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Chapter 3

Fourier Transforms

Before introducing the Fourier transform, let us “motivate” the idea a little bit. In Section
2.5 we show that teku8

k=´8, where ek(x) = eikx, is a complete orthonormal set in L2(T).
Similarly, let L2([´K,K]) denote the inner-product space

L2([´K,K]) =
␣

f : [´K,K] Ñ C
ˇ

ˇ f is square integrable
(/

„

equipped with the inner product

xf, gy =
1

2K

ż K

´K

f(x)g(x) dx ,

where „ denotes the equivalence relation f „ g if and only if f ´ g = 0 except on a
set of measure zero. Then the set

!

exp
( ikπx

K

))8

k=´8
is a complete orthonormal set in

L2([´K,K]); that is, any functions f P L2([´K,K]) can be expressed as

f(x) =
8
ÿ

k=´8

pf(k)e
ikπx
K , where pf(k) =

1

2K

ż K

´K

f(y)e´
ikπy
K dy . (3.1)

Moreover,
8
ř

k=´8

| pf(k)|2 =
1

2K

ż K

´K
|f(x)|2 dx. In other words, there is a one-to-one correspon-

dence between f P L2([´K,K]) and pf P ℓ2, where ℓ2 is the collection of square summable
sequences; that is,

ℓ2 =
!

taku8
k=´8

ˇ

ˇ

ˇ

8
ÿ

k=´8

|ak|2 ă 8

)

.

We look for a space X so that there is also a one-to-one correspondence between the square
integrable functions on R and X. Intuitively, we can check what “might” happen by letting
K Ñ 8 in (3.1).

41
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42 CHAPTER 3. Fourier Transforms

Making use of the Riemann sum to approximate the integral (by partition [´K,K] into
2K2 intervals), we find that

f(x) =
1

2K

8
ÿ

k=´8

ż K

´K

f(y)e
ikπ(x´y)

K dy «
1

2K

K2
ÿ

k=´K2

ż K

´K

f(y)e
ikπ(x´y)

K dy

«
1

2K

K2
ÿ

k=´K2

2K2
ÿ

ℓ=1

f
(

´ K +
ℓ

K

)
exp

( ikπ(x+K ´ ℓ
K
)

K

) 1

K

«
1

2K

K2
ÿ

k=´K2

K2
ÿ

ℓ=´K2

f
( ℓ
K

)
exp

( ikπ(x ´ ℓ
K
)

K

) 1

K

(
yℓ =

ℓ

K
,∆y =

1

K

)
=

1

2π

K2
ÿ

ℓ=´K2

K2
ÿ

k=´K2

f
( ℓ
K

)
exp

(
i
kπ

K
(x ´

ℓ

K
)
) π
K

1

K

«
1

2π

K2
ÿ

ℓ=´K2

ż Kπ

´Kπ

f
( ℓ
K

)
exp

(
iξ(x ´

ℓ

K
)
)
dξ

1

K

(
ξk =

kπ

K
,∆ξ =

π

K

)
«

1

2π

ż K

´K

ż Kπ

´Kπ

f(y)eiξ(x´y)dξdy =
1

2π

ż K

´K

ż Kπ

´Kπ

f(y)eiξ(x´y)dydξ

«
1

?
2π

ż 8

´8

[ 1
?
2π

ż 8

´8

f(y)e´iξydy
]
eiξxdξ .

Therefore, if we define pf(ξ) =
1

?
2π

ż

R
f(y)e´iξydy, then the formal computation above sug-

gests that
f(x) =

1
?
2π

ż

R

pf(ξ)eiξxdξ . (3.2)

In the rest of this section, we are going to verify the identity above rigorously (for functions
f with certain properties).

3.1 The Definition and Basic Properties of the Fourier
Transform

For notational convenience, we abuse the following notion from real analysis.

Definition 3.1. The space L1(Rn) consists of all functions that are integrable on Rn and
whose integrals are absolute convergent. In other words,

L1(Rn) =
!

f : Rn Ñ C
ˇ

ˇ

ˇ

ż

Rn

|f(x)| dx ă 8

)

;



Copy
rig

ht
Prot

ect
ed

§3.2 Some Further Properties of the Fourier Transform 43

that is, f P L1(Rn) if the limit lim
RÑ8

ż

B(0,R)

ˇ

ˇf(x)
ˇ

ˇ dx = }f}L1(Rn) exists.

Remark 3.2. Even though we have not defined the integral for complex-valued function,
the definition of L1(Rn) should be clear: when f is complex-valued function, the absolute
integrability of f is equivalent to that the real part and the imaginary part of f are both
absolutely integrable, and

ż

Rn

f(x) dx =

ż

Rn

Re(f)(x) dx+ i

ż

Rn

Im(f)(x) dx

=

ż

Rn

f(x) + f(x)

2
dx+

ż

Rn

f(x) ´ f(x)

2
dx ,

where f(x) is the complex conjugate of f(x).

Definition 3.3. For all f P L1(Rn), the Fourier transform of f , denoted by Ff or pf , is
defined by

(Ff)(ξ) = pf(ξ) =
1

?
2π

n

ż

Rn

f(x)e´ix¨ξdx @ ξ P Rn ,

where x ¨ ξ = x1ξ1 + x2ξ2 + ¨ ¨ ¨ + xnξn.

3.2 Some Further Properties of the Fourier Transform
Proposition 3.4. F : L1(Rn) Ñ Cb(Rn;C), and

}Ff}8 ” sup
ξPRn

ˇ

ˇ(Ff)(ξ)
ˇ

ˇ ď }f}L1(Rn) . (3.3)

Proof. First we show that Ff is continuous if f P L1(Rn). Let ξ P Rn and ε ą 0 be given.
Since f P L1(Rn), there exists R ą 0 such that

ż

B(0,r)A

ˇ

ˇf(x)
ˇ

ˇ dx ă
ε

3
@ r ě R .

Moreover, there exists M ą 0 such that
ż

Rn

ˇ

ˇf(x)
ˇ

ˇ dx ď M ă 8 .

Since ϕ(x, y) = e´ix¨y is uniformly continuous on A ” B(0, R)ˆB(ξ, 1), there exists 0 ă δ ă 1

such that
ˇ

ˇϕ(x1, y1) ´ ϕ(x2, y2)
ˇ

ˇ ă
ε

3M
whenever

ˇ

ˇ(x1, y1) ´ (x2, y2)
ˇ

ˇ ă δ and (x1, y1), (x2, y2) P A .
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44 CHAPTER 3. Fourier Transforms

In particular, for all x P B(0, R) and η P B(ξ, δ),
ˇ

ˇe´ix¨ξ ´ e´ix¨η
ˇ

ˇ ă
ε

3M
.

Therefore, for η P B(ξ, δ),

ˇ

ˇ pf(η) ´ pf(ξ)
ˇ

ˇ ď
1

?
2π

n

ż

Rn

ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇe´ix¨η ´ e´ix¨ξ
ˇ

ˇ dx

ď
2

?
2π

n

ż

B(0,R)A

ˇ

ˇf(x)
ˇ

ˇ dx+
1

?
2π

n

ż

B(0,R)

ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇe´ix¨η ´ e´ix¨ξ
ˇ

ˇ dx

ď
1

?
2π

n

[2ε
3

+
ε

3M

ż

B(0,R)

ˇ

ˇf(x)
ˇ

ˇ dx
]

ă ε ;

thus Ff is continuous. The validity of (3.3) should be clear, and is left as an exercise. ˝

Definition 3.5. A function f on Rn is said to have rapid decrease/decay if for all integers
N ě 0, there exists aN such that

|x|N |f(x)| ď aN , as x Ñ 8.

Definition 3.6. The Schwartz space S (Rn) is the collection of all (complex-valued) smooth
functions f on Rn such that f and all of its derivatives have rapid decrease. In other words,

S (Rn) =
␣

u P C 8(Rn)
ˇ

ˇ | ¨ |NDku is bounded for all k,N P N Y t0u
(

.

Elements in S (Rn) are called Schwartz functions.

The prototype element of S (Rn) is e´|x|2 which is not compactly supported, but has
rapidly decreasing derivatives.

The reader is encouraged to verify the following basic properties of S (Rn):

1. S (Rn) is a vector space.

2. S (Rn) is an algebra under the pointwise product of functions.

3. Pu P S (Rn) for all u P S (Rn) and all polynomial functions P .

4. S (Rn) is closed under differentiation.

5. S (Rn) is closed under translations and multiplication by complex exponentials eix¨ξ.
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§3.2 Some Further Properties of the Fourier Transform 45

Remark 3.7. Let Ω Ď Rn be an open set, and C 8
c (Ω) denote the collection of all smooth

functions with compact support in Ω; that is,

C 8
c (Ω) ”

␣

u P C 8(Ω)
ˇ

ˇ tx P Ω | f(x) ‰ 0uĂĂΩ
(

,

then C 8
c (Rn) Ď S (Rn) . The set cl

(␣
x P Ω

ˇ

ˇ f(x) ‰ 0
()

is called the support of f .

The following lemma allows us to take the Fourier transform of Schwartz functions.

Lemma 3.8. If f P S (Rn), then f P L1(Rn).

Proof. If f P S (Rn), then (1 + |x|)n+1|f(x)| ď C for some C ą 0. Therefore, with ωn´1

denoting the the surface area of the (n ´ 1)-dimensional unit sphere,
ż

Rn

ˇ

ˇf(x)
ˇ

ˇ dx ď

ż

Rn

C

(1 + |x|)n+1
dx =

ż

Sn´1

ż 8

0

C

(1 + r)n+1
rn´1drdS

ď Cωn´1

ż 8

0

(1 + r)´2dr = Cωn

which is a finite number. ˝

Now we check if pf is differentiable if f P S (Rn). Note that if f P S (Rn), then the
function yj = xjf(x) belongs to S (Rn) for all 1 ď j ď n.

Lemma 3.9. If f P S (Rn), then pf is differentiable, and for each j P t1, ¨ ¨ ¨ , nu, B pf

Bξj
exists

is given by
B pf

Bξj
(ξ) =

1
?
2π

n

ż

Rn

(´ixj)f(x)e
´ix¨ξdx =

[1
i
xjf(x)

]^

(ξ) . (3.4)

Proof. Let gj be defined by gj(x) = ´ixjf(x). Since f and gj are both Schwartz functions,

lim
kÑ8

ż

B(0,k)A

ˇ

ˇf(x)
ˇ

ˇ dx = 0 and lim
kÑ8

ż

B(0,k)A

ˇ

ˇgj(x)
ˇ

ˇ dx = 0 .

Let χ : R+ Ñ R be a smooth decreasing function such that

χ(r) =

"

1 if 0 ď r ď 1 ,

0 if r ą 2 .

Define fk(x) = χ
( |x|

k

)
f(x). We first show that

B pfk
Bξj

(ξ) =
1

?
2π

n

ż

Rn

χ
( |x|

k

)
gj(x)e

´ix¨ξ dx . (3.5)
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Too see this, we note that

pfk(ξ + hej) ´ pfk(ξ)

h
´

1
?
2π

n

ż

Rn

χ
( |x|

k

)
gj(x)e

´ix¨ξ dx

=
1

?
2π

n

ż

Rn

χ
( |x|

k

)
f(x)e´ix¨ξ

[e´ihxj ´ 1

h
+ ixj

]
dx

=
1

?
2π

n

ż

B(0,2k)

χ
( |x|

k

)
f(x)e´ix¨ξ

[e´ihxj ´ 1

h
+ ixj

]
dx ;

thus by the fact that e´ihxj ´ 1

h
+ ixj Ñ 0 uniformly on B(0, 2k) as h Ñ 0, Theorem 1.6

implies that

lim
hÑ0

pfk(ξ + hej) ´ pfk(ξ)

h
´

1
?
2π

n

ż

Rn

χ
( |x|

k

)
gj(x)e

´ix¨ξ dx = 0 ;

hence (3.5) is established. Therefore, for each k P N,

sup
ξPRn

ˇ

ˇ

ˇ

B pfk
Bξj

(ξ) ´ pgj(ξ)
ˇ

ˇ

ˇ
ď

1
?
2π

n

ż

Rn

ˇ

ˇ1 ´ χ
( |x|

k

)ˇ
ˇ

ˇ

ˇgj(x)
ˇ

ˇ dx ď
1

?
2π

n

ż

B(0,k)A

ˇ

ˇgj(x)
ˇ

ˇ dx

which converges to zero as k Ñ 8. In other words, B pfk
Bξj

Ñ pgj uniformly on Rn as k Ñ 8.

Similarly,

sup
ξPRn

ˇ

ˇ

ˇ

pfk(ξ) ´ pf(ξ)
ˇ

ˇ

ˇ
ď

1
?
2π

n

ż

Rn

ˇ

ˇ1 ´ χ
( |x|

k

)ˇ
ˇ

ˇ

ˇf(x)
ˇ

ˇ dx ď
1

?
2π

n

ż

B(0,k)A

ˇ

ˇf(x)
ˇ

ˇ dx

which converges to zero as k Ñ 8. Therefore, pfk Ñ pf uniformly on Rn. By Theorem 1.5,
B pf

Bξj
= pgj so the lemma is concluded. ˝

Corollary 3.10. For f P S (Rn), pf P C 8(Rn) and

Dα
ξ
pf(ξ) =

1

i|α|

[
xα1
1 ¨ ¨ ¨xαn

n f(x)
]^

(ξ) ,

where for a multi-index α = (α1, ¨ ¨ ¨ , αn), |α| ” α1 + ¨ ¨ ¨ + αn and Dα
ξ ”

Bα1

Bξα1
1

¨ ¨ ¨
Bαn

Bξαn
n

=

B |α|

Bξα1
1 ¨ ¨ ¨ Bξαn

n
.

Lemma 3.11. If f P S (Rn), then for j P t1, 2, ¨ ¨ ¨ , nu, Fx

[
1

i

Bf

Bxj
(x)

]
(ξ) = ξj pf(ξ) .
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Proof. W.L.O.G., we assume that j = n. Write x = (x1, xn). Since f P S (Rn), there exists
C ą 0 such that

(1 + |x1|)n|xn|
ˇ

ˇf(x1, xn)
ˇ

ˇ ď C @x = (x1, xn) P Rn .

Then

1. For each x1 P Rn´1, f(x1,˘R) Ñ 0 as R Ñ 8.

2. The function g : Rn´1 Ñ R defined by g(x1) =
1

(1 + |x1|)n
is integrable on Rn´1 (see

the proof of Lemma 3.8), and
ˇ

ˇf(x1,˘R)
ˇ

ˇ ď g(x1) for each x1 P Rn´1 and R ą 1.

Therefore, the Dominated Convergence Theorem implies that

lim
RÑ8

ż

[´R,R]n´1

f(x1,˘R)e´i(x1,R)¨ξ dx1 = 0 ;

thus Fubini’s Theorem and integrating by parts formula imply that

F
[1
i

Bf

Bxn
(x)

]
(ξ) =

1

i

1
?
2π

n lim
RÑ8

ż

[´R,R]n

Bf

Bxn
(x)e´ix¨ξdx

=
1

i

1
?
2π

n lim
RÑ8

ż

[´R,R]n´1

( ż R

´R

Bf

Bxn
(x)e´ix¨ξdxn

)
dx1

=
1

i

1
?
2π

n lim
RÑ8

[( ż
[´R,R]n´1

f(x1, xn)e
´i(x1,xn)¨ξ dx1

)ˇ
ˇ

ˇ

xn=R

xn=´R
+ iξn

ż

[´R,R]n
f(x)e´ix¨ξdx

]
= ξn

1
?
2π

n lim
RÑ8

ż

[´R,R]n
f(x)e´ix¨ξdx = ξk pf(ξ) . ˝

Corollary 3.12. P(ξ1, ¨ ¨ ¨ , ξn) pf(ξ) = Fx

[
P
(
1

i

B

Bx1
, ¨ ¨ ¨ ,

1

i

B

Bxn

)
f(x)

]
(ξ) for all f P S (Rn)

and polynomial P.

Corollary 3.13. The Fourier transform of a Schwartz function is a Schwartz function; that
is, F : S (Rn) Ñ S (Rn).

Proof. Let P be a polynomial and α = (α1, ¨ ¨ ¨ , αn) be a multi-index. By Corollary 3.10
and 3.12,

P(ξ)Dα
pf(ξ) ” P(ξ1, ¨ ¨ ¨ , ξn)

B |α|
pf

Bξα1
1 ¨ ¨ ¨ Bξαn

n

(ξ)

=
1

i|α|
Fx

[
P
(1
i

B

Bx1
, ¨ ¨ ¨ ,

1

i

B

Bxn

)[
xα1
1 x

α2
2 ¨ ¨ ¨xαn

n f(x)
]]
(ξ) ;
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thus PDα
pf is the Fourier transform of a Schwartz function g defined by

g(x) =
1

i|α|
P
(1
i

B

Bx1
, ¨ ¨ ¨ ,

1

i

B

Bxn

)[
xα1
1 x

α2
2 ¨ ¨ ¨xαn

n f(x)
]
.

By Proposition 3.4 and Lemma 3.8, PDα
pf is bounded. ˝

Remark 3.14. There exists a duality under ^ between differentiability and rapid decrease:
the more differentiability f possesses, the more rapid decrease pf has and vice versa.

Definition 3.15. For all f P L1(Rn), we define operator F ˚ by

(F ˚f)(x) =
1

?
2π

n

ż

Rn

f(ξ)eix¨ξdξ .

The function F ˚f sometimes is also denoted by qf .

Before proceeding, we establish a special case of the Fubini theorem for improper inte-
grals which will be used in the following discussion.

Proposition 3.16 (Fubini theorem - special case). Let f : Rn ˆ Rn Ñ C be absolutely
integrable, and g, h P L1(Rn). If |f(x, y)| ď |g(x)||h(y)| for all x, y P Rn, then

ż

R2n

f(x, y)d(x, y) ” lim
RÑ8

ż

[´R,R]2n
f(x, y)d(x, y)

=

ż

Rn

( ż
Rn

f(x, y) dy
)
dx =

ż

Rn

( ż
Rn

f(x, y) dx
)
dy .

Proof. Let ε ą 0 be given. Since g, h P L1(Rn), there exists R0 ą 0 such that
ż

([´R,R]n)A

[
|g(x)| + |h(x)|

]
dx ă

ε

1 + }g}L1(Rn) + }h}L1(Rn)

whenever R ą R0.

Therefore, the Fubini theorem for Riemann integral implies that
ż

Rn

ż

Rn

f(x, y) dydx =

ż

[´R,R]n

ż

Rn

f(x, y) dydx+

ż

([´R,R]n)A

ż

Rn

f(x, y) dydx

=

ż

[´R,R]n

( ż
[´R,R]n

+

ż

([´R,R]n)A

)
f(x, y) dydx+

ż

([´R,R]n)A

ż

Rn

f(x, y) dydx

=

ż

[´R,R]2n
f(x, y)d(x, y) +

ż

[´R,R]n

ż

([´R,R]n)A

f(x, y) dydx+

ż

([´R,R]n)A

ż

Rn

f(x, y) dydx ;
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thus by the fact that |f(x, y)| ď |g(x)||h(y)|,
ˇ

ˇ

ˇ

ż

Rn

( ż
Rn

f(x, y) dy
)
dx ´

ż

[´R,R]2n
f(x, y)d(x, y)

ˇ

ˇ

ˇ

ď

ż

[´R,R]n

( ż
([´R,R]n)A

|g(x)||h(y)| dy
)
dx+

ż

([´R,R]n)A

( ż
Rn

|g(x)||h(y)| dy
)
dx

ď }g}L1(Rn)

ż

([´R,R]n)A

|h(y)| dy + }h}L1(Rn)

ż

([´R,R]n)A

|g(x)| dx

ă

(
}g}L1(Rn) + }h}L1(Rn)

)
ε

1 + }g}L1(Rn) + }h}L1(Rn)

ă ε

whenever R ą R0. ˝

Lemma 3.17. If f and g P S (Rn), then

( qf˙g)(x) =
1

?
2π

n

ż

Rn

f(ξ)eix¨ξ
pg(ξ) dξ .

Proof. By definition of qf and convolution,

( qf › g)(x) =
1

?
2π

n

ż

Rn

qf(x ´ y)g(y) dy =
( 1

2π

)n ż
Rn

( ż
Rn

f(ξ)ei(x´y)¨ξg(y) dξ
)
dy .

The Fubini theorem then implies that

( qf › g)(x) =
( 1

2π

)nż
Rn

( ż
Rn

f(ξ)eix¨ξe´iy¨ξg(y) dy
)
dξ

=
1

?
2π

n

ż

Rn

f(ξ)eix¨ξ
( 1

?
2π

n

ż

Rn

e´iy¨ξg(y) dy
)
dξ=

( 1

2π

)nż
Rn

f(ξ)eix¨ξ
pg(ξ) dξ . ˝

The operator F ˚, indicated implicitly by the way it is written, is the formal adjoint of
F . To be more precise, we have the following

Lemma 3.18. (Fu, v)L2(Rn) = (u,F ˚v)L2(Rn) for all u, v P S (Rn), where (¨, ¨)L2(Rn) is an
inner product on S (Rn) given by

(u, v)L2(Rn) =

ż

Rn

u(x)v(x) dx .

Proof. Since u, v P S (Rn), by Fubini’s Theorem,

(Fu, v)L2(Rn) =
1

?
2π

n

ż

Rn

( ż
Rn

u(x)e´ix¨ξdx
)
v(ξ) dξ

=
1

?
2π

n

ż

Rn

ż

Rn

u(x)eix¨ξv(ξ) dξ dx

=
1

?
2π

n

ż

Rn

u(x)

ż

Rn

eix¨ξv(ξ) dξ dx = (u,F ˚v)L2(Rn) . ˝
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3.3 The Fourier Inversion Formula
We remind the readers that our goal is to prove (3.2), while having introduced operators F

and F ˚, it is the same as showing that F and F ˚ are inverse to each other; that is, we
want to show that

FF ˚ = F ˚F = Id on S (Rn) .

For t ą 0 and x P R, let Pt(x) =
1

?
t
e´x2

2t . Note that Pt P S (R) and Pt is normalized so
that 1

?
2π

ż 8

´8

Pt(x) dx = 1 .

Now we compute the Fourier transform of Pt. By Lemma 3.9, we find that

d pPt

dξ
(ξ) =

´i
?
2πt

ż

R
xPt(x)e

´ixξ dx =
´i

?
2πt

ż

R
xPt(x) cos(ξx) dx´

1
?
2πt

ż

R
xPt(x) sin(ξx) dx .

Since the functions y = xPt(x) is absolutely integrable on R for each fixed t ą 0, the integral
ż

R
xPt(x) cos(ξx) dx converges absolutely; thus by the fact that x cos(ξx) are odd functions

in x, we have
ż

R
xPt(x) cos(ξx) dx = lim

RÑ8

ż R

´R

xPt(x) cos(ξx) dx = 0 .

As a consequence,
d pPt

dξ
(ξ) = ´

1
?
2πt

ż

R
xe´x2

2t sin(xξ)dx .

Similarly, pPt(ξ) =
1

?
2πt

ż

R
e´x2

2t cos(xξ)dx, and the integration by parts formula implies that

d pPt

dξ
(ξ)=

1
?
2πt

ż

R

B

Bξ

(
e´x2

2t cos(xξ)
)
dx = ´

1
?
2πt

ż

R
xe´x2

2t sin(xξ)dx

=´
1

?
2πt

lim
RÑ8

[
´ te´x2

2t sin(xξ)
ˇ

ˇ

ˇ

x=R

x=´R
+

ż R

´R

ξte´x2

2t cos(xξ) dx
]

=´
ξt

?
2πt

lim
RÑ8

ż R

´R

e´x2

2t cos(xξ) dx=´
ξt

?
2πt

lim
RÑ8

ż R

´R

e´x2

2t

[
cos(xξ) ´ i sin(xξ)

]
dx

=´
ξt

?
2πt

ż

R
e´x2

2t e´ixξdx = ´ξt pPt(ξ) ;

thus pPt(ξ) = Ce´
tξ2

2 . By the fact that pPt(0) =
1

?
2π

ż

R
Pt(x)dx = 1, we must have

pPt(ξ) = e´ 1
2
tξ2 . (3.6)
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For x P Rn, if we define Pt(x) =
n
ś

k=1

Pt(xk) =
( 1

?
t

)n
e´

|x|2

2t , then (3.6) and the Fubini

Theorem imply that pPt(ξ) = e´ 1
2
t|ξ|2 . Therefore,

pPt(ξ) =
( 1

?
t

)n

P 1
t
(ξ)

which, together with the fact that qf(x) = pf(´x), further shows that

q

pPt(x) =
( 1

?
t

)n
xP 1

t
(´x) =

( 1
?
t

)n( 1
?
t´1

)n

Pt(´x) = Pt(x) .

Similarly, p

qPt(ξ) = Pt(ξ), so we establish that

F ˚F (Pt) = FF ˚(Pt) = Pt . (3.7)

The proof of the following lemma is similar to that of Theorem 2.20.

Lemma 3.19. If g P S (Rn), then Pt ˙ g Ñ g uniformly on Rn as t Ñ 0+, where the
convolution operator ˙ is given by

(Pt˙g)(x) =
1

?
2π

n

ż

Rn

Pt(x ´ y)g(y) dy =
1

?
2π

n

ż

Rn

Pt(y)g(x ´ y) dy . (3.8)

Proof. Let ε ą 0 be given. Since g P S (Rn), g is uniformly continuous; thus there exists
δ ą 0 such that

ˇ

ˇg(x) ´ g(y)
ˇ

ˇ ă
ε

2
whenever |x ´ y| ă δ .

Since 1
?
2π

n

ż

Rn

Pt(x) dx = 1, for all x P Rn we have

ˇ

ˇ(Pt˙g)(x) ´ g(x)
ˇ

ˇ =
1

?
2π

n

ˇ

ˇ

ˇ

ż

Rn

g(x ´ y)Pt(y) dy ´

ż

Rn

g(x)Pt(y) dy
ˇ

ˇ

ˇ

=
1

?
2π

n

ˇ

ˇ

ˇ

ż

Rn

[
(g(x ´ y) ´ g(x)

]
Pt(y) dy

ˇ

ˇ

ˇ

ď
ε

2

1
?
2π

n

ż

|y|ăδ

Pt(y) dy +
2}g}8
?
2π

n

ż

|y|ěδ

Pt(y) dy ,

so we obtain that
›

›(Pt˙g) ´ g
›

›

8
ď
ε

2
+

2}g}8
?
2π

n

ż

|y|ěδ

Pt(y) dy .

Note that
ż

|y|ąδ

Pt(y) dy =
1

?
t
n

ż

|y|ąδ

e´
|y|2

2t dy =

ż

|z|ą δ?
t

e´
|z|2

2 dz
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which approaches 0 as t Ñ 0+; thus there exists h ą 0 such that if 0 ă |t| ă h,

2}g}8
?
2π

n

ż

|y|ěδ

Pt(y) dy ă
ε

2
.

Therefore, we conclude that
›

›(Pt˙g) ´ g
›

›

8
ă ε whenever 0 ă t ă h

which shows that Pt˙g Ñ g uniformly as t Ñ 0+. ˝

Theorem 3.20 (Fourier Inversion Formula). If g P S (Rn), then q

pg(ξ) = p

qg(ξ) = g(ξ). In
other words, FF ˚ = F ˚F = Id.

Proof. Apply Lemma 3.17 with f(ξ) = pPt(ξ) = e´ 1
2
t|ξ|2 , using (3.7) we find that

(Pt˙g)(x) = ( qf˙g)(x) =
1

?
2π

n

ż

Rn

e´ 1
2
t|ξ|2eix¨ξ

pg(ξ) dξ .

Letting t Ñ 0+, by Lemma 3.19 it suffices to show that

lim
tÑ0+

ż

Rn

e´ 1
2
t|ξ|2eix¨ξ

pg(ξ) dξ =

ż

Rn

eix¨ξ
pg dξ .

To see this, let ε ą 0 be given. Since pg P S (Rn), there exists R ą 0 such that
ż

B(0,R)A

ˇ

ˇ

pg(ξ)
ˇ

ˇ dξ ă
ε

2
.

For this particular R, there exists δ ą 0 such that if 0 ă t ă δ,

tR2

2
}pg}L1(Rn) ă

ε

2
.

Therefore, if 0 ă t ă δ, using the fact that 1 ´ e´x ď x for x ą 0,
ˇ

ˇ

ˇ

ż

Rn

e´ 1
2
t|ξ|2eix¨ξ

pg(ξ) dξ ´

ż

Rn

eix¨ξ
pg dξ

ˇ

ˇ

ˇ

ď

( ż
B(0,R)

+

ż

B(0,R)A

)
ˇ

ˇe´ 1
2
t|ξ|2 ´ 1

ˇ

ˇ

ˇ

ˇ

pg(ξ)
ˇ

ˇ dξ

ď
1

2
tR2

ż

B(0,R)

ˇ

ˇ

pg(ξ)
ˇ

ˇ dξ +

ż

B(0,R)A

ˇ

ˇ

pg(ξ)
ˇ

ˇ dξ ă ε .

Therefore,
g(x) =

1
?
2π

n

ż

Rn

pg(ξ)eix¨ξdξ = q

pg(x) .
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Let r denote the reflection operator given by rf(x) = f(´x). Then the change of variable
formula implies that

qg(ξ) =
1

?
2π

n

ż

Rn

g(x)eix¨ξdx =
1

?
2π

n

ż

Rn

g(x)e´i(´x)¨ξdx

=
1

?
2π

n

ż

Rn

g(´x)e´ix¨ξdx = p

rg(ξ) .

On the other hand,

qg(ξ) =
1

?
2π

n

ż

Rn

g(x)e´ix¨(´ξ)dx = pg(´ξ) = r

pg(ξ) ;

thus pqg(ξ) = p

r

pg(ξ) = q

pg(ξ) = g(ξ). ˝

Corollary 3.21. F : S (Rn) Ñ S (Rn) is a bijection.

Remark 3.22. In view of the Fourier Inversion Formula (Theorem 3.20), F ˚ sometimes is
written as F ´1, and is called the inverse Fourier transform.

Theorem 3.23 (Plancherel formula for S (Rn)). If f , g P S (Rn), then

xf, gyL2(Rn) = x pf, pgyL2(Rn).

Proof. Recall that (f, gyL2(Rn) =

ż

Rn

f(x)g(x)dx. By Fubini’s theorem,

x qf, gyL2(Rn) =

ż

Rn

qf(x)g(x) dx =

ż

Rn

[
1

?
2π

n

ż

Rn

f(ξ)eix¨ξdξ
]
g(x) dx

=

ż

Rn

f(ξ)
[

1
?
2π

n

ż

Rn

g(x)e´ix¨ξdx
]
dξ = xf, pgyL2(Rn) .

Therefore, xf, gyL2(Rn) = x
q

pf, gyL2(Rn) = x pf, pgyL2(Rn). ˝

Remark 3.24. The Plancherel formula is a “generalization” of the Parseval identity in the
following sense. Define the ℓ2 space as the collection of all square summable (complex)
sequences; that is,

ℓ2 =
!

taku8
k=´8 Ď C

ˇ

ˇ

ˇ

8
ÿ

k=´8

|ak|2 ă 8

)

with inner product
@

taku8
k=´8, tbku8

k=´8

D

ℓ2
=

8
ÿ

k=´8

akbk .
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Here we treat taku8
k=´8 and tak+1u8

k=´8 as different sequences. With } ¨ }ℓ2 denoting the
norm induced by the inner product above, the Parseval identity then implies that

}f}L2(T) =
›

›t pfku8
k=´8

›

›

ℓ2
,

thus by the identities

}f + g}2L2(T) = }f}2L2(T) + 2Re
(
xf, gyL2(T)

)
+ }g}2L2(T) ,

}f ´ g}2L2(T) = }f}2L2(T) ´ 2Re
(
xf, gyL2(T)

)
+ }g}2L2(T) ,

we find that

Re
(
xf, gyL2(T)

)
=

1

4

(
}f + g}2L2(T) + }f ´ g}2L2(T)

)
=

1

4

( 8
ÿ

k=´8

ˇ

ˇ pfk + pgk
ˇ

ˇ

2
+

8
ÿ

k=´8

ˇ

ˇ pfg ´ pgk
ˇ

ˇ

2
)

=
8
ÿ

k=´8

Re
(
pfkpgk

)
.

Replacing g by ig in the identities above shows that Im
(
xf, gyL2(T)

)
=

8
ř

k=´8

Im
(
pfkpgk

)
; thus

xf, gyL2(T) = Re
(
xf, gyL2(T)

)
+ iIm

(
xf, gyL2(T)

)
=

8
ÿ

k=´8

pfkpgk =
@

t pfku8
k=´8, tpgku8

k=´8

D

ℓ2
.

Define F : L2(T) Ñ ℓ2 by F (f) = t pfku8
k=´8. Then the identity above shows that

xf, gyL2(T) = xF(f),F(g)yℓ2 @ f, g P L2(T)

so that we obtain an identity similar to the Plancherel formula.

Remark 3.25. Even though in general an square integrable function might not be in-
tegrable, using the Plancherel formula the Fourier transform of L2-functions can still be
defined. Note that the Plancherel formula provides that

}f}L2(Rn) = } pf}L2(Rn) @ f P S (Rn) . (3.9)

If f P L2(Rn); that is, |f | is square integrable, by the fact that S (Rn) is dense in L2(Rn),
there exists a sequence tfku8

k=1 Ď S (Rn) such that lim
kÑ8

}fk ´ f}L2(Rn) = 0. Then tfku8
k=1

is a Cauchy sequence in L2(Rn); thus (3.9) implies that t pfku8
k=1 is also a Cauchy sequence

in L2(Rn). By the completeness of L2(Rn) (which we did not cover in this lecture), there
exists g P L2(Rn) such that

lim
kÑ8

} pfk ´ g}L2(Rn) = 0 .
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We note that such a limit g is independent of the choice of sequence tfku8
k=1 used to ap-

proximate f ; thus we can denote this limit g as pf . In other words, F : L2(Rn) Ñ L2(Rn).
Moreover, by that fk Ñ f and pfk Ñ pf in L2(Rn) as k Ñ 8, we find that

}f}L2(Rn) = } pf}L2(Rn) @ f P L2(Rn) ,

and the parallelogram law further implies that xf, gyL2(Rn) = x pf, pgyL2(Rn) for all f, g P L2(Rn).
Similar argument applies to the case of inverse transform of L2-functions; thus we conclude
that

xf, gyL2(Rn) = x pf, pgyL2(Rn) = x qf, qgyL2(Rn) @ f, g P L2(Rn) . (3.10)

We have established the Fourier inversion formula for Schwartz class functions. Our goal
next is to show that the Fourier inversion formula holds (in certain sense) for absolutely
integrable function whose Fourier transform is also absolutely integrable. Motivated by the
Fourier inversion formula, we would like to show, if possible, that

p

qf =
q

pf = f @ f P L1(Rn) such that pf P L1(Rn).

The above assertion cannot be true since p

qf and q

pf are both continuous (by Proposition
3.3) while f P L1(Rn) which is not necessary continuous. However, we will prove that the
identity above holds for points x at which f is continuous.

Before proceeding, let us discuss some properties concerning the Fourier transform the
product and the convolution of two Schwartz class functions.

Theorem 3.26. If f, g P S (Rn), then F (f˙g) = pf pg. In particular, f˙g P S (Rn) if
f, g P S (Rn).

Proof. By the definition of the Fourier transform and the convolution,

zf˙g(ξ) =
1

?
2π

nF
( ż

Rn

f(¨ ´ y)g(y) dy
)
(ξ)

=
1

(2π)n

ż

Rn

[ ż
Rn

f(x ´ y)g(y) dy
]
e´ix¨ξdx

=
1

(2π)n

ż

Rn

f(x)
( ż

Rn

g(y)e´i(x+y)¨ξdx
)
dy

=
( 1

?
2π

n

ż

Rn

f(x)e´ix¨ξdx
)( 1

?
2π

n

ż

Rn

g(y)e´iy¨ξdy
)

which concludes the theorem. ˝
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Corollary 3.27. F ˚(f˙g) = qf qg, xfg = pf˙pg and |fg = qf˙qg for all f, g P S (Rn).

Lemma 3.28. Let f P L1(Rn) and g P S (Rn). Then x pf, gy = xf, pgy and x qf, gy = xf, qgy,
where xf, gy =

ż

Rn

f(x)g(x) dx.

Proof. We only prove x pf, gy = xf, pgy if f P L1(Rn) and g P S (Rn). By Proposition 3.4, pf

is bounded and continuous on Rn; thus pfg is an absolutely integrable continuous function.
By the Fubini Theorem (Proposition 3.16),

x pf, gy =

ż

Rn

( 1
?
2π

n

ż

Rn

f(x)e´ix¨ξdx
)
g(ξ)dξ =

1
?
2π

n

ż

Rn

( ż
Rn

f(x)g(ξ)e´ix¨ξdx
)
dξ

=
1

?
2π

n

ż

Rn

( ż
Rn

f(x)g(ξ)e´ix¨ξdξ
)
dx =

ż

Rn

f(x)
( 1

?
2π

n

ż

Rn

g(ξ)e´ix¨ξdξ
)
dx

which is exactly xf, pgy. ˝

Next, we shall establish some useful tools in analysis that can be applied in a wide range
of applications. Those tools are fundamental in real analysis; however, we assume only
knowledge of elementary analysis again to derive those results. We first define the class of
locally integrable functions.

Definition 3.29. The space L1
loc(Rn) consists of all functions (defined on Rn) that are

absolutely integrable on all bounded open subsets of Rn and whose integrals are absolute
convergent. In other words,

L1
loc(Rn)=

!

f : Rn Ñ C
ˇ

ˇ

ˇ

ż

U
f(x) dx is absolutely convergent for all bounded open U Ď Rn

)

.

Again, we emphasize that we abuse the notation L1
loc(Rn) which in fact stands for a

larger class of functions. We also note that L1(Rn) Ď L1
loc(Rn).

Lemma 3.30. Let ϕ : Rn Ñ R be a smooth function with compact support (that is, the
collection

␣

x P Rn
ˇ

ˇϕ(x) ‰ 0
(

is bounded ), and f P L1
loc(Rn). Then

ż

Rn

ϕ(x ´ y)f(y) dy is
smooth.

Proof. It suffices to show that

B

Bxj

ż

Rn

ϕ(x ´ y)f(y) dy =

ż

Rn

ϕxj
(x ´ y)f(y) dy .
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Let x P Rn be given, and suppose that
␣

y P Rn
ˇ

ˇϕ(y) ‰ 0
(

Ď B(0, R). Since ϕ has compact
support, ϕxj

is uniformly continuous on R; thus there exists 0 ă δ ă 1 such that
ˇ

ˇϕxj
(z1) ´ ϕxj

(z2)
ˇ

ˇ ă
ε

1 +
ż

B(x,R+1)
|f(y)| dy

whenever |z1 ´ z2| ă δ .

Define g(x) =
ż

Rn

ϕ(x ´ y)f(y) dy. Then for some function ϑ : R Ñ (0, 1),

ϕ(x+ hej ´ y) ´ ϕ(x ´ y) = hϕxj
(x ´ y + ϑ(h)hej) ;

thus if 0 ă |h| ă δ,
ˇ

ˇ

ˇ

g(x+ hej) ´ g(x)

h
´

ż

Rn

ϕxj
(x ´ y)f(y) dy

ˇ

ˇ

ˇ

ď

ż

Rn

ˇ

ˇ

ˇ

ϕ(x+ hej ´ y) ´ ϕ(x ´ y)

h
´ ϕxj

(x ´ y)
ˇ

ˇ

ˇ

ˇ

ˇf(y)
ˇ

ˇ dy

=

ż

B(x,R+1)

ˇ

ˇϕxj
(x ´ y + ϑ(h)hej) ´ ϕxj

(x ´ y)
ˇ

ˇ

ˇ

ˇf(y)
ˇ

ˇ dy ă ε .

This implies that gxj
(x) =

ż

Rn

ϕxj
(x ´ y)f(y) dy. ˝

A special class of functions will be used as the role of ϕ in Lemma 3.30. Let ζ : R Ñ R
be a smooth function defined by

ζ(x) =

#

exp
( 1

x2 ´ 1

)
if |x| ă 1 ,

0 if |x| ě 1 .

For x P Rn, define η1(x) = Cζ(|x|), where C is chosen so that
ż

Rn

η1(x) d = 1. The change
of variables formula then implies that ηε(x) ” ε´nη1(x/ε) has integral 1.

Definition 3.31. The sequence tηεuεą0 is called the standard mollifiers.

Example 3.32. Let f = 1[a,b], the characteristic/indicator function of the closed interval
[a, b]. Then for ε ! 1, the function ηε˙f =

?
2πηε˙f is smooth and has the property that

(ηε˙f)(x) =

"

1 if x P [a+ ε, b ´ ε] ,

0 if x P [a ´ ε, b+ ε]A,

and 0 ď f ď 1. Therefore, ηε˙f converges pointwise to f on Rzta, bu.
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Since ηε is supported in the closure of B(0, ε), Lemma 3.30 implies that for any f P

L1
loc(Rn), ηε˙f is smooth function. The following lemma shows that ηε˙f converges to f

at points of continuity of f .

Lemma 3.33. Let f P L1(Rn) and x0 be a continuity of f . Then

(ηε˙f)(x0) =
?
2π

n
(ηε˙f)(x0) Ñ f(x0) as ε Ñ 0 .

Proof. Let ϵ ą 0 be given. Since f is continuous at x0, there exists δ ą 0 such that
ˇ

ˇf(y) ´ f(x0)
ˇ

ˇ ă
ϵ

2
whenever |y ´ x0| ă δ .

Therefore, by the fact that
ż

Rn

ηε(x0 ´ y) dy = 1, if 0 ă ε ă δ,

ˇ

ˇ(ηε˙f)(x0) ´ f(x0)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż

Rn

ηε(x0 ´ y)f(y) dy ´

ż

Rn

ηε(x0 ´ y)f(x0) dy
ˇ

ˇ

ˇ

ď

ż

B(x0,ε)

ηε(x0 ´ y)
ˇ

ˇf(y) ´ f(x0)
ˇ

ˇ dy ď
ϵ

2

ż

B(x0,ε)

ηε(x0 ´ y) dy ă ϵ

which implies (ηε˙f)(x0) Ñ f(x0) as ε Ñ 0. ˝

Lemma 3.34. Let f P L1
loc(Rn). If xf, gy = 0 for all g P S (Rn), then f(x0) = 0 whenever

f is continuous at x0.

Proof. W.L.O.G. we can assume that f is real-valued. Let tηεuεą0 be the standard mollifiers,
x0 be a point of continuity of f , and fε ” ηε˙f =

?
2π

n
(ηε › f). Then Lemma 3.30 shows

that fε are smooth for all ε ą 0.
Define g(x) ” η1(x ´ x0)fε(x). Then g P S (Rn) since fε, η1 are smooth and η1(¨ ´ x0)

vanishes outside B(x0, 1). Since ηε, g P S (Rn), Theorem 3.26 implies that ηε˙g ”
?
2π

n
(ηε›

g) P S (Rn); thus
xf, ηε˙gy = 0 @ ε ą 0 .

Since f P L1
loc(Rn) and g has compact support, Tonelli’s Theorem implies that the function

F (x, y) = f(x)g(y) is absolutely integrable on Rn ˆRn. Moreover, by the boundedness and
continuity of ηε, the comparison test implies that the function G(x, y) = F (x, y)ηε(x´ y) is
also absolutely integrable on Rn ˆ Rn. Fubini’s theorem then implies that

xf, ηε˙gy =

ż

Rn

f(x)
( ż

Rn

ηε(x ´ y)g(y) dy
)
dx =

ż

Rn

g(y)
( ż

Rn

ηε(x ´ y)f(x) dx
)
dy ;
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thus by the fact that ηε(x ´ y) = ηε(y ´ x) we conclude that xf, ηε˙gy = xηε˙f, gy. As a
consequence,

0 = xf, ηε˙gy = xηε˙f, η1(¨ ´ x0)(ηε˙f)y =

ż

Rn

η1(x ´ x0)
ˇ

ˇ(ηε˙f)(x)
ˇ

ˇ

2
dx

which implies that ηε˙f = 0 on B(x0, 1). We then conclude from Lemma 3.33 that
(ηε˙f)(x0) Ñ f(x0) as ε Ñ 0. ˝

Now we state the Fourier inversion formula for functions of more general class.

Theorem 3.35 (Fourier Inversion Formula). Let f P L1(Rn) such that pf P L1(Rn). Then
q

pf(x) =
p

qf(x) = f(x) whenever f is continuous at x.

Proof. Let f : Rn Ñ C be such that f, pf P L1(Rn). By the fact that qf =
r

pf (where r is the
reflection operator), we also have qf P L1(Rn). By Lemma 3.28 and the Fourier inversion
formula for Schwartz class functions (Theorem 3.20),

x
q

pf, gy = x pf, qgy = xf, pqgy = xf, gy and x
p

qf, gy = x qf, pgy = xf, qpgy = xf, gy @ g P S (Rn) .

In other words, if f, pf P L1(Rn),

x
q

pf ´ f, gy = x
p

qf ´ f, gy = 0 @ g P S (Rn) .

By Proposition 3.4, q

pf,
p

qf P L1
loc(Rn); thus the theorem is concluded by Lemma 3.34 and the

fact that q

pf and p

qf are continuous (which is guaranteed by Proposition 3.4). ˝

Remark 3.36. Since an integrable function f : Rn Ñ R must be continuous almost
everywhere on Rn, Theorem 3.35 implies that if f : Rn Ñ R is a function such that f ,
pf P L1(Rn), then q

pf =
p

qf = f almost everywhere.

Remark 3.37. In some occasions (especially in engineering applications), the Fourier trans-
form and inverse Fourier transform of a (Schwartz) function f are defined by

pf(ξ) =

ż

Rn

f(x)e´i2πx¨ξdx and qf(x) =

ż

Rn

f(ξ)ei2πx¨ξdξ . (3.11)

Using this definition, we still have

1. q

pf =
p

qf = f for all f P S (Rn);

2. if f P L1(Rn) and pf P L1(Rn), then q

pf(x) =
p

qf(x) = f(x) for all x at which f is
continuous.
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3.4 The Fourier Transform of Generalized Functions

It is often required to consider the Fourier transform of functions which do not belong to
L1(Rn). For example, the normalized sinc function sinc : R Ñ R defined by

sinc(x) =

$

&

%

sin(πx)
πx

if x ‰ 0 ,

1 if x = 0 ,
(3.12)

does not belong to L1(R) but it is a very important function in the study of signal processing.

Figure 3.1: The graphs of unnormalized and normalized sinc functions (from wiki)

Moreover, there are “functions” that are not even functions in the traditional sense. For
example, in physics and engineering applications the Dirac delta “function” δ is defined as
the “function” which validates the relation

ż

Rn

δ(x)ϕ(x) dx = ϕ(0) @ϕ P C (Rn)

In fact, there is no function (in the traditional sense) satisfying the property given above.
Can we take the Fourier transform of those “functions” as well? To understand this topic
better, it is required to study the theory of distributions.

The fundamental idea of the theory of distributions (generalized functions) is to identify
a function v defined on Rn with the family of its integral averages

v «

ż

Rn

v(x)ϕ(x) dx @ϕ P C 8
c (Rn) ,
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where C 8
c (Rn) denotes the collection of C 8-functions with compact support, and is often

denoted by D(Rn) in the theory of distributions. Note that this makes sense for any locally
integrable function v, and D(Rn) Ď S (Rn).

To understand the meaning of distributions, let us turn to a situation in physics: measur-
ing the temperature. To measure the temperature T at a point a, instead of outputting the
exact value of T (a) the thermometer instead outputs the overall value of the temperature
near a point. In other words, the reading of the temperature is determined by a pairing of
the temperature distribution with the thermometer. The role of the test function ϕ is like
the thermometer used to measure the temperature.

The Fourier transform can be defined on the space of tempered distributions, a smaller
class of generalized functions. A tempered distribution on Rn is a continuous linear func-
tional on S (Rn). In other words, T is a tempered distribution if

T : S (Rn) Ñ C, T (cϕ+ ψ) = cT (ϕ) + T (ψ) for all c P C and ϕ, ψ P S (Rn),
and lim

jÑ8
T (ϕj) = T (ϕ) if tϕju

8
j=1 Ď S (Rn) and ϕj Ñ ϕ in S (Rn).

The convergence in S (Rn) is described by semi-norms, and is given in the following

Definition 3.38 (Convergence in S (Rn)). For each k P N, define the semi-norm

pk(u) = sup
xPRn,|α|ďk

xxyk|Dαu(x)| ,

where xxy = (1 + |x|2)
1
2 . A sequence tuju

8
j=1 Ď S (Rn) is said to converge to u in S (Rn) if

pk(uj ´ u) Ñ 0 as j Ñ 8 for all k P N.

We note that pk(u) ď pk+1(u), so tuju
8
j=1 Ď S (Rn) converges to u in S (Rn) if pk(uj ´

u) Ñ 0 as j Ñ 8 for k " 1. We also note that if tuju
8
j=1 converge to u in S (Rn), then

tuju
8
j=1 converges uniformly to u on Rn.

Definition 3.39 (Tempered Distributions). A linear map T : S (Rn) Ñ C is continuous if
there exists N P N such that for each k ě N , there exists a constant Ck such that

ˇ

ˇxT, uy
ˇ

ˇ ď Ckpk(u) @u P S (Rn) ,

where xT, uy ” T (u) is the usual notation for the value of T at u. The collection of continuous
linear functionals on S (Rn) is denoted by S (Rn)1. Elements of S (Rn)1 are called tempered
distributions.
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Example 3.40. Let Lp(Rn) denote the collection of Riemann measurable functions whose
p-th power is integrable; that is,

Lp(Rn) =
!

f : Rn Ñ C
ˇ

ˇ

ˇ
f is Riemann measurable and

ż

Rn

ˇ

ˇf(x)
ˇ

ˇ

p
dx ă 8

)

.

Every Lp-function f : Rn Ñ C can be viewed as a tempered distribution for all p P [1,8].
In fact, the tempered distribution Tf associated with f is defined by

Tf (ϕ) =

ż

Rn

f(x)ϕ(x) dx @ϕ P S (Rn) . (3.13)

Since we have use x¨, ¨y for the integral of product of functions, the value of the tempered
distribution of f at ϕ is exactly xf, ϕy for all ϕ P S (Rn). This should explain the use of the
notation xT, ϕy.

Now we show that Tf given by (3.13) is indeed a tempered distribution. Let ϕ P S (Rn)

be given. Then }ϕ}L8(Rn) ď pk(ϕ) for all k P N, while for 1 ď q ă 8 and k ą
n

q
,

}ϕ}Lq(Rn) ”

ż

Rn

ˇ

ˇϕ(x)
ˇ

ˇ

q
dx

) 1
q
=

( ż
Rn

xxy´kq
[
xxyk|ϕ(x)|

]q
dx

) 1
q

ď

( ż
Rn

xxy´kq dx
) 1

q
pk(ϕ)

ď

(
ωn´1

ż 8

0

(1 + r2)´
kq
2 rn´1dr

) 1
q
pk(ϕ) .

Note that
ż 8

0
(1 + r2)´

kq
2 rn´1dr ă 8 if k ą

n

q
; thus for all q P [1,8], there exists Ck,q,n ą 0

such that
}ϕ}Lq(Rn) ď Ck,q,npk(ϕ) @ k " 1 . (3.14)

Therefore, if f P Lp(Rn), by the Hölder inequality we have

ˇ

ˇxf, ϕy
ˇ

ˇ ď }f}Lp(Rn)}ϕ}Lp1 (Rn) ď Ck,p 1,n}f}Lp(Rn)pk(ϕ) @ k " 1 ,

where p 1 P [1,8] is the Hölder conjugate of p satisfying 1

p
+

1

p 1
= 1; thus Tf P S (Rn)1 if

f P Lp(Rn). Note that the sinc function belongs to L2(R) so that Tsinc P S (R)1.

Example 3.41. Let f : R Ñ R be a 2π-periodic, Riemann measurable function such that
ż π

´π
|f(x)| dx ă 8, and ϕ P S (R). Lemma 3.11 (or Corollary 3.13) and Proposition 3.4
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imply that

|ξ|2|ϕ(ξ)| =
ˇ

ˇFx

[
(qϕ) 11(x)

]
(ξ)

ˇ

ˇ ď
›

›(qϕ) 1 1
›

›

L1(R) =

ż

R

ˇ

ˇ(qϕ) 11(x)
ˇ

ˇ dx =

ż

R

ˇ

ˇ(pϕ) 11(x)
ˇ

ˇ dx

=

ż

R
xxy´2

ˇ

ˇxxy2(pϕ) 11(x)
ˇ

ˇ dx ď

(
sup
xPR

ˇ

ˇxxy2(pϕ) 11(x)
ˇ

ˇ

) ż
R

xxy´2 dx

= π sup
xPR

ˇ

ˇ

ˇ

1
?
2π

ż

R

(
1 ´

d2

dξ2

)[
ξ2ϕ(ξ)

]
e´ixξ dξ

ˇ

ˇ

ˇ

ď

c

π

2

ż

R
2
ÿ

|α|ď2

xξy2
ˇ

ˇDαϕ(ξ)
ˇ

ˇ dξ ď
?
2π

ż

R
xξy´2p4(ϕ) dξ ď π2p4(ϕ) .

Therefore,

ˇ

ˇxf, ϕy
ˇ

ˇ =
ˇ

ˇ

ˇ

8
ÿ

k=´8

ż π+2kπ

´π+2kπ

f(x)ϕ(x) dx
ˇ

ˇ

ˇ
ď

8
ÿ

k=´8

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇϕ(x ´ 2kπ)
ˇ

ˇ dx

=

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇϕ(x)
ˇ

ˇ dx+
ÿ

|k|ě1

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇϕ(x ´ 2kπ)
ˇ

ˇ dx

ď p0(ϕ)

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ dx+
ÿ

|k|ě1

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

π2

|x ´ 2kπ|2
p4(ϕ) dx

ď

( ż π

´π

ˇ

ˇf(x)
ˇ

ˇ dx
)(

1 + 2
8
ÿ

k=1

1

(2k ´ 1)2

)
p4(ϕ)

which implies that Tf is a tempered distribution. In particular, Tc P S (R)1 for all constant
c P R.

From now on, we identify f with the tempered distribution Tf if f P Lp(Rn). For
example, if T P S (Rn)1 and f : Rn Ñ C is bounded or integrable, we say that T = f in
S (Rn)1 if T = Tf , where Tf is the tempered distribution associated with the function f .

Remark 3.42. Let f(x) = ex
4

P L1
loc(Rn). Then xTf , e

´x2
y = 8. Therefore, being in

L1
loc(Rn) is not good enough to generate elements in S (Rn)1, and it requires that |f(x)| ď

C(1 + |x|N) for any N . In such a case, Tf P S (Rn)1 is well-defined.

Example 3.43 (Dirac delta function). Consider the map δ : C (Rn) Ñ R defined by δ(ϕ) =
ϕ(0). Then

ˇ

ˇxδ, ϕy
ˇ

ˇ ď p0(ϕ) ď pk(ϕ) for all ϕ P S (Rn); thus δ P S (Rn)1. Similarly, the
Dirac delta function at a point ω defined by xδω, ϕy = ϕ(ω) is also a tempered distribution.

As shown in the example above, a tempered distribution might not be defined in the
pointwise sense. Therefore, how to define usual operations such as translation, dilation, and
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reflection on generalized functions should be answered prior to define the Fourier transform
of tempered distributions. For completeness, let us start from providing the definitions of
translation, dilation and reflection operators.

Definition 3.44 (Translation, dilation, and reflection). Let f : Rn Ñ C be a function.

1. For h P Rn, the translation operator τh maps f to τhf given by (τhf)(x) = f(x ´ h).

2. For λ ą 0, the dilation operator dλ : S (Rn) Ñ S (Rn) maps f to dλf given by
(dλf)(x) = f(λ´1x).

3. The Reflection operator r maps f to rf given by rf(x) = f(´x).

Now suppose that T P S (Rn)1. We expect that τhT , dλT and rT are also tempered
distributions, so we need to provide the values of xτhT, ϕy, xdλT, ϕy and xrT , ϕy for all ϕ P

S (Rn). If T = Tf is the tempered distribution associated with f P L1(Rn), then for
ϕ P S (Rn), the change of variable formula implies that

xτhf, gy =

ż

Rn

f(x ´ h)g(x) dx =

ż

Rn

f(x)g(x+ h) dx = xf, τ´hgy ,

xdλf, gy =

ż

Rn

f(λ´1x)g(x) dx =

ż

Rn

f(x)g(λx)λn dx = xf, λndλ´1gy ,

x rf, gy =

ż

Rn

f(´x)g(x) dx =

ż

Rn

f(x)g(´x) dx = xf, rgy .

The computations above motivate the following

Definition 3.45. Let h P Rn, λ ą 0, and τh and dλ be the translation and dilation operator
given in Definition 3.44. For T P S (Rn)1, τhT , dλT and rT are the tempered distributions
defined by

xτhT, ϕy = xT, τ´hϕy , xdλT, ϕy = xT, λndλ´1ϕy and xrT , ϕy = xT, rϕy @ϕ P S (Rn) .

We note that τhT , dλT and rT are tempered distributions since

pk(τ´hϕ) ď sup
xPRn,|α|ďk

xxyk
ˇ

ˇDαϕ(x ´ h)
ˇ

ˇ ď (2|h|2 + 1)
k
2 pk(ϕ) ,

pk(λ
ndλ´1ϕ) ď λn sup

xPRn,|α|ďk

xxykλ|α|
ˇ

ˇ(Dαϕ)(λx)
ˇ

ˇ ď λn maxtλk, λ´kupk(ϕ) ,

pk(rϕ) = pk(ϕ)
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so that for k " 1,
ˇ

ˇxτhT, ϕy
ˇ

ˇ =
ˇ

ˇxT, τ´hϕy
ˇ

ˇ ď Ck(2|h|2 + 1)
k
2 pk(ϕ) = rCkpk(ϕ) ,

ˇ

ˇxdλT, ϕy
ˇ

ˇ =
ˇ

ˇxT, λndλ´1ϕy
ˇ

ˇ ď Ckλ
n maxtλk, λ´kupk(ϕ) = rCkpk(ϕ) ,

ˇ

ˇxrT , ϕy
ˇ

ˇ =
ˇ

ˇxT, rϕy
ˇ

ˇ ď Ckpk(ϕ) .

Example 3.46. Let ω, h P Rn and λ ą 0.

1. τhδω = δω´h since if ϕ P S (Rn), xτhδω, ϕy = xδω, τ´hϕy = ϕ(ω ´ h) = xδω´h, ϕy.

2. dλδω = λnδλω since if ϕ P S (Rn), xdλδω, ϕy = xδω, λ
nd1/λϕy = λnϕ(λω) = xλnδλω, ϕy.

3. rδω = δ´ω since if ϕ P S (Rn), x rδω, ϕy = xδω, rϕy = ϕ(´ω) = xδ´ω, ϕy.

From the experience of defining the translation, dilation and reflection of tempered distri-
bution, now we can talk about how to defined Fourier transform of tempered distributions.
Recall that in Lemma 3.28 we have established that

x pf, gy = xf, pgy and x qf, gy = xf, qgy @ f P L1(Rn), g P S (Rn) .

Since the identities above hold for all L1-functions f (and L1-functions corresponds to
tempered distributions Tf through (3.13)), we expect that the Fourier transform of tempered
distributions has to satisfy the identities above as well. Let T P S (Rn)1 be given, and define
pT : S (Rn) Ñ C by

pT (ϕ) = xpT , ϕy ” xT, pϕy @ϕ P S (Rn) . (3.15)

Note that if k ě 2,

pk(pϕ) = sup
ξPRn,|α|ďk

xξyk
ˇ

ˇDα
pϕ(ξ)

ˇ

ˇ = sup
ξPRn,|α|ďk

xξyk
ˇ

ˇ

ˇ
Fx

[
xαϕ(x)

]
(ξ)

ˇ

ˇ

ˇ

ď sup
ξPRn,|α|ďk

(n+ 1)
k
2

´1
(
1 + |ξ1|

k + ¨ ¨ ¨ + |ξn|k
)ˇ
ˇ

ˇ
Fx

[
xαϕ(x)

]
(ξ)

ˇ

ˇ

ˇ

ď (n+ 1)
k
2

´1 sup
ξPRn,|α|ďk

ˇ

ˇ

ˇ
Fx

[
(1 + B k

x1
+ ¨ ¨ ¨ + B k

xn
)
(
xαϕ(x)

)]
(ξ)

ˇ

ˇ

ˇ
.

Since

sup
ξPRn,|α|ďk

ˇ

ˇ

ˇ
Fx

[
xαϕ(x)

]
(ξ)

ˇ

ˇ

ˇ
ď sup

|α|ďk

›

›xαϕ(x)
›

›

L1(Rn)
ď
›

›xxykϕ(x)
›

›

L1(Rn)

ď
›

›xxy´n´1
›

›

L1(Rn)
sup
xPRn

xxyn+k+1
ˇ

ˇϕ(x)
ˇ

ˇ ď
›

›xxy´n´1
›

›

L1(Rn)
pn+k+1(ϕ)
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and for 1 ď j ď n,

sup
ξPRn,|α|ďk

ˇ

ˇ

ˇ
Fx

[
B k
xj
(xαϕ(x)

]
(ξ)

ˇ

ˇ

ˇ
ď

k
ÿ

ℓ=0

Ck
ℓ sup

ξPRn,|α|ďk

ˇ

ˇ

ˇ
Fx

[
B k´ℓ
xj
xαB ℓ

xj
ϕ(x)

]
(ξ)

ˇ

ˇ

ˇ

ď

k
ÿ

ℓ=0

Ck
ℓ sup

|α|ďk

›

›B k´ℓ
xj
xαB ℓ

xj
ϕ(x)

›

›

L1(Rn)
ď

k
ÿ

ℓ=0

Ck
ℓ sup

|α|ďk

|α|!
›

›xxy|α|´k+ℓB ℓ
xj
ϕ(x)

›

›

L1(Rn)

ď

k
ÿ

ℓ=0

Ck
ℓ k! sup

|β|=ℓ

›

›xxyℓDβϕ(x)
›

›

L1(Rn)
ď k!

k
ÿ

ℓ=0

Ck
ℓ

›

›xxy´n´1
›

›

L1(Rn)
pn+ℓ+1(ϕ)

ď k!
›

›xxy´n´1
›

›

L1(Rn)
pn+k+1(ϕ)

k
ÿ

ℓ=0

Ck
ℓ = k!2k

›

›xxy´n´1
›

›

L1(Rn)
pn+k+1(ϕ) ,

we conclude that

pk(pϕ) ď (n+ 1)
k
2

´1(1 + nk!2k)
›

›xxy´n´1
›

›

L1(Rn)
pn+k+1(ϕ) = sC(n, k)pn+k+1(ϕ) . (3.16)

Therefore,
ˇ

ˇxpT , ϕy
ˇ

ˇ =
ˇ

ˇxT, pϕy
ˇ

ˇ ď Ckpk(pϕ) ď Ck
sC(n, k)pk+n+1(ϕ) @ k " 1 (3.17)

which shows that pT defined by (3.15) is a tempered distribution. Similarly, qT : S (Rn) Ñ C
defined by xqT , ϕy = xT, qϕy for all ϕ P S (Rn) is also a tempered distribution. The discussion
above leads to the following

Definition 3.47. Let T P S (Rn)1. The Fourier transform of T and the inverse Fourier
transform of T , denoted by pT and qT respectively, are tempered distributions satisfying

xpT , ϕy = xT, pϕy and xqT , ϕy = xT, qϕy @ϕ P S (Rn) .

In other words, if T P S (Rn)1, then pT , qT P S (Rn)1 as well and the actions of pT , qT on
ϕ P S (Rn) are given in the relations above.

Example 3.48 (The Fourier transform of the Dirac delta function). Consider the Dirac
delta function δ : S (Rn) Ñ C defined in Example 3.43. Then for ϕ P S (Rn),

xδ, pϕy = pϕ(0) =
1

?
2π

n

ż

Rn

ϕ(x)e´ix¨0 dx =
1

?
2π

n

ż

Rn

ϕ(x) dx = x
1

?
2π

n , ϕy ;

thus the Fourier transform of the Dirac delta function is a constant function and pδ(ξ) =
1

?
2π

n . Similarly, qδ(ξ) = 1
?
2π

n , so pδ = qδ.
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Next we consider the Fourier transform of δω, the Dirac delta function at point ω P Rn.
Note that for ϕ P S (Rn),

xδω, pϕy = pϕ(ω) =
1

?
2π

n

ż

Rn

ϕ(x)e´ix¨ω dx =
@e´ix¨ω

?
2π

n , ϕ
D

” x pδω, ϕy ;

thus the Fourier transform of the Dirac delta function at point ω is the function pδω(ξ) =
e´iξ¨ω

?
2π

n . The inverse Fourier transform of δω can be computed in the same fashion and we

have qδω(ξ) =
eiξ¨ω

?
2π

n . We note that qδω =
r

pδω =
p

rδω.

Symbolically, “assuming” that δω(ϕ) = ϕ(ω) for all continuous function ϕ,

pδω(ξ) =
1

?
2π

n

ż

Rn

δω(x)e
´ix¨ξ dx =

1
?
2π

n e
´ix¨ξ

ˇ

ˇ

ˇ

x=ω
=

e´iξ¨ω

?
2π

n

and
qδω(ξ) =

1
?
2π

n

ż

Rn

δω(x)e
ix¨ξ dx =

1
?
2π

n e
ix¨ξ

ˇ

ˇ

ˇ

x=ω
=

eiξ¨ω

?
2π

n .

Example 3.49 (The Fourier transform of eix¨ω). By “definition” and the Fourier inversion
formula, for ϕ P S (Rn) we have

xeix¨ω, pϕy =

ż

Rn

eix¨ω
pϕ(x) dx =

?
2π

n 1
?
2π

n

ż

Rn

pϕ(x)eix¨ω dx =
?
2π

n
q

pϕ(ω) =
?
2π

n
ϕ(ω) ;

thus
xeix¨ω, pϕ y =

?
2π

n
ϕ(ω) = x

?
2π

n
δω, ϕy .

Therefore, the Fourier transform of the function s(x) = eix¨ω is
?
2π

n
δω, where δω is the

Dirac delta function at point ω introduced in Example 3.48. We note that this result also
implies that

q

pδω = δω @ω P Rn .

Similarly, p

qδω = δω for all ω P Rn; thus the Fourier inversion formula is also valid for the
Dirac δ function.

Example 3.50 (The Fourier Transform of the Sine function). Let s(x) = sinωx, where ω
denotes the frequency of this sine wave. Since sinωx =

eiωx ´ e´iωx

2i
, we conclude that the

Fourier transform of s(x) = sinωx is
?
2π

2i

(
δω ´ δ´ω

)
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since if T1, T2 are tempered distributions, then T = T1 + T2 satisfies

xpT , ϕy = xT1 + T2, pϕy = xT1, pϕy + xT2, pϕy = x pT1, ϕy + x pT2, ϕy = x pT1 + pT2, ϕy @ϕ P S (Rn)

which shows that pT = pT1 + pT2.

Theorem 3.51. Let T P S (Rn)1. Then q

pT =
p

qT = T .

Proof. To see that q

pT and T are the same tempered distribution, we need to show that
x
q

pT , ϕy = xT, ϕy for all ϕ P S (Rn). Nevertheless, by the defintion of the Fourier transform
and the inverse Fourier transform of tempered distributions,

x
q

pT , ϕy = xpT , qϕy = xT,
p

qϕy = xT, ϕy @ϕ P S (Rn) .

That p

qT = T can be proved in the same fashion. ˝

Example 3.52 (The Fourier Transform of the sinc function). The rect/rectangle function,
also called the gate function or windows function, is a function Π : R Ñ R defined by

Π(x) =

"

1 if |x| ă 1 ,

0 if |x| ě 1 .

Since Π P L1(R), we can compute its (inverse) Fourier transform in the usual way, and we
have

pΠ(ξ) =
1

?
2π

ż

R
Π(x)e´ixξ dx =

1
?
2π

ż 1

´1

e´ixξ dx =
1

?
2π

e´ixξ

´iξ

ˇ

ˇ

ˇ

x=1

x=´1
=

c

2

π

sin ξ
ξ

@ ξ ‰ 0

and pΠ(0) =

c

2

π
. Define the unnormalized sinc function sinc(x) =

# sinx

x
if x ‰ 0

1 if x = 0 .

Then pΠ(ξ) =

c

2

π
sinc(ξ). Similar computation shows that qΠ(ξ) = pΠ(ξ) =

c

2

π
sinc(ξ).

Even though the sinc function is not integrable, we can apply Theorem 3.51 and see that

ysinc(ξ) = }sinc(ξ) =
c

π

2
Π(ξ) @ ξ P R .

Theorem 3.53. Let T P S (Rn)1. Then

xyτhT , ϕy = xpT (ξ), ϕ(ξ)e´iξ¨hy , xydλT , ϕy = xpT , dλϕy and x
p

rT , ϕy = xqT , ϕy @ϕ P S (Rn) .

A short-hand notation for identities above are yτhT (ξ) = pT (ξ)e´iξ¨h, ydλT (ξ) = λn pT (λξ), and
p

rT (ξ) = qT (ξ).
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Proof. Let ϕ P S (Rn). For h P Rn, define ϕh(x) = ϕ(x)e´ix¨h. Then

(τ´h
pϕ)(ξ) = pϕ(ξ + h) =

1
?
2π

n

ż

Rn

ϕ(x)e´ix¨(ξ+h) dx =
1

?
2π

n

ż

Rn

ϕ(x)e´ix¨he´ix¨ξ dx = xϕh(ξ) .

By the definition of the Fourier transform of tempered distribution and the translation
operator,

xyτhT , ϕy = xT, τ´h
pϕy = xT,xϕhy = xpT (x), ϕ(x)e´ix¨hy = xpT (ξ), ϕ(ξ)e´iξ¨hy .

On the other hand, for λ ą 0,

(dλ´1 pϕ)(ξ) = pϕ(λξ) =
1

?
2π

n

ż

Rn

ϕ(x)e´ix¨(λξ) dx = λ´n 1
?
2π

n

ż

Rn

ϕ
(x
λ
)e´ix¨ξ dx = λ´n

ydλϕ(ξ) .

Therefore,

xydλT , ϕy = xT, λndλ´1 pϕy = xT,ydλϕy = xpT , dλϕy = xλndλ´1 pT , ϕy .

The identity x
p

rT , ϕy = xqT , ϕy follows from that r

pϕ = qϕ, and the detail proof is left to the
readers. ˝

Remark 3.54. One can check (using the change of variable formula) that yτhf(ξ) = pf(ξ)e´iξ¨h

and ydλf(ξ) = λn pf(λξ) if f P L1(Rn).

Next we define the convolution of a tempered distribution and a Schwartz function.
Before proceeding, we note that if f, g P S (Rn), then

xf › g, ϕy =

ż

Rn

(f › g)(x)ϕ(x) dx =
1

?
2π

n

ż

Rn

( ż
Rn

f(y)g(x ´ y) dy
)
ϕ(x) dx

=
1

?
2π

n

ż

Rn

( ż
Rn

g(x ´ y)ϕ(x) dx
)
f(y) dy

=
1

?
2π

n

ż

Rn

( ż
Rn

rg(y ´ x)ϕ(x) dx
)
f(y) dy = xf, rg › ϕy .

The change of variable formula implies that

(rg › ϕ)(y) =
1

?
2π

n

( ż
Rn

rg(x)ϕ(y ´ x) dx =
1

?
2π

n

ż

Rn

rg(´x)ϕ(y + x) dx

=
1

?
2π

n

ż

Rn

g(x)rϕ(´y ´ x) dx = (g › rϕ)(´y) =
Ć

g › rϕ(y) ;

thus
xf › g, ϕy = xf, rg › ϕy = xf,

Ć

g › rϕy = x rf, g › rϕy .

The identity above serves as the origin of the convolution of a tempered distribution and a
Schwartz function.
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Definition 3.55 (Convolution). Let T P S (Rn)1 and f P S (Rn). The convolution of T
and f , denoted by T › f , is the tempered distribution given by

xT › f, ϕy = xT, rf › ϕy = xrT , f › rϕy @ϕ P S (Rn) ,

where rT is the tempered distribution given in Definition 3.45.

Example 3.56. Let δω be the Dirac delta function at point ω P Rn, and f P S (Rn). Then

δω › f =
τωf

?
2π

n since if ϕ P S (Rn),

xδω, rf › ϕy = ( rf › ϕ)(ω) =
1

?
2π

n

ż

Rn

rf(y)ϕ(ω ´ y) dy =
1

?
2π

n

ż

Rn

f(z ´ ω)ϕ(z) dz

=
@ τωf

?
2π

n , ϕ
D

In symbol,

(δω › f)(x) =
1

?
2π

n

ż

Rn

δω(y)f(x ´ y) dy = f(x ´ ω) =
1

?
2π

n (τωf)(x) . (3.18)

Remark 3.57. If S P S (Rn)1 satisfies that S › ϕ P S (Rn) for all ϕ P S (Rn), we can also
define the convolution of T and S by

xT › S, ϕy = xrT , S › rϕy @ϕ P S (Rn) .

In other words, it is possible to define the convolution of two tempered distributions.
For example, from Example 3.56 we find that δω › ϕ =

τωϕ
?
2π

n for all ϕ P S (Rn); thus

δω › ϕ P S (Rn) for all S (Rn) (and ω P Rn). Therefore, if T is a tempered distribution,
T › δω is also a tempered distribution and is given by

xT › δω, ϕy =
@

rT ,
1

?
2π

n τωrϕ
D

@ϕ P S (Rn) .

Further computation shows that

xT › δω, ϕy =
@

rT ,
1

?
2π

n
Ćτ´ωϕ

D

=
@

T,
1

?
2π

n τ´ωϕ
D

=
@ 1

?
2π

n τωT, ϕ
D

@ϕ P S (Rn) .

The identity above shows that T › δω =
τωT

?
2π

n for all T P S (Rn)1. This formula agrees with
(3.18).
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Similar to Theorem 3.26 and Corollary 3.27, the product and the convolutions of func-
tions are related under Fourier transform.

Theorem 3.58. Let T P S (Rn)1 and f P S (Rn). Then

xzT › f, ϕy = xpT , pfϕy and x~T › f, ϕy = xqT , qfϕy @ϕ P S (Rn) ,

and
xyf T , ϕy = xpT › pf, ϕy and x}f T , ϕy = xqT › qf, ϕy @ϕ P S (Rn) ,

where fT P S (Rn)1 is defined by xfT, ϕy = xT, fϕy for all ϕ P S (Rn). A short-hand
notation for the identities above are zT › f = pf pT , ~T › f = qf qT , yf T = pT › pf and }f T = qT › qf

in S (Rn)1.

Proof. By Theorem 3.26,

xzT › f, ϕy = xT › f, pϕy = xrT , f ›
r

pϕy = xrT , f › qϕy = x
q

rT ,F (f › qϕ)y = xpT , pfϕy

and by the definition of the convolution of tempered distributions and Schwartz functions,

xyf T , ϕy = xT, f pϕy = xpT ,F ˚(f pϕ)y = xpT , qf › ϕy = xpT ,
r

pf › ϕy = xpT › pf, ϕy .

The counterpart for the inverse Fourier transform can be proved similarly. ˝

Remark 3.59. Let f, ϕ P S (Rn), and T P S (Rn)1 satisfy
ˇ

ˇxT, uy
ˇ

ˇ ď Ckpk(u) for all
u P S (Rn) and k " 1. By Theorem 3.58, we find that

xT › f, ϕy =
@

T › f,
p

qϕ
D

=
@

zT › f, qϕ
D

= xpT , pf qϕy .

By the fact that

pk(gh) = sup
xPRn,|α|ďk

xxyk
ˇ

ˇDα(gh)(x)
ˇ

ˇ ď
ÿ

0ďβďα
|α|ďk

Ck
βxxyk

ˇ

ˇDα´βg(x)Dβh(x)
ˇ

ˇ

ď
ÿ

0ďβďα
|α|ďk

Ck
βpk(g)pk(h) =

(
ÿ

|β|ďk

Ck
β

)
pk(g)pk(h) @ g, h P S (Rn) ,

we conclude from (3.16) and (3.17) that for k " 1,
ˇ

ˇxT › f, ϕy
ˇ

ˇ ď Ck
sC(n, k)pk+n+1

(
pf qϕ
)

ď Ck
sC(n, k)

(
ÿ

|β|ďk

Ck
β

)
pk
(
pf
)
pk
(
p

rϕ
)

ď Ck

(
ÿ

|β|ďk

Ck
β

)
sC(n, k)3pn+k+1(f)pn+k+1

(
rϕ
)
= rC(n, k)pn+k+1(f)pn+k+1(ϕ) .

Therefore, T › f is a tempered distribution.
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