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Chapter 4

Application on Signal Processing

In the study of signal processing, the Fourier transform and the inverse Fourier transform

are often defined by
O =] f@e™tdr and flx)=| fe¥de Ve L(RY).  (3.11).
R™ R®
Then for T' € . (R™)’, the Fourier transform of T"is defined again by

(T, ¢y =T,y " ¥pe SR,

We also note that the definitions of the translation, dilation, and reflection of tempered

distributions are independent of the Fourier transform, and are still defined by

(T, ) = (T, 7 n¢y, (T, ¢y = (T, \"dy1¢) and (T,¢)=(T,d) Ve .#(R").

Concerning the convolution, when the Fourier transform is given by (3.11), we usually

consider the % convolution operator

(Pr)a) = | fwge =9y = | fa-nedy  VFge LR,
instead of % convolution operators. The convolution of 7" and f € .#(R") is defined by
(Txf,0) =T, fx¢) =T fxd)  Voe IR,
Then similar to Theorem 3.51, 3.53, and 3.58, we have

1. T=T="T forall T € .(R").
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§4.1 The Sampling Theorem and the Nyquist Rate

2. T(E) = T(&)e2mh (€)= XvT(AE), and T(€) = T(€) for all T e .#(RY.

3. @ = f]? and ﬁ = f%f for all f € L(R") and T € .Z(R™)'. Moreover, if
S e . (R™)" has the property that Sx¢ € ./ (R") for all ¢ € R", then T%S =TS8 in

L (R™) for all T € (R

Moreover,
1.6=34=11in < (R™)’, and 5;1(5) = 7'/;1\5(5) = 0_p = T_p6 = e 2mih ey S (R™)" for all
heR"
2. By Euler’s identity, cos(2rwz)(§) = %((L +0_,,) and sin(2rwz)(§) = 2%((% -

3. 0%6 =9, and 0,%0, = dq4p for all a,b e R™.
4. §%¢p = ¢ and (d,*%¢)(z) = ¢(x — a) for all ¢ € 7 (R™).
5. Re-define the rect function II: R — R by

1 if |z] <

I

(z) =

0 if |z| =

N =N =

Then ﬁ(f) = T1(£) = sine(€); where sinc is the normalized sinc function given by

(3.12).

6. Let A : R — R be the triangle function define by

Ar) = 1—|z| if|z] <1,
TTU 0 |z =1

Then by the fact that A is an even function, if £ # 0,

. 1 o et (L aino
A§) = QL (1 — ) cos(2mzg) do = 2[(1 _ x)% - +L % .
_ 1—cos(2m§)  sin®mg
- 2m2€2 - r2e2

while A(0) = 1. Therefore, A(¢) = sinc?(¢). Using the property of convolution, we

have IIxII = A.
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4.1 The Sampling Theorem and the Nyquist Rate

When a continuous function, x(t), is sampled at a constant rate fs samples per second ( 12

* §) fs =B~ ), there is always an unlimited number of other continuous functions that fit

. o 1
the same set of samples; however, only one of them is bandlimited to 5 fs cycles per second

(hertz), which means that its Fourier transform, Z(f), is 0 for all |f| > %fs

Definition 4.1. Let f : R — R be a function. f is said to be a bandlimited function if

spt(f) is bounded. The bandwidth of a bandlimited function f is the number sup spt( I3 ).
f is said to be timelimited if spt(f) is bounded.

Definition 4.2. In signal processing, the Nyquist rate is twice the bandwidth of a ban-

dlimited function or a bandlimited channel.

In the field of digital signal processing, the sampling theorem is a fundamental bridge
between continuous-time signals (often called”analog signals”) and discrete-time signals
(often called "digital signals”). It establishes a sufficient condition for a sample rate ( B~
A % ) that permits a discrete sequence of samples to capture all the information from a
continuous-time signal of finite bandwidth.. To be more precise, Shannon’s version of the

theorem states that “if a function x(¢) contains no frequencies higher than B hertz, it is
completely determined by giving its ordinates at a series of points spaced 3B seconds apart.”
Let us start from the following famous Poisson summation formula to demonstrate why

countable sampling is possible to reconstruct the full signal.

Lemma 4.3 (Poisson summation formula). Let the Fourier transform and the inverse
Fourier transform be defined by (3.11). Then

Mofatn)= ) ke W fe S(R). (4.2)

The convergences on both sides are uniform.

Proof. Let f e .(R) be given. Then there exists C' > 0 such that

C

< — VaelR.
1+ |22 ’

[f(@)]+ ]/ ()]
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0
Define F(x) = >, f(x +n). Then for x € [-1, 1],

n=—0o

\f(w+n)\+\f’(w+n)|<1+(‘2n‘c_l)2 VneZ.

By the fact that

-1

o0
C C
P R
— 1+ (Jn| —1) 14 1+n]

n=0 n=—00

e 0] e 0]
the Weierstrass M-test implies that the series >, f(z+n)and > f'(x+n) both converge
n=-—o n=-—o0

uniformly on [0, 1]. Therefore, F': [0,1] is differentiable. Note that F'(z) = F'(z + 1), so I
has period 1.
Since F' € ¢(R) and is periodic with period 1, Theorem 2.17 implies that

a0
= ) B VazeR, (4.3)

k=—00

where {F},}%° . are the Fourier coefficients of F' given by Fj, = f F(x)e ™2 dz. By the
0

0

uniform convergence of >, f(z+n) in [0, 1], we find that

n=—uw
Fk — Z J f x+n —2mikx de = Z f f —27rzk(ac n) dx _f f —27rzkz dr = f(k’)
n=—ow n=—ow

The Poisson summation formula (4.2) then follows from (4.3) and the identity above.  ©

Remark 4.4. Using Definition 3.3 of the Fourier transform, for f € .#(R) one has
1 Qo0
2 - ZTL"L’ .
nz_oo f(x+ 2nm) =5 Z

Corollary 4.5. Let the Fourier transform and the inverse Fourier transform be defined by
(3.11). Then

Z fg—— =T ) f(nD)e ™  Vfe S (R). (4.4)

k=—o0 n=-—00



76 CuAPTER 4. Application on Signal Processing

Proof. For a given g € .(R), let h = d,g, where d, is a dilation operator. Then h is also a

Schwartz function, and
h(E) = (Adx-19)(§) = AG(AE) ;
thus the Poisson summation formula (4.2) (with = 0 and f = ¢) implies that

0 0

S hmny= Y gm= 3 ; Z (4.5)

n=—0o0 n=-—o k=—00 k=

Now let s = 1yh for some ¢t € R, where 7; is a translation operator. Then s € .(R), and

~

5(€) = h(&)e~*me.

Therefore, (4.5) implies that

- 1 &~k 2k
Z s(t+n\) = 3 Z S(X)e A, (4.6)
n=—0 k=—
Finally, for f € Z(R), let s = f Then using f > f, A= % and t = —¢ in the identity

above, we obtain that

Zf Zf§+ Zf TZ f(RT)e=2mTe

k=—00 k=—00 k=—00 k=—00

which shows (4.4). o

Remark 4.6. Identity (4.4) can be shown to hold for all continuous function f satisfying

~ C
for some C', § > 0. Therefore, if f has compact support, as long as the decay rate of f is

bigger than 1, (4.4) is a valid identity.
A direct consequence of the corollary above is the following sampling theorem. Suppose

that f € .7 (R) and spt(f) < [0, %} Then (4.4) implies that

S semems veelo )]

: — . 1 :
This shows that if f has compact support in [0, T}’ f can be reconstructed based on partial

knowledge of f, namely f(nT).
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Recall that the Fourier transform of the sine wave with frequency w is “supported” in
a symmetric domain {w, —w}. Therefore, in reality it is better to assume that the Fourier

transform of a bandlimited signal is supported in a symmetric domain [—B, B]. In such
a case we need |§ — §| > B for all k € Z\{0} and ¢ € [—-B, B], where T is the sampling
frequency, in order to make use of (4.4) to gain all the information of the Fourier transform

1 1
of the signal. Therefore, the sampling frequency 7" has to obey T >2BorT < 2B in order

to gain the Fourier transform of the bandlimited signal.

Theorem 4.7 (Sampling theorem). If a (Schwartz) function f contains no frequencies

higher than B hertz, it is completely determined by giving its ordinates at a series of points

spaced 2B seconds apart.

Alternative proof of Theorem 4.7. By the Fourier inversion formula,

fz) = fR ]?(5)6%1@-5 de, where f(g) - fR F(a)e 2 gt |

By assumption, spt( A) C [-B, BJ; thus f(x f f )e2mi2E ¢ which implies that
k $, iTke d
— B
1) = J©ew dc.

Treating fas a function defined on [—B, B|, the identity above implies that { 55 f ( 55 ) } R

is the Fourier coefficients of f and
- 1 —ky imke 1 k \ _imke
(&) = k_Z 5/ GE)e ™ = X 55f(55)e Vee|-B,B]  (4.7)

which, together with the fact that f = 0 outside [—B, B], allows us to reconstruct f using
the Fourier inversion formula. =
Taking the Fourier inverse transform of J?(ﬁ ) obtained by (4.7), we find that

o B o0 B
Fo = N gptlg) [ e Hae= ¥ i) [ o (e ae

k=—00 - k=—00

B 2 f smﬂ' sinm(2Bx — k)
N QB " n(2Bx —k)
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Using the normalized sinc function defined by (3.12), we recover the so-called Whittaker-

Shannon interpolation formula:

flz) = Z f(%)sinc(ZBa: — k) V fe Z(R) with spt(f) c [-B, B]. (4.8)

k=—0
In the following, we examine the Whittaker-Shannon interpolation formula (4.8) for the
case that f ¢ .7(R). In fact, since

JRsinc(QBx —k)p(x)de = J (dﬁsinc) (% — x)¢(x) dr = [(d ! smc)%léqb] (QkB)

R
instead of (4.8) we show that

(fi¢)= Z f(%)[ 21 smc)%}e¢ Z <f7'k 5 L sinc)elegb>. (4.9)

k=—0 k=—0
Suppose that 1 <p < oo and g : R — R is an LP-function (that is, J lg(x) [P dx < oo if
R
1 < p < ooorgis bounded if p = oo) supported in an-open interval of length 2B (later we
will let g be the Fourier transform of a bandlimited signal f; so it is reasonable to assume

that ¢ is compactly supported). Define

0 0

G(x) = Z glx +2Bn) = Z (T_2Bng)(T) . (4.10)

n=-—00 n=—00

1 1
Let ¢ satisfies — —|— - =1and ¢ € ¥ (R). The monotone convergence theorem shows that

(2n—1)B
j 3 |(ramg)@o(@)di = 3 f (7—2809) () [C@)2)2 | 6(a) | o
n=-—00 n=—opo Y—(2n+1)B
0 (2n—1)B
< 2 J 9(z 4+ 2Bn)|[(x)"*pa(¢) da = pa(¢ Z J (z)[(z — 2Bn)y*dx.
n=—oo ¥ —(2n+1)B n=—00

If 1 < p < oo, Holder’s inequality implies that

[ 3 emoww e 3 [ ol - 280~

n=-—0o n=—a0

< ), (JB|9(I)Ipd$)p(J_B (H,xd_ngny?)q)q

n=—uo -

0 1
(2B)«
< p O
l9]l o) z : 1+ (2n] — 1)2B2 <

n=—ao
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while if p =1,
o0
nz_:wf z)|(x = 2Bn) dx < ||g] 1 (r) Z T 2|n] 25 < w;
thus if 1 <p < oo,
J Z [(T—2809) (2)d(2)| dz < C¢|g| Lo@)pe(9) Vi1 (4.11)

n=—a

for some constant C; > 0. On the other hand, if p = oo,

jz (7209)(@)6(0)| v < |glclSliscey < Celglope() < Ve 1. (412)

n=-—0o

Therefore, G € . (R)’ since

KG, o) < f Z [(T—2809) () (z)| dz < Cype(@). Ve S(R)and £ » 1.

n=—ao

0
Moreover, it follows from (4.11) and (4.12) that >} |(7—2p.g)¢| € L' (R). By the fact that

n=—a

|2 (Famag)@6(@)] < N |(r2mg)@)o(@)]  VacR,

n=—*k n=—0u0

the dominated convergence theorem implies that

(G,¢) = J;Rkh_)rrot Z (T_28n9)(z)p(x) do = hmf Z (T_2Bn9)(x)d(x) dz

Ry=—k

= > (Toapng. ¢y Voe S (R).

n=—o

Suppose that spt(g) < (e — B,a + B). Then G = g on (a — B,a + B). In addition, if
€la+ (k—1)B,a+ (k+1)B], then G(z) = g(x — kB); thus G(z + 2B) = G(x) for all
x € R. In other words, G can be viewed as the 2B-periodic extension of non-vanishing part
of g.
Let ¢ € Z(R). By the definition of the inverse Fourier transform of tempered distribu-
tions,

<é, ¢> == <G, $> = Z <7——23nga $> = Z <g7 TZBn$> :

n=—aoo n=—aw
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By the Poisson summation formula,

0 0 0
v Y T
n_zoo(rwnd) :Z ¢(x — 2Bn) H_ZOO ¢(x + 2Bn) = n;m(d;B ) (55 +m)
= D, dpoke s = Y =o(55)
k=—0 k=—0
and the convergence is uniform. Therefore,
P - e = 1 k ik > 1 k ik
(G, ¢) = Zoo<g’ ToBn®) = k_Z ﬁ(b(ﬁ) Lpt(g) g(x)e B dx = _Z %gb(@) J;R g(x)e B dx
n=— =—00 k=—o00
A 1L ko k1 o= ok
= k:ZOO ﬁ(b(ﬁ)g(ﬁ) = 5B :OOQ(QB)<7'2’7357 ¢

~ ® ~ >
Similarly, (G, ¢) = % Z J( kB)<T & d,¢) or one can use the formula that G = G to
deduce that

A~ ~ ~ ® 0 1 1 0
<G,¢>=<G,¢>=k:2w—¢( _2 s52GE)I5E) = 35 :2 )T 00
Symbolically, we can write G = ! Z 9(5% F )’Tk § and G = ! Z I(55 K )Tk ) in

’ 25, = Y\9B 2B .~ 7\2B

F(R).

Remark 4.8. Let III denote the tempered distribution

o]

AM,¢)= >, ¢(n) VYoe L (R).

n=—ao

We note that the sum above makes sense if ¢ € . (R), and

2, oln Z (™) (n ( Z O ) = Cipi(e)  Vk=2.

n=—aoo n=—aoo n=—au

Therefore, IIl is indeed a tempered distribution. Since ¢(n) = (7,9, ¢), symbolically we also

0
write Il = > 7,0.

n=—au

By the definition of the Fourier transform of tempered distributions,

{,¢)y =L, ¢y = > ¢n) VoeS(R),

n=—a
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and the Poisson summation formula implies that
e}
Loy = >, (k) = ¢)  Voe S (R).
k=—0

Therefore, Theorem 3.51 implies that Il = Il = III in .%(R)’. Define I, = ldp]]L where d,
b

is a dilation operator. Then

e}
(ML, ¢) = (ML, dp19) = ) (dy- 2 $(pn) = Z (b, 0) Vo S (R).
n=—a n=—a n=—ao
© P 1 (4.13)
Symbolically, Ill, = > 7,,0. Moreover, I, = I, = d,—: 1l = 1;]]1; which is the same as
n—=—aoo p

saying that

(M, ¢) = {dy+T, ) = p~ (L, dyp) = Z (rad, ) Vo e S (R).

’I’L——OO
Symbolically, I, = = > 7=4.
Pp=—wn *
Formally speaking, G' given by (4.10) can be expressed as G = Illyp*g. Using this
N T~ (X)
representation, G = Ilypg = % 2. grnd. Therefore, by the fact that g = (dapll)G in
n=—0o0

< (R)’, we find that

dla) = (@1 ) a) = (28 TG (o) = 28 | GTCB( —y) dy

Z J (y)sinc(2B(x — y)) dy = Z §(%)sine(23x —n).

n=—aoo n=—ao

The Whittaker-Shannon interpolation formula (4.8) then follows from letting g = f in the

identity above.

Example 4.9. Let f: R — R be a function supported in [0,7] (thus one can view f as a
o0
signal recorded in the time interval [0,77]). Define F(z) = >, f(x +nT). Then
n=—oo

o0

1 ~ k
=7 Z f(f)(%é)(f)-

a0
On the other hand, the Fourier series of ] f(x+nT), the T-periodic extension of f1y 1,
n=—0o0
is

-~ i 7rzz 1~k
Z Fre™ | where fi = f flx)e 7 :ff(f)‘

k=—00
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2mikx

Therefore, F' = Z fka(S and accordingly, F'(x) = Z Fre™ ™ in Z(R)".

k=—w0 k=—0
Now suppose that the signal is sampled with sampling rate F (times per second). Then

in total there are N = T'F; samples of the signal. Write these samples as {zq, z1, -+ ,Ty_1}.
Then x, = f<F£) We remark that the set {zg,x1, - ,zy_1} resembles a digitalized version

of the signal and is usually called a digital signal. The DFT of the digital signal is given by

N-1
—2mikd 727'r7,k s
Xp= > me N Zf = VkeZ

£=0

and the inverse DFT of { X} }ez is given by

N—-1

1 T 1 s’
UEN D Xpe W = N N X T H VLo
k=0 (=0

4.1.1 The inner-product point of view

Let ex(x) = sinc(x — k) = (msinc)(x). Then e e L?(R) since

<2 1 + 2
j sinc?(z — k) dw = J sinc?xdr = f TP g = —f SmZxdx < .
R R R

r T2 T x

By the Plancherel formula (3.10),

(exser)2m)s = (TksinC,TeSiHC)LQ(R) = f I1(£)e™ M II(E)e2mie d = f ikt g¢
R 3

which is 0 if £ # ¢ and is 1 i k.= ¢. Therefore, we find that {ey}rcz is an orthonormal set
in L*(R).
Now suppose that f € L*(R) such that spt( A) c [—%, %] Then

(f, ex) i = (Fmosine), ff TCEe T de = [ ey e

_1
2

~

(€)™ dg = (k) = [(k)

if f is continuous at k. In other words, if f € L*(R) n € (R) such that spt(f) c [—% 1},
then

0

D1 fk)sine(z — k) = > (f,ex)r2mer()

k=—00 k=—0o0
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which, by the Whittaker-Shannon interpolation formula (4.8), further shows that

0

f= Z (f,ex)r2mer in Z(R).

k=—0

In other words, one can treat {ey}rez as an “orthonormal basis” in the space

{er2®) () |spt(f) = [—%, %}}

4.1.2 Sampling periodic functions

A bandlimited signal cannot be timelimited; thus when applying the sampling theorem, it
always requires infinitely many sampling to construct the signal perfectly. On the other
hand, it is possible that to construct a bandlimited signal perfectly using finitely many
sampling provided that the bandlimited signal is periodic. In the following, we discuss why
this is true.

Suppose that f is a g-periodic bandlimited signals such that spt(f) < [-B, B]. Then

the Whittaker-Shannon interpolation formula implies that

fa) =3 HE)sinc(pr — k)

k=—0o0 p

as long as p > 2B. If pg € N, then by the fact that f(l;) = f(ki?lm) for all m € Z, the

sum above can be re-grouped as

prl X £+ mpq\ .

fa)=> > f(T)SmC(pw —{ —mpq)
{=0 m=—0
pg—1 o0

=) f(é) > sine(pz — € — mpq); (4.14)

p

£=0 m=—a0
0¢]
thus if we can find the sum > sinc(pr — ¢ — mpq), f can be rewritten as finite sum.
m=—o0
Lemma 4.10. If p,q > 0 and pq is an odd number, then

o0

Z sinc(px — mpq) =

m=—00

sinc(pz) VeeR
sinc? '
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Proof. Note that

0¢] o0

2 sinc(pr — mpq) = Z (disinc)(x —mq) = (]]Iqéled%sinc)(x) :

P
m=—ao0 m=—00

where 1II, = 1alq,]]I is defined in Remark 4.8. Taking the Fourier transform, we find that
q

—~

F {(]]Iq%d%sinc)} (&) = (M, d

i —i 1 :i S Tk
ssine) () = — (L4 () = = (d)(€). ), (m:0)(E).

q
k=—00

If pg is odd, then % # ]; for all k& € N; thus by the fact that spt(d,ll) < [—g, g], we have

GIE Y (O = Y (m)© 5 Y (0)©
k=—o0 g<§<% k pq;l
Therefore, )
f[(]]lqéled%sinc)} (&) = piq 22] (755) €).
k pg—1

Taking the inverse Fourier transform,

pg—1
0 =5 . .
1 rike 1 Sinwpzr  sinc(pz
Z sinc(pr—mpq) = F*F [(M % d1sinc)|(z) =— Z et = W_Zi =— (pg) =
o z qu:—%*l pq sin % sincf
By Lemma 4.10, (4.14) implies that
S sinc(p(z — ﬁ)) sinc(pz — 0)
Z sinc(pxr — £ — mpq) = —7 =— 7
m=—a sinc qp SIC =0,
thus we obtain that )
Pa— .
¢, sinc(px — ()
T) = ). 4.15
o= 2 1) T (.15

Pq

~

Example 4.11. Let f(x) = cos(2mx). Then f is 1-periodic and spt(f) < (=1 —¢,1+¢) for
all e > 0. Letting p = 3 in (4.15), we find that

sinc(3z) 27 sinc(3z — 1) 47 sinc(3x — 2)
COS(QW.T) = ; -+ cos B T — CO T
sincr 3 sinc xg 3 smch
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4.2 Necessary Conditions for Sampling of Entire Func-
tions

The sampling theorem provides a way of reconstructing signals based on sampled signals
with sampling frequency larger than twice of the bandwidth of bandlimited signals. It is
natural to ask whether we can reduce the sampling frequency for perfect reconstruction
of bandlimited signals or not. Moreover, it is also possible that the support of the Fourier
transform of a signal (usually called spectrum of the signal) is contained in‘a “small” portion
of the interval [—B, B], and in this case we hope to reduce the sampling frequency for the
reconstruction of the signal.
Question: Is there a lower bound of the sampling frequency for perfect reconstruction of
bandlimited signals?

Generally speaking, the way of sampling does not have to-be uniform as long as the
samples from a signal are enough to reconstruct the signal. A good choice of sampled set

should obey

1. the signal is uniquely determined by the set of sampled signals - the uniqueness of

the reconstruction of signals;

2. each set of sampled signals should come from a possible bandlimited signal - the

existence of the reconstruction of signals.

These two requirements for sets on which the signals are sampled, together with the idea

that the sampled set is not necessary uniform, induce the following

Definition 4.12. Let S © R" be a measurable set in R", and B(S) denote the subspace of
L?(R™) consisting of those functions whose Fourier transform (given by (3.11)) is supported
on S; that is,

B(S) = {f e L*(R")|spt(f) = S}.
A subset A of R" is said to be uniformly discrete if the distance between any two
distinct points of A exceeds some positive quantity; that is, there exists Ag > 0 such that
| — y|rn = Ao for all 2,y € A and & # y. Such a Ay is called a separation number. A

uniformly discrete set A is said to be

1. a set of sampling for B(S) if there exists a constant K such that
2
[ Ze@ny < K QLT[ VT e B(S);

AEA
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2. a set of interpolation for B(S) if for each square-summable collection of complex
numbers {ay}rea there exists f € B(S) with f(\) = ay for all A € A.

Example 4.13. Let [ be an interval of length 1. Then Z is a set of sampling and interpo-
lation for B(I):

1. If feB(I), then ]? has the following Fourier series representation

e¢]
flz) = Z cpe’mike for almost every x € I,
k=—0
where ¢ = J F(z)e2mk* 4z By the fact that spt(f) < I, the Fourier inversion

formula implies that

o = j Fla)e 2w dy = f(—ky;

thus { f (_k)}zc:_oo is the Fourier coefficients of f The Plancherel identity and the
Parseval identity then imply that

=R ~ oe} e} 9
HfH%Q(]R) - Hf”%Q(R) = Hf“%m) = Z |Clc|2 = Z | f (k)

k=—00 k=—00

thus Z is a set of sampling for B([).

2. Let {cx}72_, be a square-summable sequence. Define

w .
l') Z Ck672mkz )
k=—0
Then the Parseval identity implies that
0
9132w = loliay = D5 leil® < o0

k=—00

thus g € L*(R). Let f = . Then f € L*(R) and the Fourier inversion formula implies
that for all k£ € Z,

= | Rermcde = [ g de = | g de =gk =

thus Z is a set of interpolation for B(I).



§4.2 Necessary Conditions for Sampling of Entire Functions 87

~

Remark 4.14. Suppose that f is an L?-signal satisfying spt(f) < (B — 1, B) for some

A~

B » 1. Then certainly spt(f) < (—B, B) and the sample theorem implies that to perfectly
1
reconstruct the signal one can consider sampling f every 2B seconds. On the other hand,

Example 4.13 shows that one can reconstruct the signal by sampling the signal once per
second. This is a huge amount of reduction of sampling if B » 1. Therefore, the sampling
rate provided by the sampling theorem is only a sufficient condition for perfect reconstruction

of bandlimited signals, but possibly can be reduced for specific cases.

For n = 1, Landau in his paper “Necessary density conditions for sampling and interpo-

lation of certain entire functions” shows the following
Theorem 4.15. Let S be the union of a finite number of intervals of total measure |S|.

1. If A is a set of sampling for B(S), then there exist generic constants A, B such that

n~(r)=inf#(An[y,y+7]) = |S|r =Alog"r—B  Vr>0. (4.16)

yeR

2. If A is a set of interpolation for B(S), then there exist generic constants A, B such
that

nt(r)=sup#(Anly,y+r]) <|Slr+Alog"r+B  Vr>0.

yeR

In the following, we only focus on the proof of the first case in Theorem 4.15.

Before proceeding, we need to introduce some terminologies. Let @, S € R", and D(Q)
be the subspace of L*(R™) consisting of functions supported on Q. Let Dy and Bg denote
the orthogonal projection of L*(R™) onto D(S) and B(S), respectively. Then

Bs = %*xs.F and Do =xq, (4.17)
where y 4 denotes the operator defined by multiplying by the characteristic function of A.

Proposition 4.16. Let k : R" x R"™ — C be square integrable, K(x,y) = K(y,x) for all
r,y € R", and K : L*(R") — L*(R™) be an operator defined by

(K )(x) = j ke, y)f(y) dy.

n

Then

0¢] [
L. k(z,y) = > mepr(x)or(y), where {pr}ie, denotes the orthonormal sequence of eigen-
k=1

functions, and {ux}, S R denotes the sequence of corresponding eigenvalues of K ;
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o0 o0
2 Y= [ kawyds 3 = [ [ (k)] dedy.
k=1 k=1 n "

R
Theorem 4.17. Let ), S < R" be bounded measurable sets, and Dg, Bs be the projection
operators of L*(R") defined in (4.17). Denoting the eigenvalues of BsDgBs, arranged in
non-increasing order, by A\.(S,Q), where k€ N u {0}. Then

(i) A(S,Q) = M\(S +0,Q +7) = Me(aS,a™tQ) for all 0,7 € R™ and a.> 0.

(i) 32 M(5.Q) = I]1Ql

(V) ¥ M(5.Q) > 3 M(S.Q)+ 3 M(S.Q) Q= Q1 Qaand Q10 Q: = &

k=0 k=0

0
(v) X (S, Q) = (sq— % log™(sq) — %)n, where S and Q are cubes with edges parallel
k=0

to the coordinate azes with |S| = s, |Q| = ¢", and log" x = max{0,logz}.

(vi) For any k-dimensional subspace Cy, of L*(R™),

DG f(172 g , D@ f1172 g
Ak(S,Q) < sup W() and  N—1(5, Q) = i W()
118 k0 L2(R7) 740 L2 (R)

Proof. For two (completely continuous) operators A and B, we write A ~ B if A and B has
the same nonzero eigenvalues, including multiplicities. Suppose that A # 0 is an eigenvalue
of BsDgBs. Then BsDgBgsy = A for some ¢ # 0. By the fact that Bg is a projection,
we have
ABsyp = BsBsDqgBsp = BsDgBsp = Ap
which implies that Bsy = ¢. Moreover, DoBsy # 0. Applying D¢ to the equation above,
we find that
DoBsDgDgBsyp = DoBsDgBgsy = ADgBsyp

which, by the fact that DgBgp # 0, implies that A is also a eigenvalue of DgBgDg. As a
consequence,

BsDgBs ~ DgBsDy . (4.18)
Therefore, to study the nonzero eigenvalues of the operator BgDgByg, it suffices to study

the operator DgBgDyg,.
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Let C' denoted the complex conjugate operator; that is, C'f = f. Then C.ZC = .Z !
and C.#Z1C = .Z. By the fact that .Z is unitary and DgBsDg is symmetric (so the

eigenvalues are real),

DgBsDq ~ CDgBsDoC = xoC.7 'CxsCFCxq = xoF XxsF 'Xaq
~ j‘_leﬁxsﬁ_leﬁ = BQDSBQ .

This proves (ii). Since S and () are bounded, the Fubini theorem implies that

(DgBsDqf)(x) = xq(x) [ f ) Xs(f)(Ln(x(gf)(y)2’”'1"5 dy) RN dé}
[ xene o) | xstoe < ae)a]
= f ) Xo(T)xeW)xs(y — =) f(y)dy.

Using (4.18), the change of variables formula together with (i) shows (ii).
Let k(z,y) = xo(®)xo(y)xs(y — z) and K be the operator defined by (K f)(z) =

kE(x,y)f(y)dy. Then k(x,y) = k(y, x); thus Proposition 4.16 implies that

Rn”

gyw&@zf

which establishes (iii).

To prove (iv), we make use of Proposition 4.16 and find that

k() de = | 5(0d = 1511@)

n

S [ ([ pewf i [  @w-of e

Since @ x Q S (Q1 x Q1) U (Q2 x Q2) and (@1 x Q1) N (Q2 x @Q2) = , by the identity

above we conclude that

3 (S, Q)? =
1;) k( Q) JQ1XQ1
= Me(S, Q1) + (S, Q2) .

Wﬂy—@fﬂaw+£gQL@@—do@w)

Let S and @ be cubes with volume s™ and ¢". Using (ii) we can assume that S and @

i 8}” and () = [—g,%}n Then

are centered at the origin; that is, S = [—5, 3
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g i sinw(x; — v
Bly—a)= [ emecao[[pno

272

thus Proposition 4.16 provides that

0
Z )\k(S, Q)2 :J J Sln ZW‘xz yz|8) dl‘)dy
=0 3.4 —7%n~ ™z =y

yZ‘Q

2 sin®(w|x — y|s) n
dd).
quq w2 |x —y|? vy

2 2

sin? ¢
12

4 B 4 s g2y
[ s ([ a1
g T |x - y| m) g Nrcays t

2

2 © sin?t @ sin? ¢ m(=57Y)s gin2¢
:—J ({ g ﬁff g ﬁ~f ZdQ@
T ,% 0 t (g t 0 t

(5-y)s -

2s (2 @ sin?t
=sq— — q(f 2 dt)dy

dt =,

0
By the fact that J

Note that

o0 L qin2(st qm 1 in2(st
_4 q‘wﬁﬂd>ﬁ+q (f Smf)@ﬁt
Tl NI ot T Jo 1-2t t
_ 2 (Tsin (sqt) gt 2 Jq” sin?(st) gt
T J: 12 w2 ), t
2 (“1 2 [ sin®(rt
<= | S+ sw(mt) g
™ Jx 0 t
2 *0 sin® (¢ 2
<—3P4ifsm(ﬂ)ﬁ+1‘Sm(ﬂ)ﬁ]<——@+kgwwﬂ,
T 0 t 1 t 2

so (v) is established.
For a given k-dimensional subspace C}, the subspace BsC} has dimension d < k. More-
over, f L BgC} if and only if Bgf L Cj. By the fact that |Bgf| r2@n) < || f]z2®n) and

BeDpB
)\k<S,Q) < Sup ( SHQ Sf f)
FLCy,f#0 | £ 172 ey
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for any k-dimensional subspace Cj of L*(R"), we conclude that

BsD Bsf J)rewn DqBsf, Bsf)r2mn
s o 12 e SN @)
< sup (Do fs fremny “ (Do fs Dof)remny wp | Do fzz @)
~ 2 - — 2 .
fog. Ve e, Wheey e, Wi

On the other hand, by the fact that

(BsDqBsf, f)r2@n
feck f#0 ”fHL2 R")

Ae-1(5, Q) =

for any k-dimensional subspace of L?(R"), choosing C, < B(S) we obtain that
(BsDgBsf, f)r2mn) 0 (DgBs f, Bsf)r2(rn

O T S | T
_ (Dof, Nie@ny . ¢ (Dof, Do f)remn) . | D f1172@n
feB(Sn HfHL2 R SEBS)ACk ”fHL2 R SEBS)NCr Hpr (®") ’
thus (vi) is established. o

Lemma 4.18. For any bounded measurable set S < R™ and d > 0, there exists a Schwartz
function h : R" — C such that spt(h) < B(0,d) and ‘?L(f)‘ > 1 foralleS.

Proof. Since S is bounded, S € B(0, R) for some R > 0. Let f € (R") be such that f > 2
on B(0, R). Since fe (R™), there exists g € €°(R") such that Hf— 9|1 @ny < 1. Choose
r > d such that spt(g) < B(0,7), and defined the function h by

™ orx
Then h is supported in B(0,d). Moreover,

r

~ n d
o = [ oD ssar=5(%)  veem,
]Rn
and the Fourier inversion formula implies that
~ d d R o
Sup |f( $) = h(©)] = sup \f(Tg) —9(75)\ =f = gle@) < f = glorgn <1.
£eRn™
Ié |

Therefore, if || < R, we must have < R; hence

[h(&)] = |f(§)\—1>1 VIE[ <R

Since S < B(0, R), [h| =1 on S, :
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Lemma 4.19. Let S < R be a bounded set and A be a uniformly discrete set of sampling for
B(S) with separation number d and counting function n. For a compact set I, I denotes

the set of points whose distance to I is less than g Then
)\n(1+)(57 I) <v<l1 (419)
for some v depending on S, A but not on I.

Proof. By Lemma 4.18, there exists a Schwartz function h such that h vanishes outside
B(0, g) and |?L| > 1on S. Let C be the subspace of L?(R) spanned by the functions k(A — -)

for \e An IT. Since

(h(\i — ), h(\; — '>)L2(R) = f h(Ai —z)h(Nj —z)dz =0 if A # Aj,

the dimension of C'is n(IT).

For a given f € B(S) be given, we define g = f*h; that is;
ff dy—f' | Wz —y)dy.
y—z|<5

Then § = f h which further implies that g € B (S). Therefore, by the fact that A is a set of
sampling for B(S),

2
HQH%Q(R) < KZ lg(A)
AeA

Moreover, the Plancherel identity shows that

lglze®) = 19] 22y = Il fllz2 @) |2l 2y = [ flr2®) = [ flz2) (4.20)
and the Cauchy-Schwarz inequality shows that
) < Wy | Ty,
\y—x|<§
Therefore, if f e B(S) and f L C, we have

1120w < 19122 < K Y JgN[ =K

AEA AEANETT

2
< K|h|f2@ D ()] dy
AeAgl+ Vly=AI<g

< KUl [ P dy = Kbl |11 — | D20 ]
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As a consequence, letting vy =1 — 1 we have
Ko
Dif 1
H I HL2 g <.
Hf”L?(R KHh||L2(R
Inequality (4.19) then follows from (vi) of Theorem 4.17. o

Lemma 4.20. Let S € R be a bounded set and A be a uniformly discrete set of interpolation

for B(S) with separation number d and counting function n. For a compact set I, I~ denotes

the set of points whose distance to I exceeds g Then
for some § depending on S and A but not on I.

Proof. Again by Lemma 4.18, there exists a Schwartz function h such that h vanishes outside
B(0, g) and |iAz\ >1lonS.

Define a bounded linear operator A on B(S) by Ag = {g(\)},_, if g€ B(S) To see the
boundedness of A, let g € B(S) be given, and let f € B(S) be such that g = fh: that is,

98 omiae
f(x)—fRﬁ(é)e g

The same as (4.20), we have | f|r2®) < |9 r2®), and the Cauchy-Schwarz inequality implies
that

2
o)l < iy | Py
y—$<§

Since A is uniformly discrete with separation number d, by the fact that g = f*h, we have

2
Z LC]()\)‘ < HhH%?(R) Z J ‘ dy < ‘hHLQ(R Hf”L2 Hh”%Q(R)HgH%Z(R) . (421)
AeA |y—kl<*

AEA

Therefore, A : B(S) — ¢? is bounded.
Define £(S) = {f € B(S)| f(A\) = 0 for all A € A}. For f € B(S), the Cauchy-Schwarz
inequality and the Plancherel identity imply that

~ 2 N
t< ([ wlas)” <1807 = 18116100
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so if {fi}y2; = B(S) converges to f in L*(R) (that means |f; — f[2®) — 0 as k — 0),
{fr}72, also converges to f uniformly on S. In particular, if {fx}72,; < £(S) converges to f

in L? sense, then for A € A,

[F)] = lim [F(0) = fuW)] < Jim v/[S]1fi — flz@ =0

which implies that f € £(S). In other words, £(5) is a closed subspace.
Let £1(S) denote the orthogonal complement of £(S), and {ay}xea € £? be given. Since
A is a set of interpolation for B(S), there exists f € B(S) such that

fN) =ay  VAeA.

By the fact that B(S) = £(S) ® EL(S), there exist (unique) f; € £(S)-and f, € £X(S) such
that f = f1 + fo. Therefore, since f1(\) =0 for all A € A, we have

fo(A) = filN) + fo(A) = fF(N) = ay YAeA.

Therefore, A is a set of interpolation for £4(S). This also implies that A : EL(S) — 2 is
surjective.

Moreover, noting that A : £+(S) — £?)is one-to-one, we find that A : EX(S) — % is a
bounded linear bijective operator. Therefore, the bounded inverse theorem (from functional
analysis) implies that A=l : (2 — &£4(S) is also bounded linear; thus there exists K > 0

such that

lgl220) < K Y. lgN[F Vge&h(s). (4.22)
AEA

In other words, A is a set of sampling for £4(S) as well.

For each A € Ajlet ¢y € £X(S) be the function whose value is 1 at A and 0 at other point
of A. We remark that such a o exists since A is a set of interpolation for £+(S). Clearly
{©a}ren is a set of linear independent functions. Let ¢, € B(S) be such that p, = 1/[,\2, that

is,

_ /\(6) 2mix-€
Ua(z) = L ?L(g) e d¢ .

Then {¥)}xea is also a set of linear independent functions. Let C' be the subspace of B(S)
spanned by {¥x}rxeans—. Then dim(C) =n(I~) = #(A n I7). For a given function f € C,

f= > ey for some {cy}repns—; thus
AeANT—

== Y abi= Y of

AeANT— AeANT—



§4.2 Necessary Conditions for Sampling of Entire Functions 95

which shows that f*h is a linear combination of {©y}xcan7—. This further implies that
fxhe&(S) and (fxh)(A\)=0 YA¢AnI~  whenever feC.

As a consequence, using (4.20) and (4.22), we obtain that if f € C,

2
K f72my < K G2 < D[N = D1 |[(Fxh)(N)]
AEA AeANT—
<|Pliem D, J W) dy < [h22 | 1320y = 1P 2 | D1 32y

AeANT— ly—A <7

thus for f e C,
HDIJCH%% S 1
2@ — Klb|Zam

where we note that 0 depends only on S (due to the dependence on h) and A but not on /.

=0>0,

The lemma is then concluded by (vii) of Theorem 4.17. o

1
272
be an interval of length r such that n=(r) = n(J) = #(A n J). Since J is a single interval,

Proof of (4.16). Let d be a separation numberof A, I'= [— ] be a unit interval, and J

then J*, the set of points whose distance to J is less than g, satisfies n(JT) < n(J) + 2;
thus (ii) of Theorem 4.17 and Lemma 4.19 imply that

)\n(])+2(5, 7“]) < )\n(J+)(S, J) <v<l1 (4.23)

for some v independent of r.

Suppose that S consists of p disjoint intervals Ji, ---, J,. By Example 4.13, the set of
integers Z is a uniformly discrete set of sampling and interpolation of B([) with separation
number 1. The set (rS)~, the collection of points whose distance to (15) exceeds X consists

of at most p disjoint-intervals, so
B(rS) A Z) = |(rS)| = p = r|S| — 2p.
By (i) and (ii) of Theorem 4.17 and Lemma 4.20, we find that
Arisi—2p-1 (9, 11) = Apysj—2p-1(L,7S) = Ag(rs)-nzy-1(L,7S) = 6 > 0 (4.24)

for some ¢ independent of r.

Q0
Let (S, 1) = Y \e(S,r1)(1 — Xx(S,71)). By (iii)-(v) of Theorem 4.17,
k=0
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wu(S,rI) =r|S| — Z)\QS’/’[ r|S| — ZZ)\QJ rl)
7=1k=0
p

<7181 = 2, (151 - S log"(rl.]) - )
%Zp: log 7“|J|+6— < Alog"r + B
for some constants A, B depending only on S.
Now suppose that n(J) +2 < r[S| — 2p — 1, then (4.23) and (4.24) imply that
0<o<N(Sr])<y<1 Vke[n(J)+2,rS|—=2p=1].
Therefore,
(r[S]=2p—1—=n(J) =2+ 1) min {6(1 — §),7(1 — M} <pu(S,rl) < Alog*r + B

which shows that
n(J) = r|S| — Alogtr — B (4.25)

for some constants A, B depending on S and A but not 7. On the other hand, if n(J)+2 >
r|S| — 2p — 1, (4.25) holds automatically (for proper choices of A and B); thus (4.16) is
established. =

We can measure the density of a uniformly discrete set A in terms of function n*(r).

Definition 4.21. The Beurling upper and lower uniform densities of a uniformly
discrete set A, denoted by D*(A) and D~ (A), respectively, are the numbers defined by

D*(A) = lim ")

r—00 'S

The Beurling density reduces to the usual concept of average sampling rate for uniform

and periodic non-uniform sampling.

Corollary 4.22. Let S € R be a bounded set with measure |S| and A be a uniformly discrete

set.
L. If A is a set of sampling for B(S), then D~ (A) = |S].

2. If A is a set of interpolation for B(S), then DT (A) < |5].
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