find that

8
ÿ

k=0

ˇ

ˇ

ˇ

g(k)(t)

(2k)!
x2k

ˇ

ˇ

ˇ
ď

8
ÿ

k=0

x2k

k!(θt)k
exp

(
´

1

2
t´2

)
= exp

[
1

t

(x2
θ

´
1

2
t´2

)]
@ t ą 0, x P R . (5.16)

Therefore, by comparison the series in (5.14) converges for all t ą 0, and trivially also
converges for t = 0. Moreover, (5.16) shows that for each t P R, (5.14) is a convergent power
series; thus

uxx(x, t) =
B 2

Bx2
u(x, t) =

8
ÿ

k=0

g(k)(t)

(2k)!

B 2x2k

Bx2
=

8
ÿ

k=1

g(k)(t)

(2k ´ 2)!
x2k´2 @ t ą 0, x P R .

On the other hand, by the fact that (k + 1)!

(2k)!
ď

1

(k ´ 1)!
if k ě 1, using (5.15) we find that

for all t ą 0 and x P R,
8
ÿ

k=0

ˇ

ˇ

ˇ

g(k+1)(t)

(2k)!
x2k

ˇ

ˇ

ˇ
ď
ˇ

ˇg 1(t)
ˇ

ˇ+
8
ÿ

k=1

x2k

(k ´ 1)!(θt)k+1
exp

(
´

1

2
t´2

)
=
ˇ

ˇg 1(t)
ˇ

ˇ+
x2

(θt)2
exp

[
1

t

(x2
θ

´
1

2
t´2

)]
.

Therefore, the series
8
ř

k=0

g(k+1)(t)

(2k)!
x2k converges uniformly on any bounded set of R; thus

ut(x, t) =
8
ÿ

k=0

g(k+1)(t)

(2k)!
x2k =

8
ÿ

k=1

g(k)(t)

(2k ´ 2)!
x2k´2 = uxx(x, t) @ t ą 0, x P R .

This implies that u satisfies the heat equation

ut ´ uxx = 0 in R ˆ (0,8) ,

u = 0 on R ˆ tt = 0u .

Note that using the Fourier transform method to solve the PDE above we obtain trivial
solution. The reason for not seeing the solution given by (5.14) using the Fourier transform
method is that the Fourier transform of the function u given by (5.14) does not exists.
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