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Chapter 1

Review on Analysis/Advanced
Calculus

1.1 Pointwise and Uniform Convergence（逐點收斂與均
勻收斂）

Definition 1.1. Let I Ď R be an interval, and fk, f : I Ñ R be functions for k = 1, 2, ¨ ¨ ¨ .
The sequence of functions tfku8

k=1 is said to converge pointwise if
␣

fk(a)
(8

k=1
converges

for all a P I. In other words, tfku8
k=1 converges pointwise if there exists a function f : I Ñ R

such that
lim
kÑ8

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = 0 @x P I.

In this case, tfku8
k=1 is said to converge pointwise to f and is denoted by fk Ñ f p.w..

The sequence of functions tfku8
k=1 is said to converge uniformly on I if there exists

f : I Ñ R such that
lim
kÑ8

sup
xPI

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = 0 .

In this case, tfku8
k=1 is said to converge uniformly to f on I. In other words, tfku8

k=1

converges uniformly to f on I if for every ε ą 0, DN ą 0 such that
ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ă ε @ k ě N and x P I .

Proposition 1.2. Let I Ď R be an interval, and fk, f : I Ñ R be functions for k = 1, 2, ¨ ¨ ¨ .
If tfku8

k=1 converges uniformly to f on I, then tfku8
k=1 converges pointwise to I.

Proposition 1.3 (Cauchy criterion for uniform convergence). Let I Ď R be an interval,
and fk : I Ñ R be a sequence of functions. Then tfku8

k=1 converges uniformly (to some

1
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2 CHAPTER 1. Review on Analysis/Advanced Calculus

function f) on I if and only if for every ε ą 0, DN ą 0 such that
ˇ

ˇfk(x) ´ fℓ(x)
ˇ

ˇ ă ε @ k, ℓ ě N and x P I .

Theorem 1.4. Let I Ď R be an interval, and fk : I Ñ R be a sequence of continuous
functions converging to f : I Ñ R uniformly on I. Then f is continuous on I; that is,

lim
xÑa

f(x) = lim
xÑa

lim
kÑ8

fk(x) = lim
kÑ8

lim
xÑa

fk(x) = f(a) .

Theorem 1.5. Let I Ď R be a finite interval, fk : I Ñ R be a sequence of differentiable
functions, and g : I Ñ R be a function. Suppose that

␣

fk(a)
(8

k=1
converges for some a P I,

and tf 1
ku8

k=1 converges uniformly to g on I. Then

1. tfku8
k=1 converges uniformly to some function f on I.

2. The limit function f is differentiable on I, and f 1(x) = g(x) for all x P I; that is,

lim
kÑ8

f 1
k(x) = lim

kÑ8

d

dx
fk(x) =

d

dx
lim
kÑ8

fk(x) = f 1(x) .

Theorem 1.6. Let fk : [a, b] Ñ R be a sequence of Riemann integrable functions which
converges uniformly to f on [a, b]. Then f is Riemann integrable, and

lim
kÑ8

ż b

a

fk(x)dx =

ż b

a

lim
kÑ8

fk(x)dx =

ż b

a

f(x)dx . (1.1)

Definition 1.7. Let I Ď R be an interval. The collection of bounded continuous real-valued
functions defined on I is denoted by Cb(I;R). The sup-norm of Cb(I;R), denoted by } ¨ }8,
is defined by

}f}8 = sup
xPI

ˇ

ˇf(x)
ˇ

ˇ @ f P Cb(I;R) .

If I = [a, b] Ď R is a closed interval (so that every continuous function on I is bounded), we
simply use C ([a, b];R) to denote Cb([a, b];R).

Having the definition above, we can rephrase Proposition 1.3 and Theorem 1.4 as follows.

Theorem 1.8. Let I Ď R be an interval. Then
(
Cb(I;R), } ¨ }8) is a complete norm space;

that is, every Cauchy sequence in
(
Cb(I;R), } ¨ }8) converges uniformly (to some limit) in

Cb(I;R).
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§1.2 Series of Functions and The Weierstrass M-Test 3

1.2 Series of Functions and The Weierstrass M-Test
Definition 1.9. Let I Ď R be an interval, and gk : I Ñ R (or C) be a sequence of functions.
We say that the series

8
ř

k=1

gk converges pointwise if the sequence of partitial sum tsnu8
n=1

given by
sn =

n
ÿ

k=1

gk

converges pointwise. We say that
8
ř

k=1

gk converges uniformly on I if tsnu8
n=1 converges

uniformly on I.

The following two corollaries are direct consequences of Proposition 1.3 and Theorem
1.4.

Corollary 1.10. Let I Ď R be an interval, and gk : I Ñ R be functions. Then
8
ř

k=1

gk

converges uniformly on I if and only if

@ ε ą 0, DN ą 0 Q

ˇ

ˇ

ˇ

n
ÿ

k=m+1

gk(x)
ˇ

ˇ

ˇ
ă ε @n ą m ě N and x P A .

Corollary 1.11. Let I Ď R be an interval, and gk, g : I Ñ R be functions. If gk : I Ñ R
are continuous and

8
ř

k=1

gk(x) converges to g uniformly on I, then g is continuous.

Theorem 1.12 (Weierstrass M -test). Let I Ď R be an interval, and gk : I Ñ R be a
sequence of functions. Suppose that DMk ą 0 such that sup

xPI
|gk(x)| ď Mk for all k P N and

8
ř

k=1

Mk converges. Then
8
ř

k=1

gk and
8
ř

k=1

|gk| both converge uniformly on I.

Corollary 1.13. Let I Ď R be an interval, and gk : I Ñ R be a sequence of continuous
functions. Suppose that DMk ą 0 such that sup

xPI
|gk(x)| ď Mk for all k P N and

8
ř

k=1

Mk

converges. Then
8
ř

k=1

gk is continuous on I.

The following two theorems are direct consequences of Theorem 1.5 and 1.6.

Theorem 1.14. Let gk : [a, b] Ñ R be a sequence of Riemann integrable functions. If
8
ř

k=1

gk

converges uniformly on [a, b], then
ż b

a

8
ÿ

k=1

gk(x)dx =
8
ÿ

k=1

ż b

a

gk(x)dx .
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4 CHAPTER 1. Review on Analysis/Advanced Calculus

Theorem 1.15. Let gk : (a, b) Ñ R be a sequence of differentiable functions. Suppose that
8
ř

k=1

gk(c) converges for some c P (a, b), and
8
ř

k=1

g1
k converges uniformly on (a, b). Then

8
ÿ

k=1

g1
k(x) =

d

dx

8
ÿ

k=1

gk(x) .

1.3 Analytic Functions and the Stone-Weierstrass The-
orem

Theorem 1.16. Let f : (a, b) Ñ R be an infinitely differentiable functions; that is, f (k)(x)

exists for all k P N and x P (a, b). Let c P (a, b) and suppose that for some 0 ă h ă 8,
ˇ

ˇf (k)(x)
ˇ

ˇ ď M for all x P (c ´ h, c+ h) Ď (a, b). Then

f(x) =
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k @x P (c ´ h, c+ h) .

Moreover, the convergence is uniform.

Proof. First, we claim that

f(x) =
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)n

ż x

c

(y ´ x)n

n!
f (n+1)(y)dy @x P (a, b) . (1.2)

By the fundamental theorem or Calculus it is clear that (1.2) holds for n = 0. Suppose that
(1.2) holds for n = m. Then

f(x) =
m
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)m

[(y ´ x)m+1

(m+ 1)!
f (m+1)(y)

ˇ

ˇ

ˇ

y=x

y=c
´

ż x

c

(y ´ x)m+1

(m+ 1)!
f (m+2)(y)dy

]
=

m+1
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)m+1

ż x

c

(y ´ x)m+1

(m+ 1)!
f (m+2)(y)dy

which implies that (1.2) also holds for n = m+ 1. By induction (1.2) holds for all n P N.

Letting sn(x) =
n
ř

k=0

f (k)(c)

k!
(x ´ c)k, then if x P (c ´ h, c+ h),

ˇ

ˇsn(x) ´ f(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż x

c

hn

n!
Mdy

ˇ

ˇ

ˇ
ď
hn+1

n!
M .

Let ε ą 0 be given. Since lim
nÑ8

hn+1

n!
M = 0, DN ą 0 such that

ˇ

ˇ

ˇ

hn+1

n!

ˇ

ˇ

ˇ
M ă ε if n ě N . As a

consequence, if n ě N ,
ˇ

ˇsn(x) ´ f(x)
ˇ

ˇ ă ε whenever n ě N . ˝
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Definition 1.17. Let I Ď R be an interval. A function f : I Ñ R is said to be real
analytic at a P int(I) if f(x) =

8
ř

k=0

f (k)(a)

k!
(x ´ a)k in a neighborhood of a.

Theorem 1.18 (Weierstrass). For every given f P C ([0, 1];R) there exists a sequence of
polynomials tpnu8

n=1 such that tpnu8
n=1 converges uniformly to f on [0, 1]. In other words,

the collection of all polynomials is dense in the space
(
C ([0, 1];R), } ¨ }8

)
.

Proof. Let rk(x) = Cn
k x

k(1 ´ x)n´k. By looking at the partial derivatives with respect to x
of the identity (x+ y)n =

n
ř

k=0

Cn
k x

kyn´k, we find that

1.
n
ř

k=0

rk(x) = 1; 2.
n
ř

k=0

krk(x) = nx; 3.
n
ř

k=0

k(k ´ 1)rk(x) = n(n ´ 1)x2.

As a consequence,
n
ÿ

k=0

(k ´ nx)2rk(x) =
n
ÿ

k=0

[
k(k ´ 1) + (1 ´ 2nx)k + n2x2

]
rk(x) = nx(1 ´ x) .

Let ε ą 0 be given. Since f : [0, 1] Ñ R is continuous on a compact set [0, 1], f is uniformly
continuous on [0, 1]; thus

D δ ą 0 Q
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ă
ε

2
if |x ´ y| ă δ, x, y P [0, 1] .

Consider the Bernstein polynomial pn(x) =
8
ř

k=0

f
(k
n

)
rk(x). Note that

ˇ

ˇf(x) ´ pn(x)
ˇ

ˇ =
ˇ

ˇ

ˇ

n
ÿ

k=0

(
f(x) ´ f

(k
n

))
rk(x)

ˇ

ˇ

ˇ
ď

n
ÿ

k=0

ˇ

ˇ

ˇ
f(x) ´ f

(k
n

)ˇ
ˇ

ˇ
rk(x)

ď

(
ÿ

|k´nx|ăδn

+
ÿ

|k´nx|ěδn

)ˇ
ˇ

ˇ
f(x) ´ f

(k
n

)ˇ
ˇ

ˇ
rk(x)

ă
ε

2
+ 2}f}8

ÿ

|k´nx|ěδn

(k ´ nx)2

(k ´ nx)2
rk(x)

ď
ε

2
+

2}f}8

n2δ2

n
ÿ

k=0

(k ´ nx)2rk(x) ď
ε

2
+

2}f}8

nδ2
x(1 ´ x) ď

ε

2
+

}f}8

2nδ2
.

Choose N large enough such that }f}8

2Nδ2
ă

ε

2
. Then for all n ě N ,

}f ´ pn}8 = sup
xP[0,1]

ˇ

ˇf(x) ´ pn(x)
ˇ

ˇ ă ε . ˝
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Remark 1.19. A polynomial of the form pn(x) =
n
ř

k=0

βkrk(x) is called a Bernstein poly-
nomial of degree n, and the coefficients βk are called Bernstein coefficients.

Corollary 1.20. The collection of polynomials on [a, b] is dense in
(
C ([a, b];R), } ¨ }8

)
; that

is, for every f P C ([a, b];R) there exists a sequence of polynomials tpku8
k=1 such that tpku8

k=1

converges uniformly to f on [a, b].

Proof. We note that g P C ([a, b];R) if and only if f(x) = g
(
x(b´a)+a

)
P C ([0, 1];R); thus

ˇ

ˇf(x) ´ p(x)
ˇ

ˇ ă ε @x P [0, 1] ô

ˇ

ˇ

ˇ
g(x) ´ p(

x ´ a

b ´ a

)ˇ
ˇ

ˇ
ă ε @x P [a, b] . ˝

1.4 Trigonometric Polynomials and the Space of 2π-
Periodic Continuous Functions

In this section, we focus on the approximations of a special class of functions, the collection
of 2π-periodic continuous function. Let C (T) denote the collection of 2π-periodic continuous
function (defined on R):

C (T) =
␣

f P C (R;R)
ˇ

ˇ f(x+ 2π) = f(x) @x P R
(

.

The sup-norm on C (T) is denoted by } ¨ }L8(T); that is, }f}L8(T) ” sup
xPR

|f(x)| if f P C (T).

We note that C (T) can be treated as the collection of continuous functions defined on
the unit circle S1 in the sense that every f P C (T) corresponds to a unique F P C (S1;R)
such that

f(x) = F (cosx, sinx) @x P R (1.3)

and vice versa.

Definition 1.21. A family of functions
␣

φn P C (T)
ˇ

ˇn P N
(

is said to be an approxima-
tion of the identity if

(1) φn(x) ě 0 ;

(2)
ż

T
φn(x) dx = 1 for every n P N , here we identify T with the interval [´π, π];

(3) lim
nÑ8

ż

δď|x|ďπ

φn(x) dx = 0 for every δ ą 0.
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§1.4 Trigonometric Polynomials and the Space of 2π-Periodic Continuous Functions 7

Definition 1.22 (Convolutions on T). The convolution of two (continuous) function f, g :

T Ñ R is the function f ‹ g : T Ñ C defined by the integral

(f ‹ g)(x) =

ż

T
f(x ´ y)g(y) dy .

Theorem 1.23. If tφnu8
n=1 is an approximation of the identity and f P C (T), then φn ‹ f

converges uniformly to f as n Ñ 8.

Proof. Without loss of generality, we may assume that f ı 0. By the definition of the
convolution,

ˇ

ˇ(φn ‹ f)(x) ´ f(x)
ˇ

ˇ =

ż

T
φn(x ´ y)f(y) dy ´ f(x) =

ż

T
φn(x ´ y)

(
f(x) ´ f(y)

)
dy ,

where we use (2) of Definition 1.21 to obtain the last equality. Now given ε ą 0. Since
f P C (T), there exists δ ą 0 such that |f(x) ´ f(y)| ă

ε

2
whenever |x ´ y| ă δ. Therefore,

|(φn ‹ f)(x) ´ f(x)|

ď

ż

|x´y|ăδ

φn(x ´ y)
ˇ

ˇf(x) ´ f(y)
ˇ

ˇdy +

ż

δď|x´y|

φn(x ´ y)
ˇ

ˇf(x) ´ f(y)
ˇ

ˇdy

ď
ε

2

ż

T
φn(x ´ y) dy + 2max

T
|f |

ż

δď|z|ďπ

φn(z) dz .

By (3) of Definition 1.21, there exists N ą 0 such that if n ě N ,
ż

δď|z|ďπ

φn(z) dx ă
ε

4maxT |f |
.

Therefore, for n ě N ,
ˇ

ˇ(φn ‹ f)(x) ´ f(x)
ˇ

ˇ ă ε for all x P T. ˝

Definition 1.24. A trigonometric polynomial p(x) of degree n is a finite sum of the form

p(x) =
c0
2
+

n
ÿ

k=1

(ck cos kx+ sk sin kx) x P R .

The collection of all trigonometric polynomial of degree n is denoted by Pn(T), and the
collection of all trigonometric polynomials is denoted by P(T); that is, P(T) =

8
Ť

n=0

Pn(T).

On account of the Euler identity eiθ = cos θ + i sin θ, a trigonometric polynomial of
degree n can also be written as

p(x) =
n
ÿ

k=´n

ake
ikx with ak =

c|k| ´ is|k|

2
,
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where s0 is taken to be 0. Therefore, every trigonometric polynomial of degree n is associated
to a unique function of the form

n
ř

k=´n

ake
ikx and vice versa.

Having defined trigonometric polynomials, we can show that every 2π-periodic function
can be approximated by a sequence of trigonometric polynomials in the sense of uniform
convergence.

Theorem 1.25. The collection of all trigonometric polynomials P(T) is dense in C (T) with
respect to the sup-norm; that is, for every f P C (T) there exists a sequence tpnu8

n=1 Ď P(T)
such that tpnu8

n=1 converges uniformly to f on T.

Proof. Let φn(x) = cn(1+cosx)n, where cn is chosen so that
ż

T
φn(x) dx = 1. By the residue

theorem,
ż

T
(1 + cosx)ndx =

¿

S1

(
1 +

z2 + 1

2z

)ndz
iz

=
1

i2n

¿

S1

(z + 1)2n

zn+1
dz =

π

2n´1

(
2n

n

)
;

thus cn =
2n´1

π

(n!)2

(2n)!
.

Now tφnu8
n=1 is clearly non-negative and satisfies (2) of Definition 1.21 for all n P N. Let

δ ą 0 be given.
ż

δď|x|ďπ

φn(x) dx ď

ż

δď|x|ďπ

cn(1 + cos δ)ndx ď 22n
(1 + cos δ

2

)n (n!)2

(2n)!
.

By Stirling’s formula lim
nÑ8

n!
?
2πnnne´n

= 1,

lim
nÑ8

ż

δď|x|ďπ

φn(x) dx ď lim
nÑ8

22n
(1 + cos δ

2

)n
(?

2πnnne´n
)2

a

2π(2n)(2n)2ne´2n

= lim
nÑ8

?
πn

(1 + cos δ
2

)n

= 0 .

So tφnu8
n=1 is an approximation of the identity. By Theorem 1.23, φk‹f converges uniformly

to f if f P C (T), while φn ‹ f is a trigonometric function. ˝

Remark 1.26. Theorem 1.25 can also be proved using the abstract version of the Stone-
Weierstrass Theorem and the identification (1.3). See Theorem 7.32 in “Principles of Math-
ematics Analysis” by W. Rudin or Theorem 5.8.2 in Elementary Classical Analysis by J.
Marsden and M. Hoffman for the Stone-Weierstrass Theorem.
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