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Chapter 2

Fourier Series

讓我們回顧一下之前已經有的一些結論。在 §1.3 中我們學到了 Stone-Weierstrass 定理，
它告訴我們定義在 [0, 1] 上的連續函數 f 可以用多項式（例如 Bernstein 多項式）去逼近
（在均勻收斂的意義下），而我們也注意到 Bernstein 多項式，在取不同次數 n 的多項式做

逼近時，每一個單項式 xk 前面的係數都跟 n 和 k 有關。但是從定理 1.16 中我們又發現，
對某些擁有很好性質的函數 f（叫做解析函數 Analytic functions），即使取不同次數 n 的

多項式做逼近時，每個單項式 xk 前面的係數可以取成只跟函數 f 的 k 次導數有關（跟 n

無關）。這給了我們一個很粗略的概念，知道想用多項式去逼近連續函數時，多項式的係

數有些時候會跟多項次的次數有關，有時則無關。

在這一章中，我們在前四節特別關注在週期為 2π 的連續函數。由定理 1.25 我們知道
這樣的函數可用形如

pn(x) =
c
(n)
0

2
+

n
ÿ

k=1

(c
(n)
k cos kx+ s

(n)
k sin kx)

的三角多項式 (trigonometric polynomials) 所逼近（在均勻收斂的意義下），其中上標 (n)

代表的是係數可能與用來逼近的三角多項式的次數 n 有關係。跟前一段所述的經驗類似，

在數學理論上我們想知道下面問題的答案：

1. 什麼樣的函數，可以用係數與逼近次數無關的三角多項式去逼近。對這樣的函數，
三角多項式要怎麼挑？

2. 對於實在沒辦法用係數與逼近次數無關的三角多項式去逼近的連續週期函數，有什
麼好的方法逼近？而上面所挑出來的那個係數跟逼近次數無關的三角多項式，在次

數接近無窮大時出了什麼問題？

上述的問題解決之後，我們用變數變換，也可以得到對於週期為 2L 的函數的相關理論。

9
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10 CHAPTER 2. Fourier Series

另外，由於在進行的過程中，我們發現我們所關心用來逼近連續函數的三角多項式

（叫富氏級數），其係數的定法只要求函數可積分即可，因此，一個自然衍生的問題則是：

對不連續（但可積分）的函數來說，有沒有什麼收斂理論可以說明？這個部份的研究則是

第四、五節的主要重點。在第六節中，我們則提供了一個快速傅利葉變換 (FFT) 的演算
法可供電腦去計算富氏級數（的係數）。

2.1 Basic properties of the Fourier series

Let f P C (T) be given. We first assume that the trigonometric polynomials used to approx-
imate f can be chosen in such a way that the coefficients does not depend on the degree of
approximation; that is, c(n)k = ck and s

(n)
k = sk. In this case, if pn Ñ f uniformy on [´π, π],

by Theorem 1.6 we must have

lim
nÑ8

ż π

´π

pn(x) cos kx dx =

ż π

´π

f(x) cos kx dx @ k P t0, 1, ¨ ¨ ¨ , nu

and
lim
nÑ8

ż π

´π

pn(x) sin kx dx =

ż π

´π

f(x) sin kx dx @ k P t1, ¨ ¨ ¨ , nu .

Since
ż π

´π

cos kx cos ℓx dx =

ż π

´π

sin kx sin ℓx dx = πδkℓ @ k, ℓ P N

and
ż π

´π

sin kx cos ℓx dx = 0 @ k P N, ℓ P N Y t0u ,

we find that

ck =
1

π

ż π

´π

f(x) cos kx dx and sk =
1

π

ż π

´π

f(x) sin kx dx . (2.1)

This induces the following

Definition 2.1. For a Riemann integrable function f : [´π, π] Ñ R, the Fourier series
representation of f , denoted by s(f, ¨), is given by

s(f, x) =
c0
2
+

8
ÿ

k=1

(ck cos kx+ sk sin kx)
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§2.1 Basic Properties of the Fourier Series 11

whenever the sum makes sense, where sequences tcku8
k=0 and tsku8

k=1 given by (2.1) are
called the Fourier coefficients associated with f . The n-th partial sum of the Fourier
series representation to f , denoted by sn(f, ¨), is given by

sn(f, x) =
c0
2
+

n
ÿ

k=1

(ck cos kx+ sk sin kx) .

We note that for the Fourier series s(f, x) to be defined, f is not necessary continuous.
Our goal is to establish the convergence of Fourier series in various senses.

Remark 2.2. Because of the Euler identity eiθ = cos θ + i sin θ, we can write

ck =
1

2π

ż π

´π

f(y)(eiky + e´iky)dy and sk =
1

2πi

ż π

´π

f(y)(eiky ´ e´iky)dy

thus

sn(f, x) =
c0
2
+

n
ÿ

k=1

(
ck
eikx + e´ikx

2
+ sk

eikx ´ e´ikx

2i

)
=

1

2

[
c0 +

n
ÿ

k=1

(
(ck ´ isk)e

ikx + (ck + isk)e
´ikx

)]
=

1

2

[
c0 +

n
ÿ

k=1

(
(ck ´ isk)e

ikx +
´1
ÿ

k=´n

(c´k + is´k)e
ikx

]
=

1

2

[
c0 +

1

π

n
ÿ

k=1

ż π

´π

f(y)e´ikydyeikxs+
1

π

´1
ÿ

k=´n

ż π

´π

f(y)e´ikydyeikx
]
.

Define pfk =
1

2π

ż π

´π
f(y)e´ikydy. Then

sn(f, x) =
n
ÿ

k=´n

pfke
ikx .

The sequence t pfku8
k=´8 is also called the Fourier coefficients associated with f , and one can

write the Foruier series representation of f as
8
ř

k=´8

pfke
ikx.

Remark 2.3. Given a continuous function g with period 2L (or a function g which is
Riemann integrable on [´L,L]), let f(x) = g

(Lx
π

)
. Then f is a continuous function with
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12 CHAPTER 2. Fourier Series

period 2π (or f is a Riemann integrable function on [´π, π]), and the Fourier series of f is
given by

s(f, x) =
c0
2
+

n
ÿ

k=1

(ck cos kx+ sk sin kx) ,

where ck and sk are given by (2.1). Now, define the Fourier series of g by s(g, x) = s
(
f,

πx

L

)
.

Then the Fourier series of g is given by

s(g, x) =
c0
2
+

8
ÿ

k=1

(
ck cos kπx

L
+ sk sin kπx

L

)
,

where tcku8
k=0 and tsku8

k=1 is also called the Fourier coefficients associated with g and are
given by

ck =
1

π

ż π

´π

f(x) cos kx dx =
1

π

ż π

´π

g
(Lx
π

)
cos kx dx =

1

L

ż L

´L

g(x) cos kπx
L

dx

and similarly, sk =
1

L

ż L

´L
g(x) sin kπx

L
dx. Similar to Remark 2.2, the Fourier series of g can

also be written as 8
ÿ

k=´8

pgke
iπkx
L ,

where pgk =
1

2L

ż L

´L
g(y)e

´iπky
L dy.

Example 2.4. Consider the periodic function f : R Ñ R defined by

f(x) =

"

x if 0 ď x ď π ,

´x if ´π ă x ă 0 ,

and f(x + 2π) = f(x) for all x P R. To find the Fourier representation of f , we compute
the Fourier coefficients by

sk =
1

π

ż π

´π

f(x) sin kx dx =
1

π

( ż π

0

x sin kx dx ´

ż 0

´π

x sin kx dx
)
= 0

and

ck =
1

π

ż π

´π

f(x) cos kx dx =
1

π

( ż π

0

x cos kx dx ´

ż 0

´π

x cos kx dx
)
=

2

π

ż π

0

x cos kx dx .

If k = 0, then c0 =
2

π

ż π

0
x dx = π, while if k P N,

ck =
2

π

(x sin kx
k

ˇ

ˇ

ˇ

π

0
´

ż π

0

sin kx
k

dx
)
=

2

π

cos kx
k2

ˇ

ˇ

ˇ

π

0
=

2((´1)k ´ 1)

πk2
.
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§2.2 Uniform Convergence of the Fourier Series 13

Therefore, c2k = 0 and c2k´1 = ´
4

π(2k ´ 1)2
for all k P N. Therefore, the Fourier series of f

is given by

s(f, x) =
π

2
´

4

π

8
ÿ

k=1

cos(2k ´ 1)x

(2k ´ 1)2
.

Example 2.5. Consider the periodic function f : R Ñ R defined by

f(x) =

$

&

%

1 if ´
π

2
ď x ď

π

2
,

0 if ´π ď x ă ´
π

2
or π

2
ă x ď π ,

and f(x+ 2π) = f(x) for all x P R. We compute the Fourier coefficients of f and find that
sk = 0 for all k P N and c0 = 1, as well as

ck =
1

π

ż π
2

´π
2

cos kx dx =
2

π

ż π
2

0

cos kx dx =
2 sin kπ

2

πk
.

Therefore, c2k = 0 and c2k´1 =
2(´1)k+1

π(2k ´ 1)
for all k P N; thus the Fourier series of f is given

by

s(f, x) =
1

2
´

2

π

8
ÿ

k=1

(´1)k

2k ´ 1
cos(2k ´ 1)x .

Example 2.6. Consider the periodic function f : R Ñ R defined by

f(x) = x if ´ π ă x ď π

and f(x + 2π) = f(x) for all x P R. Then the Fourier coefficients of f are computed as
follows: ck = 0 for all k P N Y t0u since f is (more or less) an odd function, and

sk =
1

π

ż π

´π

x sin kx dx =
2

π

ż π

0

x sin kx dx =
2

π

(
´
x cos kx

k

ˇ

ˇ

ˇ

π

0
+

ż π

0

cos kx
k

dx
)

=
2(´1)k+1

k
.

Therefore, the Fourier series of f is given by

s(f, x) = 2
8
ÿ

k=1

(´1)k+1

k
sin kx .
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14 CHAPTER 2. Fourier Series

2.2 Uniform Convergence of the Fourier Series

Before proceeding, we note that Remark 2.2 implies that

sn(f, x) =
n
ÿ

k=´n

1

2π

ż π

´π

f(y)eik(x´y) dy =

ż π

´π

f(y)
( 1

2π

n
ÿ

k=´n

eik(x´y)
)
dy .

Define Dn(x) =
1

2π

n
ř

k=´n

eikx. Then Dn is 2π-periodic, and

sn(f, x) =

ż π

´π

f(y)Dn(x ´ y) dy .

For 2π-periodic Riemann integrable functions f and g, we define the convolution of f and
g on the circle by

(f ‹ g)(x) =

ż π

´π

f(y)g(x ´ y) dy .

Then sn(f, x) = (Dn ‹ f)(x).

Note that Dn(0) =
2n+ 1

2π
, and if eix ‰ 1,

Dn(x) =
1

2π

e´inx
[
ei(2n+1)x ´ 1

]
eix ´ 1

=
1

2π

ei(n+1/2)x ´ e´i(n+1/2)x

eix/2 ´ e´ix/2
=

sin(n+ 1
2
)x

2π sin x
2

so that we have the following

Definition 2.7. The function Dn : R Ñ R defined by

Dn(x) =

$

’

’

&

’

’

%

sin(n+ 1
2)x

2π sin x
2

if x R t2kπ | k P Zu ,

2n+ 1

2π
if x P t2kπ | k P Zu ,

(2.2)

is called the Dirichlet kernel.

By the fact that Dn(x) =
1

2π

n
ř

k=´n

eikx, we immediately conclude the following

Lemma 2.8. For each n P N and x P R,
ż π

´π
Dn(x ´ y) dy = 1.

In the following, we first consider the uniform convergence of the Fourier series of 2π-
periodic continuously differentiable functions.
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§2.2 Uniform Convergence of the Fourier Series 15

Definition 2.9. The normed vector space
(
C 1(T), } ¨ }C 1(T)

)
is a vector space over R con-

sisting of all 2π-periodic real-valued continuously differentiable functions and is equipped
with a norm

}f}C 1(T) = }f}8 + }f 1}8 = max
xPR

ˇ

ˇf(x)
ˇ

ˇ+ max
xPR

ˇ

ˇf 1(x)
ˇ

ˇ @ f P C 1(T) .

Theorem 2.10. For any f P C 1(T),the Fourier series of f converges uniformly to f on R;
that is, the sequence tsn(f, ¨)u

8
n=1 converges uniformly to f on R.

Proof. By Lemma 2.8, we find that for all x P R,

sn(f, x) ´ f(x) = (Dn ‹ f ´ f)(x) =

ż π

´π

Dn(x ´ y)
(
f(y) ´ f(x)

)
dy

=

ż π

´π

Dn(y)
(
f(x ´ y) ´ f(x)

)
dy .

We break the integral into two parts: one is the integral on |y| ď δ and the other is the
integral on δ ă |y| ď π. Since f P C 1(T),

|f(x ´ y) ´ f(x)| ď }f 1}8|y| ;

thus by the fact that x

sinx
ď

π

2
for 0 ă x ă

π

2
, we obtain that

ˇ

ˇ

ˇ

ż

|y|ďδ

Dn(y)
(
f(x ´ y) ´ f(x)

)
dy
ˇ

ˇ

ˇ

ď

ż δ

´δ

ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇ

2π
ˇ

ˇ sin y
2

ˇ

ˇ

dy ď
}f 1}8

2π

ż δ

´δ

y

sin y
2

dy ď }f 1}8δ . (2.3)

Now we take care of the integral on δ ă |y| ď π by first looking at the integral on δ ă y ă π.
Integrating by parts,

ż π

δ

Dn(y)
(
f(x ´ y) ´ f(y)

)
dy =

1

2π

ż π

δ

sin
(
n+

1

2

)
y
f(x ´ y) ´ f(x)

sin y
2

dy

= ´
1

2π

cos
(
n+ 1

2

)
y

n+ 1
2

f(x ´ y) ´ f(x)

sin y
2

ˇ

ˇ

ˇ

y=π

y=δ
+

1

2π

ż π

δ

cos
(
n+ 1

2

)
y

n+ 1
2

d

dy

f(x ´ y) ´ f(x)

sin y
2

dy .

For the first term on the right-hand side,
ˇ

ˇ

ˇ

1

2π

cos
(
n+ 1

2

)
y

n+ 1
2

f(x ´ y) ´ f(x)

sin y
2

ˇ

ˇ

ˇ

y=π

y=δ

ˇ

ˇ

ˇ
ď

2}f}8

2πn sin δ
2

ď
}f}8

n sin δ
2

@x P R .
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16 CHAPTER 2. Fourier Series

For the second term on the right-hand side,
ˇ

ˇ

ˇ

1

2π

ż π

δ

cos
(
n+ 1

2

)
y

n+ 1
2

d

dy

f(x ´ y) ´ f(x)

sin y
2

dy
ˇ

ˇ

ˇ

ď
1

2π

[
ˇ

ˇ

ˇ

ż π

δ

cos
(
n+ 1

2

)
y

n+ 1
2

f 1(x ´ y)

sin y
2

dy
ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

ż π

δ

cos
(
n+ 1

2

)
y

n+ 1
2

cos y
2

(
f(x ´ y) ´ f(x)

)
2 sin2 y

2

dy
ˇ

ˇ

ˇ

]
ď

1

2π

[
}f 1}8

π ´ δ(
n+ 1

2

)
sin δ

2

+ }f}8

π ´ δ(
n+ 1

2

)
sin2 δ

2

]
ď

}f}C 1(T)

n sin2 δ
2

.

Similarly,
ˇ

ˇ

ˇ

ż ´δ

´π

Dn(y)
(
f(x ´ y) ´ f(x)

)
dy
ˇ

ˇ

ˇ
ď

}f}8

n sin δ
2

+
}f}C 1(T)

n sin2 δ
2

;

thus for all x P R,
ˇ

ˇsn(f, x) ´ f(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

( ż δ

´δ

+

ż π

δ

+

ż ´δ

´π

)
Dn(y)

(
f(x ´ y) ´ f(x)

)
dy
ˇ

ˇ

ˇ

ď }f 1}8δ +
2}f}8

n sin δ
2

+
2}f}C 1(T)

n sin2 δ
2

ď }f 1}8δ +
4}f}C 1(T)

n sin2 δ
2

.

Let ε ą 0 be given. Choose a fixed δ ą 0 such that }f 1}8δ ă
ε

2
. For this fixed δ, choose

N ą 0 such that
4}f}C 1(T)

N sin2 δ
2

ă
ε

2
.

Then if n ě N and x P R, we have
ˇ

ˇsn(f, x) ´ f(x)
ˇ

ˇ ă
ε

2
+

4}f}C 1(T)

n sin2 δ
2

ď
ε

2
+

4}f}C 1(T)

N sin2 δ
2

ă ε . ˝

After showing the uniform convergence of the Fourier series of C 1-functions, we next
consider the convergence of the Fourier series of less regular functions. The functions of
which we prove the convergence of the Fourier series representation belong to the so-called
Hölder class continuous functions.

Definition 2.11. Let I Ď R be an interval, and α P (0, 1]. A function f is said to be

Hölder continuous with exponent α on I if sup
x,yPI,x‰y

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ

|x ´ y|α
ă 8 . The collection

of all real-valued functions that are Hölder continuous with exponent α on I is denoted
by C 0,α(I;R), and C 0,α(T) is the collection of all 2π-periodic functions that are Hölder
continuous with exponent α on R; that is,

C 0,α(T) =
!

f P C (T)
ˇ

ˇ

ˇ
sup

x,yPR,x‰y

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ

|x ´ y|α
ă 8

)

.
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§2.2 Uniform Convergence of the Fourier Series 17

Let } ¨ }C 0,α(T) be defined by

}f}C 0,α(T) = sup
xPR

ˇ

ˇf(x)
ˇ

ˇ+ sup
x,yPR
x‰y

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ

|x ´ y|α
.

Then } ¨ }C 0,α(T) is a norm on C 0,α(T), and

C 0,α(T) =
␣

f P C (T)
ˇ

ˇ }f}C 0,α(T) ă 8
(

.

In particular, when α = 1, a function in C 0,1(T) is said to be Lipschitz continuous on T;
thus C 0,1(T) consists of Lipschitz continuous functions on T.

The uniform convergence of sn(f, ¨) to f for f P C 0,α(T) with α P (0, 1) requires a lot more
work. The idea is to estimate

›

›f´sn(f, ¨)
›

›

L8(T) in terms of the quantity inf
pPPn(T)

}f´p}L8(T).

Since sn(f, ¨) P Pn(T), it is obvious that

inf
pPPn(T)

}f ´ p}L8(T) ď
›

›f ´ sn(f, ¨)
›

›

L8(T) .

The goal is to show the inverse inequality
›

›f ´ sn(f, ¨)
›

›

L8(T) ď Cn inf
pPPn(T)

}f ´ p}L8(T) (2.4)

for some constant Cn, and pick a suitable p P Pn(T) which gives a good upper bound for
›

›f ´ sn(f, ¨)
›

›

L8(T). The inverse inequality is established via the following

Proposition 2.12. The Dirichlet kernel Dn satisfies that for all n P N,
ż π

´π

ˇ

ˇDn(x)
ˇ

ˇdx ď 2 + logn . (2.5)

Proof. The validity of (2.5) for the case n = 1 is left to the reader, and we provide the proof

for the case n ě 2 here. Recall that Dn(x) =
n
ř

k=´n

eikx

2π
=

sin(n+ 1
2)x

2π sin x
2

. Therefore,

ż π

´π

ˇ

ˇDn(x)
ˇ

ˇdx = 2

ż π

0

ˇ

ˇDn(x)
ˇ

ˇdx =

ż 1
n

0

2
ˇ

ˇDn(x)
ˇ

ˇdx+

ż π

1
n

ˇ

ˇ

ˇ

sin(n+ 1
2
)x

π sin x
2

ˇ

ˇ

ˇ
dx .

Since |Dn(x)| ď lim
tÑ0+

|Dn(t)| =
2n+ 1

2π
for all 0 ă x ď

1

n
, the first integral can be estimated

by
ż 1

n

0

2
ˇ

ˇDn(x)
ˇ

ˇdx ď
1

π

2n+ 1

n
. (2.6)
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Since 2x

π
ď sinx for 0 ď x ď

π

2
, the second integral can be estimated by

ż π

1
n

ˇ

ˇ

ˇ

sin(n+ 1
2
)x

π sin x
2

ˇ

ˇ

ˇ
dx ď

ż π

1
n

1

x
dx = log π + logn . (2.7)

We then conclude (2.5) from (2.6) and (2.7) by noting that log π+ 2n+ 1

nπ
ď 2 for all n ě 2.

˝

Remark 2.13. A more subtle estimate can be done to show that
ż π

´π

ˇ

ˇDn(x)
ˇ

ˇdx ě c1 + c2 logn @n P N

for some positive constants c1 and c2. Therefore, the integral of |Dn| over [´π, π] blows up
as n Ñ 8.

With the help of Proposition 2.12, we are able to prove the inverse inequality (2.4). The
following theorem is a direct consequence of Proposition 2.12.

Theorem 2.14. Let f P C (T); that is, f is a continuous function with period 2π. Then
›

›f ´ sn(f, ¨)
›

›

8
ď (3 + logn) inf

pPPn(T)
}f ´ p}8 . (2.8)

Proof. For n P N and x P T,

ˇ

ˇsn(f, x)
ˇ

ˇ ď

ż π

´π

ˇ

ˇDn(y)|
ˇ

ˇf(x ´ y)
ˇ

ˇdy ď (2 + logn)}f}8 .

Given ε ą 0, let p P Pn(T) such that

}f ´ p}8 ď inf
pPPn(T)

}f ´ p}8 + ε.

Then by the fact that sn(p, x) = p(x) if p P Pn(T), we obtain that
›

›f ´ sn(f, ¨)
›

›

8
ď
›

›f ´ p
›

›

8
+
›

›p ´ sn(f, ¨)
›

›

8
ď
›

›f ´ p
›

›

8
+
›

›sn(f ´ p, ¨)
›

›

8

ď
›

›f ´ p
›

›

8
+ (2 + logn)}f ´ p}8

ď (3 + logn)
[

inf
pPPn(T)

}f ´ p}8 + ε
]
,

and (2.8) is obtained by passing to the limit as ε Ñ 0. ˝



Copy
rig

ht
Prot

ect
ed

§2.2 Uniform Convergence of the Fourier Series 19

Having established Theorem 2.14, the study of the uniform convergence of sn(f, ¨) to f
then amounts to the study of the quantity inf

pPPn(T)
}f´p}8. The estimate of inf

pPPn(T)
}f´p}8

for f P C 0,α(T), where α P (0, 1), is more difficult, and requires a clever choice of p. We
begin with the following

Lemma 2.15. If f is a continuous function on [a, b], then for all δ1, δ2 ą 0,

sup
|x´y|ďδ1

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ď

(
1 +

δ1
δ2

)
sup

|x´y|ďδ2

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ .

The proof of Lemma 2.15 is not very difficult, and is left to the readers.
Now we are in position to prove the theorem due to D. Jackson.

Theorem 2.16 (Jackson). There exists a constant C ą 0 such that

inf
pPPn(T)

}f ´ p}L8(T) ď C sup
|x´y|ď 1

n

|f(x) ´ f(y)| @ f P C (T) .

Proof. Let p(x) = 1+ c1 cosx+ ¨ ¨ ¨+ cn cosnx be a positive trigonometric function of degree
n with coefficients tciu

n
i=1 determined later. Define an operator K on C (T) by

Kf(x) = 1

2π

ż π

´π

p(y)f(x ´ y) dy .

Then Kf P Pn(T). Lemma 2.15 then implies

ˇ

ˇKf(x) ´ f(x)
ˇ

ˇ ď
1

2π

ż π

´π

p(y)
ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇdy

ď
1

2π

ż π

´π

p(y)
(
1 + n|y|

)
sup

|x´y|ď 1
n

ˇ

ˇf(x) ´ f(y)
ˇ

ˇdy

=
[
1 +

n

2π

ż π

´π

|y|p(y) dy
]

sup
|x´y|ď 1

n

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ .

Since y2 ď
π2

2
(1 ´ cos y) for y P [´π, π], by Hölder’s inequality we find that

1

2π

ż π

´π

|y|p(y) dy ď

[ 1

2π

ż π

´π

y2p(y) dy
] 1

2
[ 1

2π

ż π

´π

p(y) dy
] 1

2

ď

[π
4

ż π

´π

(1 ´ cos y)p(y) dy
] 1

2
=
π

2

?
2 ´ c1 .
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Therefore,
}Kf ´ f}8 ď

(
1 +

nπ

2

?
2 ´ c1

)
sup

|x´y|ď 1
n

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ .

To conclude the theorem, we need to show that the number n
?
2 ´ c1 can be made bounded

by choosing p properly. Nevertheless, let

p(x) = c
ˇ

ˇ

ˇ

n
ÿ

k=0

sin (k + 1)π

n+ 2
eikx

ˇ

ˇ

ˇ

2

= c
n
ÿ

k=0

n
ÿ

ℓ=0

sin (k + 1)π

n+ 2
sin (ℓ+ 1)π

n+ 2
ei(k´ℓ)x

= c
n
ÿ

k=0

sin2 (k + 1)π

n+ 2
+ 2c

n
ÿ

k,ℓ=0
kąℓ

sin (k + 1)π

n+ 2
sin (ℓ+ 1)π

n+ 2
cos(k ´ ℓ)x

and choose c so that p(x) = 1 + c1 cosx+ ¨ ¨ ¨ + cn cosnx. Then

c´1 =
n
ÿ

k=0

sin2 (k + 1)π

n+ 2
=

1

2

n
ÿ

k=0

[
1 ´ cos 2(k + 1)π

n+ 2

]
=
n+ 1

2
´

sin (2n+3)π
n+2

´ sin π
n+2

4 sin π
n+2

=
n+ 2

2
,

and

c1 = 2c
n
ÿ

k=1

sin (k + 1)π

n+ 2
sin kπ

n+ 2
= c

n
ÿ

k=1

[
cos π

n+ 2
´ cos (2k + 1)π

n+ 2

]
= c

[
n cos π

n+ 2
´

sin (2n+2)π
n+2

´ sin 2π
n+2

2 sin π
n+2

]
= c

[
n cos π

n+ 2
+

sin 2π
n+2

sin π
n+2

]
= c(n+ 2) cos π

n+ 2
= 2 cos π

n+ 2
.

As a consequence,

n
?
2 ´ c1 = n

(
2 ´ 2 cos π

n+ 2

) 1
2
= 2n sin π

2(n+ 2)

= 2(n+ 2) sin π

2(n+ 2)
´ 4 sin π

2(n+ 2)

= π
2(n+ 2)

π
sin π

2(n+ 2)
´ 4 sin π

2(n+ 2)

which is bounded by π; thus

inf
pPPn(T)

}f ´ p}L8(T) ď }Kf ´ f}L8(T) ď
(
1 +

π2

2

)
sup

|x´y|ď 1
n

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ . ˝
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Finally, since lim
nÑ8

n´α logn = 0 for all α P (0, 1] , we conclude the following

Theorem 2.17. For all f P C 0,α(T) with α P (0, 1], sn(f, ¨) = Dn ‹ f converges to f

uniformly as n Ñ 8.

Remark 2.18. The converse of Theorem 2.16 is the Bernstein theorem which states that if
f is a 2π-periodic function such that for some constant C (independent of n) and α P (0, 1),

inf
pPPn(T)

}f ´ p}8 ď Cn´α (2.9)

for all n P N, then f P C 0,α(T). In other words, (2.9) is an equivalent condition to the
Hölder continuity with exponent α of 2π-periodic continuous functions.

2.3 Cesàro Mean of Fourier Series
While Theorem 1.25 shows that the collection of trigonometric polynomials

!c0
2
+

n
ÿ

k=1

(ck cos kx+ sk sin kx)
ˇ

ˇ

ˇ
tckunk=0, tskunk=1 Ď R

)

is dense in C (T), Theorem 2.17 only implies the uniform convergence of the Fourier series of
Hölder continuous functions. Since the Fourier coefficients tckunk=0 and tskunk=1 are indepen-
dent of the order of approximation n, as we discussed in the beginning of this chapter we
do not expect that sn(f, ¨) uniformly to f on [´π, π] for general f P C (T). To approximate
continuous functions uniformly, the coefficients of the trigonometric polynomials should
depend on the order of approximation.

The motivation of the discussion below is due to the following observation. Let taku8
k=1

be a sequence. Define a new sequence tbnu8
n=1, called the Cesàro mean of the sequence

taku8
k=1, by

bn =
a1 + ¨ ¨ ¨ + an

n
=

1

n

n
ÿ

k=1

ak .

If taku8
k=1 converges to a, then tbnu8

n=1 converges to a as well. Even though the convergence
of a sequence cannot be guaranteed by the convergence of its Cesàro mean, it is worthwhile
investigating the convergence behavior of the Cesàro mean.

Let σn(f, ¨) denote the Cesàro mean of the Fourier series of f given by

σn(f, ¨) ”
1

n+ 1

n
ÿ

k=0

sk(f, ¨) =
1

n+ 1

n
ÿ

k=0

(Dk ‹ f) =
( 1

n+ 1

n
ÿ

k=0

Dk

)
‹ f .
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We note that the coefficients of the Cesàro mean σn(f, ¨) depend on the order of approxima-
tion n since

σn(f, x) =
c0
2
+

n
ÿ

k=1

(
n+ 1 ´ k

n+ 1
ck

looooomooooon

” c
(n)
k

cos kx+ n+ 1 ´ k

n+ 1
sk

looooomooooon

” s
(n)
k

sin kx
)
.

Recall that Dk(x) =
sin(k + 1

2)x

2π sin x
2

. By the product-to-sum formula, we find that if x P

(0, π),
n
ÿ

k=0

Dk(x) =
1

2π sin x
2

n
ÿ

k=0

sin(k + 1

2
)x =

1

4π sin2 x
2

n
ÿ

k=0

2 sin x
2

sin(k + 1

2
)x

=
1

4π sin2 x
2

n
ÿ

k=0

(
cos kx ´ cos(k + 1)x

)
=

1

4π sin2 x
2

(
1 ´ cos(n+ 1)x

)
=

sin2 n+1
2
x

2π sin2 x
2

.

This induces the following

Definition 2.19. The Fejér kernel is the Cesàro mean of the Dirichlet kernel given by

Fn(x) =
1

n+ 1

n
ÿ

k=0

Dk(x) =
1

2π(n+ 1)

sin2 (n+1)x
2

sin2 x
2

.

We note that σn(f, ¨) = Fn ‹f , where Fn ě 0 and has the property that
ż π

´π
Fn(x) dx = 1

(since the integral of the Dirichlet kernel is 1). Moreover, for any δ ą 0,

lim
nÑ8

ż

δď|x|ďπ

Fn(x) dx = 0 (2.10)

since
ˇ

ˇFn(x)
ˇ

ˇ ď
1

2π(n+ 1) sin2 δ
2

if δ ď |x| ď π. Inequality (2.10) allows us to show that
␣

σn(f, ¨)
(8

n=1
converges uniformly to f .

Theorem 2.20. For any f P C (T), the Cesàro mean
␣

σn(f, ¨)
(8

n=1
of the Fourier series of

f converges uniformly to f .

Proof. Let ε ą 0 be given. Since f P C (T), f is uniformly continuous on R; thus there
exists δ ą 0 such that

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ă
ε

2
whenever |x ´ y| ă δ .
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Therefore, by the fact that
ż π

´π
Fn(x)dx = 1 and Fn ě 0,

ˇ

ˇσn(f, x) ´ f(x)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż π

´π

Fn(y)f(x ´ y) dy ´

ż π

´π

Fn(y)f(x) dy
ˇ

ˇ

ˇ

ď

ż π

´π

Fn(y)
ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇ dy

=

ż

|y|ăδ

Fn(y)
ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇ dy +

ż

δď|y|ďπ

Fn(y)
ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇ dy

ď ε

ż

|y|ăδ

Fn(y) dy + 2}f}8

ż

δď|y|ďπ

Fn(y) dy

ď
ε

2
+ 2}f}8

ż

δď|y|ďπ

Fn(y) dy .

Using (2.10), there exists N ą 0 such that

2}f}8

ż

δď|y|ďπ

Fn(y) dy ă
ε

2
whenever n ě N .

Therefore,
ˇ

ˇσn(f, x) ´ f(x)
ˇ

ˇ ă ε whenever n ě N and x P R; thus we conclude that the
Cesàro mean

␣

σn(f, ¨)
(8

n=1
converges uniformly to f . ˝

2.4 Convergence of Fourier Series for Functions with
Jump Discontinuity

In previous sections we discussed the convergence of the Fourier series representation of
continuous functions. However, since the Fourier series can be defined for bounded Riemann
integrable functions, it is natural to ask what happen if the function under consideration
is not continuous. In this section, we focus on the convergence behavior of Fourier series
representation of functions with jump discontinuities.

Definition 2.21. A function f : [´π, π] Ñ R is said to have jump discontinuity at a P

(´π, π) if

1. lim
xÑa+

f(x) and lim
xÑa´

f(x) both exist.

2. lim
xÑa+

f(x) ‰ lim
xÑa´

f(x).
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Now suppose that f : [´π, π] Ñ R is piecewise Hölder continuous with exponent α P

(0, 1]; that is, there exists ta1, ¨ ¨ ¨ , amu Ď (´π, π) such that f P C 0,α((aj, aj+1);R) for all
j P t0, ¨ ¨ ¨ ,mu, where a0 = ´π and am+1 = π. Then for all a P (´π, π), the limits lim

xÑa+
f(x)

and lim
xÑa´

f(x) exist since if txku8
k=1 is a sequence in (´π, π) which approaches to a from the

right/left, then for some 0 ď j ď m we must have xk P (aj, aj+1) for all large k so that the
Hölder continuity implies that

ˇ

ˇf(xk) ´ f(xℓ)
ˇ

ˇ ď M |xk ´ xℓ|
α @ k, ℓ large

which shows that tf(xku8
k=1 is a Cauchy sequence

(
converging to lim

xÑa˘
f(x)

)
. In other words,

if f : [´π, π] Ñ R is piecewise Hölder continuous and a P (´π, π) is a discontinuity of f ,
then f has either removable discontinuity at a

(
which means lim

xÑa+
f(x) = lim

xÑa´
f(x) ‰ f(a)

)
or jump discontinuity at a. In the following, we always assume that f is piecewise Hölder
continuous with exponent α P (0, 1] and has only jump discontinuities at ta1, ¨ ¨ ¨ , amu in
(´π, π).

Let f(a+j ) = lim
xÑa+j

f(x), f(a´
j ) = lim

xÑa´
j

f(x), and define ϕ : R Ñ R by

ϕ(x) =
1

2π
(x ´ π) @x P [0, 2π) (2.11)

and ϕ(x+ 2π) = ϕ(x) for all x P R. Since f has jump discontinuities at ta1, ¨ ¨ ¨ , amu, with
a´
0 denoting a´

m+1 the function g : [´π, π] Ñ R defined by

g(x) ”

$

’

’

’

’

&

’

’

’

’

%

f(x) +
m
ÿ

j=0

(
f(a+j ) ´ f(a´

j )
)
ϕ(x ´ aj) if x‰ak for all k,

f(a+k ) + f(a´
k )

2
+

ÿ

0ďjďm
j‰k

(
f(a+j ) ´ f(a´

j )
)
ϕ(ak ´ aj) if x=ak for some k,

(2.12)

is Hölder continuous with exponent α and g(a+0 ) = g(a´
0 ) = g(´π). Let G be the 2π-

periodic extension of g; that is, G = g on [´π, π] and G(x+2π) = G(x) for all x P R. Then
G P C 0,α(T); thus Theorem 2.17 implies that sn(G, ¨) Ñ G uniformly on R. In particular,
sn(g, ¨) Ñ g uniformly on [´π, π].

Using the identity
ż π

´π
ϕ(x ´ a)e´ikx dx = e´ika

ż π

´π
ϕ(x)e´ikx dx = pϕke

´ika ,

we obtain that
sn(ϕ(¨ ´ a), x) =

n
ÿ

k=´n

pϕke
ik(x´a) = sn(ϕ, x ´ a) ; (2.13)
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thus (2.12) implies that the Fourier series representation of f is given by

sn(f, x) = sn(g, x) ´

m
ÿ

j=0

(
f(a+j ) ´ f(a´

j )
)
sn(ϕ(¨ ´ aj), x)

= sn(g, x) ´

m
ÿ

j=0

(
f(a+j ) ´ f(a´

j )
)
sn(ϕ, x ´ aj) . (2.14)

Therefore, to understand the convergence of the Fourier series representation of f , without
loss of generality it suffices to consider the convergence of sn(ϕ, ¨).

2.4.1 Uniform convergence on compact subsets

In this sub-section, we show that the Fourier series of a piecewise Hölder continuous func-
tion whose discontinuities are all jump discontinuities converges uniformly on each compact
subset containing no jump discontinuities.

Based on the discussion above, we first study the convergence of sn(ϕ, ¨). Since ϕ is an
odd function, for k P N,

sk =
1

π

ż π

´π

ϕ(x) sin kx dx =
1

π2

ż π

0

(x ´ π) sin kx dx

=
1

π2

[´(x ´ π) cos kx
k

ˇ

ˇ

ˇ

x=π

x=0
+

ż π

0

cos kx
k

dx
]
= ´

1

πk
.

Therefore, the Fourier series of ϕ is given by

sn(ϕ, x) = ´
1

π

n
ÿ

k=1

sin kx
k

. (2.15)

Lemma 2.22. The series
8
ř

k=1

sin kx

k
converges uniformly on [´π,´δ]Y [δ, π] for all 0 ă δ ă

π.

Proof. Let 0 ă δ ă π be given, and Sn(x) denote the sum
n
ř

k=1

sin kx. Using the identity
n
ÿ

k=1

sin kx =
cos(n+ 1

2
)x ´ cos x

2

2 sin x
2

@x P [´π,´δ] Y [δ, π] ,

we find that |Sn| ď M ă 8 for some fixed constant M . For m ą n,
m
ÿ

k=n+1

1

k
sin kx =

1

m
(Sm ´ Sm´1) +

1

m ´ 1
(Sm´1 ´ Sm´2) + ¨ ¨ ¨ +

1

n+ 1
(Sn+1 ´ Sn)

=
Sm

m
´

Sn

n+ 1
+

1

m(m ´ 1)
Sm´1 +

1

(m ´ 1)(m ´ 2)
Sm´2 + ¨ ¨ ¨

1

(n+ 1)n
Sn+1 ;
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thus
ˇ

ˇ

ˇ

m
ÿ

k=n+1

1

k
sin kx

ˇ

ˇ

ˇ
ď M

(
1

m
+

1

n+ 1
+

m
ÿ

k=n+1

1

k(k ´ 1)

)
ď 2M

(
1

m
+

1

n

)
.

Since the right-hand side converges to 0 as n,m Ñ 8, the Cauchy criterion (for the conver-
gence of series of functions) implies that the series

8
ÿ

k=1

sin kx
k

converges uniformly on [´π,´δ] Y [δ, π]. ˝

Lemma 2.22 provides the uniform convergence of sn(ϕ, ¨) in [´π,´δ] Y [δ, π]. To see the
limit is exactly ϕ, we consider an anti-derivative Φ of ϕ and establish that Φ 1 = s(ϕ, ¨).

Let Ψ : R Ñ R be 2π-periodic and Ψ(x) =
x2

4π
for x P [´π, π]. Then Ψ P C 0,1(T) is an

even function and the Fourier coefficients of Ψ is

pΨ0 =
1

2π

ż π

´π

x2

4π
dx =

π

12

and for k ‰ 0,

pΨk =
1

2π

ż π

´π

x2

4π
e´ikx dx =

1

8π2

ż π

´π

x2(cos kx+ i sin kx) dx =
(´1)k

2k2π
.

Therefore, using (2.13) we find that the Fourier series of Φ ” Ψ(¨ ´ π) is

s(Φ, x) = s(Ψ, x ´ π) =
π

12
+

ÿ

kPZ,k‰0

pΨke
ik(x´π) =

π

12
+

1

2π

ÿ

kPZ,k‰0

eikx

k2

=
π

12
+

1

π

8
ÿ

k=1

cos kx
k2

.

Since Φ P C 0,1(T), sn(Φ, ¨) converges uniformly to Φ on R. Moreover, sn(Φ, ¨) 1 = sn(ϕ, ¨)

which converges uniformly on [´π,´δ] Y [δ, π]. Therefore, Theorem 1.5 implies that s(ϕ, ¨),
the uniform limit of sn(ϕ, ¨), must equal Φ 1 on [´π,´δ]Y [δ, π]. Finally, we note that ϕ = Φ 1

on [´π,´δ] Y [δ, π], so we establish that sn(ϕ, ¨) Ñ ϕ uniformly on [´π,´δ] Y [δ, π].
Since a discontinuity of a piecewise Hölder continuous function f is either removable

or a jump discontinuity, and the value of the function at removable discontinuities does
not change the value of the Fourier series of f , the uniform convergence of sn(ϕ, ¨) to ϕ on
[´π,´δ] Y [δ, π] for all 0 ă δ ă π implies the following
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Theorem 2.23. Let f : (´π, π) Ñ R be piecewise Hölder continuous with exponent α P

(0, 1]. If f is continuous on (a, b), then the Fourier series of f converges uniformly to f on
any compact subsets of (a, b).

By Remark 2.3, we can also conclude the following

Corollary 2.24. Let f : (´L,L) Ñ R be piecewise Hölder continuous with exponent α P

(0, 1]. If f is continuous on (a, b), then the Fourier series of f converges uniformly to f

on any compact subsets of (a, b) (where the Fourier series of f is given in Remark 2.3). In
particular, lim

nÑ8
sn(f, x0) = f(x0) if f is continuous at x0. In other words, the Fourier series

of f converges pointwise to f except the discontinuities.

2.4.2 Jump discontinuity and Gibbs phenomenon

In this sub-section, we show that the Fourier series evaluated at the jump discontinuity
converges to the average of the limits from the left and the right. Moreover, the convergence
of the Fourier series is never uniform in the domain including these jump discontinuities due
to the famous Gibbs phenomenon: near the jump discontinuity the maximum difference
between the limit of the Fourier series and the function itself is at least 8% of the jump. To
be more precise, we have the following

Theorem 2.25. Let f : R Ñ R be 2L-periodic piecewise Hölder continuous with exponent
α P (0, 1]. Then

lim
nÑ8

sn(f, x0) =
f(x+0 ) + f(x´

0 )

2
@x0 P R . (2.16)

Moreover, if x0 is a jump discontinuity of f so that

f(x+0 ) ´ f(x´
0 ) = a ‰ 0 ,

then there exists a constant c ą 0, independent of f , x0 and L (in fact, c = 1

π

ż π

0

sinx

x
dx ´

1

2
«

0.089490), such that

lim
nÑ8

sn
(
f, x0 +

L

n

)
= f(x+0 ) + ca , (2.17a)

lim
nÑ8

sn
(
f, x0 ´

L

n

)
= f(x´

0 ) ´ ca . (2.17b)

Proof. By Remark 2.3, W.L.O.G. we can assume that L = π. Let ta1, ¨ ¨ ¨ , amu Ď (´π, π) be
the collection of jump discontinuities of f in (´π, π), a0 = ´π, am+1 = π (so by periodicity
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f(a´
0 ) = f(a´

m+1) automatically), and define g by (2.12). Then g P C 0,α(T). Suppose that
x0 is a jump discontinuity of f in [´π, π) (so a0 could be a possible jump discontinuity of
f). Then x0 = ak for some k P t0, 1, ¨ ¨ ¨ ,mu. Therefore, by the fact that ϕ is continuous at
x0 ´ aj if j ‰ k and sn(ϕ, 0) = 0 for all n P N, Corollary 2.24 implies that

m
ÿ

j=0

(
f(a+j ) ´ f(a´

j )
)

lim
nÑ8

sn(ϕ, x0 ´ aj)

=
ÿ

0ďjďm
j‰k

(
f(a+j ) ´ f(a´

j )
)

lim
nÑ8

sn(ϕ, x0 ´ aj) =
ÿ

0ďjďm
j‰k

(
f(a+j ) ´ f(a´

j )
)
ϕ(x0 ´ aj) .

On the other hand,

lim
nÑ8

sn(g, x0) = g(x0) =
f(x+0 ) + f(x´

0 )

2
+

ÿ

0ďjďm
j‰k

(
f(a+j ) ´ f(a´

j )
)
ϕ(x0 ´ aj) .

Identity (2.16) is then concluded using (2.14).
Now we focus on (2.17a). Since g P C 0,α(T), sn(g, ¨) Ñ g uniformly on R; thus

lim
nÑ8

sn
(
g, x0 +

π

n

)
= g(x0) .

Similarly, since sn(ϕ, ¨) Ñ ϕ uniformly on [´π,´δ] Y [δ, π] for all δ ą 0, if j ‰ k,

lim
nÑ8

sn
(
ϕ, x0 +

π

n
´ aj

)
= ϕ(x0 ´ aj) .

On the other hand,

sn
(
ϕ,
π

n

)
= ´

n
ÿ

k=1

1

πk
sin kπ

n
= ´

1

π

n
ÿ

k=1

n

kπ
sin kπ

n

π

n
Ñ ´

1

π

ż π

0

sinx
x

dx ” ´
(
c+

1

2

)
.

As a consequence,

lim
nÑ8

sn
(
f, x0 +

π

n

)
= lim

nÑ8

[
sn
(
g, x0 +

π

n

)
´

m
ÿ

j=0

(
f(a+j ) ´ f(a´

j )
)
sn
(
ϕ, x0 +

π

n
´ aj

)]
= g(x0) ´

ÿ

0ďjďm
j‰k

(
f(a+j ) ´ f(a´

j )
)
ϕ(x0 ´ aj) +

(
c+

1

2

)(
f(x+0 ) ´ f(x´

0 )
)

= f(x+0 ) + c
(
f(x+0 ) ´ f(x´

0 )
)
.

Identity (2.17b) can be proved in the same fashion, and is left as an exercise. ˝
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Remark 2.26. Let f be a function given in Theorem 2.25, x0 be a jump discontinuity of
f , and I = (x0, x0 + r) for some r ą 0 so that f is continuous on I. By the definition of the
right limit, there exists 0 ă δ ă r such that

ˇ

ˇf(x) ´ f(x+0 )
ˇ

ˇ ă
c|a|

2
@x P (x0, x0 + δ) .

Choose N ą 0 such that L

N
ă δ. Then x0 +

L

N
P (x0, x0 + δ) for all n ě N ; thus if n ě N ,

sup
xPI

ˇ

ˇsn(f, x) ´ f(x)
ˇ

ˇ ě
ˇ

ˇsn(f, x0 +
L

N
) ´ f(x0 +

L

N
)
ˇ

ˇ

ě
ˇ

ˇsn(f, x0 +
L

N
) ´ f(x+0 )

ˇ

ˇ ´
ˇ

ˇf(x0 +
L

N
) ´ f(x+0 )

ˇ

ˇ

ě
ˇ

ˇsn(f, x0 +
L

N
) ´ f(x+0 )

ˇ

ˇ ´
c|a|

2

which implies that

lim inf
nÑ8

sup
xPI

ˇ

ˇsn(f, x) ´ f(x)
ˇ

ˇ ě c|a| ´
c|a|

2
=
c|a|

2
.

Therefore,
␣

sn(f, ¨)
(8

n=1
does not converge uniformly (to f) on I, while Corollary 2.24 shows

that
␣

sn(f, ¨)
(8

n=1
converges pointwise to f on I. Similarly, if x0 is a jump discontinuity of

f and f is continuous on (x0 ´ r, x0) for some r ą 0, then
␣

sn(f, ¨)
(8

n=1
converge pointwise

but not uniformly on (x0 ´ r, x0).
For a function f given in Theorem 2.25, let rf be defined by

rf(x) =

$

&

%

f(x) if f is continuous at x ,
f(x+) + f(x´)

2
if x is a discontinuity of f .

Then sn( rf, ¨) = sn(f, ¨) for all n P N, and Corollary 2.24 and Theorem 2.25 together imply
that

␣

sn(f, ¨)
(8

n=1
converges pointwise to rf . However, the discussion above shows that

␣

sn(f, ¨)
(8

n=1
cannot converge uniformly on I as long as I contains jump discontinuities of

f .

2.5 The Inner-Product Point of View
除了逐點收斂或均勻收斂的觀點之外，還有一個更自然（就數學而言）的觀點可以用來看

Fourier series。我們可以把定義在 [´π, π] 的所有 Riemann integrable 函數所形成的集合



Copy
rig

ht
Prot

ect
ed

30 CHAPTER 2. Fourier Series

看成一個向量空間，然後在上面定義一個內積的結構。一個可積分函數（也可視為一個向

量）的 Fourier series representation 可以看成這個向量在一組正交基底向量的線性組合。
Let L2(T) denote the collection of Riemann measurable, square integrable function over

[´π, π] modulo the relation that f „ g if f ´ g = 0 except on a set of measure zero (or
f = g almost everywhere). In other words,

L2(T) =
!

f : [´π, π) Ñ C
ˇ

ˇ

ˇ

ż

[´π,π)
|f(x)|2 dx ă 8

)

/ „ .

Here again we abuse the use of notation L2(T) for that it indeed denotes a more general
space. We also note that the domain [´π, π) can be replaced by any intervals with ´π, π as
end-points for we can easily modify functions defined on those domains to functions defined
on [´π, π) without changing the Riemann measurability and the square integrability.

Define a bilinear function x¨, ¨y on L2(T) ˆ L2(T) by

xf, gy =
1

2π

ż π

´π
f(x)g(x) dx .

Then x¨, ¨y is an inner product on L2(T). Indeed, if f, g belong to L2(T), then the product fg
is also Riemann measurable, and the Cauchy-Schwartz inequality as well as the monotone
convergence theorem imply that

ˇ

ˇxf, gy
ˇ

ˇ = lim
kÑ8

1

2π

ż π

´π

ˇ

ˇ(f ^k)(x)
ˇ

ˇ

ˇ

ˇ(g^k)(x)
ˇ

ˇ dx

ď lim
kÑ8

1

2π

( ż π

´π

ˇ

ˇ(f ^k)(x)
ˇ

ˇ

2
dx

) 1
2
( ż π

´π

ˇ

ˇ(g^k)(x)
ˇ

ˇ

2
dx

) 1
2

=
(

1

2π

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx

) 1
2
(

1

2π

ż π

´π

ˇ

ˇg(x)
ˇ

ˇ

2
dx

) 1
2
= }f}L2(T)}g}L2(T) ă 8 ;

thus the definition of the inner product x¨, ¨y given above is well-defined. The norm induced
by the inner product above is denoted by } ¨ }L2(T).

For k P Z, define ek : [´π, π] Ñ C by ek(x) = eikx. Then teku8
k=´8 is an orthonormal

set in L2(T) since

xek, eℓy =
1

2π

ż π

´π
eikxe´iℓx dx =

1

2π

ż π

´π
ei(k´ℓ)x dx =

"

1 if k = ℓ ,
0 if k ‰ ℓ .

Let Vn = span(e´n, e´n+1, ¨ ¨ ¨ , e0, e1, ¨ ¨ ¨ , en) =
! n

ř

k=´n

akek
ˇ

ˇ

ˇ
takunk=´n Ď C

)

. For each

vector f P L2(T), the orthogonal projection of f onto Vn is, conceptually, given by
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n
ÿ

k=´n

xf, eky ek =
n
ÿ

k=´n

(
1

2π

ż π

´π
f(x)e´ikx dx

)
ek =

n
ÿ

k=´n

pfkek .

By the definition of ek, we obtain that the orthogonal projection of f on Vn is exactly
sn(f, ¨). We also note that Vn = Pn(T).

Now we prove that sn(f, ¨) is exactly the orthogonal projection of f onto Vn = Pn(T).

Proposition 2.27. Let f P L2(T). Then

xf ´ sn(f, ¨), py = 0 @ p P Pn(T) .

Proof. Let p P Pn(T). Then p = sn(p, ¨); thus

xf ´ sn(f, ¨), py = xf, py ´ xsn(f, ¨), py =
@

f,
n
ÿ

k=´n

ppkek
D

´ x

n
ÿ

k=´n

pfkek, py

=
n
ÿ

k=´n

ppkxf, eky ´

n
ÿ

k=´n

pfkxp, eky =
n
ÿ

k=´n

ppk pfk ´

n
ÿ

k=´n

pfkppk = 0 . ˝

Theorem 2.28. Let f P L2(T). Then

}f ´ p}2L2(T) = }f ´ sn(f, ¨)}
2
L2(T) + }sn(f, ¨) ´ p}2L2(T) @ p P Pn(T) . (2.18)

Proof. By Proposition 2.27, if p P Pn(T), sn(f, ¨) ´ p = sn(f ´ p, ¨) P Pn(T); thus

}f ´ p}2L2(T) = xf ´ p, f ´ py = xf ´ sn(f, ¨) + sn(f, ¨) ´ p, f ´ sn(f, ¨) + sn(f, ¨) ´ py

=
›

›f ´ sn(f, ¨)
›

›

2

L2(T) + 2Re
(
xf ´ sn(f, ¨), sn(f, ¨) ´ py

)
+
›

›sn(f, ¨) ´ p
›

›

2

L2(T)

=
›

›f ´ sn(f, ¨)
›

›

2

L2(T) +
›

›sn(f, ¨) ´ p
›

›

2

L2(T)

which concludes the proposition. ˝

We note that (2.18) implies that

}f ´ sn(f, ¨)}L2(T) ď }f ´ p}L2(T) @ p P Pn(T) . (2.19)

Since sn(f, ¨) P Pn(T), we conclude that

}f ´ sn(f, ¨)}L2(T) = inf
pPPn(T)

}f ´ p}L2(T) .

Moreover, letting p = 0 in (2.18) we establish the famous Bessel’s inequality.
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Corollary 2.29. Let f P L2(T). Then for all n P N,

}sn(f, ¨)}L2(T) ď }f}L2(T) . (2.20)

In particular,
8
ÿ

k=´8

ˇ

ˇ pfk|2 ď
1

2π

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx . (Bessel’s inequality)

Remark 2.30. When f P L2(T) and f is real-valued, then

8
ÿ

k=´8

ˇ

ˇ pfk|2 =
c20
4
+

1

2

8
ÿ

k=1

(c2k + s2k) ;

thus in this case the Bessel inequality can also be written as

c20
4
+

1

2

8
ÿ

k=1

(c2k + s2k) ď
1

2π

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx .

Next, we prove that the Bessel inequality is in fact an equality, called the Parseval
identity. Using (2.18), it is equivalent to that

␣

sn(f, ¨)
(8

n=1
converges to f in the sense of

L2-norm; that is,
lim
nÑ8

›

›sn(f, ¨) ´ f
›

›

L2(T) = 0 @ f P L2(T) .

Before proceeding, we first prove that every f P L2(T) can be approximated by a sequence
tgnu8

n=1 Ď C (T) in the sense of L2-norm.

Proposition 2.31. Let f P L2(T). Then for all ε ą 0 there exists g P C (T) such that

}f ´ g}L2(T) ă ε .

In other words, C (T) is dense in
(
L2(T), } ¨ }L2(T)

)
.

Proof. W.L.O.G., we can assume that f is real-valued and non-zero. Let ε ą 0 be given.
Since f P L2(T), the monotone convergence theorem implies that

lim
kÑ8

}f ´ (´k)_ (f ^k)}2L2(T) = lim
kÑ8

ż π

´π

1t|f(x)|ąku(x)|f(x)|
2 dx = 0 ;

thus there exists K ą 0 such that

}f ´ (´k)_ (f ^k)}L2(T) ă
ε

2
@ k ě K .



Cop
yri

ght
Prot

ect
ed

§2.5 The Inner-Product Point of View 33

Let h = (´K)_ (f ^K). Then h is bounded and Riemann measurable; thus h is Riemann
integrable on [´π, π]. Therefore, there exists a partition P = t´π = x0 ă x1 ă ¨ ¨ ¨ ă xn =

πu of [´π, π] such that U(h,P) ´ L(h,P) ă
πε2

8K
. Define

S(x) =
n´1
ÿ

k=0

sup
ξP[xk,xk+1]

h(ξ)1[xk,xk+1](x) and s(x) =
n´1
ÿ

k=0

inf
ξP[xk,xk+1]

h(ξ)1[xk,xk+1](x) ,

where 1A denotes the characteristic/indicator function of set A. Then

1. ´K ď s ď h ď S ď K on [´π, π]ztx1, x2, ¨ ¨ ¨ , xn´1u;

2.
ż π

´π
S(x) dx = U(h,P); 3.

ż π

´π
s(x) dx = L(h,P).

The properties above show that
ż π

´π

ˇ

ˇh(x) ´ s(x)
ˇ

ˇ dx =

ż π

´π

h(x) ´ s(x) dx ď

ż π

´π

(
S(x) ´ s(x)

)
dx

= U(h,P) ´ L(h,P) ă
πε2

8K
.

Now, for the step function s defined on [´π, π], we can always find a continuous function
g P C (T) (for example, g can be a trapezoidal function) such that

1. }g}L8(T) ď K. 2.
ż π

´π

ˇ

ˇs(x) ´ g(x)
ˇ

ˇ dx ă
ε2

16K
.

•

•
´π=x0

˝

˝

˝
x1

˝

˝

˝
x2

˝

˝

˝
x3

˝

˝
x4

¨ ¨ ¨
˝

˝xn´2

˝

˝

˝xn´1

••

•
xn=π

s :
g :

Figure 2.1: One way of constructing g P C (T) given step function s

Therefore,
ż π

´π

ˇ

ˇh(x) ´ g(x)
ˇ

ˇ dx ď

ż π

´π

ˇ

ˇh(x) ´ s(x)
ˇ

ˇ dx+

ż π

´π

ˇ

ˇs(x) ´ g(x)
ˇ

ˇ dx ă
πε2

4K
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which implies that

1

2π

ż π

´π

ˇ

ˇh(x) ´ g(x)
ˇ

ˇ

2
dx ď

K

π

ż

[´π,π]

ˇ

ˇh(x) ´ g(x)
ˇ

ˇ dx ă
ε2

4
;

thus }h ´ g}L2(T) ă
ε

2
. The proposition is then concluded by the triangle inequality. ˝

Theorem 2.32. Let f P L2(T). Then

lim
nÑ8

›

›f ´ sn(f, ¨)
›

›

L2(T) = 0 (2.21)

and
1

2π

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx =

8
ÿ

k=´8

| pf(k)|2 . (Parseval’s identity)

Proof. Let ε ą 0 be given. By Proposition 2.31 there exists g P C (T) such that

}f ´ g}L2(T) ă
ε

3
.

By the denseness of the trigonometric polynomials in C (T), there exists h P P(T) such
that sup

xPR

ˇ

ˇg(x) ´ h(x)
ˇ

ˇ ă
ε

3
. Suppose that h P PN(T). Using (2.19),

›

›g ´ sN(g, ¨)
›

›

2

L2(T) ď }g ´ h}2L2(T) =
1

2π

ż π

´π

ˇ

ˇg(x) ´ h(x)
ˇ

ˇ

2
dx ď

1

2π

ż π

´π

ε2

9
dx =

ε2

9
.

Since sN(g, ¨) P Pn(T) if n ě N , using (2.19) again we must have
›

›g ´ sn(g, ¨)
›

›

L2(T) ď
›

›g ´ sN(g, ¨)
›

›

L2(T) ď
ε

3
@n ě N .

Therefore, for n ě N , inequality (2.20) and the triangle inequality yield that
›

›f ´ sn(f, ¨)
›

›

L2(T) ď }f ´ g}L2(T) + }g ´ sn(g, ¨)}L2(T) + }sn(g ´ f, ¨)}L2(T)

ď 2}f ´ g}L2(T) + }g ´ sn(g, ¨)}L2(T) ă ε ;

thus (2.21) is concluded. Finally, using (2.18) with p = 0 we obtain that
ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx =

ż π

´π

ˇ

ˇsn(f, x)
ˇ

ˇ

2
dx+

ż π

´π

ˇ

ˇf(x) ´ sn(f, x)
ˇ

ˇ

2
dx .

Using the fact that 1

2π

ż π

´π

ˇ

ˇsn(f, x)
ˇ

ˇ

2
dx =

n
ř

k=´n

ˇ

ˇ pfk
ˇ

ˇ

2 and passing to the limit as n Ñ 8, we

conclude the Parseval identity. ˝

Example 2.33. Example 2.6 provides that
ż π

´π
x2 dx = π

8
ř

k=1

4

k2
; thus

8
ř

k=1

1

k2
=

π2

6
.
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2.6 The Discrete Fourier “Transform” and the Fast
Fourier “Transform”

Let f : R Ñ R be a periodic function with period L and f is bounded Riemann integrable
on [0, L). Similar to Remark 2.2, the Fourier series of f , defined in Remark 2.3, can be
written as

s(f, x) =
8
ÿ

k=´8

pfke
2πikx

L ,

where pfk =
1

L

ż L

0
f(y)e

´2πiky
L dy; thus pfk can be approximated by the Riemann sum

1

L

N´1
ÿ

ℓ=0

f
(Lℓ
N

)
e

´2πikℓ
N

L

N
=

1

N

N´1
ÿ

ℓ=0

f
(Lℓ
N

)
e

´2πikℓ
N .

In other words, the values of f at N evenly distributed points can be used to determine an
approximation of the Fourier coefficients of f .

There is another point of view of finding the sum 1

N

N´1
ř

ℓ=0

f
(Lℓ
N

)
e

´2πikℓ
N . Even though

sn(f, x) will be a good approximation of s(f, x) for large n, the computation of the ex-
act Fourier coefficients will be expensive (and probably impossible). Therefore, instead of
compute the exact Fourier coefficients, we look for a Fourier-like series of the form

1

N

N´1
ÿ

k=0

Xke
2πikx

L .

so that it agrees with the value of f at points
!

Lj

N

)N´1

j=0
. Therefore, we look for tXkuN´1

k=0

satisfying that

1

N


1 1 1 ¨ ¨ ¨ 1

1 e
2πi
N e

4πi
N ¨ ¨ ¨ e

2π(N´1)i
N

1 e
4πi
N e

8πi
N ¨ ¨ ¨ e

4π(N´1)i
N

... . . . ...
1 e

2π(N´1)i
N e

4π(N´1)i
N ¨ ¨ ¨ e

2π(N´1)2i
N




X0

X1

X2
...

XN´1

 =


f(0)

f
( L

N

)
...

f
( (N ´ 1)L

N

)

 .

Let vk =
[
v
(1)
k , v

(2)
k , ¨ ¨ ¨ , v

(N)
k

]T denote the k-th column of the N ˆ N matrix F on the
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left-hand side of the equation above. Then v
(j)
k = e

2π(k´1)(j´1)i
N so that

vℓ ¨ vk = v˚
kvℓ =

N
ÿ

j=1

e
´2π(j´1)(k´1)i

N e
2π(j´1)(ℓ´1)i

N =
N
ÿ

j=1

e
2π(j´1)(ℓ´k)i

N

=
N´1
ÿ

j=0

cos 2πj(ℓ ´ k)

N
+ i

N´1
ÿ

j=0

sin 2πj(ℓ ´ k)i

N

which shows that
vℓ ¨ vk =

"

N if k = ℓ ,

0 if k ‰ ℓ .

Therefore, F ˚F = NINˆN ; thus
X0

X1

X2
...

XN´1

 =


1 1 1 ¨ ¨ ¨ 1

1 e´ 2πi
N e´ 4πi

N ¨ ¨ ¨ e´
2π(N´1)i

N

1 e´ 4πi
N e´ 8πi

N ¨ ¨ ¨ e´
4π(N´1)i

N

... . . . ...
1 e´

2π(N´1)i
N e´

4π(N´1)i
N ¨ ¨ ¨ e´

2π(N´1)2i
N




f(0)

f
( L

N

)
...

f
( (N ´ 1)L

N

)

 .

The discussions above induce the following

Definition 2.34. The discrete Fourier transform, symbolized by DFT, of a sequence
of N complex numbers tx0, x1, ¨ ¨ ¨ , xN´1u is a sequence tXkukPZ defined by

Xk =
N´1
ÿ

ℓ=0

xℓe
´2πikℓ

N @ k P Z .

We note that the sequence tXkukPZ is N -periodic; that is, Xk+N = Xk for all k P

Z. Therefore, often time we only focus on one of the following N consecutive terms
tX0, X1, ¨ ¨ ¨ , XN´1u of the DFT.

Example 2.35. The DFT of the sequence tx0, x1u is tx0 + x1, x0 ´ x1u.

2.6.1 The inversion formula

Let tXkuN´1
k=0 be the discrete Fourier transform of the sequence txℓu

N´1
ℓ=0 . Then txℓu

N´1
ℓ=0 can

be recovered given tXkuN´1
k=0 by the inversion formula

xℓ =
1

N

N´1
ÿ

k=0

Xke
2πikℓ
N . (2.22)
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To see this, we compute
N´1
ř

k=0

(N´1
ř

j=0

xje
´2πikj

N

)
e

2πikℓ
N and obtain that

N´1
ÿ

k=0

(N´1
ÿ

j=0

xje
´2πikj

N

)
e

2πikℓ
N =

N´1
ÿ

j=0

(
xj

N´1
ÿ

k=0

e
2πik(ℓ´j)

N

)
= Nxℓ +

N´1
ÿ

j=0
j‰ℓ

(
xj

N´1
ÿ

k=0

e
2πik(ℓ´j)

N

)

= Nxℓ +
N´1
ÿ

j=0
j‰ℓ

(
xj
e2πi(ℓ´j) ´ 1

e
2πi(ℓ´j)

N ´ 1

)
= Nxℓ .

The map from tXkuN´1
k=0 to txℓu

N´1
ℓ=0 is called the discrete inverse Fourier transform.

We note that the inversion formula (2.22) is an analogy of

f(x) =
8
ÿ

k=´8

pfke
ikx

for all piecewise constant function f and x P R at which f is continuous.

Remark 2.36. Given a sample data [x0, x1, ¨ ¨ ¨ , xN´1] which is the values of a function f on
N evenly distributed points on [0, L) (for some unknown L ą 0), the DFT [X0, X1, ¨ ¨ ¨ , XN´1]

can be thought as Fourier coefficients which provides the approximation

f(x) ‘‘=”
N´1
ÿ

k=0

Xke
2πikx

L =
´1
ÿ

k=´[N
2
]

Xk+Ne
2πikx

L +

[N´1
2

]
ÿ

k=0

Xke
2πikx

L ,

where the first equality ‘‘ = ” holds only for x =
Lℓ

N
, 0 ď ℓ ď N ´ 1. Therefore, for

0 ď k ď
[N ´ 1

2

]
each Xk is the coefficient associated with the wave with frequency k

L
. To

determine L, we introduce the sampling frequency Fs which is the number of samples
per unit time/length. Then Fs =

N

L
so that Xk is the coefficient associated with the wave

with frequency Fs

N
k.

2.6.2 The fast Fourier transform

Let M = [mkℓ] be an N ˆ N matrix with entry mkℓ defined by

mkℓ = e
´2πikℓ

N 0 ď k, ℓ ď N ´ 1 ,

and write x = (x0, x1, ¨ ¨ ¨ , xN´1)
T and X = (X0, ¨ ¨ ¨ , XN´1)

T. Then X = Mx and it
requires N2 multiplications to compute X. The fast Fourier transform, symbolized by



Copy
rig

ht
Prot

ect
ed

38 CHAPTER 2. Fourier Series

FFT, is a much faster way to compute X. In the following, we show that when N = 2γ for
some γ P N, then there is a way to compute the DFT with at most N log2N multiplications.

With N = 2γ, suppose that (x0, ¨ ¨ ¨ , xN´1) is a given sequence, and tXkuN´1
k=0 is the DFT

of txkuN´1
k=0 . Let ω = e´ 2πi

N , and

xeven =
[
x0 x2 x4 ¨ ¨ ¨ xN´2

]
and xodd =

[
x1 x3 x5 ¨ ¨ ¨ xN´1

]
Then

Xj =
N´1
ÿ

ℓ=0

xℓω
jℓ =

ÿ

0ďℓďN´1
ℓ is even

xℓω
jℓ + ωj

ÿ

0ďℓďN´1
ℓ is odd

xℓω
j(ℓ´1)

= xeven ¨
[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´2)

]
+ ωjxodd ¨

[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´2)

]
.

In particular, for 0 ď j ď
N

2
´ 1,

XN
2
+j = xeven ¨

[
ω0 ω2(N

2
+j) ω4(N

2
+j) ¨ ¨ ¨ ω(N

2
+j)(N´2)

]
+ ω

N
2
+jxodd ¨

[
ω0 ω2(N

2
+j) ω4(N

2
+j) ¨ ¨ ¨ ω(N

2
+j)(N´2)

]
= xeven ¨

[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´2)

]
´ ωjxodd ¨

[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´2)

]
,

where we have used the fact that ωN
2 = ´1. We note that

!

xeven ¨
[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´2)]

)N/2

j=0

is exactly the DFT of the sequence tx0, x2, ¨ ¨ ¨ , xN´2u and
!

xodd ¨
[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´1)

])N/2

j=0

is exactly the DFT of the sequence tx1, x3, ¨ ¨ ¨ , xN´1u. In other words, to compute the
DFT of tx0, ¨ ¨ ¨ , xN´1u, where N = 2γ, it suffices to compute the DFTs of the sequence
tx0, x2, ¨ ¨ ¨ , xN´2u and tx1, x3, ¨ ¨ ¨ , xN´1u. As long as the DFTs of the sequences tx0, x2, ¨ ¨ ¨ , xN´2u

and tx1, x3, ¨ ¨ ¨ , xN´1u are known, it requires another N

2
multiplications to compute the

DFT of tx0, x1, ¨ ¨ ¨ , xN´1u.
Now we compute the total multiplications it requires to compute the DFT of the sequence

txku2
γ´1

k=0 using the procedure above. Suppose that to compute the DFT of txku2
γ´1

k=0 requires
f(γ) multiplications. Then

f(γ) = 2f(γ ´ 1) + 2γ´1 .
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It is easy to see that it requires no multiplication to compute the DFT of tx0, x1u since it is
simply tx0+x1, x0 ´x1u; thus f(1) = 0. Solving the iteration relation above, we obtain that
f(γ) = 2γ´1(γ ´ 1) which implies the total multiplications requires to compute the DFT of
txkuN´1

k=0 , where N = 2γ, is N

2
(log2N ´ 1).

Example 2.37. To compute the DFT of tx0, x1, ¨ ¨ ¨ , x7u, we first compute the DFT of
tx0, x2, x4, x6u and tx1, x3, x5, x7u, and it requires another 4 multiplications (to compute
the multiplication of ωj and the j-th term of the DFT of tx1, x3, x5, x7u for 0 ď j ď 3).
Nevertheless, instead of computing the DFT of tx0, x2, x4, x6u and tx1, x3, x5, x7u directly
using matrix multiplication X =Mx, we again divide the sequence of length 4 into further
shorter sequence tx0, x4u, tx2, x6u, tx1, x5u and tx3, x7u. Once the DFT of those sequence of
length 2 are computed, it requires another 2ˆ2 = 4 multiplications to compute the DFT of
tx0, x2, x4, x6u and tx1, x3, x5, x7u. By Example 2.35, it does not require any multiplications
to compute the DFT of sequences of length 2; thus the total multiplications required to
compute the DFT of tx0, x1, ¨ ¨ ¨ , x7u is 4 + 4 = 8.

2.7 Fourier Series for Functions of Two Variables
In this section we briefly introduce the Fourier series of complex-valued functions defined
on Ω ” [´L1, L1] ˆ [´L2, L2]. Let

L2(Ω) =
!

f : Ω Ñ C
ˇ

ˇ

ˇ

ż

Ω

ˇ

ˇf(x1, x2)
ˇ

ˇ

2
d(x2, x2) ă 8

)/
„

equipped with the inner product

xf, gy ”
1

ν(Ω)

ż

Ω

f(x1, x2)g(x1, x2) d(x1, x2) ,

where ν(Ω) denotes the area of Ω and „ again denotes the equivalence relation defined by
f „ g if and only if f ´ g = 0 except on a set of measure zero. Let ekℓ(x) = eiπ(

k
L
, ℓ
M

)¨x,
here x = (x1, x2). Then tekℓuk,ℓPZ is a complete orthonormal set in L2(Ω); that is, for each
f P L2(Ω), by defining the partial sum

sn,m(f, x) =
n
ÿ

k=´n

m
ÿ

ℓ=´m

xf, ekℓy ekℓ(x)

we have
lim

n,mÑ8

›

›f ´ sn,m(f, ¨)
›

›

L2(Ω)
= 0 ,
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where } ¨ }L2(Ω) is the norm induced by the inner product x¨, ¨y. The limit of sn,m(f, ¨), as
n,m Ñ 8, in the inner product space

(
L2(Ω), x¨, ¨y

)
is denoted by

s(f, ¨) =
8
ÿ

k=´8

8
ÿ

ℓ=´8

xf, ekℓy ekℓ

and is called the Fourier series of f . One should expect that
Given a collection of data txmnu0ďnďM´1,0ďnďN´1, the discrete Fourier transform (or

simply DFT) of txmnu0ďnďM´1,0ďnďN´1 is a double sequence tXkℓuk,ℓPZ defined by

Xkℓ =
M´1
ÿ

m=0

N´1
ÿ

n=0

xmn ω
mk
M
ωnℓ

N
,

where ω
M
= e´ 2πi

M and ω
N
= e´ 2πi

N . The double sequence tXkℓuk,ℓPZ is doubly periodic satisfy-
ing Xk+M,ℓ+N for all k, ℓ P Z; thus we usually only focus on the terms tXkℓu0ďkďM´1,0ďℓďN´1.
The discrete inverse Fourier transform of a double sequence tXkℓu0ďkďM´1,0ďℓďN´1 is a dou-
ble sequence txmnum,nPZ defined by

xmn =
1

MN

M´1
ÿ

k=0

N´1
ÿ

ℓ=0

Xkℓ ĎωM

mk
Ďω
N

nℓ ,

where Ďω
M

and Ďω
N

are complex conjugate of ω
M

and ω
N

defined above.
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