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Chapter 3

Fourier Transforms

Before introducing the Fourier transform, let us “motivate” the idea a little bit. In Section

kx

2.5 we show that {ey}?__, where ex(z) = €™** is a complete orthonormal set in L?*(T).

Similarly, let L?([— K, K]) denote the inner-product space
L*([-K,K]) = {f : [-K, K] — C| f is square integrable}/ ~

equipped with the inner product

Sy 25 f@a@ da,

where ~ denotes the equivalence relation f ~ ¢ if and only if f — g = 0 except on a
tkmx
K
L*([-K, K]); that is, any functions f € L*([~K, K|) can be expressed as

o0
set of measure zero. Then the set {exp( )} is a complete orthonormal set in
k=—00

R ~ ik ~ K ikmy
flaf=L3) Fe'®  where fib) = 5 [ e Fay. (3.1)

k=—o0

o0 ~ 1 K
Moreover, > |f(k)]* = K f |f(x)|* dz. In other words, there is a one-to-one correspon-
-K

k=—0
dence between f € L?([-K, K]) and f € £y, where 2 is the collection of square summable

sequences; that is, .
2ot .| Yl <o}
k=—00
We look for a space X so that there is also a one-to-one correspondence between the square
integrable functions on R and X. Intuitively, we can check what “might” happen by letting
K — win (3.1).

41



42 CuAPTER 3. Fourier Transforms

Making use of the Riemann sum to approximate the integral (by partition [— K, K] into
2K? intervals), we find that

'Lk‘rr(:v y) 1 K? K ikm(xz—y)
ZJ fly %ﬁ Z fo(y)e K dy
K —

k—foo k=—K2vY~
LSS ikm(z + 1
2K Z 2,4 (= eXp( T

—K2 (=1

km(z — %), 1 l 1
3 Z 2 () e %)g (e =5 A 5%)

K2 {=—

1 K? K? ), P , X

~ o IS f(5) exp (Z%(x—?))%?
—— K2 k=—K?2
~1K2 Kn / , fdl —kﬂA—W
N o ZKZJ f(;()eXp(ZS(I*?)) 5% (fk— e £E= ?)
1 K Kr A

m f J zé(:c—y)dfdy = % JK JKW f(y)ezg(z—y)dydg

2

= LD = Lo Fly)e &dy] eede.

Therefore, if we define f(g) =
gests that

e ®“Ydy, then the formal computation above sug-

f(x) = )erde . (3.2)

1 ~
| fe
In the rest of this section, we are going to verify the identity above rigorously (for functions

f with certain properties).

3.1 The Definition and Basic Properties of the Fourier
Transform
For notational convenience, we abuse the following notion from real analysis.

Definition 3.1. The space L'(R") consists of all functions that are integrable on R™ and

whose integrals are absolute convergent. In other words,

LY(R™) = {f R"—»C‘f |dx<oo}
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that is, f € L'(R") if the limit lim |f(2)] dx = | f] 11 (rn) exists.
R—o JB(0,R)

Remark 3.2. Even though we have not defined the integral for complex-valued function,
the definition of L'(R™) should be clear: when f is complex-valued function, the absolute
integrability of f is equivalent to that the real part and the imaginary part of f are both
absolutely integrable, and

ey de - J Re(f)(w)derzf fm(f)(z) da
+

where f(z) is the complex conjugate of f(x).

Definition 3.3. For all f € L'(R"), the Fourier transform of f, denoted by .Z f or f , is

defined by
a — ey — 1
FNO=Fe) = —= |

where x - § = 2181 + 260 + - - + 1,6,.

(x)eT™Sde  VEeR™,

3.2 Some Further Properties of the Fourier Transform
Proposition 3.4. .# : L'(R") — %,(R™; C), and
17 fllo= sup |(F 1O < 12y (3.3)

Proof. First we show that .Z f is continuous if f € L'(R"). Let £ € R® and ¢ > 0 be given.
Since f € L'(R"), there exists R > 0 such that

£

f |f(x)|dz <<  Vr=R.
B(0,r)° 3

Moreover, there exists M > 0 such that

f |f(z)|de < M < 0.

Since ¢(x,y) = e ¥ is uniformly continuous on A = B(0, R)x B(&, 1), there exists 0 < § < 1
such that

|qz5(:v1,y1) - (/15(552,?/2)‘ < whenever ‘($1,y1) - ($27y2)| < dand (z1,91), (v2,92) € A.

€
3M



44 CuAPTER 3. Fourier Transforms

In particular, for all z € B(0, R) and n € B(§,9),

3

|efix-£ —ix- r]’ - Wi .

Therefore, for n € B(¢, ),

A~

|f(n) — f(€)]

)He’i"”'" — e’”'g‘ dx

)
s W JB(OR %f B(0,R) [f@)[lem = el da

28
2 3]\/[[ ‘da: <e€;

thus .Z f is continuous. The validity of (3.3) should be clear, and is left as an exercise. ©

)| dz +

Definition 3.5. A function f on R™ is said to have rapid decrease/decay if for all integers
N > 0, there exists ay such that

\;U]N]f( )| < ap, as r — 0.

Definition 3.6. The Schwartz space .#(R") is the collection of all (complex-valued) smooth

functions f on R™ such that f and all of its derivatives have rapid decrease. In other words,
S (R") = {ue €*R") |||V D*u is bounded for all k, N € N u {0}}.
Elements in . (R") are called Schwartz functions.

The prototype element of .7 (R") is e~171* which is not compactly supported, but has
rapidly decreasing derivatives.

The reader is encouraged to verify the following basic properties of . (R"™):
1. Z(R") is a vector space.

2. (R") is an algebra under the pointwise product of functions.

3. Pue L(R") for all u € .(R™) and all polynomial functions P.

4. . (R"™) is closed under differentiation.

5. Z(R") is closed under translations and multiplication by complex exponentials €.
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Remark 3.7. Let 2 € R™ be an open set, and €°(€2) denote the collection of all smooth

functions with compact support in €2; that is,

€ (Q) = {ue e Q)| {zreQ|f(z) #0}cc=Q},

then €°(R") < .7(R") . The set cl({z € Q| f(z) # 0}) is called the support of f.
The following lemma allows us to take the Fourier transform of Schwartz functions.
Lemma 3.8. If f € /(R"), then f € L'(R").

Proof. It f € #(R"), then (1 + |z|)"™|f(x)| < C for some C' > 0. Therefore, with w,,_;

denoting the the surface area of the (n — 1)-dimensional unit sphere,

nl
L\f(x)‘dx\JRnuﬂxwﬂ LJ 1+r"+1 drdS

< Cwn_l f (]_ + 7”) er = C’wn
0
which is a finite number. o

Now we check if f is differentiable if f € .% (R™). Note that if f € .(R"), then the
function y; = z, f(x) belongs to . (R"™) forall'l < j <n

~

Lemma 3.9. If f € S (R"), then f is-differentiable, and for each j € {1,--- ,n}, ggf exists
s given by ’

of S A

O == | Cimprwetan = [fsw)] ©) (3.4)

Proof. Let g; be defined by g¢;(x) = —iz; f(z). Since f and g; are both Schwartz functions,

lim |f(z)|dz =0 and lim |g;(z)|dz=0.
k= Jp(0 k) k= Jp(0 k)

Let x : Ry — R be a smooth decreasing function such that

o 1 ifo<r<i1,
XY= 0 itr>2.

Define fi(z) = X(m)f(x) We first show that

o fi

—ix-§
2, gj(x)e dx . (3.5)

ey = mf
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Too see this, we note that

fule + he;) SO L[ () et
X(|$‘)f(x)e_m'5 [k . ] dr
/; h J
—ihx; 1

tl) playeine [ L

3 + ixj] dx ;

= —n X
V2 JB(O,%)

—thx; _

thus by the fact that % + ix; — 0 uniformly on B(0,2k) as h — 0, Theorem 1.6
implies that

TR TR
h—>0 h V2r" Jge
hence (3.5) is established. Therefore, for each k € N,

g (@)es S do = 0;

(9fk ‘ f ) d b J (z)|d
{S;ig 553 = \ﬁ )ng ) dw < NGZH |9 ()| dw

which converges to zero as k — c0. Inother words — g; uniformly on R" as k — o0.

Lo
Similarly,
1
sup (€ ‘\ N f )Hf(x)\dxémfmo’k)c |f(2)| da

which converges to zero as k —00. Therefore, fk — f uniformly on R”. By Theorem 1.5,

gg = g; so the lemma is concluded. =
J

Corollary 3.10. For f € #(R"), f € €°(R") and

D2f(e) = g ot aie f@)] (@),

ilal

where for a multi-index a = (a1, , ), o] = a1+ + a, and D§ = ;gal - a&g:ﬂ =
1 n
olal

55?1-‘-555".
10f

i 0z

Lemma 3.11. If f € Z(R"), then for j € {1,2,--- ,n}, %, [ —(z )} ) =& F(E).



§3.2 Some Further Properties of the Fourier Transform 47

Proof. W.L.O.G., we assume that j = n. Write z = (2/, z,,). Since f € .#(R"), there exists
C > 0 such that

(L4 |2')) ][ f (2, 20)| < C Vo= (2 2,) e R".
Then
1. For each 2/ e R™!| f(2/,+R) — 0 as R — 0.

2. The function g : R*! — R defined by g(z') = is integrable on R"™! (see

I
(14 [a])
the proof of Lemma 3.8), and |f (', +R)| < g(«') for each 2/ € R"="and R > 1.

Therefore, the Dominated Convergence Theorem implies that

lim f(@', £ R)e™ @R dy! =0
R—o0 [fR,R}"fl

thus Fubini’s Theorem and integrating by parts formula imply that

10f .
L2 ] [ e
i 0wy, (@)](€) = i\2n Rlirolo R R 8xn v

1 1 B 9 ,
= —— lim (J f (m)e _”“"'fdxn>da:/
[ RR}’VL 1

R aCCn

_ 1_1 ho i@y g N[ Ciwe

, 27r égrolo [(J{ RR]n_lf(x L)€ dx ) B + &, f[RR}nf(x)e dm]
f wim | )l = & f(€). .

Corollary 3.12. P(&, -, &)1 () = Z, [73(1 ail ,18‘;)f(x)] (€) for all f € S (R™)

and polynomial P.

Corollary 3.13. The Fourier transform of a Schwartz function is a Schwartz function; that

is, F : S (R") - L (R").

Proof. Let P be a polynomial and o = (ay, -+ ,a,) be a multi-index. By Corollary 3.10
and 3.12,

N olel £
POD IO = Pler &) st (©
1
= i F PG ) e S @) ©)



48 CuAPTER 3. Fourier Transforms

thus PDO‘f is the Fourier transform of a Schwartz function ¢g defined by

1 10 15>[

9@ = @P G T

aitay? ey f(2)]
By Proposition 3.4 and Lemma 3.8, PDa]?is bounded. =

Remark 3.14. There exists a duality under A between differentiability and rapid decrease:

the more differentiability f possesses, the more rapid decrease ]? has and vice versa.

Definition 3.15. For all f € L'(R"), we define operator .Z* by

R S
(F*1)@) = o | Qe

The function .#* f sometimes is also denoted by f

Before proceeding, we establish a special case of the Fubini theorem for improper inte-

grals which will be used in the following discussion.

Proposition 3.16 (Fubini theorem - special case). Let f : R" x R" — C be absolutely
integrable, and g,h € L*(R™). If | f(z,9)| < |g(@)||h(y)| for all x,y € R", then

fla,y)d(z,y) = lim [z, y)d(x,y)
R2n —00 [-R,R]Q"

— fn ( . f(x,y)dy)dx = fn ( . f(x,y)dm)dy.

Proof. Let € > 0 be given. Since g, h € L'(R"™), there exists Ry > 0 such that

£
9(z)| + [h(2)]] dz < whenever R > Rj.
J[ R,R]™)t [ } 1+ HQHLI(R*L) + Hh”Ll(Rn)

Therefore, the Fubini theorem for Riemann integral implies that

f fxy@m—f ﬂaw@M+J f(x,y) dydz
n JRn [~R,R]"

(=RAM)E Jrr

—f (J +J )f(x,y)dydwrf J f(z,y) dydx

[_R7R]n [—R,R}” ([_RvR]n)C ([_RvR]n)E R

= f [z, y)d(x,y) + f J f(x,y) dydz + f f(z,y) dydzx;
[_R’RPTL [_R7R}n [ R’R]n)ﬁ

((=R,R]")EJR™
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thus by the fact that |f(z,y)| < |g(2)||h(y)],

. ([ s f[_RRPn Fla.y)d(.y)|

J[_R’R]n ( f([_R,R]n)c l9(@)|A(y)] dy ) da + f([_mn)c ( fw 92 (v)] dy )

< lolore [ )l dy + bl | 9(a)|da
([-R,R]™)C R,R]")C

N

(”gHLl(R”) + HhHLl(Rn))5
L+ gl @ey + [ 21 @ny

whenever R > Ry. O

Lemma 3.17. If f and g € /(R™), then

(Fxg)(x) = ﬁ F(€)e5(E) de

Proof. By definition of f and convolution,

(Fro)w) == | Fe—matwar=(52)" [ (| s@e <t ac)ay

The Fubini theorem then implies that
~ 1 \n pE i
(Frg)(a) = (%) | (] roeterom)ay)ac
Rn

= | 10 (o e an)ac= ()| r@eaede. o

The operator .# *, indicated implicitly by the way it is written, is the formal adjoint of

. To be more precise, we have the following
Lemma 3.18. (Fu,v)2@ny = (U, F*0)2mn) for all u,v € L (R™), where (-,-)2mny is an
inner product on . (R™) given by

(U, ) L2mny = J u(x)v(x)dx.

n

Proof. Since u,v € . (R™), by Fubini’s Theorem,

(fu,v)Lz(Rn) = \/21?71 Egn <fn u(;(;)@—zxﬁdx>@d§
= \/21?,1 JERR fn u(x)eiw€u(€) dE dx
1 _
= N JRn u(z) J]Rn e ty(§) df dr = (u, F*v) L2 (mn) - o



50 CuaPTER 3. Fourier Transforms

3.3 The Fourier Inversion Formula

We remind the readers that our goal is to prove (3.2), while having introduced operators .#
and .#*, it is the same as showing that . and .#* are inverse to each other; that is, we
want to show that

FF =F*%=Id on SR").

22

1
Fort > 0 and z € R, let Py(z) = 7i e 2. Note that P, € .#(R) and P, is normalized so
that

ﬁf e =1,

Now we compute the Fourier transform of P,. By Lemma 3.9, we find that

db,, . i .
- o= i [mey s

Since the functions y = xP,(x) is absolutely integrable on R for each fixed ¢ > 0, the integral

zPy(x) cos(&x) f zPy(x)sin(§z) dx

J Py () cos(€x) dx converges absolutely; thus by the fact that = cos(€x) are odd functions
R

in x, we have

R
J xP(x) cos(§x) dr = lim xP(x)cos(éx)de = 0.
R

R—0 R

As a consequence,

P, J
— (&)= ze” 7 sin(z
Similarly, ﬁt(f ) = ; - f e‘g cos(z€)dx, and the integration by parts formula implies that
L JR
dPt 22

7% cos(wf))dx = \/ﬁf ze” % sm(xf)

+ fR fte_%t cos(z€) dx}

df \/ﬁ

IQ
=— lim [ — te” 2 sin(

e (e I L R .
_7\/% I%LI%O 7R€ cos(z€) dw—*m }%Lngo 7Re [Cos(xﬁ) — zs1n(x§)] dx
t
_\/EH e”¥e " dr = —£th(¢)
thus ﬁt(g) =Ce~ T By the fact that Pt = J P(z — 1, we must have

Pi(§) = e (3.6)
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§

n N w2
For z € R", if we define Py(x) = [] Pi(zx) = <i> e_%, then (3.6) and the Fubini
k=1

Theorem imply that Py(¢) = e~ =€ Therefore,

5i6) = () P20

which, together with the fact that f(x) =f (—x), further shows that
P 1\~ 1 \n 1 n
Pua) = (=) Pi(=2) = (=) (5= Pul—2) = Pila).
@)= () Pra = (5) (55) Pd-s) =Pilw)
Similarly, ﬁt(f) = P4(&), so we establish that
F*F(P) = FF*(P)=P;. (3.7)
The proof of the following lemma is similar to that of Theorem 2.20.

Lemma 3.19. If g € /(R"), then P, % g — g uniformly on R™ as t — 0%, where the

convolution operator x is given by

Poxa)(a) = = | Pl =)o)y = —= | Piwola—w)ay. (33

Proof. Let € > 0 be given. Since g € .#(R"), g is uniformly continuous; thus there exists
0 > 0 such that

‘9(33) —g(y)’ < g whenever |z —y| < 4.

Since\/;?n RnPt(x) dx =1, for all x € R™ we have
ek a)lah=glal| = o] [ slo - wPw)dy = | g(@Pilo)
t X g)\x gx—mn ngl'ytyy ngxtyy
- | | o= —s@)]Pi)
e 1 ;. 2lglo
PN jy<6 (v) dy " lyl=3 ) dy
so we obtain that 2l
€ Glloo
A s~ L

Note that
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which approaches 0 as t — 07; thus there exists A > 0 such that if 0 < [¢t| < h,

2

V2" Jyzs 2

Therefore, we conclude that
|(Pixg)—g|, <e whenever 0<t<h

which shows that Py% ¢ — ¢ uniformly as t — 0%, o

Theorem 3.20 (Fourier Inversion Formula). If g € .(R"), then E(f) =\ goy(f) =g(&). In
other words, 7 * = 7*.% = Id.

Proof. Apply Lemma 3.17 with f(£) = P,(¢) = e 2% using (3.7) we find that

r 1 -1 1 &N
(Pexg)(a) = (Txo)(a) = o | M40 G(6) de.
Letting ¢ — 01, by Lemma 3.19 it suffices to show that
lim | e 2P emtG(e)de= | e eGde.
t—0t Jrn R™

To see this, let ¢ > 0 be given. Since g € .(R"), there exists R > 0 such that

Joo e <5
B(0,R)t

For this particular R, there exists 6 > 0 such that if 0 <t < 4,

e < &
2 g Ll(Rn) 2 .

Therefore, if 0 <t <, using the fact that 1 — e ™ < z for x > 0,
—Ltg)? izen 1T &N
| g - | evgag
n R

<(L&m+meﬂfﬁw—umowg

1
< StR? 9(¢)|d g(&)|de <«
<gtht | @les | ol <

Therefore,

o) = = | ale)e S = G,
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23

Let ~ denote the reflection operator given by ]? (x) = f(

formula implies that

Je'rEdy =

1
\/ﬂn Vor" g

- ‘fn9< D=z = 5(6).

9(&) =

ﬁ

On the other hand,

1) = <o | al)e* e = 5(-€) = 50
thus §(€) = 5(6) = 5(6) = 9(¢)

Corollary 3.21. .7 : S (R") — L (R") is a bijection.

Remark 3.22. In view of the Fourier Inversion Formula (Theorem 3.20), .#

written as .# !, and is called the inverse Fourier transform.

Theorem 3.23 (Plancherel formula for . (R™)). If f, g € (R"™), then
E 9>L2(R") N <J?, §>L2(Rn)-

Proof. Recall that (f, g)r2mn) = f (2)g(x)dz. By Fubini’s theorem,

g(:):)e_i(_x)fdm

—z). Then the change of variable

* sometimes is

Fp = [ Fali@ e = | [ | p@emae]o@iao
= 1] ) gl)eEdz] dg = (f, Grraen)

Therefore, (f, g)r2@n) = <f ,9)L2(Rn) = {f, 9)r2(rn)-

(]

Remark 3.24. The Plancherel formula is a “generalization” of the Parseval identity in the

following sense. Define the ¢* space as the collection of all square summable (complex)

sequences; that is,

2= {{ak}g;_oo c c( ii la? < oo}

with inner product
ee}

Z aka.

k=—00

<{ak}koo:—oo’ {bk}l;.o:—oo>g2 =
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Here we treat {ax}j__., and {ap+1}7> ., as different sequences. With | - |, denoting the

norm induced by the inner product above, the Parseval identity then implies that

1z = [{ oo »

thus by the identities

If + QH%?(T) = HfH%?(qr) + 2R‘e(<f7 9>L2(1r)) + Hg”%m‘) )
(= gH%Q(T) = Hf”%?(nr) - 2Re(<f7 g>L2(T)) + H9H2L2(1r) )

we find that
1 9 9 1/ & (2 a2 A (R A2
Re(<f,9>L2(T)) = Z(HergHmT) + Hf_gHL2(’]1‘)> = z_l< Z ’fk +gk{ + Z ’fg —9k| >
0 o k=—0 k=—0
= Z Re(fk@k)-
k=—00

w AN —
Replacing g by ig in the identities above shows that Im((f, ¢)r2(m)) = > Im(fxk); thus

k=—00

e = Re({f, @yrzemy) + im({f, 92 (my) = Z Fede = <{ﬁ}§§’:_w S

k=—00

Define F : L*(T) — ¢* by F(f) = {fk}fz,w' Then the identity above shows that

<f7g>L2(T) :<]:(f)uf<g)>£2 Vf,ge L2(T)
so that we obtain an identity similar to the Plancherel formula.

Remark 3.25. Even though in general an square integrable function might not be in-
tegrable, using the Plancherel formula the Fourier transform of L2-functions can still be
defined. Note that the Plancherel formula provides that

[£l2@ny = | Fliz@ny V[ e SR, (3.9)

If f e L*(R"); that is, | f| is square integrable, by the fact that .#(R") is dense in L?(R™),
there exists a sequence {fi}r; € - (R") such that kh_r)glo Ifx = flz2@ny = 0. Then {f};2,
is a Cauchy sequence in L?(R"); thus (3.9) implies that {fk},;‘o:l is also a Cauchy sequence
in L?(R"). By the completeness of L?*(R"™) (which we did not cover in this lecture), there
exists g € L?(R") such that

Jm I fr — gll2mny
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We note that such a limit ¢ is independent of the choice of sequence {fr}r; used to ap-
proximate f; thus we can denote this limit g as f. In other words, .% Z . L*(R") — L*(R").
Moreover, by that fi — f and f, — f in L2(R") as k — o0, we find that

1flzeny = 1 f | L2 mny vV feL*(R"),

and the parallelogram law further implies that {f, g)r2®n) = <]?, Gyr2@n forall f,g € L*(R™).
Similar argument applies to the case of inverse transform of L?-functions; thus we conclude
that

<f7 g>L2(R”) = <.]/C\7 §>L2(R") - <f7 .\g/>L2(R") v f7 g€ L2(Rn) : (310)

We have established the Fourier inversion formula for Schwartz class functions. Our goal
next is to show that the Fourier inversion formula holds (in certain sense) for absolutely
integrable function whose Fourier transform is also absolutely integrable. Motivated by the

Fourier inversion formula, we would like to show, if possible, that
f=f=f VfeL'(R") suchthat fe L' (R").

The above assertion cannot be true since ]% and }( are both continuous (by Proposition
3.3) while f € L'(R™) which is not necessary continuous. However, we will prove that the
identity above holds for points z at which f is continuous.

Before proceeding, let us discuss some properties concerning the Fourier transform the

product and the convolution of two Schwartz class functions.

Theorem 3.26. If f,.g € L (R"), then F(f%g) = f@ In particular, f*g € L (R") if
f9e SR,
Proof. By the definition of the Fourier transform and the convolution,

— 1

F¥9(6) = == F (| 6= 0)(w)dy)(€)

N (27lr)n f . [ RAC L) dy|e = <d

iy
- (e [ o) (e [ o)

which concludes the theorem. o

—~
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Corollary 3.27. Z*(f*g) = f§, fg= F%§ and fg = f%§ for all f, g€ (R").

f
Lemma 3.28. Let f € L'(R") and g € #(R"). Then {f, > = {f,§) and {f,g> = {f, ),
where {f,g) = JRnf(x)g(x) dx.

Proof. We only prove <f, g ={f,qif f e L}(R") and g € .#(R™). By Proposition 3.4, f
is bounded and continuous on R"; thus J?g is an absolutely integrable continuous function.
By the Fubini Theorem (Proposition 3.16),

For=| (= | 1we=sa)oeic = —= | (| rwpaee<as)a
1

= | (| s@utetie)a = | @) | ot ag) e
which is exactly {(f, g). o

Next, we shall establish some useful tools in analysis that can be applied in a wide range
of applications. Those tools are fundamental in real analysis; however, we assume only
knowledge of elementary analysis again to derive those results. We first define the class of

locally integrable functions.

Definition 3.29. The space L (R™) consists of all functions (defined on R") that are

loc

absolutely integrable on all bounded open subsets of R” and whose integrals are absolute

convergent. In other words,

1
Lloc

(R™)= { f:R">C ’ f f(z)dx is absolutely convergent for all bounded open U < R"} :
u

Again, we emphasize that we abuse the notation L (R") which in fact stands for a

larger class of functions. We also note that L'(R") < LL (R").

Lemma 3.30. Let ¢ : R" — R be a smooth function with compact support (that is, the
collection {x € R" | ¢(z) # 0} is bounded), and f € L}, (R"). Then f oz —y)f(y)dy is
Rn

loc

smooth.

Proof. Tt suffices to show that

0

o(x —y)fly)dy = . bo;(x —y) f(y) dy.
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Let x € R™ be given, and suppose that {y e R ‘ o(y) # O} < B(0, R). Since ¢ has compact

support, ¢, is uniformly continuous on R; thus there exists 0 < ¢ < 1 such that

|02, (21) — @z (22)] < c whenever |z; — 29| < 6.

| i)l
B(z,R+1)

Define g(x f o(x —y) f(y) dy. Then for some function 9 : R — (0, 1),

(x + hej —y) — d(x —y) = hoo, (v —y +I(h)he;) ;

thus if 0 < |h| < 6,

‘Q(I—i-hej) _g(«T) o N %J(ﬂﬁ—y)f(y) dyl

h
B+ hej —y) ¢
<[ [erhazpoolemi) g e Mf ) dy
:J |ba, (@ — y + D(h)hey) = o (z — y)||f(y)| dy <.
(z,R+1)
This implies that g, ( J Gu; (v —y) f(y) dy. o

A special class of functions will be used as the role of ¢ in Lemma 3.30. Let ( : R - R
be a smooth function defined by

1 .
2_1) if |[x| <1,
0 if |z| = 1

For x € R", define n;(x) = C((|z|), where C' is chosen so that m(x)d = 1. The change
RTL
of variables formula then implies that n.(z) = e "n;(z/¢) has integral 1.

Definition 3.31. The sequence {7.}.~¢ is called the standard mollifiers.

Example 3.32. Let f = 1j,), the characteristic/indicator function of the closed interval
[a,b]. Then for ¢ « 1, the function 7.% f = +/27mn. % f is smooth and has the property that

1 ifzelat+eb—el,
0 ifrxefa—eb+el,

D) - |

and 0 < f < 1. Therefore, n.% f converges pointwise to f on R\{a, b}.
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Since 7. is supported in the closure of B(0,¢), Lemma 3.30 implies that for any f €
L%OC

at points of continuity of f.

(R™), n* f is smooth function. The following lemma shows that 7.% f converges to f

Lemma 3.33. Let f € LY(R™) and xq be a continuity of f. Then
(n* f)(z0) = v 27Tn(77€*f)(x0) — f(zo) as e—0.
Proof. Let € > 0 be given. Since f is continuous at xg, there exists ¢ > O-such that

[ (y) = f(xo)| <

whenever |y — o] <.

DO | ™

Therefore, by the fact that j Ne(xg —y)dy =1,if 0 < e < 6,
Rn

|(n=f)(z0) — f(w0)| = U Ne(xo — y) f(y) dy — f ns(xo—y)f(:vo)dy‘

\L( (o = Il F )l dy <

which implies (n.% f)(zo) — f(z0) as € — 0. o

€

[\

J Ne(xo —y) dy < €
B(zo,e)

Lemma 3.34. Let f € L{ (R™). If {f;9>=0 for all g € S (R"), then f(xg) = 0 whenever

f is continuous at xg.

Proof. W.L.O.G. we can assume that f is real-valued. Let {7.}.~¢ be the standard mollifiers,
o be a point of continuity of f, and f. = n.xf = /27" (1. * f). Then Lemma 3.30 shows
that f. are smooth for-all & > 0.

Define g(z) = m(x—=x0)f.(x). Then g € .#(R") since f.,n are smooth and (- — )
vanishes outside B(zg, 1). Since 7., g € .(R"), Theorem 3.26 implies that n.% g = /27 (1%
g) € L (R™); thus

{fyme%g)=10 Ve>0.

Since f € L (R") and g has compact support, Tonelli’s Theorem implies that the function
F(z,y) = f(z)g(y) is absolutely integrable on R™ x R™. Moreover, by the boundedness and
continuity of 7., the comparison test implies that the function G(x,y) = F(x,y)n.(x —y) is

also absolutely integrable on R™ x R™. Fubini’s theorem then implies that

{finexg) = . f(x)qn ne(z —y)g(y) dy)ci:v = J g(y)qn ne(z —y) f(x) dx>dy;
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thus by the fact that n.(x —y) = n.(y — z) we conclude that {f,n.%g) = (n-%f,g9). As a

consequence,

2
0={(fnkg) = Qex fym( —zo)(nek f)) = | mla —xo)|(nex f)(w)| do
Rn
which implies that n.xf = 0 on B(zg,1). We then conclude from Lemma 3.33 that
(ne* f)(x0) = (o) as € — 0. o

Now we state the Fourier inversion formula for functions of more general class.

Theorem 3.35 (Fourier Inversion Formula). Let f € L'(R") such that f € L(R"). Then

~ ~
~

~

f(z) = f(z) = f(x) whenever f is continuous at x.

Proof. Let f:R" — C be such that f, f € L'(R"). By the fact that f = f (where ~ is the
reflection operator), we also have fe L'(R™). By Lemma 3.28 and the Fourier inversion

formula for Schwartz class functions (Theorem 3.20),

Gy=FH =8 =fg) and Fp<Fiy=F.5)=(fg) Vge SR
In other words, if f, f € L}(R™),

F-foy=F~Fr)=0 V¥ge IR

By Proposition 3.4, f, fe Li .(R™); thus-the theorem is concluded by Lemma 3.34 and the

loc

fact that f and fare continuous (which is guaranteed by Proposition 3.4). =
Remark 3.36. Since an-integrable function f : R®™ — R must be continuous almost
everywhere on R", Theorem 3.35 implies that if f : R® — R is a function such that f,
fe LY(R™), then f: f.= f almost everywhere.

Remark 3.37. Insome occasions (especially in engineering applications), the Fourier trans-

form and inverse Fourier transform of a (Schwartz) function f are defined by

fO =] fl@e® e and  flo)=| [ ede. (3.11)
R™ R"
Using this definition, we still have

1. f=f=fforall fe.ZR");

2. if f e LYR") and fe LY(R™), then f(z) = f(z) = f(z) for all x at which f is

continuous.
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3.4 The Fourier Transform of Generalized Functions

It is often required to consider the Fourier transform of functions which do not belong to

L'(R™). For example, the normalized sinc function sinc : R — R defined by

sin(rz) .
sinc(z) = e ifz -0, (3.12)
1 ifx =0,

does not belong to L' (R) but it is a very important function in the study of signal processing.

—6m —4m 27

1.0

_ sin(zr)

0.8 &

0.6

0.4+

0.2

—0.2+

| I I
—20 —15 —-10 =5 0 5 10 15 20

Figure 3.1: The graphs of unnormalized and normalized sinc functions (from wiki)

Moreover, there are “functions” that are not even functions in the traditional sense. For
example, in physics and engineering applications the Dirac delta “function” ¢§ is defined as

the “function” which validates the relation
| swowdr=o0)  voewm)

In fact, there is no function (in the traditional sense) satisfying the property given above.
Can we take the Fourier transform of those “functions” as well? To understand this topic
better, it is required to study the theory of distributions.

The fundamental idea of the theory of distributions (generalized functions) is to identify

a function v defined on R™ with the family of its integral averages

. Jnv(x)(b(x) dr Ve E (R,
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where €°(R") denotes the collection of ¢*-functions with compact support, and is often
denoted by D(R™) in the theory of distributions. Note that this makes sense for any locally
integrable function v, and D(R") < . (R").

To understand the meaning of distributions, let us turn to a situation in physics: measur-
ing the temperature. To measure the temperature 1" at a point a, instead of outputting the
exact value of T'(a) the thermometer instead outputs the overall value of the temperature
near a point. In other words, the reading of the temperature is determined by a pairing of
the temperature distribution with the thermometer. The role of the test function ¢ is like
the thermometer used to measure the temperature.

The Fourier transform can be defined on the space of tempered distributions, a smaller
class of generalized functions. A tempered distribution on R"™ is-a continuous linear func-

tional on .’(R™). In other words, 7" is a tempered distribution if

T:R") - C, T(cp+ ) =cT(p) + T () for all.ce C and ¢,v € L (R"),
and h_,% T(¢;) =T(¢) if {¢;};, € L (R")and ¢; = ¢ in S (R").

The convergence in .%’(R") is described by semi-norms, and is given in the following

Definition 3.38 (Convergence in . (R")). For each k € N, define the semi-norm

pr(u) = sup ()" Du()]

z€R™,|a|<k

where (z) = (1 + |z[?)2. A sequence {u;}72, € 7 (R") is said to converge to u in ./'(R") if
pe(uj —u) — 0 as j — co/forall k e N.

We note that pj(u) < pry1(u), so {u;}52, < & (R") converges to u in & (R™) if py(u; —
u) — 0 as j — oo for k » 1. We also note that if {u;}7, converge to u in (R"), then

{u;}52, converges uniformly to u on R”.

Definition 3.39 (Tempered Distributions). A linear map 7" : .(R™) — C is continuous if
there exists N € N such that for each k£ > N, there exists a constant C} such that

|<T u>} Clcpk Yue y(Rn) s

where (T, uy = T'(u) is the usual notation for the value of T at u. The collection of continuous
linear functionals on . (R") is denoted by . (R")’. Elements of . (R")" are called tempered

distributions.
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Example 3.40. Let LP(R™) denote the collection of Riemann measurable functions whose

p-th power is integrable; that is,
LP(R") = { f:R*"—>C ’ f is Riemann measurable and f Pde < oo}

Every LP-function f : R"™ — C can be viewed as a tempered distribution for all p € [1, o].

In fact, the tempered distribution 7 associated with f is defined by

Ty(¢) = Rnf(iv)cb(ﬂ?)dx Voe S (R"). (3.13)

Since we have use (-, -) for the integral of product of functions, the value of the tempered
distribution of f at ¢ is exactly {f, ¢) for all ¢ € #(R"). This should explain the use of the
notation (7', ¢).

Now we show that 7 given by (3.13) is indeed a tempered distribution. Let pe SR

be given. Then |¢||r=m@n) < pip(¢) for all k € N, while for 1 < ¢ < o0 and k > 5

luenr = [ ol ar) = ([ oo an)’ < ([ @ eds) mo

0 1

<Q%4L<1+ﬂr@w4m)waw.

Q0

Note that (1+ TQ)_%T”*%ZT < ooif k> 2; thus for all ¢ [1, 00], there exists C 4, > 0
0 q

such that

1] Larn)y < Chgnpi(9) Vik>»1. (3.14)

Therefore, if f € LP(R"), by the Holder inequality we have

[KF. 0] < 1flpr@n €l L @) < Crprnl Fle@eypr(d) — Vh > 1,

where p’ € [1,00] is the Holder conjugate of p satisfying 1 + i/ = 1; thus 7y € /(R")" if
p D
f € LP(R™). Note that the sinc function belongs to L?(R) so that Ty, € % (R)'.

Example 3.41. Let f : R — R be a 2r-periodic, Riemann measurable function such that
j |f(z)]dx < 0, and ¢ € (R). Lemma 3.11 (or Corollary 3.13) and Proposition 3.4
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imply that
EF100)] = |20 @] O] < 10) |y = [, @)@z = | 3" (@)]
- fR<x>—2\<x>2<a3>"<w>|dx < (s @@ @) [ o
) [€20(6)] e de]

= T sup

xeR’\/ﬁf d§2
<[22 S @rproa < vow [ © (o) s <inito)

o] <2
Therefore,
0 T2k
ol=| X [ e < 3 [ Is@iots - 26 as
k=—op Y —TH2km k=—c0 V=
~ | V@le@lde+ 3 | 11@)|ot = 2tm)] do
k|=1Y 7
S dl’ rr €T W—Q 7 dx
<m(@) | |7 +|k|2>1 ) )

< (fﬂ ()| dx) (1 + 2; ﬁ)m(@

which implies that T is a tempered distribution. In particular, T, € .(R)’ for all constant
ceR.

From now on, we identify f with the tempered distribution 7 if f € LP(R"). For
example, if T' e Z(R™)"and f : R" — C is bounded or integrable, we say that 7' = f in
S (R") it T'= Ty, where T} is the tempered distribution associated with the function f.

Remark 3.42. Let f(x) = € L.
Ll

loc

C(1+ |z|V) for any N. In such a case, Ty € ./ (R")" is well-defined.

(R™). Then (Tf,e™*") = . Therefore, being in
(R™) is not good enough to generate elements in . (R™)’, and it requires that |f(z)| <

Example 3.43 (Dirac delta function). Consider the map 0 : € (R") — R defined by d(¢) =
¢(0). Then [(5,¢)| < po(¢) < p(¢) for all ¢ € S(R"); thus 6 € S (R"). Similarly, the
Dirac delta function at a point w defined by {J,, ¢) = ¢(w) is also a tempered distribution.

As shown in the example above, a tempered distribution might not be defined in the

pointwise sense. Therefore, how to define usual operations such as translation, dilation, and
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reflection on generalized functions should be answered prior to define the Fourier transform
of tempered distributions. For completeness, let us start from providing the definitions of

translation, dilation and reflection operators.
Definition 3.44 (Translation, dilation, and reflection). Let f : R" — C be a function.
1. For h € R™, the translation operator 7, maps f to 7, f given by (7,f)(x) = f(x — h).

2. For A > 0, the dilation operator d, : .#(R") — .(R"™) maps f to d,f given by
(drf)(@) = f(A ).

3. The Reflection operator ~ maps f to f given by f(x) = f(—x).

Now suppose that T' € .#(R")". We expect that 7,7, d)\T and T are also tempered
distributions, so we need to provide the values of {(7,T, ¢), (d\T’,¢) and (T, ¢) for all ¢ €
S (R™). If T = Ty is the tempered distribution associated with f € L'(R"), then for
¢ € (R™), the change of variable formula implies that

Ml = | flw=hgle)de= | f@gle+h)de= ()79,
figy= | [0 2)g@)de = | f@)gOa)X"de = (f, Xdrg),
Fp=| flaga)de=)| f@)g(-z)de=f5).

The computations above motivate the following

Definition 3.45. Let he R™, A > 0, and 75, and d) be the translation and dilation operator
given in Definition 3.44. For T € .Z(R")', 7,T, d,\T and T are the tempered distributions
defined by

(T, ) = (T, 738y, (d\T,¢) = (T, \"dy-1¢) and (T,¢) = (T, 4y V¢e.(R").

We note that 7,7, d\T and T are tempered distributions since

pe(T-n9) < sup  (@)¥|D%(x — h)| < (2|h)* + 1)§pk(¢)>

zeR" |a|<k
pr(A"dy-10) < A" sup <x>k)\‘°‘|’(Do‘¢)()\x)‘ <\ maX{)\k, )\’k}pk(gb),

zeR™ |a|<k

Pe() = pi(9)
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so that for k£ >» 1,

(T T, )| = KT, )| < Ci(2]h)* +1)2 2 pu(9) = Capi(9),
AT, 6| = (T, \"dy-16)| < CRA™ max{\*, A" pi.(8) = Crpr(9)
|<i ¢>‘ KT ¢>| Ckpk )

Example 3.46. Let w,h e R” and A > 0.
1. 7,0, = Ou_p since if ¢ € L (R™), (10, ) = (30, T_n®> = d(w — h) =(Syn, O).
2. dyd, = N0y, since if ¢ € L (R™), (drd,,, ¢y = (3, N'd1jag) = N'd(Aw) = (NG, B).
3. 0, = 0_,, since if ¢ € S (R"), (0, ) = (8, &) = ¢(—w) = (D=0, 0.

From the experience of defining the translation, dilation and reflection of tempered distri-
bution, now we can talk about how to defined Fourier transform of tempered distributions.
Recall that in Lemma 3.28 we have established that

o9y =<5 and {(f,gp={f.gy V¥ [elL'R"),ge.7(R").

Since the identities above hold for all L'-functions f (and L'-functions corresponds to
tempered distributions T} through (3.13)), we expect that the Fourier transform of tempered
distributions has to satisfy the identities above as well. Let 7" € .(R")’ be given, and define
T:.7(R") — C by

T(@) =T 0)=(T.6) VYoeIR). (3.15)
Note that if £ > 2

p(@) = s O DdE)| = sup <5>’“\%[x%<x>}<s>1

£eR |al<k EER™, |a|<k

< sup (n—i—l)%*l(l—i- ST TN )’ [ “o(x )](f)‘
EeR™ |al<k

<nit sup [F[0405 4+ 00) (0 DG

Since

3 Rsnu|p\<k ‘ﬁx [xa¢($)] (5)‘ A |Sl|1p Hxa¢ HLl (Rn) H<$>k¢($)HL1(Rn)

< gy SR G| < [y P (6)
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and for 1 < j <n,

k
sup |7, [08 (a°0(@)](€) < Y ¢ sup

£eRn, |a|<k 1—0 &eRn, \oz|<k

F, [0k 0 0(2)](€)

Z Cy sup 05 05, d(@)| 1y oy < Z Cf sup [af![ (@)L (@) 1 gy

<k o<k

2 CZ k! Sup H<I‘>€D6¢ HLl R™) k' Z CEH<Z‘>_”_1 HLl(Rn)pn—i-Z—i-l((b)

=0 18l=¢ =0

k
S k'”<x>7n71 HLl(R") DPntk+1 (¢) Z CZ{C = k|2kH<x>7nil HLI(Rn) pn+k+1(¢) )
£=0
we conclude that

~

pe(0) < (n+1)71(1+ nk!12%)[C) ™" Ly gy Prir1 (0 = O, k)pagrsa (0) . (3.16)
Therefore,
(T, 6| = (T, 6)| < Copi(d) < CLl8(n, K)prsnsa () V> 1 (3.17)

which shows that 7' defined by (3.15) is a tempered distribution. Similarly, 7" : .%(R") — C
defined by (T', ¢ = (T, $) for all ¢ € . (R")is also a tempered distribution. The discussion

above leads to the following

Definition 3.47. Let T € .(R")"." The Fourier transform of 7" and the inverse Fourier

transform of 7', denoted by Tand T respectively, are tempered distributions satisfying

(T,¢)={T.¢y and (T,¢)=(T,¢y Ve S(R").

In other words, if T € .(R"), then T, T € Z(R™)" as well and the actions of T, T on

¢ € (R™) are given in the relations above.

Example 3.48 (The Fourier transform of the Dirac delta function). Consider the Dirac
delta function § : .#(R") — C defined in Example 3.43. Then for ¢ € .7 (R"),

AN a1 w0 g1 1 .
<57¢>_¢(0) mn anb(x)e dilj' mn Rn¢($)dl’ <mnv¢>a

thus the Fourier transform of the Dirac delta function is a constant function and & (&) =

. Similarly, 5(5) = \/217,” S0 8 = 9.
™

1
\/277'”



§3.4 The Fourier Transform of Generalized Functions 67

Next we consider the Fourier transform of 9, the Dirac delta function at point w € R™.
Note that for ¢ € . (R"),

w

n " 1 —iTWw _ eimi — & .
<5un¢>:¢(w) = W an ([L’)e dx_<mna¢>—<5w>¢>>

thus the Fourier transform of the Dirac delta function at point w is the function 5:,(5) =

—i&-w
fﬁn' The inverse Fourier transform of ¢, can be computed in the same fashion and we
™
have 6,,(§) = —. We note that 6, = d, = d,,.
(€)==
Symbolically, “assuming” that d,(¢) = ¢(w) for all continuous function ¢,
0,(§) = —% 0, (x)e e dy = _e i@t = —
<£) V2m o Jgrn ( ) V2T r=w 2T
and "
> 1 . 1 . eiéw
0w(é) = —% 60 (2)e™ s dr = —=e™@S = o
(6) V2T Jn ( ) 2T T=w V2T

Example 3.49 (The Fourier transform of ). By “definition” and the Fourier inversion
formula, for ¢ € . (R™) we have

(e oy =| "o(x)dr =2r B(x)e™ dz = V2r" () = V2r " ()

n 1
. V21" Jgn
thus
(e, Y= 21" p(w) = (V21 "3, ).

Therefore, the Fourier transform of the function s(x) = € is V271 "5, where §,, is the
Dirac delta function at point w introduced in Example 3.48. We note that this result also
implies that g

5/; =7 VweR".

A~

Similarly, 5; = 0, for all w € R™; thus the Fourier inversion formula is also valid for the

Dirac § function.

Example 3.50 (The Fourier Transform of the Sine function). Let s(z) = sinwz, where w

W —lwx
e — €

denotes the frequency of this sine wave. Since sinwz = 5
(3

, we conclude that the
Fourier transform of s(x) = sinwzx is

V2T
2% ((501 - 5—0.1)

]
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since if T, T, are tempered distributions, then T' = T + T, satisfies

(T,¢) =Ty + Ty, 6y = (11, 6y + (T, &) = (T1,0) + Ty, ) = Ty + Tr,6) Ve F(R")
which shows that T = T, 1+ fg.

Theorem 3.51. Let T'e ./(R"). Then % = 12 =T.

Proof. To see that T and T are the same tempered distribution, we need to show that
<f, ¢y =T, ¢) for all ¢ € #(R™). Nevertheless, by the defintion of the Fourier transform

and the inverse Fourier transform of tempered distributions,
T,0)=T,0)=T,0)=(T, ) VeI (R").
That T = T can be proved in the same fashion. =

Example 3.52 (The Fourier Transform of the sinc function). The rect/rectangle function,

also called the gate function or windows function, is a-function II : R — R defined by

iy { Al <
Y00 iffel=1.

Since IT € L'(R), we can compute its (inverse) Fourier transform in the usual way, and we

have
~ 1 : A\ X, 1 e @ e=1 2sin &
(¢ = — | M(x)e ™ dr = ~—— e W dy = ———— =A/— VE#D
(©) V2T JR (@) Vor )y V2 —1€ lz=—1 m & ¢
sinr .
= 2 . . Lo ifz#0
and II(0) = 4 / =. Define the unnormalized sinc function sinc(z) = T
i 1 ifz=0.

Then ﬁ(f) = \/gsinc(f). Similar computation shows that I1(¢) = ﬁ({) = \/zsinc(f).
b
Even though the sinc function is not integrable, we can apply Theorem 3.51 and see that

sine(§) = sine(¢) =4[5 1) VEeR.

Theorem 3.53. Let T € /(R")". Then
T 6y = (F(©), (€)™, (DT, 6y = (T, dro) and (T,¢)=(F,¢) Ve SR,

A short-hand notation for identities above are ;;ﬁ”(f) = T(&)ei6h, d/ﬁ(g) = A"T(XE), and
() =T(9).
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Proof. Let ¢ € (R"). For h € R", define ¢p,(z) = ¢(x)e ™", Then

(T_nd)(€) = B(E + h) =

¢( Je ) gy = d(x)e e E dy = gy (€) .

1
\/ Vor" Jr
By the definition of the Fourier transform of tempered distribution and the translation

operator,

T, ¢) = (T,7-10) = (T, 0y = (T(), (a)e™*") = (T(€), 9(E)e ™).
On the other hand, for A > 0,

(dr-10)(€) = (NE) =

(b( ) —iz-(AE) dr = \~" 1 = f ¢(§)671m£ dr = )\7”6@(&) :
R

\/% Vo

Therefore,
(AT, 6) = (T, N'"dy-10) = (T, drd)y = (T, dro) = (N"ds T, ).
The identity <T, o) = <f , »y follows from that <$ = q;, and the detail proof is left to the

readers. o

~

Remark 3.54. One can check (using the change of variable formula) that ;h\f (&) = f(&)e %N
and dyf(€) = A" f(AE) if f e L'(R™).

Next we define the convolution of a tempered distribution and a Schwartz function.
Before proceeding, we note that if f, g€ #(R"), then

Sr0.0= | (o= —— | ([ feoe-va)oaas

- ﬁf <Jn§’(y—x)¢(a:)dx>f(y)d?/:<f,§*¢>-

The change of variable formula implies that

@) = o= ( | oty —a)dr = —— | F-a)oly +a)ds
== | 9@y —a)de = (g D)) = 9+ 0l0):

thus .
(fxg.0) =L g% ) ={frg%x0)={f,9%9).
The identity above serves as the origin of the convolution of a tempered distribution and a

Schwartz function.
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Definition 3.55 (Convolution). Let T' € .(R™)" and f € .#(R"). The convolution of T’
and f, denoted by T * f, is the tempered distribution given by

T fo)y=(T,fx)=(T,fxd) Voe IR,
where 7 is the tempered distribution given in Definition 3.45.

Example 3.56. Let 0, be the Dirac delta function at point w € R", and f € .#(R"). Then

0w *f_\/2;f since if ¢ € ./ (R"),

G Froy = (Fr o)) = o | Fpolw =)y = = [ (= wpole) ds

Tof
= ®

/2 n w y J Z y y J xZ w /2 n

Remark 3.57. If S € Z(R") satisfies that S * ¢ € .(R") for all ¢ € #(R"), we can also
define the convolution of T" and S by

(0w * f)() = (rwf) (). (3.18)

(T+8,¢y=(T,S+¢) Voe.S(R").

In other words, it is possible to define the convolution of two tempered distributions.

For example, from Example 3.56 we find that &, x ¢ = \;"Qibn for all ¢ € . (R™); thus
T

0w * ¢ € L (R™) for all .7 (R™) (and w € R™). Therefore, if T is a tempered distribution,

T * 6, is also a tempered distribution and is given by

(T *6,,¢) = <T nTw¢> V¢e s (R").

wor:

Further computation shows that

(T *6,,0) = <T T,y Voe S (R").

778) = (T ) = (o

The identity above shows that T *J,, = \72;:”
(3.18).

for all T e .#(R™)’. This formula agrees with
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Similar to Theorem 3.26 and Corollary 3.27, the product and the convolutions of func-

tions are related under Fourier transform.
Theorem 3.58. Let T'e Z(R™) and f e #(R"). Then
Txfd)=(T.J¢) and (T+f,6)=(T.fo) VoeIS®"),
and
ST, 0)=T*f.¢p and (fT,0)={T=f, ) VoeISR"),
where fT € L (R") is defined by {fT,¢) = (T, fo) for all $ € L (R"). A short-hand
notation for the identities above are T/\f = ff, m = ff, ﬁ =Tx f and ﬁ =T f
in & (R").
Proof. By Theorem 3.26,
(Txf.¢)=(Txf,oy={T,[xd)=(T,[+&) =T, F(fx&)) = (T, [
and by the definition of the convolution of tempered distributions and Schwartz functions,
JT,6)=(T.f6) =T, F*(f0)y = B f s ) =(T.[x6) =T * [, ).
The counterpart for the inverse Fourier tramnsform can be proved similarly. O

Remark 3.59. Let f,¢ € #(R"), and T\ e #(R") satisfy [(T,u)| < Cypy(u) for all
ue L(R") and k » 1. By Theorem 3.58, we find that

(Tx f,6) = (T £, 8y = (Tx 1,8 = &, Fy.
By the fact that

pr(gh) =" sup ()" D*(gh)(z)| < Y. Chix)*|D*Pg(x)Dh(x)|

;EER"JCM’Sk 0<B<a
|| <k

< Y Chnlome(n) = (X Ch)pulope(h) Vg he S(®Y),

o <k

we conclude from (3.16) and (3.17) that for k£ » 1,

‘<T * [, ¢>‘ < Cké(n> k)Pk+n+1(f5) < Cké(n:k>< Z C}?)pk (Bpk (g)

1BI<k

< Ck( Z C§>é(”7 k) Drskst () Prosan (5) = (7(71, k)Pniks1 (f)Pnsrri(9) -

IBI<k

Therefore, T' * f is a tempered distribution.
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