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Chapter 4

Application on Signal Processing

In the study of signal processing, the Fourier transform and the inverse Fourier transform
are often defined by

pf(ξ) =

ż

Rn

f(x)e´i2πx¨ξdx and qf(x) =

ż

Rn

f(ξ)ei2πx¨ξdξ @ f P L1(Rn) . (3.11).

Then for T P S (Rn)1, the Fourier transform of T is defined again by

xpT , ϕy = xT, pϕy @ϕ P S (Rn) .

We also note that the definitions of the translation, dilation, and reflection of tempered
distributions are independent of the Fourier transform, and are still defined by

xτhT, ϕy = xT, τ´hϕy , xdλT, ϕy = xT, λndλ´1ϕy and xrT , ϕy = xT, rϕy @ϕ P S (Rn) .

Concerning the convolution, when the Fourier transform is given by (3.11), we usually
consider the ˙ convolution operator

(f˙g)(x) =

ż

Rn

f(y)g(x ´ y) dy =

ż

Rn

f(x ´ y)g(y) dy @ f, g P L1(Rn) .

instead of ˙ convolution operators. The convolution of T and f P S (Rn) is defined by

xT ḟ, ϕy = xT, rf˙ϕy = xrT , f˙rϕy @ϕ P S (Rn) .

Then similar to Theorem 3.51, 3.53, and 3.58, we have

1. q

pT =
p

qT = T for all T P S (Rn)1.
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§4.1 The Sampling Theorem and the Nyquist Rate 73

2. yτhT (ξ) = pT (ξ)e´2πiξ¨h, ydλT (ξ) = λn pT (λξ), and p

rT (ξ) = qT (ξ) for all T P S (Rn)1.

3. zT˙f = pT pf and yf T = pf˙ pT for all f P S (Rn) and T P S (Rn)1. Moreover, if
S P S (Rn)1 has the property that S˙ϕ P S (Rn) for all ϕ P Rn, then zT˙S = pT pS in
S (Rn)1 for all T P S (Rn)1.

Moreover,

1. pδ = qδ = 1 in S (Rn)1, and pδh(ξ) = xτhδ(ξ) = |δ´h = ~τ´hδ = e´2πih¨ξ in S (Rn)1 for all
h P Rn.

2. By Euler’s identity, {cos(2πωx)(ξ) = 1

2
(δω + δ´ω) and {sin(2πωx)(ξ) = 1

2i
(δω ´ δ´ω).

3. δ˙δ = δ, and δa˙δb = δa+b for all a, b P Rn.

4. δ˙ϕ = ϕ and (δa˙ϕ)(x) = ϕ(x ´ a) for all ϕ P S (Rn).

5. Re-define the rect function Π : R Ñ R by

Π(x) =

$

’

&

’

%

1 if |x| ă
1

2
,

0 if |x| ě
1

2
.

(4.1)

Then pΠ(ξ) = qΠ(ξ) = sinc(ξ), where sinc is the normalized sinc function given by
(3.12).

6. Let Λ : R Ñ R be the triangle function define by

Λ(x) =

"

1 ´ |x| if |x| ă 1 ,

0 if |x| ě 1 .

Then by the fact that Λ is an even function, if ξ ‰ 0,

pΛ(ξ) = 2

ż 1

0

(1 ´ x) cos(2πxξ) dx = 2
[
(1 ´ x)

sin(2πxξ)
2πξ

ˇ

ˇ

ˇ

x=1

x=0
+

ż 1

0

sin(2πxξ)
2πξ

dx
]

=
1 ´ cos(2πξ)

2π2ξ2
=

sin2 πξ

π2ξ2
,

while pΛ(0) = 1. Therefore, pΛ(ξ) = sinc2(ξ). Using the property of convolution, we
have Π˙Π = Λ.
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74 CHAPTER 4. Application on Signal Processing

4.1 The Sampling Theorem and the Nyquist Rate

When a continuous function, x(t), is sampled at a constant rate fs samples per second（以
每秒 fs 次取樣）, there is always an unlimited number of other continuous functions that fit
the same set of samples; however, only one of them is bandlimited to 1

2
fs cycles per second

(hertz), which means that its Fourier transform, px(f), is 0 for all |f | ě
1

2
fs.

Definition 4.1. Let f : R Ñ R be a function. f is said to be a bandlimited function if
spt( pf) is bounded. The bandwidth of a bandlimited function f is the number sup spt( pf).
f is said to be timelimited if spt(f) is bounded.

Definition 4.2. In signal processing, the Nyquist rate is twice the bandwidth of a ban-
dlimited function or a bandlimited channel.

In the field of digital signal processing, the sampling theorem is a fundamental bridge
between continuous-time signals (often called ”analog signals”) and discrete-time signals
(often called ”digital signals”). It establishes a sufficient condition for a sample rate（取
樣頻率）that permits a discrete sequence of samples to capture all the information from a
continuous-time signal of finite bandwidth. To be more precise, Shannon’s version of the
theorem states that “if a function x(t) contains no frequencies higher than B hertz, it is
completely determined by giving its ordinates at a series of points spaced 1

2B
seconds apart.”

Let us start from the following famous Poisson summation formula to demonstrate why
countable sampling is possible to reconstruct the full signal.

Lemma 4.3 (Poisson summation formula). Let the Fourier transform and the inverse
Fourier transform be defined by (3.11). Then

8
ÿ

n=´8

f(x+ n) =
8
ÿ

k=´8

pf(k)e2πikx @ f P S (R) . (4.2)

The convergences on both sides are uniform.

Proof. Let f P S (R) be given. Then there exists C ą 0 such that

ˇ

ˇf(x)
ˇ

ˇ+
ˇ

ˇf 1(x)
ˇ

ˇ ď
C

1 + |x|2
@x P R.
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Define F (x) =
8
ř

n=´8

f(x+ n). Then for x P [´1, 1],

ˇ

ˇf(x+ n)
ˇ

ˇ+
ˇ

ˇf 1(x+ n)
ˇ

ˇ ď
2C

1 + (|n| ´ 1)2
@n P Z .

By the fact that

8
ÿ

n=0

C

1 + (|n| ´ 1)2
ă 8 and

´1
ÿ

n=´8

C

1 + |1 + n|2
ă 8 ,

the Weierstrass M-test implies that the series
8
ř

n=´8

f(x+n) and
8
ř

n=´8

f 1(x+n) both converge

uniformly on [0, 1]. Therefore, F : [0, 1] is differentiable. Note that F (x) = F (x + 1), so F
has period 1.

Since F P C 1(R) and is periodic with period 1, Theorem 2.17 implies that

F (x) =
8
ÿ

k=´8

pFke
2πikx @x P R , (4.3)

where t pFku8
k=´8 are the Fourier coefficients of F given by pFk =

ż 1

0
F (x)e´2πikx dx. By the

uniform convergence of
8
ř

n=´8

f(x+ n) in [0, 1], we find that

pFk =
8
ÿ

n=´8

ż 1

0

f(x+ n)e´2πikx dx =
8
ÿ

n=´8

ż n+1

n

f(x)e´2πik(x´n) dx =

ż

R
f(x)e´2πikx dx = pf(k) .

The Poisson summation formula (4.2) then follows from (4.3) and the identity above. ˝

Remark 4.4. Using Definition 3.3 of the Fourier transform, for f P S (R) one has

8
ÿ

n=´8

f(x+ 2nπ) =
1

2π

8
ÿ

n=´8

pf(n)einx .

Corollary 4.5. Let the Fourier transform and the inverse Fourier transform be defined by
(3.11). Then

8
ÿ

k=´8

pf(ξ ´
k

T
) = T

8
ÿ

n=´8

f(nT )e´i2πnTξ @ f P S (R) . (4.4)
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Proof. For a given g P S (R), let h = dλg, where dλ is a dilation operator. Then h is also a
Schwartz function, and

ph(ξ) = (λdλ´1pg)(ξ) = λpg(λξ) ;

thus the Poisson summation formula (4.2) (with x = 0 and f = g) implies that
8
ÿ

n=´8

h(nλ) =
8
ÿ

n=´8

g(n) =
8
ÿ

k=´8

pg(k) =
1

λ

8
ÿ

k=´8

ph
(k
λ

)
. (4.5)

Now let s = τth for some t P R, where τt is a translation operator. Then s P S (R), and

ps(ξ) = ph(ξ)e´2πitξ .

Therefore, (4.5) implies that
8
ÿ

n=´8

s(t+ nλ) =
1

λ

8
ÿ

k=´8

ps
(k
λ

)
e

2πikt
λ . (4.6)

Finally, for f P S (R), let s = qf . Then using qf =
r

pf , λ =
1

T
and t = ´ξ in the identity

above, we obtain that
8
ÿ

k=´8

pf(ξ ´
k

T
) =

8
ÿ

k=´8

pf(ξ +
k

T
) =

8
ÿ

k=´8

qf(´ξ ´
k

T
) = T

8
ÿ

k=´8

f(kT )e´2πikTξ

which shows (4.4). ˝

Remark 4.6. Identity (4.4) can be shown to hold for all continuous function f satisfying
ˇ

ˇf(x)
ˇ

ˇ+
ˇ

ˇ pf(x)
ˇ

ˇ ď
C

(1 + |x|)1+δ
@x P R

for some C, δ ą 0. Therefore, if pf has compact support, as long as the decay rate of f is
bigger than 1, (4.4) is a valid identity.

A direct consequence of the corollary above is the following sampling theorem. Suppose
that f P S (R) and spt( pf) Ď

[
0,

1

T

]
. Then (4.4) implies that

pf(ξ) =
8
ÿ

n=´8

f(nT )e´i2πnTξ @ ξ P
[
0,

1

T

]
.

This shows that if pf has compact support in
[
0,

1

T

]
, f can be reconstructed based on partial

knowledge of f , namely f(nT ).
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Recall that the Fourier transform of the sine wave with frequency ω is “supported” in
a symmetric domain tω,´ωu. Therefore, in reality it is better to assume that the Fourier
transform of a bandlimited signal is supported in a symmetric domain [´B,B]. In such

a case we need
ˇ

ˇξ ´
k

T

ˇ

ˇ ě B for all k P Zzt0u and ξ P [´B,B], where T is the sampling
frequency, in order to make use of (4.4) to gain all the information of the Fourier transform
of the signal. Therefore, the sampling frequency T has to obey 1

T
ě 2B or T ď

1

2B
in order

to gain the Fourier transform of the bandlimited signal.

Theorem 4.7 (Sampling theorem). If a (Schwartz) function f contains no frequencies
higher than B hertz, it is completely determined by giving its ordinates at a series of points
spaced 1

2B
seconds apart.

Alternative proof of Theorem 4.7. By the Fourier inversion formula,

f(x) =

ż

R

pf(ξ)e2πixξ dξ , where pf(ξ) =

ż

R
f(x)e´2πixξ dt .

By assumption, spt( pf) Ď [´B,B]; thus f(x) =
ż B

´B

pf(ξ)e2πixξ dξ which implies that

f
( k

2B

)
=

ż B

´B

pf(ξ)e
iπkξ
B dξ .

Treating pf as a function defined on [´B,B], the identity above implies that
␣ 1

2B
f
(´k

2B

)(8

k=´8

is the Fourier coefficients of pf and

pf(ξ) =
8
ÿ

k=´8

1

2B
f
(´k

2B

)
e

iπkξ
B =

8
ÿ

k=´8

1

2B
f
( k

2B

)
e´

iπkξ
B @ ξ P [´B,B] (4.7)

which, together with the fact that pf = 0 outside [´B,B], allows us to reconstruct f using
the Fourier inversion formula. ˝

Taking the Fourier inverse transform of pf(ξ) obtained by (4.7), we find that

f(x) =
8
ÿ

k=´8

1

2B
f
( k

2B

) ż B

´B

e2πixξ´
iπkξ
B dξ =

8
ÿ

k=´8

1

2B
f
( k

2B

) ż B

´B

cos
(2πBx ´ πk

B
ξ
)
dξ

=
8
ÿ

k=´8

f
( k

2B

)sinπ(2Bx ´ k)

π(2Bx ´ k)
.
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Using the normalized sinc function defined by (3.12), we recover the so-called Whittaker–
Shannon interpolation formula:

f(x) =
8
ÿ

k=´8

f
( k

2B

)
sinc(2Bx ´ k) @ f P S (R) with spt( pf) Ď [´B,B] . (4.8)

In the following, we examine the Whittaker–Shannon interpolation formula (4.8) for the
case that f R S (R). In fact, since

ż

R
sinc(2Bx ´ k)ϕ(x) dx =

ż

R

(
d 1

2B
sinc

)( k

2B
´ x

)
ϕ(x) dx =

[(
d 1

2B
sinc

)
˙ϕ

]( k

2B

)
,

instead of (4.8) we show that

xf, ϕy =
8
ÿ

k=´8

f
( k

2B

)[(
d 1

2B
sinc

)
˙ϕ

]( k

2B

)
=

8
ÿ

k=´8

@

fτ k
2B
δ,
(
d 1

2B
sinc

)
˙ϕ

D

. (4.9)

Suppose that 1 ď p ď 8 and g : R Ñ R is an Lp-function
(

that is,
ż

R
|g(x)|p dx ă 8 if

1 ď p ă 8 or g is bounded if p = 8

)
supported in an open interval of length 2B (later we

will let g be the Fourier transform of a bandlimited signal f ; so it is reasonable to assume
that g is compactly supported). Define

G(x) =
8
ÿ

n=´8

g(x+ 2Bn) =
8
ÿ

n=´8

(τ´2Bng)(x) . (4.10)

Let q satisfies 1

p
+

1

q
= 1 and ϕ P S (R). The monotone convergence theorem shows that

ż

R

8
ÿ

n=´8

ˇ

ˇ(τ´2Bng)(x)ϕ(x)
ˇ

ˇ dx =
8
ÿ

n=´8

ż ´(2n´1)B

´(2n+1)B

ˇ

ˇ(τ´2Bng)(x)
ˇ

ˇxxy´2xxy2
ˇ

ˇϕ(x)
ˇ

ˇ dx

ď

8
ÿ

n=´8

ż ´(2n´1)B

´(2n+1)B

ˇ

ˇg(x+ 2Bn)
ˇ

ˇxxy´2p2(ϕ) dx = p2(ϕ)
8
ÿ

n=´8

ż B

´B

ˇ

ˇg(x)
ˇ

ˇxx ´ 2Bny´2 dx .

If 1 ă p ă 8, Hölder’s inequality implies that
ż

R

8
ÿ

n=´8

ˇ

ˇ(τ´2Bng)(x)xxy´2
ˇ

ˇ dx ď

8
ÿ

n=´8

ż B

´B

ˇ

ˇg(x)
ˇ

ˇxx ´ 2Bny´2 dx

ď

8
ÿ

n=´8

( ż B

´B

|g(x)|p dx
) 1

p
( ż B

´B

dx

(1 + |x ´ 2Bn|2)q

) 1
q

ď }g}Lp(R)

8
ÿ

n=´8

(2B)
1
q

1 + (2|n| ´ 1)2B2
ă 8
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while if p = 1,
8
ÿ

n=´8

ż B

´B

ˇ

ˇg(x)
ˇ

ˇxx ´ 2Bny´2 dx ď }g}L1(R)

8
ÿ

n=´8

1

1 + (2|n| ´ 1)2B2
ă 8 ;

thus if 1 ď p ă 8,
ż

R

8
ÿ

n=´8

ˇ

ˇ(τ´2Bng)(x)ϕ(x)
ˇ

ˇ dx ď Cℓ}g}Lp(R)pℓ(ϕ) @ ℓ " 1 (4.11)

for some constant Cℓ ą 0. On the other hand, if p = 8,
ż

R

8
ÿ

n=´8

ˇ

ˇ(τ´2Bng)(x)ϕ(x)
ˇ

ˇ dx ď }g}8}ϕ}L1(R) ď Cℓ}g}8pℓ(ϕ) @ ℓ " 1 . (4.12)

Therefore, G P S (R)1 since

ˇ

ˇxG, ϕy
ˇ

ˇ ď

ż

R

8
ÿ

n=´8

ˇ

ˇ(τ´2Bng)(x)ϕ(x)
ˇ

ˇ dx ď Cℓpℓ(ϕ) @ϕ P S (R) and ℓ " 1 .

Moreover, it follows from (4.11) and (4.12) that
8
ř

n=´8

ˇ

ˇ(τ´2Bng)ϕ
ˇ

ˇ P L1(R). By the fact that

ˇ

ˇ

ˇ

k
ÿ

n=´k

(τ´2Bng)(x)ϕ(x)
ˇ

ˇ

ˇ
ď

8
ÿ

n=´8

ˇ

ˇ(τ´2Bng)(x)ϕ(x)
ˇ

ˇ @x P R ,

the dominated convergence theorem implies that

xG, ϕy =

ż

R
lim
kÑ8

k
ÿ

n=´k

(τ´2Bng)(x)ϕ(x) dx = lim
kÑ8

ż

R

k
ÿ

n=´k

(τ´2Bng)(x)ϕ(x) dx

=
8
ÿ

n=´8

xτ´2Bng, ϕy @ϕ P S (R) .

Suppose that spt(g) Ď (a ´ B, a + B). Then G = g on (a ´ B, a + B). In addition, if
x P [a + (k ´ 1)B, a + (k + 1)B], then G(x) = g(x ´ kB); thus G(x + 2B) = G(x) for all
x P R. In other words, G can be viewed as the 2B-periodic extension of non-vanishing part
of g.

Let ϕ P S (R). By the definition of the inverse Fourier transform of tempered distribu-
tions,

x qG, ϕy = xG, qϕy =
8
ÿ

n=´8

xτ´2Bng, qϕy =
8
ÿ

n=´8

xg, τ2Bn
qϕy .
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By the Poisson summation formula,
8
ÿ

n=´8

(τ2Bn
qϕ)(x) =

8
ÿ

n=´8

qϕ(x ´ 2Bn) =
8
ÿ

n=´8

qϕ(x+ 2Bn) =
8
ÿ

n=´8

(d 1
2B

qϕ)
( x

2B
+ n)

=
8
ÿ

k=´8

z

d 1
2B

qϕ(k)e
πikx
B =

8
ÿ

k=´8

1

2B
ϕ
( k

2B

)
e

πikx
B

and the convergence is uniform. Therefore,

x qG, ϕy =
8
ÿ

n=´8

xg, τ2Bn
qϕy =

8
ÿ

k=´8

1

2B
ϕ
( k

2B

) ż
spt(g)

g(x)e
πikx
B dx =

8
ÿ

k=´8

1

2B
ϕ
( k

2B

) ż
R
g(x)e

πikx
B dx

=
8
ÿ

k=´8

1

2B
ϕ
( k

2B

)
qg
( k

2B

)
=

1

2B

8
ÿ

k=´8

qg
( k

2B

)
xτ k

2B
δ, ϕy .

Similarly, x pG, ϕy =
1

2B

8
ř

k=´8

pg
( k

2B

)
xτ k

2B
δ, ϕy or one can use the formula that pG =

r

qG to

deduce that

x pG, ϕy = x qG, rϕy =
8
ÿ

k=´8

1

2B
rϕ
( k

2B

)
qg
( k

2B

)
=

8
ÿ

k=´8

1

2B
ϕ
( k

2B

)
pg
( k

2B

)
=

1

2B

8
ÿ

k=´8

pg
( k

2B

)
xτ k

2B
δ, ϕy .

Symbolically, we can write pG =
1

2B

8
ř

k=´8

pg
( k

2B

)
τ k

2B
δ and qG =

1

2B

8
ř

k=´8

qg
( k

2B

)
τ k

2B
δ in

S (R)1.

Remark 4.8. Let III denote the tempered distribution

xIII, ϕy =
8
ÿ

n=´8

ϕ(n) @ϕ P S (R) .

We note that the sum above makes sense if ϕ P S (R), and
8
ÿ

n=´8

ϕ(n) =
8
ÿ

n=´8

xny´kxnykϕ(n) ď

( 8
ÿ

n=´8

xny´k
)
pk(ϕ) = Ckpk(ϕ) @ k ě 2 .

Therefore, III is indeed a tempered distribution. Since ϕ(n) = xτnδ, ϕy, symbolically we also
write III =

8
ř

n=´8

τnδ.

By the definition of the Fourier transform of tempered distributions,

x pIII, ϕy = xIII, pϕy =
8
ÿ

n=´8

pϕ(n) @ϕ P S (R) ,
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and the Poisson summation formula implies that

x pIII, ϕy =
8
ÿ

k=´8

ϕ(k) = xIII, ϕy @ϕ P S (R) .

Therefore, Theorem 3.51 implies that pIII = qIII = III in S (R)1. Define IIIp =
1

p
dpIII, where dp

is a dilation operator. Then

xIIIp, ϕy = xIII, dp´1ϕy =
8
ÿ

n=´8

(dp´1ϕ)(n) =
8
ÿ

n=´8

ϕ(pn) =
8
ÿ

n=´8

xτpnδ, ϕy @ϕ P S (R) .

(4.13)
Symbolically, IIIp =

8
ř

n=´8

τpnδ. Moreover, xIIIp = |IIIp = dp´1III = 1

p
III 1

p
which is the same as

saying that

x|IIIp, ϕy = xdp´1III, φy = p´1xIII, dpφy =
1

p

8
ÿ

n=´8

xτn
p
δ, ϕy @ϕ P S (R) .

Symbolically, |IIIp =
1

p

8
ř

n=´8

τn
p
δ.

Formally speaking, G given by (4.10) can be expressed as G = III2B˙g. Using this
representation, qG = }III2Bqg =

1

2B

8
ř

n=´8

qgτ n
2B
δ. Therefore, by the fact that g = (d2BΠ)G in

S (R)1, we find that

qg(x) = (~d2BΠ˙ qG)(x) =
[
(2Bd 1

2B

qΠ)˙ qG
]
(x) = 2B

ż

R

qG(y)qΠ(2B(x ´ y)) dy

=
8
ÿ

n=´8

ż

R
qg(y)τ n

2B
(y)sinc(2B(x ´ y)) dy =

8
ÿ

n=´8

qg
( n

2B

)
sinc(2Bx ´ n) .

The Whittaker–Shannon interpolation formula (4.8) then follows from letting g = pf in the
identity above.

Example 4.9. Let f : R Ñ R be a function supported in [0, T ] (thus one can view f as a
signal recorded in the time interval [0, T ]). Define F (x) =

8
ř

n=´8

f(x+ nT ). Then

pF (ξ) =
1

T

8
ÿ

k=´8

pf
( k
T

)
(τ k

T
δ)(ξ) .

On the other hand, the Fourier series of
8
ř

n=´8

f(x+nT ), the T -periodic extension of f1[0,T ],
is

s(f, x) =
8
ÿ

k=´8

pfke
2πikx

T , where pfk =
1

T

ż T

0

f(x)e´ 2πikx
T dx =

1

T
pf
( k
T

)
.
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Therefore, pF =
8
ř

k=´8

pfkτ k
T
δ, and accordingly, F (x) =

8
ř

k=´8

pfke
2πikx

T in S (R)1.

Now suppose that the signal is sampled with sampling rate Fs (times per second). Then
in total there are N = TFs samples of the signal. Write these samples as tx0, x1, ¨ ¨ ¨ , xN´1u.
Then xℓ = f

( ℓ

Fs

)
. We remark that the set tx0, x1, ¨ ¨ ¨ , xN´1u resembles a digitalized version

of the signal and is usually called a digital signal. The DFT of the digital signal is given by

Xk =
N´1
ÿ

ℓ=0

xℓe
´2πikℓ

N =
N´1
ÿ

ℓ=0

f
( ℓ

Fs

)
e

´2πik
T

¨ ℓ
Fs @ k P Z

and the inverse DFT of tXkukPZ is given by

xℓ =
1

N

N´1
ÿ

k=0

Xke
2πikℓ
N =

1

N

N´1
ÿ

ℓ=0

Xke
2πik
T

¨ ℓ
Fs @ ℓ P Z .

4.1.1 The inner-product point of view

Let ek(x) = sinc(x ´ k) = (τksinc)(x). Then ek P L2(R) since
ż

R
sinc2(x ´ k) dx =

ż

R
sinc2xdx =

ż

R

sin2 πx

π2x2
dx =

1

π

ż

R

sin2 x

x2
dx ă 8 .

By the Plancherel formula (3.10),

(ek, eℓ)L2(R)s =
(
τksinc,τℓsinc

)
L2(R) =

ż

R
Π(ξ)e2πikξΠ(ξ)e2πiℓξ dξ =

ż 1
2

´ 1
2

e2πi(k´ℓ)ξ dξ

which is 0 if k ‰ ℓ and is 1 is k = ℓ. Therefore, we find that tekukPZ is an orthonormal set
in L2(R).

Now suppose that f P L2(R) such that spt( pf) Ď
[
´

1

2
,
1

2

]
. Then

(f, ek)L2(R) =
(
pf, {τk sin c

)
L2(R) =

ż

R

pf(ξ)Π(´ξ)e´2πikξ dξ =

ż 1
2

´ 1
2

pf(ξ)e2πikξ dξ

=

ż

R

pf(ξ)e2πikξ dξ =
q

pf(k) = f(k)

if f is continuous at k. In other words, if f P L2(R) X C (R) such that spt( pf) Ď
[
´

1

2
,
1

2

]
,

then
8
ÿ

k=´8

f(k)sinc(x ´ k) =
8
ÿ

k=´8

(f, ek)L2(R)ek(x)
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which, by the Whittaker–Shannon interpolation formula (4.8), further shows that

f =
8
ÿ

k=´8

(f, ek)L2(R)ek in S (R)1 .

In other words, one can treat tekukPZ as an “orthonormal basis” in the space
!

f P L2(R)
(

XC (R)
) ˇ
ˇ

ˇ
spt( pf) Ď

[
´

1

2
,
1

2

])
.

4.1.2 Sampling periodic functions

A bandlimited signal cannot be timelimited; thus when applying the sampling theorem, it
always requires infinitely many sampling to construct the signal perfectly. On the other
hand, it is possible that to construct a bandlimited signal perfectly using finitely many
sampling provided that the bandlimited signal is periodic. In the following, we discuss why
this is true.

Suppose that f is a q-periodic bandlimited signals such that spt(f) Ď [´B,B]. Then
the Whittaker–Shannon interpolation formula implies that

f(x) =
8
ÿ

k=´8

f
(k
p

)
sinc(px ´ k)

as long as p ą 2B. If pq P N, then by the fact that f
(k
p

)
= f

(k +mpq

p

)
for all m P Z, the

sum above can be re-grouped as

f(x) =
pq´1
ÿ

ℓ=0

8
ÿ

m=´8

f
(ℓ+mpq

p

)
sinc(px ´ ℓ ´ mpq)

=
pq´1
ÿ

ℓ=0

f
( ℓ
p

) 8
ÿ

m=´8

sinc(px ´ ℓ ´ mpq) ; (4.14)

thus if we can find the sum
8
ř

m=´8

sinc(px ´ ℓ ´ mpq), f can be rewritten as finite sum.

Lemma 4.10. If p, q ą 0 and pq is an odd number, then

8
ÿ

m=´8

sinc(px ´ mpq) =
sinc(px)

sincx
q

@x P R .
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Proof. Note that
8
ÿ

m=´8

sinc(px ´ mpq) =
8
ÿ

m=´8

(d 1
p
sinc)(x ´ mq) = (IIIq˙d 1

p
sinc)(x) ,

where IIIq =
1

q
dqIII is defined in Remark 4.8. Taking the Fourier transform, we find that

F
[
(IIIq˙d 1

p
sinc)

]
(ξ) =

(
xIIIq {d 1

p
sinc

)
(ξ) =

1

pq

(
III 1

q
dpΠ

)
(ξ) =

1

pq
(dpΠ)(ξ)

8
ÿ

k=´8

(
τ k

q
δ
)
(ξ) .

If pq is odd, then p

2
‰

k

q
for all k P N; thus by the fact that spt(dpΠ) Ď

[
´

p

2
,
p

2

]
, we have

(dpΠ)(ξ)
8
ÿ

k=´8

(
τ k

q
δ
)
(ξ) =

ÿ

´
p
2

ă k
q

ă
p
2

(
τ k

q
δ
)
(ξ) =

pq´1
2
ÿ

k=´
pq´1

2

(
τ k

q
δ
)
(ξ) .

Therefore,

F
[
(IIIq˙d 1

p
sinc)

]
(ξ) =

1

pq

pq´1
2
ÿ

k=´
pq´1

2

(
τ k

q
δ
)
(ξ) .

Taking the inverse Fourier transform,

8
ÿ

m=´8

sinc(px´mpq)=F ˚F
[
(IIIq˙d 1

p
sinc)

]
(x)=

1

pq

pq´1
2
ÿ

k=´
pq´1

2

e
2πikx

q =
1

pq

sin πpx
sin πx

q

=
sinc(px)

sincx
q

. ˝

By Lemma 4.10, (4.14) implies that

8
ÿ

m=´8

sinc(px ´ ℓ ´ mpq) =
sinc(p(x ´ ℓ

p
))

sincx´ ℓ
p

q

=
sinc(px ´ ℓ)

sincpx´ℓ
pq

;

thus we obtain that

f(x) =
pq´1
ÿ

ℓ=0

f
( ℓ
p

)sinc(px ´ ℓ)

sincpx´ℓ
pq

. (4.15)

Example 4.11. Let f(x) = cos(2πx). Then f is 1-periodic and spt( pf) Ď (´1´ ϵ, 1+ ϵ) for
all ϵ ą 0. Letting p = 3 in (4.15), we find that

cos(2πx) = sinc(3x)
sincx + cos 2π

3

sinc(3x ´ 1)

sinc3x´1
3

+ cos 4π
3

sinc(3x ´ 2)

sinc3x´2
3

.
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4.2 Necessary Conditions for Sampling of Entire Func-
tions

The sampling theorem provides a way of reconstructing signals based on sampled signals
with sampling frequency larger than twice of the bandwidth of bandlimited signals. It is
natural to ask whether we can reduce the sampling frequency for perfect reconstruction
of bandlimited signals or not. Moreover, it is also possible that the support of the Fourier
transform of a signal (usually called spectrum of the signal) is contained in a “small” portion
of the interval [´B,B], and in this case we hope to reduce the sampling frequency for the
reconstruction of the signal.
Question: Is there a lower bound of the sampling frequency for perfect reconstruction of
bandlimited signals?

Generally speaking, the way of sampling does not have to be uniform as long as the
samples from a signal are enough to reconstruct the signal. A good choice of sampled set
should obey

1. the signal is uniquely determined by the set of sampled signals - the uniqueness of
the reconstruction of signals;

2. each set of sampled signals should come from a possible bandlimited signal - the
existence of the reconstruction of signals.

These two requirements for sets on which the signals are sampled, together with the idea
that the sampled set is not necessary uniform, induce the following

Definition 4.12. Let S Ď Rn be a measurable set in Rn, and B(S) denote the subspace of
L2(Rn) consisting of those functions whose Fourier transform (given by (3.11)) is supported
on S; that is,

B(S) ”
␣

f P L2(Rn)
ˇ

ˇ spt( pf) Ď S
(

.

A subset Λ of Rn is said to be uniformly discrete if the distance between any two
distinct points of Λ exceeds some positive quantity; that is, there exists λ0 ą 0 such that
}x ´ y}Rn ě λ0 for all x, y P Λ and x ‰ y. Such a λ0 is called a separation number. A
uniformly discrete set Λ is said to be

1. a set of sampling for B(S) if there exists a constant K such that

}f}2L2(Rn) ď K
ÿ

λPΛ

ˇ

ˇf(λ)
ˇ

ˇ

2
@ f P B(S) ;
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2. a set of interpolation for B(S) if for each square-summable collection of complex
numbers taλuλPΛ there exists f P B(S) with f(λ) = aλ for all λ P Λ.

Example 4.13. Let I be an interval of length 1. Then Z is a set of sampling and interpo-
lation for B(I):

1. If f P B(I), then pf has the following Fourier series representation

pf(x) =
8
ÿ

k=´8

cke
2πikx for almost every x P I ,

where ck =
ż

I

pf(x)e´2πikx dx. By the fact that spt( pf) Ď I, the Fourier inversion
formula implies that

ck =

ż

R

pf(x)e´2πikx dx = f(´k) ;

thus
␣

f(´k)
(8

k=´8
is the Fourier coefficients of pf . The Plancherel identity and the

Parseval identity then imply that

}f}2L2(R) = } pf}2L2(R) = } pf}2L2(I) =
8
ÿ

k=´8

|ck|2 =
8
ÿ

k=´8

}f(k)
ˇ

ˇ

2
;

thus Z is a set of sampling for B(I).

2. Let tcku8
k=´8 be a square-summable sequence. Define

g(x) = 1I(x)
8
ÿ

k=´8

cke
´2πikx .

Then the Parseval identity implies that

}g}2L2(R) = }g}2L2(I) =
8
ÿ

k=´8

|ck|2 ă 8 ;

thus g P L2(R). Let f = qg. Then f P L2(R) and the Fourier inversion formula implies
that for all k P Z,

f(k) =

ż

R

pf(ξ)e2πikξ dξ =

ż

R
g(ξ)e2πikξ dξ =

ż

I

g(ξ)e2πikξ dξ = pg´k = ck ;

thus Z is a set of interpolation for B(I).
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Remark 4.14. Suppose that f is an L2-signal satisfying spt( pf) Ď (B ´ 1, B) for some
B " 1. Then certainly spt( pf) Ď (´B,B) and the sample theorem implies that to perfectly
reconstruct the signal one can consider sampling f every 1

2B
seconds. On the other hand,

Example 4.13 shows that one can reconstruct the signal by sampling the signal once per
second. This is a huge amount of reduction of sampling if B " 1. Therefore, the sampling
rate provided by the sampling theorem is only a sufficient condition for perfect reconstruction
of bandlimited signals, but possibly can be reduced for specific cases.

For n = 1, Landau in his paper “Necessary density conditions for sampling and interpo-
lation of certain entire functions” shows the following

Theorem 4.15. Let S be the union of a finite number of intervals of total measure |S|.

1. If Λ is a set of sampling for B(S), then there exist generic constants A,B such that

n´(r) ” inf
yPR

#
(
Λ X [y, y + r]

)
ě |S|r ´ A log+ r ´ B @ r ą 0 . (4.16)

2. If Λ is a set of interpolation for B(S), then there exist generic constants A,B such
that

n+(r) ” sup
yPR

#
(
Λ X [y, y + r]

)
ď |S|r + A log+ r +B @ r ą 0 .

In the following, we only focus on the proof of the first case in Theorem 4.15.
Before proceeding, we need to introduce some terminologies. Let Q,S Ď Rn, and D(Q)

be the subspace of L2(Rn) consisting of functions supported on Q. Let DQ and BS denote
the orthogonal projection of L2(Rn) onto D(S) and B(S), respectively. Then

BS = F ˚χSF and DQ = χQ , (4.17)
where χA denotes the operator defined by multiplying by the characteristic function of A.

Proposition 4.16. Let k : Rn ˆ Rn Ñ C be square integrable, K(x, y) = K(y, x) for all
x, y P Rn, and K : L2(Rn) Ñ L2(Rn) be an operator defined by

(Kf)(x) =

ż

Rn

k(x, y)f(y) dy .

Then

1. k(x, y) =
8
ř

k=1

µkφk(x)φk(y), where tφku8
k=1 denotes the orthonormal sequence of eigen-

functions, and tµku8
k=1 Ď R denotes the sequence of corresponding eigenvalues of K;
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2.
8
ř

k=1

µk =
ż

Rn

k(x, x) dx; 3.
8
ř

k=1

µ2
k =

ż

Rn

ż

Rn

ˇ

ˇk(x, y)
ˇ

ˇ

2
dxdy.

Theorem 4.17. Let Q,S Ď Rn be bounded measurable sets, and DQ, BS be the projection
operators of L2(Rn) defined in (4.17). Denoting the eigenvalues of BSDQBS, arranged in
non-increasing order, by λk(S,Q), where k P N Y t0u. Then

(i) λk(S,Q) = λk(Q,S).

(ii) λk(S,Q) = λk(S + σ,Q+ τ) = λk(αS, α
´1Q) for all σ, τ P Rn and α ą 0.

(iii)
8
ř

k=0

λk(S,Q) = |S||Q|.

(iv)
8
ř

k=0

λ2k(S,Q) ě
8
ř

k=0

λ2k(S,Q) +
8
ř

k=0

λ2k(S,Q) if Q = Q1 Y Q2 and Q1 X Q2 = H.

(v)
8
ř

k=0

λ2k(S,Q) ě
(
sq ´

2

π2
log+(sq) ´

6

π2

)n, where S and Q are cubes with edges parallel

to the coordinate axes with |S| = sn, |Q| = qn, and log+ x = maxt0, logxu.

(vi) For any k-dimensional subspace Ck of L2(Rn),

λk(S,Q) ď sup
fPB(S)

fKCk,f‰0

}DQf}2L2(Rn)

}f}2
L2(Rn)

and λk´1(S,Q) ě inf
fPB(S)XCk

f‰0

}DQf}2L2(Rn)

}f}2
L2(Rn)

.

Proof. For two (completely continuous) operators A and B, we write A „ B if A and B has
the same nonzero eigenvalues, including multiplicities. Suppose that λ ‰ 0 is an eigenvalue
of BSDQBS. Then BSDQBSφ = λφ for some φ ‰ 0. By the fact that BS is a projection,
we have

λBSφ = BSBSDQBSφ = BSDQBSφ = λφ

which implies that BSφ = φ. Moreover, DQBSφ ‰ 0. Applying DQ to the equation above,
we find that

DQBSDQDQBSφ = DQBSDQBSφ = λDQBSφ

which, by the fact that DQBSφ ‰ 0, implies that λ is also a eigenvalue of DQBSDQ. As a
consequence,

BSDQBS „ DQBSDQ . (4.18)

Therefore, to study the nonzero eigenvalues of the operator BSDQBS, it suffices to study
the operator DQBSDQ.
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Let C denoted the complex conjugate operator; that is, Cf = sf . Then CFC = F ´1

and CF ´1C = F . By the fact that F is unitary and DQBSDQ is symmetric (so the
eigenvalues are real),

DQBSDQ „ CDQBSDQC = χQCF ´1CχSCFCχQ = χQFχSF ´1χQ

„ F ´1χQFχSF ´1χQF = BQDSBQ .

This proves (ii). Since S and Q are bounded, the Fubini theorem implies that

(DQBSDQf)(x) = χQ(x)
[ ż

Rn

χS(ξ)
( ż

Rn

(χQf)(y)
´2πiy¨ξ dy

)
e2πix¨ξ dξ

]
=

[ ż
Rn

χQ(x)χQ(y)f(y)
( ż

Rn

χS(ξ)e
´2πi(y´x)¨ξ dξ

)
dy

]
=

ż

Rn

χQ(x)χQ(y)xχS(y ´ x)f(y) dy .

Using (4.18), the change of variables formula together with (i) shows (ii).
Let k(x, y) = χQ(x)χQ(y)xχS(y ´ x) and K be the operator defined by (Kf)(x) =

ż

Rn

k(x, y)f(y) dy. Then k(x, y) = k(y, x); thus Proposition 4.16 implies that

8
ÿ

k=0

λk(S,Q) =

ż

Rn

k(x, x) dx =

ż

Q

xχS(0) dξ = |S||Q|

which establishes (iii).
To prove (iv), we make use of Proposition 4.16 and find that

8
ÿ

k=0

λk(S,Q)
2 =

ż

Rn

( ż
Rn

ˇ

ˇk(x, y)
ˇ

ˇ

2
dx

)
dy =

ż

QˆQ

ˇ

ˇ

xχS(y ´ x)
ˇ

ˇ

2
d(x, y) .

Since Q ˆ Q Ď (Q1 ˆ Q1) Y (Q2 ˆ Q2) and (Q1 ˆ Q1) X (Q2 ˆ Q2) = H, by the identity
above we conclude that

8
ÿ

k=0

λk(S,Q)
2 ě

ż

Q1ˆQ1

ˇ

ˇ

xχS(y ´ x)
ˇ

ˇ

2
d(x, y) +

ż

Q2ˆQ2

ˇ

ˇ

xχS(y ´ x)
ˇ

ˇ

2
d(x, y)

= λk(S,Q1) + λk(S,Q2) .

Let S and Q be cubes with volume sn and qn. Using (ii) we can assume that S and Q

are centered at the origin; that is, S =
[
´

s

2
,
s

2

]n and Q =
[
´

q

2
,
q

2

]n. Then
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xχS(y ´ x) =

ż

[´ s
2
, s
2
]n
e2πi(x´y)¨ξ dξ =

n
ź

i=1

sin π(xi ´ yi)s

π(xi ´ yi)
;

thus Proposition 4.16 provides that
8
ÿ

k=0

λk(S,Q)
2 =

ż

[´ q
2
, q
2
]n

( ż
[´ q

2
, q
2
]n

n
ź

i=1

sin2(π|xi ´ yi|s)

π2|xi ´ yi|2
dx

)
dy

=
( ż q

2

´
q
2

ż
q
2

´
q
2

sin2(π|x ´ y|s)

π2|x ´ y|2
dxdy

)n
.

By the fact that
ż 8

´8

sin2 t

t2
dt = π,

ż
q
2

´
q
2

ż
q
2

´
q
2

sin2(π|x ´ y|s)

π2|x ´ y|2
dxdy =

s

π

ż
q
2

´
q
2

( ż π( q
2

´y)s

π(´ q
2

´y)s

sin2 t

t2
dt
)
dy

=
s

π

ż
q
2

´
q
2

( ż 8

´8

sin2 t

t2
dt ´

ż 8

π( q
2

´y)s

sin2 t

t2
dt ´

ż π(´ q
2

´y)s

´8

sin2 t

t2
dt
)
dy

= sq ´
2s

π

ż
q
2

´
q
2

( ż 8

π( q
2

´y)s

sin2 t

t2
dt
)
dy

= sq ´
q

π

ż 1

´1

( ż 8

qπ
2
(1´y)

sin2(st)

t2
dt
)
dy .

Note that
q

π

ż 1

´1

( ż 8

qπ
2
(1´y)

sin2(st)

t2
dt
)
dy

=
q

π

ż 8

qπ

( ż 1

´1

sin2(st)

t2
dy

)
dt+

q

π

ż qπ

0

( ż 1

1´ 2t
qπ

sin2(st)

t2
dy

)
dt

=
2

π

ż 8

π

sin2(sqt)

t2
dt+

2

π2

ż qπ

0

sin2(st)

t
dt

ď
2

π

ż 8

π

1

t2
dt+

2

π2

ż sq

0

sin2(πt)

t
dt

ď
2

π2

[
1 +

ż 1

0

sin2(πt)

t
dt+

ż sq

1

sin2(πt)

t
dt
]

ď
2

π2

[
3 + log+(sq)

]
,

so (v) is established.
For a given k-dimensional subspace Ck, the subspace BSCk has dimension d ď k. More-

over, f K BSCk if and only if BSf K Ck. By the fact that }BSf}L2(Rn) ď }f}L2(Rn) and

λk(S,Q) ď sup
fKCk,f‰0

(BSDQBSf, f)L2(Rn)

}f}2L2(Rn)
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for any k-dimensional subspace Ck of L2(Rn), we conclude that

λk(S,Q) ď λd(S,Q) ď sup
fKBSCk

f‰0,BSf‰0

(BSDQBSf, f)L2(Rn)

}f}2L2(Rn)

ď sup
BSfKCk
BSf‰0

(DQBSf,BSf)L2(Rn)

}BSf}2L2(Rn)

ď sup
fPB(S)

fKCk,f‰0

(DQf, f)L2(Rn)

}f}2L2(Rn)

= sup
fPB(S)

fKCk,f‰0

(DQf,DQf)L2(Rn)

}f}2L2(Rn)

= sup
fPB(S)

fKCk,f‰0

}DQf}2L2(Rn)

}f}2L2(Rn)

.

On the other hand, by the fact that

λk´1(S,Q) ě inf
fPCk,f‰0

(BSDQBSf, f)L2(Rn)

}f}2L2(Rn)

for any k-dimensional subspace of L2(Rn), choosing Ck Ď B(S) we obtain that

λk´1(S,Q) ě inf
fPCk,f‰0

(BSDQBSf, f)L2(Rn)

}f}2L2(Rn)

= inf
fPB(S)XCk

f‰0

(DQBSf,BSf)L2(Rn)

}f}2L2(Rn)

= inf
fPB(S)XCk

f‰0

(DQf, f)L2(Rn)

}f}2L2(Rn)

= inf
fPB(S)XCk

f‰0

(DQf,DQf)L2(Rn)

}f}2L2(Rn)

= inf
fPB(S)XCk

f‰0

}DQf}2L2(Rn)

}f}2L2(Rn)

;

thus (vi) is established. ˝

Lemma 4.18. For any bounded measurable set S Ď Rn and d ą 0, there exists a Schwartz
function h : Rn Ñ C such that spt(h) Ď B(0, d) and |ph(ξ)

ˇ

ˇ ě 1 for all ξ P S.

Proof. Since S is bounded, S Ď B(0, R) for some R ą 0. Let f P S (Rn) be such that f ą 2

on B(0, R). Since qf P S (Rn), there exists g P C 8
c (Rn) such that } qf ´ g}L1(Rn) ă 1. Choose

r ą d such that spt(g) Ď B(0, r), and defined the function h by

h(x) ”
rn

dn
g
(rx
d

)
.

Then h is supported in B(0, d). Moreover,

ph(ξ) =

ż

Rn

rn

dn
g
(rx
d

)
e2πix¨ξ dx = pg

(dξ
r

)
@ ξ P Rn ,

and the Fourier inversion formula implies that

sup
ξPRn

ˇ

ˇf
(dξ
r

)
´ ph(ξ)

ˇ

ˇ = sup
ξPRn

ˇ

ˇf
(dξ
r

)
´ pg

(dξ
r

)ˇ
ˇ = }f ´ pg}L8(Rn) ď } qf ´ g}L1(Rn) ă 1 .

Therefore, if |ξ| ă R, we must have d|ξ|

r
ă R; hence

ˇ

ˇph(ξ)
ˇ

ˇ ě
ˇ

ˇf
(dξ
r

)ˇ
ˇ ´ 1 ě 1 @ |ξ| ď R .

Since S Ď B(0, R),
ˇ

ˇph
ˇ

ˇ ě 1 on S. ˝
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Lemma 4.19. Let S Ď R be a bounded set and Λ be a uniformly discrete set of sampling for
B(S) with separation number d and counting function n. For a compact set I, I+ denotes
the set of points whose distance to I is less than d

2
. Then

λn(I+)(S, I) ď γ ă 1 (4.19)

for some γ depending on S, Λ but not on I.

Proof. By Lemma 4.18, there exists a Schwartz function h such that h vanishes outside
B(0,

d

2
) and |ph| ě 1 on S. Let C be the subspace of L2(R) spanned by the functions h(λ ´ ¨)

for λ P Λ X I+. Since(
h(λi ´ ¨), h(λj ´ ¨)

)
L2(R) =

ż

R
h(λi ´ x)h(λj ´ x) dx = 0 if λi ‰ λj ,

the dimension of C is n(I+).
For a given f P B(S) be given, we define g = f˙h; that is,

g(x) =

ż

R
f(y)h(x ´ y) dy =

ż

|y´x|ă d
2

f(y)h(x ´ y) dy .

Then pg = pf ph which further implies that g P B(S). Therefore, by the fact that Λ is a set of
sampling for B(S),

}g}2L2(R) ď K
ÿ

λPΛ

ˇ

ˇg(λ)
ˇ

ˇ

2
.

Moreover, the Plancherel identity shows that

}g}L2(R) = }pg}L2(R) = } pf}L2(R)}ph}L2(R) ě } pf}L2(R) = }f}L2(R) (4.20)

and the Cauchy-Schwarz inequality shows that

|g(x)|2 ď }h}2L2(R)

ż

|y´x|ă d
2

f(y)2 dy .

Therefore, if f P B(S) and f K C, we have

}f}2L2(R) ď }g}2L2(R) ď K
ÿ

λPΛ

ˇ

ˇg(λ)
ˇ

ˇ

2
= K

ÿ

λPΛ,λRI+

ˇ

ˇg(λ)
ˇ

ˇ

2

ď K}h}2L2(R)

ÿ

λPΛ,λRI+

ż

|y´λ|ă d
2

ˇ

ˇf(y)
ˇ

ˇ

2
dy

ď K}h}2L2(R)

ż

IA

ˇ

ˇf(y)
ˇ

ˇ

2
dy = K}h}2L2(R)

[
}f}2L2(R) ´

ż

R

ˇ

ˇDIf(y)
ˇ

ˇ

2
dy

]
.
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As a consequence, letting γ ” 1 ´
1

K}h}2
L2(R)

, we have

}DIf}2L2(R)

}f}2L2(R)
ď 1 ´

1

K}h}2L2(R)
= γ ă 1 .

Inequality (4.19) then follows from (vi) of Theorem 4.17. ˝

Lemma 4.20. Let S Ď R be a bounded set and Λ be a uniformly discrete set of interpolation
for B(S) with separation number d and counting function n. For a compact set I, I´ denotes
the set of points whose distance to IA exceeds d

2
. Then

λn(I´)´1(S, I) ě δ ą 0

for some δ depending on S and Λ but not on I.

Proof. Again by Lemma 4.18, there exists a Schwartz function h such that h vanishes outside
B(0,

d

2
) and |ph| ě 1 on S.

Define a bounded linear operator A on B(S) by Ag =
␣

g(λ)
(

λPΛ
if g P B(S). To see the

boundedness of A, let g P B(S) be given, and let f P B(S) be such that pg = pf ph; that is,

f(x) =

ż

R

pg(ξ)

ph(ξ)
e2πixξ dξ .

The same as (4.20), we have }f}L2(R) ď }g}L2(R), and the Cauchy-Schwarz inequality implies
that

ˇ

ˇg(x)
ˇ

ˇ

2
ď }h}2L2(R)

ż

|y´x|ă d
2

|f(y)|2 dy .

Since Λ is uniformly discrete with separation number d, by the fact that g = f˙h, we have

ÿ

λPΛ

ˇ

ˇg(λ)
ˇ

ˇ

2
ď }h}2L2(R)

ÿ

λPΛ

ż

|y´λ|ă d
2

ˇ

ˇf(y)
ˇ

ˇ

2
dy ď }h}2L2(R)}f}2L2(R) ď }h}2L2(R)}g}2L2(R) . (4.21)

Therefore, A : B(S) Ñ ℓ2 is bounded.
Define E(S) ”

␣

f P B(S)
ˇ

ˇ f(λ) = 0 for all λ P Λ
(

. For f P B(S), the Cauchy-Schwarz
inequality and the Plancherel identity imply that

|f(x)|2 ď

( ż
S

ˇ

ˇ pf(y)
ˇ

ˇ dy
)2

ď |S|} pf}2L2(R) = |S|}f}2L2(R) ,
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so if tfku8
k=1 Ď B(S) converges to f in L2(R) (that means }fk ´ f}L2(R) Ñ 0 as k Ñ 8),

tfku8
k=1 also converges to f uniformly on S. In particular, if tfku8

k=1 Ď E(S) converges to f
in L2 sense, then for λ P Λ,

ˇ

ˇf(λ)
ˇ

ˇ = lim
kÑ8

ˇ

ˇf(λ) ´ fk(λ)
ˇ

ˇ ď lim
kÑ8

a

|S|}fk ´ f}L2(R) = 0

which implies that f P E(S). In other words, E(S) is a closed subspace.
Let EK(S) denote the orthogonal complement of E(S), and taλuλPΛ P ℓ2 be given. Since

Λ is a set of interpolation for B(S), there exists f P B(S) such that

f(λ) = aλ @λ P Λ .

By the fact that B(S) = E(S) ‘ EK(S), there exist (unique) f1 P E(S) and f2 P EK(S) such
that f = f1 + f2. Therefore, since f1(λ) = 0 for all λ P Λ, we have

f2(λ) = f1(λ) + f2(λ) = f(λ) = aλ @λ P Λ .

Therefore, Λ is a set of interpolation for EK(S). This also implies that A : EK(S) Ñ ℓ2 is
surjective.

Moreover, noting that A : EK(S) Ñ ℓ2 is one-to-one, we find that A : EK(S) Ñ ℓ2 is a
bounded linear bijective operator. Therefore, the bounded inverse theorem (from functional
analysis) implies that A´1 : ℓ2 Ñ EK(S) is also bounded linear; thus there exists K ą 0

such that
}g}2L2(R) ď K

ÿ

λPΛ

ˇ

ˇg(λ)
ˇ

ˇ

2
@ g P EK(S) . (4.22)

In other words, Λ is a set of sampling for EK(S) as well.
For each λ P Λ, let φλ P EK(S) be the function whose value is 1 at λ and 0 at other point

of Λ. We remark that such a φλ exists since Λ is a set of interpolation for EK(S). Clearly
tφλuλPΛ is a set of linear independent functions. Let ψλ P B(S) be such that xφλ = xψλ

ph; that
is,

ψλ(x) =

ż

S

xφλ(ξ)

ph(ξ)
e2πix¨ξ dξ .

Then tψλuλPΛ is also a set of linear independent functions. Let C be the subspace of B(S)
spanned by tψλuλPΛXI´ . Then dim(C) = n(I´) = #(Λ X I´). For a given function f P C,
f =

ř

λPΛXI´

cλψλ for some tcλuλPΛXI´ ; thus

zf˙h = pf ph =
ÿ

λPΛXI´

cλxψλ
ph =

ÿ

λPΛXI´

cλxφλ
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which shows that f˙h is a linear combination of tφλuλPΛXI´ . This further implies that

f˙h P EK(S) and (f˙h)(λ) = 0 @λ R Λ X I´ whenever f P C .

As a consequence, using (4.20) and (4.22), we obtain that if f P C,

K´1}f}2L2(R) ď K´1}(f˙h)}2L2(R) ď
ÿ

λPΛ

ˇ

ˇ(f˙h)(λ)
ˇ

ˇ

2
=

ÿ

λPΛXI´

ˇ

ˇ(f˙h)(λ)
ˇ

ˇ

2

ď }h}2L2(R)

ÿ

λPΛXI´

ż

|y´λ|ă d
2

ˇ

ˇf(y)
ˇ

ˇ

2
dy ď }h}2L2(R)}f}2L2(I) = }h}2L2(R)}DIf}2L2(R) ;

thus for f P C,
}DIf}2L2(R)

}f}2L2(R)
ě

1

K}h}2L2(R)
= δ ą 0 ,

where we note that δ depends only on S (due to the dependence on h) and Λ but not on I.
The lemma is then concluded by (vii) of Theorem 4.17. ˝

Proof of (4.16). Let d be a separation number of Λ, I = [´
1

2
,
1

2
] be a unit interval, and J

be an interval of length r such that n´(r) = n(J) = #(Λ X J). Since J is a single interval,
then J+, the set of points whose distance to J is less than d

2
, satisfies n(J+) ď n(J) + 2;

thus (ii) of Theorem 4.17 and Lemma 4.19 imply that

λn(J)+2(S, rI) ď λn(J+)(S, J) ď γ ă 1 (4.23)

for some γ independent of r.
Suppose that S consists of p disjoint intervals J1, ¨ ¨ ¨ , Jp. By Example 4.13, the set of

integers Z is a uniformly discrete set of sampling and interpolation of B(I) with separation
number 1. The set (rS)´, the collection of points whose distance to (rS)A exceeds 1

2
, consists

of at most p disjoint intervals, so

#((rS)´ X Z) ě |(rS)´| ´ p = r|S| ´ 2p .

By (i) and (ii) of Theorem 4.17 and Lemma 4.20, we find that

λr|S|´2p´1(S, rI) = λr|S|´2p´1(I, rS) ě λ#((rS)´XZ)´1(I, rS) ě δ ą 0 (4.24)

for some δ independent of r.

Let µ(S, rI) =
8
ř

k=0

λk(S, rI)
(
1 ´ λk(S, rI)

)
. By (iii)-(v) of Theorem 4.17,
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µ(S, rI) = r|S| ´

8
ÿ

k=0

λ2k(S, rI) ď r|S| ´

p
ÿ

j=1

8
ÿ

k=0

λ2k(Jj, rI)

ď r|S| ´

p
ÿ

j=1

(
r|Jj| ´

2

π2
log+(r|Jj|) ´

6

π2

)
ď

2

π2

p
ÿ

j=1

log+ r|Jj| +
6p

π2
ď A log+ r +B

for some constants A,B depending only on S.
Now suppose that n(J) + 2 ď r|S| ´ 2p ´ 1, then (4.23) and (4.24) imply that

0 ă δ ď λk(S, rI) ď γ ă 1 @ k P [n(J) + 2, r|S| ´ 2p ´ 1] .

Therefore,(
r|S| ´ 2p ´ 1 ´ n(J) ´ 2 + 1

)
min

␣

δ(1 ´ δ), γ(1 ´ γ)
(

ď µ(S, rI) ď A log+ r +B

which shows that
n(J) ě r|S| ´ A log+ r ´ B (4.25)

for some constants A,B depending on S and Λ but not r. On the other hand, if n(J)+ 2 ą

r|S| ´ 2p ´ 1, (4.25) holds automatically (for proper choices of A and B); thus (4.16) is
established. ˝

We can measure the density of a uniformly discrete set Λ in terms of function n˘(r).

Definition 4.21. The Beurling upper and lower uniform densities of a uniformly
discrete set Λ, denoted by D+(Λ) and D´(Λ), respectively, are the numbers defined by

D˘(Λ) = lim
rÑ8

n˘(r)

r
.

The Beurling density reduces to the usual concept of average sampling rate for uniform
and periodic non-uniform sampling.

Corollary 4.22. Let S Ď R be a bounded set with measure |S| and Λ be a uniformly discrete
set.

1. If Λ is a set of sampling for B(S), then D´(Λ) ě |S|.

2. If Λ is a set of interpolation for B(S), then D+(Λ) ď |S|.
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