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Chapter 1

Review on Analysis/Advanced
Calculus

2

1.1 Pointwise and Uniform Convergence ( i% 2k #7272 3=
3 Je#c)

Definition 1.1. Let I < R be an interval, and fi, f : [ — R be functions for £k =1,2,---.

The sequence of functions {f};2, is said to converge pointwise if { fk(a)}zo:l converges

M|

\

for all @ € I. In other words, { fx}, converges pointwise if there exists a function f: I — R
such that
lim |fy(z) — f(z)| =0 Vazel.

k—0o0
In this case, {fi};2, is said to converge pointwise to f and is denoted by fr — f p.w..
The sequence of functions {f};2, is said to converge uniformly on I if there exists
f I — R such that

lim sup | fi(z) — f(z)| =0.

k—0 ger
In this case, {fi};=; is said to converge uniformly to f on I. In other words, {fx}{;

converges uniformly to f on I if for every ¢ > 0, 3 N > 0 such that
|fu(z) — fx)<e  Vk=Nandawel.

Proposition 1.2. Let I < R be an interval, and fy, f : [ — R be functions fork =1,2,---.

If { fi}32, converges uniformly to f on I, then {fiy} ., converges pointwise to I.

Proposition 1.3 (Cauchy criterion for uniform convergence). Let I < R be an interval,

and fr : I — R be a sequence of functions. Then {fi}i_, converges uniformly (to some

1



2 CuapTER 1. Review on Analysis/Advanced Calculus

function f) on I if and only if for every e >0, 3N > 0 such that
fi(z) = folz)| < Yk (=Nandzel.

Theorem 1.4. Let I < R be an interval, and fr : I — R be a sequence of continuous

functions converging to f : I — R uniformly on I. Then f is continuous on I, that is,

lim f(z) = lim lim fi(x) = lim lim f(z) = f(a).

T—a r—a k—o0 k—o0 z—a

Theorem 1.5. Let I < R be a finite interval, fr : I — R be a sequence of differentiable
functions, and g : I — R be a function. Suppose that {fk(a)}zo:l converges for some a € I,

and {f;}72, converges uniformly to g on I. Then
L. {fx}, converges uniformly to some function f on I.

2. The limit function f is differentiable on I, and f'(x) = g(x) for all x € I; that is,

d d
i / = 1i _ = — |i = !
fim fi(2) = lim — fi(z)= - lim fi(z) = f'(2).
Theorem 1.6. Let fi : [a,b] — R be asequence of Riemann integrable functions which

converges uniformly to f on [a,b]. Then f_is Riemann integrable, and

b b b
klgroloL fi(z)de = L ]}LIIOlofk(£)d£ = L f(z)dx. (1.1)

Definition 1.7. Let I < R be an interval. The collection of bounded continuous real-valued
functions defined on I is denoted by %,(I;R). The sup-norm of €;(/; R), denoted by | - ||o,
is defined by

|l = sg)\f(l’)\ vV feG(IR).

If I = [a,b] < R is a closed interval (so that every continuous function on I is bounded), we
simply use %([a, b]; R) to denote €;(|a, b]; R).

Having the definition above, we can rephrase Proposition 1.3 and Theorem 1.4 as follows.

Theorem 1.8. Let I = R be an interval. Then (6,(I;R), | - |-) is a complete norm space;
that is, every Cauchy sequence in (6,(I;R), | - |o) converges uniformly (to some limit) in

¢ (L R).
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1.2 Series of Functions and The Weierstrass M-Test

Definition 1.9. Let I < R be an interval, and gx : I — R (or C) be a sequence of functions.
0

We say that the series >, gx converges pointwise if the sequence of partitial sum {s,}* ;

k=1
= Z Ik

converges pointwise. We say that Z gr converges uniformly on [ if {s,}* , converges
k=1

given by

uniformly on .

The following two corollaries are direct consequences of Proposition 1.3 and Theorem
1.4.

e}
Corollary 1.10. Let I < R be an interval, and gx : I — R be functions. Then Y g

k=1
converges uniformly on I if and only if

V5>O,3N>09‘ > gk(:c)’<€ Vn>mz>=N andxre A.
k=m+1

Corollary 1.11. Let I < R be an interval, and gr,g : I — R be functions. If g, : I — R
o0

are continuous and Y, gr(x) converges to g uniformly on I, then g is continuous.
k=1

Theorem 1.12 (Weierstrass M-test). Let I < R be an interval, and g, : I — R be a
sequence of functions. Suppose that I My > 0 such that sup |gr(x)| < My for all k € N and
zel

a0 a0 0
> My, converges. Then Y, gr and >, |gx| both converge uniformly on I.
k=1 k=1 k=1

Corollary 1.13. Let I < R be an interval, and g, : I — R be a sequence of continuous
a0

functions. Suppose-that 3 My > 0 such that sup |gx(z)| < My for all k € N and Y, My

zel k=1
0

converges. Then >, g is continuous on I.
k=1

The following two theorems are direct consequences of Theorem 1.5 and 1.6.

e}
Theorem 1.14. Let g, : [a,b] — R be a sequence of Riemann integrable functions. If >, g

k=1
converges uniformly on |a,b|, then

[ Eoor-5 e
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Theorem 1.15. Let gy : (a,b) — R be a sequence of differentiable functions. Suppose that
0

0
> gr(c) converges for some c € (a,b), and > g, converges uniformly on (a,b). Then
-1 k=1

Z (@ ng
1.3 Analytic Functions and the Stone-Weierstrass The-
orem

Theorem 1.16. Let f : (a,b) — R be an infinitely differentiable functions; that is, f*(z)

exists for all k € N and x € (a,b). Let ¢ € (a,b) and suppose that for some 0 < h < o0,

|f®)(2)| < M for allz € (c—h,c+h) < (a,b). Then
f(x)—if(lz!(c)(x—c)k Vze(c=hyc+h).
k=0

Moreover, the convergence is uniform.

Proof. First, we claim that

OIS Y (y— )"
f0 =Y @ o+ o [0 gay vae@p). 0

By the fundamental theorem or Calculus it is clear that (1.2) holds for n = 0. Suppose that
(1.2) holds for n = m. Then

f [y — )
Z i 2o — - [(m+1)!

y=r r (y — )™

F D (y) CE]

7 )y |

Yy=c

m+1

Z

which implies that (1.2) also holds for n = m + 1. By induction (1.2) holds for all n € N.

- & R (e) k :
Letting s,(z) = > = (x —¢)", then if x € (¢ — h,c+ h),
k=0 R

T hn hn-i—l
|sn(z) — fz)] < ‘L dey‘ < o M.

n+1

m+1

£ (y)dy

(x—c)F + (—1)™H Jz —(gzn;ji) 1!

n+1

Let € > 0 be given. Since lim ; M =0, 3N > 0 such that ‘M<51fn > N. As a
n—o M.

consequence, if n = N, |su(z) — f(z } <& whenevern > N. o




§1.3 Analytic Functions and the Stone-Weierstrass Theorem 5

Definition 1.17. Let I < R be an interval. A function f : I — R is said to be real

: . & f¥)(a)
analytic at a € int(1) if f(z) = ), k'
k=0 K

(z — a)* in a neighborhood of a.

Theorem 1.18 (Weierstrass). For every given f € €([0,1];R) there exists a sequence of
polynomials {p,}_, such that {p,}r_, converges uniformly to f on [0,1]. In other words,

the collection of all polynomials is dense in the space (€([0,1];R), | - o).

Proof. Let ry(x) = CPa®(1 — 2)" . By looking at the partial derivatives with respect to x

of the identity (z +y)" = Z Crakyn=* we find that
k=0

1. kiork(x) =1; 2. kio kri(x) = nz; 3. kiok(k — Drp(z) = nln — 1)z

As a consequence,

n

Z(k —nx)*r(z) = Z [k(k —1) + (1 — 2nz)k + n’2*|re(z) = na(l — 2).

k=0 k=0

Let € > 0 be given. Since f : [0,1] — R is continuous on a compact set [0, 1], f is uniformly

continuous on [0, 1]; thus

35>09\f(x)—f(y)\<g if [ —y| < 6, 2,y € [0,1].

Consider the Bernstein polynomial p,(x) = >} f(=)ri(z). Note that

£0) - @] = | 2 (0 75 )ruta)| < 3 [r@) = £(5) ruta)
S+ Y )@ -G

|k—nz|<dn  |k—nz|=dn

<Seafle Y i_—m)m(w)

_ 2
|k—nx|=0n ( TLI)

[\

L 2l e

e, 20l €
Z —na)ri(e S5 e (1_$>< T oner

n262

[ flleo < —. Then for alln > N

Choose N large enough such that SN 52 ,

If = Pnle = sup |f(:E) —pn(x)\ <e. O

z€[0,1]
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Remark 1.19. A polynomial of the form p,(z) = >, Spri(x) is called a Bernstein poly-
k=0

nomial of degree n, and the coefficients 3 are called Bernstein coefficients.

Corollary 1.20. The collection of polynomials on [a,b] is dense in (€'([a,b];R), || x); that
is, for every f € €([a,b];R) there exists a sequence of polynomials {py}i, such that {pg}i,

converges uniformly to f on |a,b].
Proof. We note that g € €([a, b]; R) if and only if f(z) = g(x(b— a) —|—a) € ¢([0,1]; R); thus

F(@) = p(@)] <eVae0,1] = |g@) ~p(;—

)’<€Vxe[a,b]. o

1.4 Trigonometric Polynomials and the Space of 27-
Periodic Continuous Functions

In this section, we focus on the approximations of a special class of functions, the collection
of 2m-periodic continuous function. Let €'(T) denote the collection of 27-periodic continuous
function (defined on R):

¢ (T) = {f € €(R;R) |.f (x+ 27) = f(z) VzeR}.

The sup-norm on ¢(T) is denoted by |- fro(m); that is, | f| Lo = sup|f(x)| if fe €(T).
zeR

We note that €' (T) can be treated as the collection of continuous functions defined on
the unit circle S! in the sense that every f € €(T) corresponds to a unique F € € (S'; R)
such that

f(z) = F(cosz,sinzx) VreR (1.3)

and vice versa.

Definition 1.21. A family of functions {¢, € €(T) ‘n € N} is said to be an approzima-
tion of the identity if

(1) @nlz) = 0;

(2) J on(x)dz =1 for every n € N, here we identify T with the interval [—m, 7];
T

(3) lim on(z)dz = 0 for every § > 0.

=0 Js<|z|<n
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Definition 1.22 (Convolutions on T). The convolution of two (continuous) function f, g
T — R is the function f x g : T — C defined by the integral

- j f(x - y)g(y) dy

Theorem 1.23. If {¢,}°, is an approximation of the identity and f € € (T), then v, * f

converges uniformly to f as n — oo.

Proof. Without loss of generality, we may assume that f % 0. By the definition of the

convolution,

|(on (z)| = f en(z—y) fly)dy — flz) = Lwn(w‘ — ) (f(z) = f(y))dy ,

where we use (2) of Definition 1.21 to obtain the last equality. Now given € > 0. Since
f € €(T), there exists 0 > 0 such that |f(z) — f(y)| < % whenever |x — y| < . Therefore,

(gn* F)() — f ()]
< f ol — )| (@) — F)|dyr f ol — )| f(z) — F(y)|dy
lz—y|<d <]z —y|

3
s | enle iy 2maxl ] o) e

~
2 Jr §5<z|<n

By (3) of Definition 1.21, there exists N >0 such that if n > N,

€
n(2)de < ———— .
L<z|<7rsp ( ) 4maXT |f|
Therefore, for n > N, |(¢, * f)(z) — f(z)| < e forall z € T. o

Definition 1.24. A trigonometric polynomial p(x) of degree n is a finite sum of the form
250 chcosk:x—l—sksinkm) reR.

The collection of all trigonometric polynomial of degree n is denoted by Z,(T), and the
[ee}

collection of all trigonometric polynomials is denoted by 2 (T); that is, Z(T) = |J Z.(T).
n=0

On account of the Euler identity ¢? = cosf + isinf, a trigonometric polynomial of

degree n can also be written as

n

p(z) = 2 are™  with  ap =

k=—n

Clk| — ¥S|k|
2 )
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where sq is taken to be 0. Therefore, every trigonometric polynomial of degree n is associated
n

to a unique function of the form > aze™*® and vice versa.
k=—n
Having defined trigonometric polynomials, we can show that every 27-periodic function

can be approximated by a sequence of trigonometric polynomials in the sense of uniform

convergence.

Theorem 1.25. The collection of all trigonometric polynomials & (T) is dense in € (T) with
respect to the sup-norm; that is, for every f € €(T) there exists a sequence {p,}s°, < P(T)

such that {p,}>_, converges uniformly to f on T.

Proof. Let ¢, (z) = ¢,(1+cosx)™, where ¢, is chosen so that J on(x)dr =1. By the residue
T
theorem,

Z2+1ndz 1 [ (241 T (2n
L( + cosx)"dx § (1+ 5 ) . i dz 2n1( ),

st 1z 12" Jg n

gn—1 (n!)2
T (2n)!"
Now {¢,}¥_, is clearly non-negative and satisfies (2) of Definition 1.21 for all n € N. Let

thus ¢, =

0 > 0 be given.

1 a\n (n!)?
f on(x) dr < f Cn(1+ cosd)dr < 22”( + cos ) (n)
§<|z|<m o<zl 2

(2n)!"
n!
By Stirling’s fi la lim ———— =1,
y Stirling’s formula lim Tommre
2
1 I\ 2mnn"e™"
lim ou(z) dz < lim 22”< o8 ) (v2rnne)
=0 Jo<a|<n n—w 2 27(2n)(2n)%re—2n

~ lim m(l—i—cos&)" _0.

n—0o0 2
So {¢n}2_, is an approximation of the identity. By Theorem 1.23, ¢+ f converges uniformly

to fif f e €(T), while ¢, » f is a trigonometric function. o

Remark 1.26. Theorem 1.25 can also be proved using the abstract version of the Stone-
Weierstrass Theorem and the identification (1.3). See Theorem 7.32 in “Principles of Math-
ematics Analysis” by W. Rudin or Theorem 5.8.2 in Elementary Classical Analysis by J.

Marsden and M. Hoflman for the Stone-Weierstrass Theorem.
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