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Chapter 2

Fourier Series
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2.1 Basic properties of the Fourier series

Let f € €(T) be given. We first assume that the trigonometric polynomials used to approx-

imate f can be chosen in such a way that the coefficients does not depend on the degree of
approximation; that is, c,(cn) = ¢ and s,(cn) = Sg. In this case, if p, — funiformy on [—m, 7],

by Theorem 1.6 we must have

™

lim pn(x) cos kx dx = f(x) cos kx dz Vke{0,1,-- ,n}

—
n—w J__

and
lim pn(z)sinkz de = f(z) sin kx dz Vke{l,--- ,n}.
n—=0 J_n —m
Since
J cos kx coslx dr = f sin kx sin {x dz = 7oy Vk (eN
and
f sin kz cos bz dx = 0 VkeN, /e Nu {0},
we find that
1 (" 1 (" )
= — f(x)coskrdr and s = —J f(x)sinkz dz . (2.1)
TJ . TJ .
This induces the following
Definition 2.1. For a Riemann integrable function f : [-m, 7] — R, the Fourier series

representation of f, denoted by s(f,-), is given by

0
s(f,x) = % + Z(Ck cos kx + sy sin kx)
k=1
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whenever the sum makes sense, where sequences {cy}7>, and {sg}r_, given by (2.1) are

called the Fourier coefficients associated with f. The n-th partial sum of the Fourier

series representation to f, denoted by s,(f,-), is given by
n
Co .
Sp, =3 z:] (cr cos kx + sy sinkx) .

We note that for the Fourier series s(f,x) to be defined, f is not necessary continuous.

Our goal is to establish the convergence of Fourier series in various senses.

Remark 2.2. Because of the Euler identity e = cos# + isinf, we can write

_ 1 " iky —iky zky zky
Ck—27r J_ﬂf(y)(e +e "™)dy and s, = 2m f )dy

thus
n ikx —ikx ikx —ikx
G e +e et —e
1r - . A
=5 + Z (e — isk)e™ 4 (cx + isg)e ”“)]
- k=1
1r n A -1
=35 + Z ((ck ~ Is5)e™T + Z (c_k + zs_k)e”ﬂ
B k=1 k=—n
17 LT 4 4 .
= 5| + = fy)e ™dye™* s + =~ Z f(y)e ™ dye*e
B k=1Y—T k— nvY T

Define f, = ;J f(y)e *dy. Then

T J—n

n
— Z ﬁgeikm

k=—n

The sequence { ]?k},;‘o:_oo is also called the Fourier coefficients associated with f, and one can

0 o
write the Foruier series representation of f as >, fre'®
k=—00

Remark 2.3. Given a continuous function g with period 2L (or a function g which is

Riemann integrable on [—L, L]), let f(x) = g(g) Then f is a continuous function with
T
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period 27 (or f is a Riemann integrable function on [—m, 7)), and the Fourier series of f is

given by
s(f,x) = S Z(ckcoskx—i-sksinkx),
2 2

where ¢, and s are given by (2.1). Now, define the Fourier series of g by s(g,z) = s(f, %)

Then the Fourier series of g is given by

o0
__0 krx
g,x) = 5 ; ckcos —i—sksm—L ),

where {ci}72, and {s;};2, is also called the Fourier coefficients associated with ¢ and are
given by

T 'S kmx

1
g(%) cos kx dx = |17 J g(x) cos — dx

g 1
Ck B f(z)cos kx dx WJ ) 7

7T —T
. L . kmx . . .
and similarly, s = LJ g(x)sin A dz. Similar to Remark 2.2, the Fourier series of g can
~L
o0
~ imkx
Z gre -,

L k=—o0
717rky
dy.

also be written as

~ 1
where g, = 5T Lg(y)

Example 2.4. Consider the periodic function f : R — R defined by

r if0<z<m,

=1

—x if—nm1<2x<0,

and f(z + 27) = f(z) for.all z-€ R. To find the Fourier representation of f, we compute

the Fourier coefficients by

L (" . L/ (™ . o
S = — f(:x)smk‘:vdx:—< xsinkx dr — :vsmkxdx) =0
T™Jn ™ 0 —T
and
1 T 1 T 0 2 T
Cp = — f(w)coskxda::—< xcos kx dr — wcoskxda:) =— | xzcoskzdx.
T™J—x ™ 0 - T Jo

Ifk:O,thencoz2J:cdx:7r,whileifkeN,
™ Jo

™ J“ sin kx 2 cos kx
0 0

2 rxsinkx
o= (5

T _2(-)F-1)

0 mk?

k T k2
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13
Therefore, cop, = 0 and cop_1 =

for all k € N. Therefore, the Fourier series of f
(2k — 1)2
is given by

cost—l
s(f: :___Z (2k — 1)

Example 2.5. Consider the periodic function f : R — R defined by

1 if—g<x<g,
f(aj) T T
0 if -7 < x<—§or§<x<7r,

and f(x +27) = f(z) for all x € R. We compute the Fourier coefficients of f and find that
sy =0 for all ke N and ¢y =1, as well as

1 (2
Ck:—f
™ J_

us
2

2 (2 2sin =& k”
coskxdxr = — coskxdr = .
T Jo 7rk

kL
Therefore, cop, = 0 and cop_1 = 22%1)1) for all k€ N; thus the Fourier series of f is given
7T fe—
by

cos(2k — 1)z

[\
o
—

Example 2.6. Consider the periodic function f : R — R defined by

flx)==x if

— T <IT<T

and f(x + 27) = f(x) for all x € R. Then the Fourier coefficients of f are computed as

follows: ¢, = 0 for.all'k € N U {0} since f is (more or less) an odd function, and

g 2 (™ 2 kx|™ T k
sk——f xsinkxdm——J a:sinkxdxz—(—xcos a +J o xdm)
) T Jo s ko o Kk

_2(_1)k+1
ok

Therefore, the Fourier series of f is given by

k+1

sin kx .

s(f,x) =2 Z (=
k=1
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2.2 Uniform Convergence of the Fourier Series

Before proceeding, we note that Remark 2.2 implies that

T n

n 1 i ik(z— — 1 ik(x—
()= 3 oo | sty = er(y)(%k;nek( ") dy.

n
_ 6 e’** Then D, is 2m-periodic, and
2m =,

Define D, (x)
salfia) = [ D —y)dy.

For 27-periodic Riemann integrable functions f and g, we define the convolution of f and

g on the circle by
(f*g)(x) =] [flyg(z —y)dy.

—T

Then s,(f,z) = (D, * f)(x).

Note that D,,(0) = 2n + 1, and if e # 1,

s
1 e—inx [ei(2n+1)z _ 1] 1 ei(n+1/2)x _ e—i(n+1/2)m sin(n + %)l’
Dy(z) = o— iz T 50 iz)2 —iz)2 - P
T e —1 21 e —e 27 sin 3

so that we have the following
Definition 2.7. The function D, : R — R defined by

i 1
s +3)2 4t g (o [ ke 7},
27 sin 5
2n+1 .
5 if ve{2kr|kelZ},

Dy (z) = (2.2)

is called the Dirichlet kernel.

By the fact that D, (z) = L > €% we immediately conclude the following
T k=—n

Lemma 2.8. For eachn e N and z € R, D,(x—y)dy =1.

In the following, we first consider the uniform convergence of the Fourier series of 27-

periodic continuously differentiable functions.
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Definition 2.9. The normed vector space (¢*(T), | - |¢1(r)) is a vector space over R con-
sisting of all 2m-periodic real-valued continuously differentiable functions and is equipped

with a norm
[florm = 1o + 17l = max |f (@) + max[f'(2)] ¥ fe@HT).

Theorem 2.10. For any f € €*(T),the Fourier series of f converges uniformly to f on R;

that is, the sequence {s,(f, )}s, converges uniformly to f on R.

Proof. By Lemma 2.8, we find that for all = € R,

™

o) = £@) = (Dyx f = @) = [ Dl — ) (7Y~ 960 dy
— [ Duw) (e —y) — f(2))dy.

—T

We break the integral into two parts: one is the integral on |y| < § and the other is the
integral on ¢ < |y| < 7. Since f € €Y(T),

[f(@—y) = f(@)] <If'lwlyl;

thus by the fact that

z for 0 <z <2 we obtain that
sinx 2 2’

Day)(f(w ~5) = (@))dy

5 / J
<[ty Mo [ Yoy <ipls. @)

) 27| sin 4| 27 5 sin g

) ly|<d

Now we take care of the integral on § < |y| < 7 by first looking at the integral on § <y < 7.
Integrating by parts,

™ L flz—y) - f(=z)
D) (fw —y) - L ! d
| P sz = fsm e
_ 1cos(n+ )yf(a:— )— +i cos(n+%)yif(x—y)—f($)d
EZ sin § y:s 2 )s  n+i  dy sin § v
For the first term on the right-hand side,

Leos(nty)yfl—y) = f@ P 2w _ Ifle R
2w n+ % sin% y=0 2mn sing nsing
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For the second term on the right-hand side,
L f cos (n+4)y d_f(w—y) - f(:v)dy‘
2

n—l—% d?/ Sin%

[ =gy,
27r % sin 4 n+ i 2sin” ¥ Y
e | < Ul
2m [Hf ”OO( +%) HfHOO( +2) Sln25 = nsm25 .

Similarly,

I R L e Rt £

n sin 5 n sin
thus for all z € R,

st sl < [([ [+ [ ) -0 )

2| f Hf\lg 4| flgr
< | f' 0 + ”.”‘f; + — < f b + =50
ns n S11n 5

2 2

Let € > 0 be given. Choose a fixed § > 0 such that ||f'|0 < g For this fixed ¢, choose
N > 0 such that

A flerery. e
— =
Nsian 2
Then if n > N and z € R, we have
e 4| fler(m 4 fllgr ()
Sp(f,x) — fo)]| <=+ — < = +7<5.
‘ (f,2) - K )‘ 2 nsm25 2 Nsingg )

After showing the uniform convergence of the Fourier series of ¢'-functions, we next
consider the convergence of the Fourier series of less regular functions. The functions of
which we prove the convergence of the Fourier series representation belong to the so-called

Holder class continuous functions.

Definition 2.11. Let I < R be an interval, and « € (0,1]. A function f is said to be
/(=) — f(y)]

| o < . The collection
T =Y

Holder continuous with exponent o on I if sup
z,yel,x#y

of all real-valued functions that are Holder continuous with exponent o on I is denoted
by €%*(I;R), and €%(T) is the collection of all 27-periodic functions that are Holder

continuous with exponent a on R; that is,

€% (T) = {f e?€(T)| sup M < oo}.

z,yeR, z#y ‘x - y’a
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Let | - |40.«(r) be defined by

f@) - £w)
|Flgoagey = sup |£(@)| + sup LD =S
zeR Ig;fyR |{E - y|

Then | - |4o.e(r) is a norm on ¢**(T), and
¢2°(T) = {f € €(T)| | flo.ecry < 0}

In particular, when o = 1, a function in ¢%!(T) is said to be Lipschitz continuous on T;

thus €%'(T) consists of Lipschitz continuous functions on T.

The uniform convergence of s,,(f,-) to f for f € €%*(T) with a € (0, 1) requires a lot more

work. The idea is to estimate Hf —sn(f,") HLOC(T)

Since s,(f, ) € Z,(T), it is obvious that

in terms of the quantity mf H f=pllre(r
Et

inf © J n\Js " :
pel Hf plc (T) H sn(f >HL¢>O(T)
The goal is to show the inverse inequality

|7 = 0lF: Myniry Ca_inE f = plie (2.4)

for some constant C,,, and pick a suitable p € &2, (T) which gives a good upper bound for

|f = su(f.)] Lo(T): The inverse inequality is established via the following

Proposition 2.12. The Dirichlet kernel D,, satisfies that for all n € N,

fﬂ ‘ {dx 2+ logn. (2.5)

Proof. The validity of (2.5) for the case n = 1 is left to the reader, and we provide the proof

n ikx i 1
for the case n > 2 here. Recall that D,(z) = )] 62 _ sin{n + i)x . Therefore,
k=—n

T 27 sin 5

ﬂ D, (2)|dz = 2 L 1D, ()| dz = L 2| D) der + r

Since |D,(x)| < lim |D,(t)| = 2n2+ L for all 0<zx< l the first integral can be estimated
t—0+ m n’
by

sin(n + %)x‘d
————="|dx

T
7TSHl2

1

L” 2|D,, (x)|da < %

2n+1

. (2.6)
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. 2 . . .
Since =% < sinx for 0 < z < g, the second integral can be estimated by

T
s
fl
n

We then conclude (2.5) from (2.6) and (2.7) by noting that log m +

O

sin(n + ) ™1
<,—:]f)‘d$<J —dx =logm+logn. (2.7)
msin § 1

2n+1
nmw

< 2foralln > 2.

Remark 2.13. A more subtle estimate can be done to show that

J D, (2)|dx = ¢ + c2logn VneN

—Tr

for some positive constants ¢; and co. Therefore, the integral of |D,,| over [—7, 7| blows up

as n — 0.

With the help of Proposition 2.12, we are able to prove the inverse inequality (2.4). The

following theorem is a direct consequence of Proposition 2.12.

Theorem 2.14. Let f € €(T); that is, f is a continuous function with period 2m. Then
If = suls:0). =3 +logm) it £ = plc. 28)

Proof. Forne N and x €T,

T

!%umn<J'u%@Mﬂx—wwy<@+mywum.

Given € > 0, let'p € £, (T) such that
1f =Pl < _inf JIf =Pl +e.

Then by the fact that s,(p,z) = p(z) if p e Z,(T), we obtain that

I = sulls M < 1 = 8l + I = s, < 1F = 8l + snl =20,
<[ =pl, + @+logm)lf —pl
<(3+logn)| int [f—ple e,

and (2.8) is obtained by passing to the limit as ¢ — 0. o
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Having established Theorem 2.14, the study of the uniform convergence of s,(f,) to f
then amounts to the study of the quantity 51f |f—p|w- The estimate of mf Hf Pl
E

for f € €%%(T), where a € (0,1), is more difficult, and requires a clever ch01ce of p. We

begin with the following

Lemma 2.15. If f is a continuous function on [a,b], then for all 61,05 > 0,
01
swp |f(@) = f)| < (1+3) s |f@) = F@)].
|z—y|<d1 27 |o—y|<d2

The proof of Lemma 2.15 is not very difficult, and is left to the readers.

Now we are in position to prove the theorem due to D. Jackson.

Theorem 2.16 (Jackson). There exists a constant C' > 0 such that

inf Hf Pleem < C sup |f(z) - fly)l, vV [fe?(T).

pePn(T le—yl<t
Proof. Let p(x) = 14¢jcosx+- - -+ ¢, cosnx be a positive trigonometric function of degree

n with coefficients {c;}I, determined later. Define an operator K on € (T) by

1

N j Vo) — ) dy.

Kf@) =5}

Then Kf € #,(T). Lemma 2.15 then implies

Kfa) = flall <57 | ptlite =) = sy

<_f )(L+nlyl) sup |f(z)— f(y)|dy

lz—yl<t
n
[t [ bwds] sw (5@ - £
27 Joa |lz—yl|<5;
. , _ 2 i . :
Since y* < 7(1 — cosy) for y € [—m, 7|, by Holder’s inequality we find that

% _: lylp(y) dy < [% fﬂ y*p(y) dy] : [% fﬂp(y) dy] :

< F F (1 = cosy)p(y) dy] = g\/m

—Tr
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Therefore,

IKf = flo < (14 V2 =cr) swp [f(2) = f)].

2 le—yl<5
To conclude the theorem, we need to show that the number ny/2 — ¢; can be made bounded
by choosing p properly. Nevertheless, let

p(x) = C‘ Z sin Mem =c Z Z sin (k+ m sin (4 )Wez(’“—f)w

k=0 n+2 k=0 £=0 n+2 n+2
S k+1 N k+1 (+1
:chin2u+202 sin( + )Wsin( i )Wcos(k—f)x
n+ 2 n+ 2 n+ 2
k=0 k=0
k>{

and choose ¢ so that p(x) =14 ¢jcosxz + - - + ¢, cosnx. Then

n

_ . 20k + )7
= et G =g B[ e 2T

k=0
_n—|—1 SIH@—SHI”—H—”{—Q
2 4Slnﬁ 2 ’
and
- (k+1Dm . = (2k+ D)7
a—Zchm 2 sin n+2 Z:l[ COSn——i—2
. (2n+2)7r 2
sin — sin =%
= c[n cos — L nt2 }
n—+2 2 sin ﬁ
T 51nn2—j:2
= c[n coS }
n+2 sin W
= ¢(n + 2) cos T —9cos :
n+ n+2
As a consequence,
1
nv2—c = n(2 — 2cosn7r 2>2 = 2nsinﬁ
s s
=2 2)sin ———— — 4sin ———
(n+ )81n2(n+2) 81n2(n+2)
2(n+2) | @ : @
=T sin —4s8in ——
7r 2(n+2) 2(n +2)
which is bounded by ; thus
2
. Y
nf If = pleemy < IKf = flozm < (14 5) sup [f(2) = f(y)]- o
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Finally, since lim n™%logn = 0 for all a € (0, 1], we conclude the following
n—0oo

Theorem 2.17. For all f € €%*(T) with o € (0,1], s,(f,") = D, » f converges to f

uniformly as n — co.

Remark 2.18. The converse of Theorem 2.16 is the Bernstein theorem which states that if
f is a 2m-periodic function such that for some constant C' (independent of n) and a € (0, 1),
inf ||f — <Cn™® 2.9

int[f = ple<Cn (29)

for all n € N, then f € €%*(T). In other words, (2.9) is an equivalent condition to the

Holder continuity with exponent « of 27-periodic continuous functions.

2.3 Cesaro Mean of Fourier Series

While Theorem 1.25 shows that the collection of trigonometric polynomials

{62_0 + Z(ck cos kx + sg sin kx) {Ck}Z:m {sk}Z:1 < R}
k=1

is dense in €(T), Theorem 2.17 only implies the uniform convergence of the Fourier series of
Hoélder continuous functions. Since the Fourier coefficients {c;}}_, and {s}}_, are indepen-
dent of the order of approximation n, as we discussed in the beginning of this chapter we
do not expect that s, (f,-) uniformly to f on [—m, x| for general f € €(T). To approximate
continuous functions uniformly, the coefficients of the trigonometric polynomials should
depend on the order of approximation.

The motivation of the discussion below is due to the following observation. Let {ax}

00]

»©_,, called the Cesaro mean of the sequence

be a sequence. Define a new sequence {b,}
{ak}%;laby
a1+---+a 1 &
by G Ly
n n =

If {ax};2, converges to a, then {b,}> ; converges to a as well. Even though the convergence
of a sequence cannot be guaranteed by the convergence of its Cesaro mean, it is worthwhile
investigating the convergence behavior of the Cesaro mean.

Let 0,(f, ) denote the Cesaro mean of the Fourier series of f given by

1 ¢ 1 < 1 <
on(f;") n+123k(fa'):n+1Z(Dk*f): (n—_l_ll;)Dk>*f-

k=0 k=0
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We note that the coefficients of the Cesaro mean o, (f,-) depend on the order of approxima-

tion n since

+1 n+1
[

7(12n) - qS‘n)

C 1—k k
on(f,x) = 50 Z <L(/{ cos kx + Lsk sink:x) .
k=1

sin(k + 1)z

Recall that Dy(z) = orsmz By the product-to-sum formula, we find that if x €
TSN 5
2
(0, ),
= 1 = x 1
Dy ( ———— >, 2sin—sin(k +=
Z kl 27Tsm% 2y skt )= k;) sin g sk )
— Z cos kx — cos(k + 1)z)
" 4rsin 5=
1 sin? by
47 sin? 5 ( cos(n + ):):) 27 sin’ 5

This induces the following

Definition 2.19. The Fejér kernel is the Cesaro mean of the Dirichlet kernel given by

2 (n+1)zx

1 & 1 sin
Fo(z) = Di(a) = :
(@) =373 ,;) M) = 5T z

We note that o,,(f,-) = F,+ f, where F,, > 0 and has the property that F.(x)dr =1

—T

(since the integral of the Dirichlet kernel is 1). Moreover, for any 6 > 0,

lim F.(x)dz =0 (2.10)

=0 Js<|a|<r
1
)| < ;
2m(n + 1)sin? §
{an . }n converges umformly to f.

since |Fn x

if § < |z] < w. Inequality (2.10) allows us to show that

Theorem 2.20. For any f € €(T), the Cesaro mean {an(f, )}OO of the Fourier series of

n=1
f converges uniformly to f.

Proof. Let ¢ > 0 be given. Since f € €(T), f is uniformly continuous on R; thus there
exists 6 > 0 such that

[f(z) = fy)| <

whenever |z —y| <.
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Therefore, by the fact that f F.(x)dx =1 and F,, >0,

s

s~ 1@ =| [ B -vay- [ Rwi@al

—T

<[ Bl @l
:J}6EMMﬂx—w—f@ﬂ@+J‘ )| — 9) — £ dy

0<|yl<m

< 5L|<6 Fu(y) dy+2f||oof Fu(y) dy

o<yl

€
<Sefle| Ry

o<|y|<m

Using (2.10), there exists N > 0 such that

2||fooj F.(y)dy < ° whenever n=N.
S<lyl<m 2

Therefore, |0, (f, ) — f(z)| < € whenever n > N and z € R; thus we conclude that the

Cesaro mean {an( f, -)}le converges uniformly to f. o

2.4 Convergence of Fourier Series for Functions with
Jump Discontinuity

In previous sections we discussed the convergence of the Fourier series representation of
continuous functions. However, since the Fourier series can be defined for bounded Riemann
integrable functions, it is natural to ask what happen if the function under consideration
is not continuous. In this section, we focus on the convergence behavior of Fourier series

representation of functions with jump discontinuities.

Definition 2.21. A function f : [—m, 7] — R is said to have jump discontinuity at a €
(—m,m) if
1. lim f(z)and lim f(z) both exist.

z—at T—a—

2. lim f(z) # lm f(x).

r—a™t T—a~
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Now suppose that f : [-m, 7| — R is piecewise Holder continuous with exponent « €
(0,1]; that is, there exists {a1, -+ ,an} S (—m,m) such that f € €°*((aj,a;41);R) for all
j€{0,---,m}, where agp = —7 and a,,.; = 7. Then for all a € (—7, ), the limits lim f(z)

and lim f(z) exist since if {xk}koo | is a sequence in (—m, ) which approaches to a from the

Tr—a

right/left, then for some 0 < j < m we must have xj € (a;,a;11) for all large k so that the

Holder continuity implies that
|f($k) - f(xé)} < My, — x| Yk, { large

which shows that { f ()}, is a Cauchy sequence (converging to lim_f (z)). Inother words,
r—a—

if f:[—m,m] — R is piecewise Holder continuous and a € (—m, ) is a discontinuity of f,

then f has either removable discontinuity at a (which means lim+ f(z)= lim f(z) # f(a))

or jump discontinuity at a. In the following, we always assume that f is piecewise Holder

continuous with exponent a € (0, 1] and has only jump discontinuities at {ai, - ,a,,} in
(—m, ).
Let f(a)) = hm f(z), f(a;) = lim f(x), and define ¢: R — R by
J 1 J
() = 5 —(x —m) Y el0,2n) (2.11)
T

and ¢(z + 27) = ¢(z) for all x € R. Since f has jump discontinuities at {ay,- -, an}, with
ay denoting a,, ., the function g: [—m, ] = R defined by

Z ))(b(a: — ay) if x+#ay, for all k,
glz) = r) ~ (2.12)
fle) + 7oA i Z ))¢(ak —a;) if x=aqy, for some k,
0<J;<km

is Holder continuous with exponent a and g(aj) = g(ag) = g(—m). Let G be the 27-
periodic extension of g; that is, G = g on [—m, 7] and G(x + 27) = G(z) for all z € R. Then
G € €%%(T); thus Theorem 2.17 implies that s,(G, ) — G uniformly on R. In particular,
Sn(g,-) — g uniformly on [—m, 7].

Using the identity

s

¢<Qf _ a)e—ikx dr = e—ikaJ ¢(x)6—ik:x dr = ake—ika 7

we obtain that

sa(@(-—a),z) = > ope™ ) = 5,(¢,2 — a); (2.13)

k=—n
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thus (2.12) implies that the Fourier series representation of f is given by

NgE

sa(f ) = sulg, ) = ), (f(a)) = f(a;))su(d(- — a;), )

<.
Il
o

L

<
Il
o

= sulg,0) = O (F(af) = F(07)) a0, — a). (2.14)

Therefore, to understand the convergence of the Fourier series representation of f, without

loss of generality it suffices to consider the convergence of s,(¢, -).

2.4.1 Uniform convergence on compact subsets

In this sub-section, we show that the Fourier series of a piecewise Hélder continuous func-
tion whose discontinuities are all jump discontinuities converges uniformly on each compact
subset containing no jump discontinuities.

Based on the discussion above, we first study the convergence of s,(¢,-). Since ¢ is an
odd function, for k € N,

1 (" 1 ("
S = — ¢(x)sinkx dx = _QJ (x — ) sin kx dz
TJ . w2 Jo
1 1—(z — 7) cos kx |r=r ™ cos kx 1
2 [ k 2=0 +L ko wk
Therefore, the Fourier series of ¢ is given by
1 & sinka
(b, x) = —= . 2.15
i) = — 37 (2.15)

sinkz

Q0
Lemma 2.22. The series > converges uniformly on [—m, —0] U [0, 7] for all 0 < § <
k=1

.

Proof. Let 0 < § < be given, and S,(z) denote the sum ) sin kz. Using the identity
k=1

N, z
Zﬁmmzww”ﬂ” 22 yre[-m—duls ],
k=1

: X
281115

we find that |S,| < M < o for some fixed constant M. For m > n,

1 1 1 1
k;n;rl 7 S ko = E(Sm — Sm-1) + H(Sm—l — Sm—2) + -+ m(SrH_l — Sn)
" ntl T mme ot  mem eyt T e
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thus
1 1 1 — 1 1 1
e < a0 Ly oon(lay
‘ Z ksmka:‘ m+n+1+ Z k(k—1) m+n
k=n-+1 k=n-+1

Since the right-hand side converges to 0 as n, m — oo, the Cauchy criterion (for the conver-

gence of series of functions) implies that the series

0

sin kx
2,

k=1

converges uniformly on [—7m, —d] U [0, 7]. o

Lemma 2.22 provides the uniform convergence of s, (¢, ) in [—7, =0] U.[d, 7]. To see the

limit is exactly ¢, we consider an anti-derivative ® of ¢ and establish that &’ = s(¢, -).

2
Let U : R — R be 27-periodic and ¥(z) = I— for z € [—x, 7). Then ¥ € €% (T) is an
s

even function and the Fourier coefficients of ¥ is

1 (™ 22 T
Uo=— | Zge=L
T ) =T 12

~

and for k # 0,

s

~ 1 (™ 2 . 1 .. —1)*
\Ifk:% _Wire_lkxdngﬁj a:z(coska:—i—zsmka:)da::( ) :

—Tr

Therefore, using (2.13) we find that the Fourier series of ® = W(- — ) is

™ ~ T 1 e
s(P,x)=s(V,z=71)=—+ Z Ppethle—m — = 4 = Z
12 im0 12 2m o k

_ 17r_2 ] 1 i cos kx ‘
(et k?

Since ® € €%(T), s,(®,-) converges uniformly to ® on R. Moreover, s,(®,-) = s,(d,")
which converges uniformly on [—m, —d] U [d, 7|. Therefore, Theorem 1.5 implies that s(¢, -),
the uniform limit of s, (¢, -), must equal ®’ on [—m, —d] U [§, 7|. Finally, we note that ¢ = ®’
on [—m,—0] U [0, 7], so we establish that s,(¢, ) — ¢ uniformly on [—m, —d] U [, 7].

Since a discontinuity of a piecewise Holder continuous function f is either removable
or a jump discontinuity, and the value of the function at removable discontinuities does
not change the value of the Fourier series of f, the uniform convergence of s,(¢,-) to ¢ on

[—7,—0] u [0, 7] for all 0 < & < 7 implies the following
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Theorem 2.23. Let f : (—m,m) — R be piecewise Hélder continuous with exponent o €
(0,1]. If f is continuous on (a,b), then the Fourier series of f converges uniformly to f on

any compact subsets of (a,b).
By Remark 2.3, we can also conclude the following

Corollary 2.24. Let f : (—L,L) — R be piecewise Hélder continuous with exponent o €
(0,1]. If f is continuous on (a,b), then the Fourier series of [ converges uniformly to f
on any compact subsets of (a,b) (where the Fourier series of f is given in Remark 2.3). In
particular, nlgrolo sn(f,x0) = f(xo) if f is continuous at xy. In other words, the Fourier series

of f converges pointwise to f except the discontinuities.

2.4.2 Jump discontinuity and Gibbs phenomenon

In this sub-section, we show that the Fourier series evaluated at the jump discontinuity
converges to the average of the limits from the left and the right. Moreover, the convergence
of the Fourier series is never uniform in the domain including these jump discontinuities due
to the famous Gibbs phenomenon: near the jump-discontinuity the maximum difference
between the limit of the Fourier series and the function itself is at least 8% of the jump. To

be more precise, we have the following

Theorem 2.25. Let f : R — R be 2L+periodic piecewise Hdélder continuous with exponent
a € (0,1]. Then

linr s, (Forg) = 4 0)+ S (20)

n=>00 2

VazgeR. (2.16)

Moreover, if xqy is a jump discontinuity of f so that

flag) = flxg) =a#0,

then there exists a constant ¢ > 0, independent of f, xy and L (in fact, ¢ = 1f el % ~
™ Jo X
0.089490), such that
L
. A +
nlgrolosn(f,xo+ n) flzg) + ca, (2.17a)
. L _
T}I_{EOS"U’%O_E) = f(zg) —ca. (2.17b)

Proof. By Remark 2.3, W.L.O.G. we can assume that L = 7. Let {a1, -+ ,a,} < (—m,7) be

the collection of jump discontinuities of f in (—m,7), agp = —7, a1 = ™ (S0 by periodicity
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flag) = f(a,,,,) automatically), and define g by (2.12). Then g € €**(T). Suppose that
xo is a jump discontinuity of f in [—m,7) (so ag could be a possible jump discontinuity of
f). Then xg = ay for some k € {0,1,--- ,m}. Therefore, by the fact that ¢ is continuous at
xo — a; if j # k and s,(¢,0) = 0 for all n € N, Corollary 2.24 implies that

S (Flaf) = F(a;)) T s,(6, 70— a;)

7=0
= 3 (@)~ (@) i sa(dwo—a) = X (F(af) — flag)) oo — ay).

On the other hand,

T}grolo sn(g,x0) = g(x0) = ) —; /(o) + Z (flaf) = f(a}))p(zo — aj).

osjsm
Jj#k

Identity (2.16) is then concluded using (2.14).
Now we focus on (2.17a). Since g € €%%(T); s,(g, -).— ¢ uniformly on R; thus

lim s, (9,20 + =) = g(0).

Similarly, since s, (¢, -) — ¢ uniformly on [—m, —d] U [0, 7] for all § > 0, if j # k,
. m

nlgrgo sn(gb, Zo + o aj) = ¢(zo — a;j).

On the other hand,

Sn<¢7%) :_Zisink—ﬂz—lz n sink—ﬂzﬁ—lf SizdeEE—<C+;).
- 0

As a consequence,

ILHOIOSn(f7$O + %) = lgrolo [Sn(9>$0 + %) - Z (f(aj—> - f(a;))sn(¢7$0 + % - aj):|

n n

—gwo) = 3} (@) = fla)olwo — aj) + (e ) (Fai) ~ F(a7)

= f(ag) +c(f(zg) — flag)) -

Identity (2.17b) can be proved in the same fashion, and is left as an exercise. o
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Remark 2.26. Let f be a function given in Theorem 2.25, xy be a jump discontinuity of
f,and I = (xg,z9+r) for some r > 0 so that f is continuous on /. By the definition of the
right limit, there exists 0 < § < r such that

cla|

£@) = flai)] < 5

Ve (zg,x9+0).

Choose N > 0 such that % < . Then xq + % € (xg,x0+ ) for all n = N; thus if n > N,

L

supls, (£,2) = £(@)] > Jsa(F.0+ ) = Floo+ )

> salf, 0+ 3) = )] = 7o )= ()]
> fsalf, w0+ 5) = 7a)| - DL
which implies that

- cla] _ da]
1 f n\J,T) — = o —— = —.
im infsup [sn(f, @) — (@) > Flahy 57 = =5
Therefore, {sn( f ')}:):1 does not converge uniformly (to f) on I, while Corollary 2.24 shows
that {sn( 1 -)}20:1 converges pointwise to f on-1. Similarly, if xy is a jump discontinuity of
f and f is continuous on (xy — r, o) for some r > 0, then {sn( f, -)}:):1 converge pointwise
but not uniformly on (g — r, xo).
For a function f given in Theorem 2.25, let f be defined by

- f(z) if f is continuous at z,
f@y=3feh) + 1)

5 if x is a discontinuity of f.

~

Then s,(f, ) = su(f;-) for all n € N, and Corollary 2.24 and Theorem 2.25 together imply

that {sn( f, '>}:LO:1 converges pointwise to f However, the discussion above shows that

{sn( f )}le cannot converge uniformly on I as long as I contains jump discontinuities of

1.

2.5 The Inner-Product Point of View

%1 B feRrS g feac BB 0 B - BLG KX (REE A ) SRET Y R

Fourier series o # 1* ¥ 144 T & & [—m, 7] é7%7F Riemann integrable S #c#735 & chfk &
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FRE-BrEIR  RLA R TE-BPFISE - BTAA I (F TR - B

# ) ¢ Fourier series representation ¥ 14 'ﬁ XiZREerE - B ARTESMMEL o
Let L*(T) denote the collection of Riemann measurable, square integrable function over

[—7, 7] modulo the relation that f ~ g if f — g = 0 except on a set of measure zero (or

f = g almost everywhere). In other words,
(1) = {f : [-m7) — C]| f[ If@Pdr <o}/ ~

Here again we abuse the use of notation L?(T) for that it indeed denotes a more general

space. We also note that the domain [—7, 7) can be replaced by any intervals with —7, 7 as

end-points for we can easily modify functions defined on those domains to functions defined

on [—m,m) without changing the Riemann measurability and the square integrability.
Define a bilinear function (-, -) on L*(T) x L*(T) by

S0 =5 | Ha)e@ e

Then (-, -) is an inner product on L?(T). Indeed, if f, g belong to L*(T), then the product fg
is also Riemann measurable, and the Cauchy-Schwartz inequality as well as the monotone

convergence theorem imply that
<19l = Jim o [ 1 ARG A R) 2] e
< lim 1<£; \(f A k’)(x)’Q dx)5 (ﬁ; (g A k)(m)}Q da:) :

k—oo 27

1 (" 2 301 (7 2 3
~ (] @ ) (5 | lo@)dr)” = Iflelgliee < =
thus the definition-of the inner product (-, -) given above is well-defined. The norm induced
by the inner product above is denoted by | - | z2(r).

For k € Z, define e : [—m, 7] — C by e,(z) = ¢*. Then {e;};"_ is an orthonormal
set in L?(T) since

LT ke it g LT e, 1 fR=E
<ek,ee>—2ﬂj_ﬂe e d:v—%j_ﬂe dx = 0 ikl

n
Let Vn - Span<e—nae—n+1; T ,€0,€1, 0 7en) - { Z arer ‘ {ak}z’:—n - (C} FOl“ eaCh
k=—n

vector f € L*(T), the orthogonal projection of f onto V), is, conceptually, given by
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Y o= 3 (52 [ @edn)en= ) fier.
k=—n n T k=—n

By the definition of ey, we obtain that the orthogonal projection of f on V, is exactly
sn(f,-). We also note that V, = 2,(T).
Now we prove that s,(f,) is exactly the orthogonal projection of f onto V,, = Z,(T).

Proposition 2.27. Let f € L*(T). Then
<f_3n(f7')up>:0 vpef@n(T>

Proof. Let pe Z,(T). Then p = s,(p, -); thus

<f_3n(f7'>7p>:<f7p>_<5n(f7');p>:<f; Zn: ﬁkek>_< zn: .]?kekap>

k=—n k=—n
= Y Dlfrer— Y hlpey= X befi— Y, Aibs=0.  c
k=—n k=—n k=—n k=—n
Theorem 2.28. Let f e L*(T). Then
If = plZomy = If = sulf, Mo + 3l ) = Pliey Vo e Pu(T). (2.18)

Proof. By Proposition 2.27, if p e Z,(T), s,(f,") —p = su(f —p,) € Z,(T); thus

Hf_pH%Q(']l‘) :<f_p7f_p>:<f_5n(f7') +5n(f7'> _paf_5n<f7') +Sn(f7') _p>
- Hf - Sn(fv )Hiﬂ(qr) + 2Re(<f - Sn(f7 ')7 Sn(fv ) _p>) + Hsn(fv ) _pHiZ(T)
- Hf _ Sn(fv )Hi2(’]r) + Hsn(f7 ) _p|‘iz(T)

which concludes the proposition. =

We note that (2.18) implies that

If = sulf, M2y < If = pleaery  Vpe Zu(T). (2.19)

Since s,(f, ) € Zn(T), we conclude that

—sn(f.- — inf |f-— .
|f = sn(f, )l z2em) pe;i(nr)uf pllz2em)

Moreover, letting p = 0 in (2.18) we establish the famous Bessel’s inequality.
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Corollary 2.29. Let f € L*(T). Then for alln €N,

Isn(fs ) zzery < [ fllc2ery - (2.20)

In particular,

Z ‘fk|2 ' }f(x)fdx (Bessel’s inequality)

k=—o0

Remark 2.30. When f € L*(T) and f is real-valued, then
Q0

Z |fk|2:CZ 2%"’%

k=—00 k=1

[} V)
l\DI»—t

thus in this case the Bessel inequality can also be written as
2l 1 ("
0 2
—4 3 :E ¢+ s3) < 27Tf_7r}f(a:)‘ dx .

Next, we prove that the Bessel inequality is in fact an equality, called the Parseval
identity. Using (2.18), it is equivalent to that {sn( f, -)}le converges to f in the sense of

L?-norm; that is,
Hm (s, (f,) = flg =0 ¥ feLXT).

Before proceeding, we first prove that every f € L?(T) can be approximated by a sequence

{gn}>_; < €(T) in the sense of L2-norm.

Proposition 2.31. Let f € L*(T). Then for all € > 0 there exists g € €(T) such that

If = gllzer) <€
In other words, €(T) is dense in (L*(T), || - ||z2(r))-

Proof. W.L.O.G., we can assume that f is real-valued and non-zero. Let ¢ > 0 be given.

Since f € L*(T), the monotone convergence theorem implies that

khm Hf — (—k) \ (f AN k‘)”%g(T) = lim f 1{‘f(x)‘>k}($)|f($)’2 dx = 0;
—00 k—owo J_
thus there exists K > 0 such that

If = (=k) v (f AK) | 12(my < g Vk> K.
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Let h = (—K) v (f A K). Then h is bounded and Riemann measurable; thus A is Riemann

integrable on [—m, 7w|. Therefore, there exists a partition P = {—7m =xg <123 < -+ < x,, =
2
w} of [—m, ] such that U(h,P) — L(h,P) < giK Define
n—1 n—1
S(z) = Z sup W)l (z) and  s(z) = Z inf A&y, (),
k=0 §e[gck,zk+1] k=0 Se[xkvxk+1]

where 14 denotes the characteristic/indicator function of set A. Then

. - K<s<h<S<Kon|[-m7n\{z1,29, - ,Zpn_1};
2. S(z)dx =U(h,P); 3. s(x)dx = L(h,P).

—T —T

The properties above show that

JW !h(a:) — s(x)‘ dr = JW h(z) — s(x) dr' < JW (S(I) — s(x)) dx

ne?

Now, for the step function s defined on [—7,; 7], we can always find a continuous function

g€ € (T) (for example, g can be astrapezoidal function) such that

s 52
L gllgom < K. 2. _ﬁ\s(x) —g(z)|dx < T
: o o 1
ST T =
‘ L f gi—
*77'.:‘%'0 £1 l'mg J?g £4 Il'nm_z,I;_l(L’n.:ﬂ'

Figure 2.1: One way of constructing g € €(T) given step function s

Therefore,

f |h(x)fg(x)‘dx<f

—Tr —Tr

us T 2

‘h@) — s(x)‘ dx + JW ‘s(x) — g(:v)‘ dr < Ve
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which implies that

1 4 2 K 62
— |h(z) — g(z)|"dz < — |h(z) = g(z)| do < —;
2T - s [—7,7] 4
thus |k — g|2(m) < % The proposition is then concluded by the triangle inequality. o

Theorem 2.32. Let f € L*(T). Then

7}1_{210 ”f - Sn(fa '>HL2('JI‘) =0 (2.21)
and .
% ‘f(x)‘g dxr = 2 !J?(/C)\2 : (Parseval’s identity)
- k=—ow0

Proof. Let € > 0 be given. By Proposition 2.31 there exists g € ¢ (T) such that

|f = glle2(ry < %
By the denseness of the trigonometric polynomials in ¢’(T), there exists h € Z(T) such
that sup ‘g(w) — h(.iﬁ)\ < % Suppose that h € Zxn(T). Using (2.19),
zeR
1o 1 (" g2

62
Hg — sn(g, ')Hizm < g - hH%z(T) =~ o ‘9(33) - h(l’)|2 dx < o ) dx = 9

T -7

Since sny(g, ) € Z,(T) if n = N, using (2.19) again we must have
€
Hg — sn(9, ')HL2(T) S Hg = sn(y, ')HL2(T) < 3 Vn=N.

Therefore, for n > N, inequality (2.20) and the triangle inequality yield that

I = suth oy S — gllzaee + 1 = sules Mazee) + Isulo — £z
<2|f —glezy + g — snlg, )2y < e

thus (2.21) is concluded. Finally, using (2.18) with p = 0 we obtain that

T

[ = [ ol s [ 15 - sl @

—r —

Using the fact that ;J s (f, q:)’2 de = )] ‘fkf and passing to the limit as n — o0, we
™ J_r k

=-—n

conclude the Parseval identity. O

T 0 0 2

1
Example 2.33. Example 2.6 provides that f 22de =7 % ; thus D] rERr
—m k=1 k=1
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2.6 The Discrete Fourier “Transform” and the Fast
Fourier “Transform?”

Let f: R — R be a periodic function with period L and f is bounded Riemann integrable
on [0,L). Similar to Remark 2.2, the Fourier series of f, defined in Remark 2.3, can be
written as
& ~ 2mik
s(fe)= D>, fre t
k=—0

—2miky

~ 1 L ~
where f;, = 7 j f(y)e— = dy; thus f; can be approximated by the Riemann sum
0

1S Loy e L 1S L —oeie
I LI F =5 L AFTF
{=0 /=0

In other words, the values of f at N evenly distributed points can be used to determine an

approximation of the Fourier coefficients of f.

—27ikl

N-1
There is another point of view of finding the sum % > f(%)e ~ . Even though
=0

sn(f,x) will be a good approximation of s(f,z) for large n, the computation of the ex-
act Fourier coefficients will be expensive (and probably impossible). Therefore, instead of

compute the exact Fourier coefficients, we look for a Fourier-like series of the form

RS-
LS e
N =
. . . LjyN-1 _
so that it agrees with the value of f at points {WJ} . Therefore, we look for { Xz}
=0
satisfying that
(1 1 .. 1 T1r T - T
1 W o . || 1
1 4mi 8mi 4m(N—1)i 1 f(ﬁ)
~ 1 en en oo e N Xy | =
T(N—-1)i T(N—-1)i ' T .7 2; . (Ni]‘)L
1 62 W-1) 64 (N-i 62 (N—1) | _XN—l_ _f( ¥ )_

Let v, = [v,(cl),v,?), e ,v,(CN)]T denote the k-th column of the N x N matrix F' on the
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27 (k—1)(j—1)i
N

left-hand side of the equation above. Then v]ij )= e so that

Uy - UV = 'UZ,UZ = i @72ﬂ(j7137)<k71)iezﬂ(jiyfu7l)i — i QW
J=1 j=1
N-1 4 N-1 . .
20 — k 2nj(0 — k
= Z cos —M(N ) +1 Z sin —M(N )i
J=0 j=0
which shows that
N ifk=1¢,
Vy - Vg =
TR0 itk
Therefore, F*F = Nlyyy; thus
| XO ] 1 127ri ];lﬂi o QW}N—l)i [ f<0) |
o P - N
: : N1)2s N-1)L
_XNfl_ -1 6_27r<1>fv—1>z 6_4«(1}\({71)1 o 6_277(#,1)21- _f(( - ) )—

The discussions above induce the following

Definition 2.34. The discrete Fourier transform, symbolized by DFT, of a sequence

of N complex numbers {zg, x1,- -+ ,2y_1} is a sequence { Xy }rez defined by
Wt —2mikl
Xk = Tee N VkelZ.
=0

We note that the sequence {Xj}rez is N-periodic; that is, Xy ny = X for all k£ €
Z. Therefore, often time we only focus on one of the following N consecutive terms
{X07X17 ce 7XN—1} of the DFT.

Example 2.35. The DFT of the sequence {xq,x1} is {zg + z1, 20 — 21}.

2.6.1 The inversion formula

Let {X)}2 - be the discrete Fourier transform of the sequence {x,}2'. Then {x,})"! can

be recovered given {Xj}r o by the inversion formula

N-1

3 Xpe (2.22)

k=0

1
ZC@ZN
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N-1 .
. —2mikyj 2mikl R
To see this, we compute Y| ( Z rje N )e ~ and obtain that
k=0
N-1 N-1 N-1 = N-1 N-1 = N-1
—2mikj 2wik£ 2wzk(€ 7) 2#1k(€ )
S (S e = X (0 T ) < 5 (5 )
k=0  j=0 =0 k=0 =0 k=0
it
N-1 627ri(€—]) -1
= Nwg+ L amitt—y) = Nz,
j=0 e N —1
il

The map from {X;}5 ' to {z,}1," is called the discrete inverse Fourier transform.
We note that the inversion formula (2.22) is an analogy of

0

fla)=>) fre*

k=—00

for all piecewise constant function f and x € R at which f is continuous.

Remark 2.36. Given a sample data [zg, x1, - - - ,&nx_1] which is the values of a function f on
N evenly distributed points on [0, L) (for some unknown L > 0), the DFT [Xo, X1, , Xn_1]

can be thought as Fourier coefficients which provides the approximation

N-1 —1 (F5*
— 2
2mikx 2mika 2mikx
r) “=" 3 Xpe b= Xpye b+ Z Xpe T,
= k=—[5]

where the first equality “ = 7 holds only for = = %, 0 < ¢ < N —1. Therefore, for

N -1 k
0<k< [T} each Xy, is the coefficient associated with the wave with frequency T To

determine L, we introduce the sampling frequency F; which is the number of samples

I N . . . .
per unit time/length. Then Fy = 7 80 that X} is the coefficient associated with the wave

F,
with frequency Wsk

2.6.2 The fast Fourier transform

Let M = [my] be an N x N matrix with entry my, defined by

—27ikt

Mg =e N 0<kl{<N-1,

and write £ = (zo,21, -+ ,xy_1)" and X = (Xo,---,Xy_1)". Then X = Mz and it

requires N2 multiplications to compute X. The fast Fourier transform, symbolized by
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FFT, is a much faster way to compute X. In the following, we show that when N = 27 for
some 7y € N, then there is a way to compute the DF'T with at most N log, N multiplications.
With N = 27, suppose that (zg, -+ ,7y_1) is a given sequence, and {X}.}; ' is the DFT

of {zp}ny. Let w= e, and

Leven = [xO To Ty - 'IN—2] and Lodd = [xl xr3 Ty xN—l}

Then

N-1
X; = Z Tt = Z Tt + W Z Lo Y
=0

0<U<N-1 0<{<N-1
£ is even £ is odd
= Teen - [0 WH WY WD) g [0 W @Y WD
. . N
In particular, for 0 < j < 5 1,
Xy i = Toven - [w° WAE D) AGHD) w(%ﬂ‘)(N—?)}
LWt - [ W2EHD) AT L w(%ﬂ)(N—Z)]
= Teyen - [0 WH WY o WD) gy [ W W W VD]
where we have used the fact that w? = —1.We note that
; ) (N N/2
{weven. [wo w2 ot i *2)]}
§=0
is exactly the DFT of the sequence {xg,xs, - ,zn_2} and
P4 -1\ V2
{wodd- [wo wH Wt I )}}
§=0
is exactly the DET of the sequence {zy,z3,---,xy_1}. In other words, to compute the
DFT of {zg, - ,zn_1}, where N = 27, it suffices to compute the DFTs of the sequence
{xo,x9, - ,xn_2} and {x1, 23, -+ ,xN_1}. Aslong asthe DFTs of the sequences {x¢, x2, -+ ,xy_2}
. . N e
and {zy,x3, -+ ,xy_1} are known, it requires another 5 multiplications to compute the

DFT of {(L’Q,.Z‘l, s ,I'N_l}.

Now we compute the total multiplications it requires to compute the DF'T of the sequence
{x}7," using the procedure above. Suppose that to compute the DFT of {x3}7_,' requires

f(~) multiplications. Then
f)=2f(v-1)+207".
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It is easy to see that it requires no multiplication to compute the DFT of {z¢, x;} since it is
simply {zo+x1, o —x1}; thus f(1) = 0. Solving the iteration relation above, we obtain that

f(v) = 2771 (v — 1) which implies the total multiplications requires to compute the DFT of
N
{xp}i!, where N =27 is 5(log2 N —1).

Example 2.37. To compute the DFT of {xg,z1, -, 27}, we first compute the DFT of
{xo, X2, 24,6} and {x1,x3, 75,27}, and it requires another 4 multiplications (to compute
the multiplication of w’ and the j-th term of the DFT of {xy,x3, 5,27} for 0 < j < 3).
Nevertheless, instead of computing the DFT of {zg, xe, x4, 26} and {1, x3, a5, 27} directly
using matrix multiplication X = Ma, we again divide the sequence of length 4 into further
shorter sequence {xg, x4}, {x2, x6}, {x1, 25} and {z3, 27}. Once the DET of those sequence of
length 2 are computed, it requires another 2 x 2 = 4 multiplications to compute the DFT of
{xqo, T2, x4, 6} and {z1, x3, T5, x7}. By Example 2.35, it does not require any multiplications
to compute the DFT of sequences of length 2; thus the total multiplications required to
compute the DFT of {xg, 21, - , 27} is4+4=38.

2.7 Fourier Series for Functions of Two Variables

In this section we briefly introduce the Fourier series of complex-valued functions defined
on () = [—Ll, Ll] X [—LQ, LQ] Let

L2(Q) = {f 0 c) L f (@, 22)| 2, 25) < oo}/ -

equipped with the inner product

= L T1,T r1,T Tr1,T
G0V = s | Sl do),

where v(2) denotes the area of Q2 and ~ again denotes the equivalence relation defined by
f ~ g if and only if f — g = 0 except on a set of measure zero. Let ey (x) = ei”(%’%)"”,
here & = (1, 22). Then {eys}r ez is a complete orthonormal set in L*(Q); that is, for each
f € L?(Q), by defining the partial sum

n m

Sn,m(f, IIJ) = Z Z <f7 ek€> ekf(w>

k=—ntl=—m
we have
lim Hf - Sn,m(fa )HLZ(Q) = 07

n,m—00
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where | - |[12(q) is the norm induced by the inner product (:,-). The limit of s, ,(f,-), as

n,m — o0, in the inner product space (L*(),{:,-)) is denoted by

o0 e}
s(fr)= D, D) {fremen
k=—o0 {=—0
and is called the Fourier series of f. One should expect that
Given a collection of data {Z,mn}o<n<ir—10<n<n-1, the discrete Fourier transform (or

simply DFT) of {Z,,}o<n<nm—1,0<n<n—1 is & double sequence { X}y ez defined by

M—-1N-1

o mk, nt
ka — Z Z xmanI wN 9

m=0 n=0

27

where w,, = e ™7 andw, = e~ %" . The double sequence { X}k ez 1s doubly periodic satisty-
ing Xy a4+ n for all k, € € Z; thus we usually only focus on the terms {Xgs}o<k<rr—1.0<r<n—1-
The discrete inverse Fourier transform of a double sequence { Xy }o<r<ar—1,0<e<n—1 is a dou-

ble sequence {Zn, }m.nez defined by

M—-1N-1

1
— mk ——nl
Tmn = M—N Z Z Xpew,, "™,
k=0 ¢=0

where w,, and w, are complex conjugate of w,, and w, defined above.
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