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Chapter 9

Infinite Series

9.1 Sequences
Definition 9.1: Sequence

A sequence of real numbers (or simply a real sequence) is a function f : N Ñ R.
The collection of numbers

␣

f(1), f(2), f(3), ¨ ¨ ¨
(

are called terms of the sequence and
the value of f at n is called the n-th term of the sequence. We usually use fn to
denote the n-th term of a sequence f : N Ñ R, and this sequence is usually denoted
by tfnu8

n=1 or simply tfnu.

Example 9.2. Let f : N Ñ R be the sequence defined by f(n) = 3 + (´1)n. Then f is a
real sequence. Its terms are t2, 4, 2, 4, ¨ ¨ ¨ u.

Example 9.3. A sequence can also be defined recursively. For example, let tanu8
n=1 be

defined by
an+1 =

?
2an , a1 =

?
2 .

Then a2 =
a

2
?
2, a3 =

b

2
a

2
?
2, and etc. The general form of an is given by

an = 2
1
2
+ 1

4
+ 1

8
+¨¨¨+ 1

2n = 2
2n´1
2n .

There are also sequences that are defined recursively but it is difficult to obtain the
general form of the sequence. For example, let tbnu8

n=1 be defined by

bn+1 =
a

2 + bn , b1 =
?
2 .

Then b2 =
a

2 +
?
2, b3 =

b

2 +
a

2 +
?
2, and etc.
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Remark 9.4. Occasionally, it is convenient to begin a sequence with the 0-th term or even
the k-th term. In such cases, we write tanu8

n=0 and tanu8
n=k to denote the sequences.

Similar to the concept of the limit of functions, we would like to consider the limit
of sequences; that is, we would like to know to which value the n-th term of a sequence
approaches as n become larger and larger.
Definition 9.5

A sequence of real numbers tanu8
n=1 is said to converge to L if for every ε ą 0, there

exists N ą 0 such that

|an ´ L| ă ε whenever n ě N .

Such an L (must be a real number and) is called a limit of the sequence. If tanu8
n=1

converges to L, we write an Ñ x as n Ñ 8.
A sequence of real number tanu8

n=1 is said to be convergent if there exists L P R
such that tanu8

n=1 converges to L. If no such L exists we say that tanu8
n=1 does not

converge or simply diverges.

Motivation: Intuitively, we expect that a sequence of real numbers tanu8
n=1 converges to

a number L if “outside any open interval containing L there are only finitely many an
1s”.

The statement inside “ ” can be translated into the following mathematical statement:

@ ε ą 0,#
␣

n P N
ˇ

ˇ an R (L ´ ε, L+ ε)
(

ă 8 , (9.1.1)

where #A denotes the number of points in the set A. One can easily show that the conver-
gence of a sequence defined by (9.1.1) is equivalent to Definition 9.5.

In the definition above, we do not exclude the possibility that there are two different
limits of a convergent sequence. In fact, this is never the case because of the following

Proposition 9.6
If tanu8

n=1 is a sequence of real numbers, and an Ñ a and an Ñ b as n Ñ 8, then
a = b. (若收斂則極限唯一).

We will not prove this proposition and treat it as a fact.

‚ Notation: Since the limit of a convergent sequence is unique, we use lim
nÑ8

an to denote
this unique limit of a convergent sequence tanu8

n=1.



Theorem 9.7
Let L be a real number, and f : [1,8) Ñ R be a function of a real variable such that
lim
xÑ8

f(x) = L. If tanu8
n=1 is a sequence such that f(n) = an for every positive integer

n, then
lim
nÑ8

an = L .

Example 9.8. The limit of the sequence tenu8
n=1 defined by en =

(
1 +

1

n

)n is e.

When a sequence tanu8
n=1 is given by evaluating a differentiable function f : [1,8) Ñ R

on N, sometimes we can use L’Hôspital’s rule to find the limit of the sequence.

Example 9.9. The limit of the sequence tanu8
n=1 defined by an =

n2

2n ´ 1
is

lim
xÑ8

x2

2x ´ 1
= lim

xÑ8

2x

2x ln 2
= lim

xÑ8

2

2x(ln 2)2
= 0 .

There are cases that a sequence cannot be obtained by evaluating a function defined on
[1,8). In such cases, the limit of a sequence cannot be computed using L’Hôspital’s rule
and it requires more techniques to find the limit.

Example 9.10. The limit of the sequence tsnu8
n=1 defined by sn =

n!

nn+
1
2 e´n

is
?
2π; that

is,

lim
nÑ8

n!
?
2πnnne´n

= 1 . (9.1.2)

Similar to Theorem 1.14, we have the following
Theorem 9.11

Let tanu8
n=1 and tbnu8

n=1 be sequences of real numbers such that lim
nÑ8

an = L and

lim
nÑ8

bn = K. Then

1. lim
nÑ8

(an ˘ bn) = L ˘ K.

2. lim
nÑ8

(anbn) = LK. In particular, lim
nÑ8

(can) = cL if c is a real number.

3. lim
nÑ8

an
bn

=
L

K
if K ‰ 0.



Theorem 9.12: Squeeze Theorem
Let tanu8

n=1, tbnu8
n=1 and tcnu8

n=1 be sequences of real numbers such that an ď cn ď bn

for all n ě N . If lim
nÑ8

an = lim
nÑ8

bn = L, then lim
nÑ8

cn = L.

Theorem 9.13: Absolute Value Theorem
Let tanu8

n=1 be a sequence of real numbers. If lim
nÑ8

|an| = 0, then lim
nÑ8

an = 0.

Proof. Let tbnu8
n=1 and tcnu8

n=1 be sequence of real numbers defined by bn = ´|an| and
cn = |an|. Then bn ď an ď cn for all n P N. Since lim

nÑ8
|an| = 0, Theorem 9.11 implies that

lim
nÑ8

bn = lim
nÑ8

cn = 0 and the Squeeze Theorem further implies that lim
nÑ8

an = 0.

Definition 9.14: Monotonicity of Sequences

A sequence tanu8
n=1 Ď R is said to be

1. (monotone) increasing if an+1 ě an for all n P N;

2. (monotone) decreasing if an+1 ď an for all n P N;

3. monotone if tanu8
n=1 is an increasing sequence or a decreasing sequence.

Example 9.15. The sequence tsnu8
n=2 defined in Example 9.10 is a monotone decreasing

sequence.

Definition 9.16: Boundedness of Sequences
Let tanu8

n=1 be a sequence of real numbers.

1. tanu8
n=1 is said to be bounded（有界的）if there exists M P R such that

|an| ď M for all n P N.

2. tanu8
n=1 is said to be bounded from above（有上界）if there exists B P R,

called an upper bound of the sequence, such that an ď B for all n P N. Such
a number B is called an upper bound of the sequence.

3. tanu8
n=1 is said to be bounded from below（有下界）if there exists A P R,

called a lower bound of the sequence, such that A ď an for all n P N. Such a
number A is called a lower bound of the sequence.



Example 9.17. The sequence tanu8
n=1 defined by an = n is bounded from below by 0 by

not bounded from above.

Proposition 9.18

A convergent sequence of real numbers is bounded（數列收斂必有界）.

Proof. Let tanu8
n=1 be a convergent sequence with limit L. Then by the definition of limits

of sequences, there exists N ą 0 such that

an P (L ´ 1, L+ 1) @n ě N.

Let M = max
␣

|a1|, |a2|, ¨ ¨ ¨ , |aN´1|, |L| + 1
(

. Then |an| ď M for all n P N.

Remark 9.19. A bounded sequence might not be convergent. For example, let tanu8
n=1 be

defined by an = 3 + (´1)n. Then

a1 = a3 = a5 = ¨ ¨ ¨ = a2k´1 = ¨ ¨ ¨ = 2 and a2 = a4 = a6 = ¨ ¨ ¨ = a2k = ¨ ¨ ¨ = 4 .

Therefore, the only possible limits are t2, 4u; however, by the fact that

#
␣

n P N
ˇ

ˇ an R (1, 3)
(

= #
␣

n P N
ˇ

ˇ an R (3, 5)
(

= 8 ,

we find that 2 and 4 are not the limit of tanu8
n=1. Therefore, tanu8

n=1 does not converge.

‚ Completeness of Real Numbers:
One important property of the real numbers is that they are complete. The complete-

ness axiom for real numbers states that “every bounded sequence of real numbers has a least
upper bound and a greatest lower bound”; that is, if tanu8

n=1 is a bounded sequence of
real numbers, then there exists an upper bound M and a lower bound m of tanu8

n=1 such
that there is no smaller upper bound nor greater lower bound of tanu8

n=1.
Theorem 9.20: Monotone Sequence Property (MSP)

Let tanu8
n=1 be a monotone sequence of real numbers. Then tanu8

n=1 converges if and
only if tanu8

n=1 is bounded.

Proof. It suffices to show the “ð” direction.
Without loss of generality, we can assume that tanu8

n=1 is increasing and bounded. By
the completeness of real numbers, there exists a least upper bound M for the sequence
tanu8

n=1.



Let ε ą 0 be given. Since M is the least upper bound for tanu8
n=1, M ´ε is not an upper

bound; thus there exists N P N such that aN ą M ´ ε. Since tanu8
n=1 is increasing, an ě aN

for all n ě N . Therefore,
M ´ ε ă an ď M @n ě N

which implies that
|an ´ M | ă ε @n ě N .

The statement above shows that tanu8
n=1 converges to M .

Remark 9.21. A sequence of real numbers tanu8
n=1 is called a Cauchy sequence if for

every ε ą 0 there exists N ą 0 such that

|an ´ am| ă ε whenever n,m ě N .

A convergent sequence must be a Cauchy sequence. Moreover, the completeness of real
numbers is equivalent to that “every Cauchy sequence of real number converges”.

9.2 Series and Convergence
An infinite series is the “sum” of an infinite sequence. If tanu8

n=1 is a sequence of real
numbers, then

8
ÿ

k=1

ak = a1 + a2 + ¨ ¨ ¨ + an + ¨ ¨ ¨

is an infinite series (or simply series). The numbers a1, a2, a3, ¨ ¨ ¨ are called the terms of
the series. For convenience, the sum could begin the index at n = 0 or some other integer.
Definition 9.22

The series
8
ř

k=1

ak is said to be convergent or converge to S if the sequence of the partial

sum, denoted by tSnu8
n=1 and defined by

Sn ”

n
ÿ

k=1

ak = a1 + a2 + ¨ ¨ ¨ + an,

converges to S. Sn is called the n-th partial sum of the series
8
ř

k=1

ak.

When the series converges, we write S =
8
ř

k=1

ak and
8
ř

k=1

ak is said to be convergent.

If tSnu8
n=1 diverges, the series is said to be divergent or diverge. If lim

nÑ8
Sn = 8 (or

´8), the series is said to diverge to 8 (or ´8).



Example 9.23. The n-th partial sum of the series
8
ř

k=1

1

k(k + 1)
is

Sn =
n
ÿ

k=1

1

k(k + 1)
=

n
ÿ

k=1

(1
k

´
1

k + 1

)
=

(
1 ´

1

2

)
+
(1
2

´
1

3

)
+ ¨ ¨ ¨ +

( 1
n

´
1

n+ 1

)
= 1 ´

1

n+ 1
;

thus the series
8
ř

k=1

1

k(k + 1)
converges to 1, and we write

8
ř

k=1

1

k(k + 1)
= 1.

Example 9.24. The n-th partial sum of the series
8
ř

k=1

2

4k2 ´ 1
is

n
ÿ

k=1

2

4k2 ´ 1
=

n
ÿ

k=1

2

(2k ´ 1)(2k + 1)
=

n
ÿ

k=1

( 1

2k ´ 1
´

1

2k + 1

)
=

(
1 ´

1

3

)
+
(1
3

´
1

5

)
+ ¨ ¨ ¨ +

( 1

2n ´ 1
´

1

2n+ 1

)
= 1 ´

1

2n+ 1
;

thus the series
8
ř

k=1

2

4k2 ´ 1
converges to 1, and we write

8
ř

k=1

2

4k2 ´ 1
= 1.

The series in the previous two examples are series of the form

n
ÿ

k=1

(bk ´ bk+1) = (b1 ´ b2) + (b2 ´ b3) + ¨ ¨ ¨ + (bn ´ bn+1) + ¨ ¨ ¨ ,

and are called telescoping series. A telescoping series converges if and only if lim
nÑ8

bn con-
verges.

Example 9.25. The series
8
ř

k=1

rk, where r is a real number, is called a geometric series

(with ratio r). Note that the n-th partial sum of the series is

Sn =
n
ÿ

k=1

rk = 1 + r + r2 + ¨ ¨ ¨ + rn =

$

&

%

1 ´ rn+1

1 ´ r
if r ‰ 1 ,

n+ 1 if r = 1 .

Therefore, the geometric series converges if and only if the common ratio r satisfies |r| ă 1.



Theorem 9.26

Let
8
ř

k=1

ak and
8
ř

k=1

be convergent series, and c is a real number. Then

1.
8
ř

k=1

cak = c
8
ř

k=1

ak.

2.
8
ř

k=1

(ak + bk) =
8
ř

k=1

ak +
8
ř

k=1

bk.

3.
8
ř

k=1

(ak ´ bk) =
8
ř

k=1

ak ´
8
ř

k=1

bk.

Theorem 9.27: Cauchy Criteria

A series
8
ř

k=1

ak converges if and only if for every ε ą 0, there exists N ą 0 such that
ˇ

ˇ

ˇ

n+ℓ
ÿ

k=n

ak

ˇ

ˇ

ˇ
ă ε whenever n ě N, ℓ ě 0 .

Proof. Let Sn be the n-th partial sum of the series
8
ř

k=1

ak. Then by Remark 9.21,
8
ř

k=1

ak converges ô tSnu8
n=1 is a convergent sequence

ô tSnu8
n=1 is a Cauchy sequence

ô for every ε ą 0, there exists N ą 0 such that
|Sn ´ Sm| ă ε whenever n,m ě N

ô for every ε ą 0, there exists N ą 0 such that
|an + an+1 + ¨ ¨ ¨ + an+ℓ| ă ε whenever n ě N and ℓ ě 0.

Corollary 9.28: n-th Term Test

If the series
8
ř

k=1

ak converges, then lim
kÑ8

ak = 0.

Remark 9.29. It is not true that lim
nÑ8

an = 0 implies the convergence of
8
ř

k=1

ak. For example,

we have shown in Example 8.50 that the harmonic series
8
ř

k=1

1

k
diverges to 8 while we know

that lim
nÑ8

1

n
= 0.



Corollary 9.30: n-th term test for divergence

Let tanu8
n=1 be a sequence. If lim

nÑ8
an ‰ 0 or does not exist, then the series

8
ř

k=1

ak

diverges.

9.3 The Integral Test and p-Series
9.3.1 The integral test

Suppose that the sequence tanu8
n=1 is obtained by evaluating a non-negative continuous

decreasing function f : [1,8) Ñ R on N; that is, f(n) = an. Then
ż n+1

1

f(x) dx ď Sn ”

n
ÿ

k=1

ak ď a1 +

ż n

1

f(x) dx . (9.3.1)

Since the sequence of partial sums tSnu8
n=1 of the series

8
ř

k=1

ak is increasing, the complete-

ness of real numbers implies that tSnu8
n=1 converges if and only if the improper integral

ż 8

1
f(x) dx converges.

Theorem 9.31
Let f : [1,8) Ñ R be a non-negative continuous decreasing function. The series

8
ř

k=1

f(k) converges if and only if the improper integral
ż 8

1
f(x) dx converges.

Example 9.32. The series
8
ř

k=1

1

k2 + 1
converges since

ż 8

1

dx

x2 + 1
= lim

bÑ8

ż b

1

dx

x2 + 1
= lim

bÑ8
arctanx

ˇ

ˇ

ˇ

x=b

x=1
= lim

bÑ8
(arctan b ´ arctan 1) =

π

4

and the function f(x) =
1

x2 + 1
is non-negative continuous and decreasing on [1,8).

Example 9.33. The series
8
ř

k=1

k

k2 + 1
diverges since

ż 8

1

x

x2 + 1
dx = lim

bÑ8

ż b

1

x

x2 + 1
dx = lim

bÑ8

ln(x2 + 1)

2

ˇ

ˇ

ˇ

x=b

x=1
=

1

2
lim
bÑ8

[
ln(b2 + 1) ´ ln 2

]
= 8

and the function f(x) =
x

x2 + 1
is non-negative continuous and decreasing on [1,8).



Example 9.34. The series
8
ř

k=2

1

k ln k converges since

ż 8

2

dx

x lnx = lim
bÑ8

ż b

2

dx

x lnx
(x=eu)
= lim

bÑ8

ż ln b

ln 2

eudu

eu ln eu = lim
bÑ8

ż ln b

ln 2

du

u
= lim

bÑ8
lnu

ˇ

ˇ

ˇ

u=ln b

u=ln 2

= lim
bÑ8

(ln ln b ´ ln ln 2) = 8

and the function f(x) =
1

x lnx is non-negative continuous and decreasing on [2,8).

9.3.2 p-series

A series of the form
8
ÿ

k=1

1

kp
= 1 +

1

2p
+

1

3p
+ ¨ ¨ ¨

is called a p-series. The series is a function of p, and this function is usually called the
Riemann zeta function; that is,

ζ(s) ”

8
ÿ

n=1

1

ns
.

A harmonic series is the p-series with p = 1, and a general harmonic series is of the form
8
ÿ

k=1

1

ak + b
.

By Theorem 8.51 and 9.31, the p-series converges if and only if p ą 1.

Remark 9.35. It can be shown that
8
ř

k=1

1

k2
=
π2

6
. In fact, for all integer k ě 2, the number

8
ř

k=1

1

nk
can be computed by hand (even though it is very time consuming).

Remark 9.36. Using (9.3.1), we find that

ln(n+ 1) ď

n
ÿ

k=1

1

k
ď 1 + lnn @n P N .

Therefore, the sequence tanu8
n=1 defined by

an =
n
ÿ

k=1

1

k
´ lnn



is bounded. Moreover,

an ´ an+1 =
n
ÿ

k=1

1

k
´ lnn ´

n+1
ÿ

k=1

1

k
+ ln(n+ 1) = ln

(
1 +

1

n

)
´

1

n+ 1
.

Since the derivative of the function f(x) = ln(1 + x) ´
x

x+ 1
is positive on [0, 1], we find

that f is increasing on [0, 1]; thus

ln
(
1 +

1

n

)
´

1

n+ 1
= f

( 1
n

)
ě f(0) = ln 1 ´

0

1
= 0 @n P N

which shows that an ě an+1. Therefore, tanu8
n=1 is monotone decreasing and bounded from

below (by 0). The completeness of real numbers then implies the convergence of the sequence
tanu8

n=1. The limit

lim
nÑ8

( n
ÿ

k=1

1

k
´ lnn

)
is called Euler’s constant. Euler’s constant is approximated 0.5772.

9.3.3 Error estimates

Similar to (9.3.1), under the same setting we have

Sn +

ż 8

n+1

f(x) dx ď S ď Sn +

ż 8

n

f(x) dx @n P N . (9.3.2)

The inequality above shows the following
Theorem 9.37: Bounds for the Remainder in the Integral Test

Let f : [1,8) Ñ R be a non-negative continuous decreasing function such that the

series S =
8
ř

k=1

f(k) converges. Then the remainder Rn = S´Sn, where Sn =
n
ř

k=1

f(k),

satisfies the inequality
ż 8

n+1

f(x) dx ď Rn ď

ż 8

n

f(x) dx .

Example 9.38. Estimate the sum of the series
8
ř

n=1

1

n2
using the inequalities in (9.3.2) and

n = 10.
Since

ż 8

n

1

x2
dx = lim

bÑ8

´1

x

ˇ

ˇ

ˇ

x=b

x=n
=

1

n
,



using (9.3.2) we find that

S10 +
1

11
ď

8
ÿ

k=1

1

k2
ď S10 +

1

10
.

Computing S10, we obtain that

S10 = 1 +
1

4
+

1

9
+ ¨ ¨ ¨ +

1

81
+

1

100
« 1.54977 ;

thus

1.64068 ď

8
ÿ

k=1

1

k2
ď 1.64977 .

9.4 Comparisons of Series

When the sequence tanu8
n=1 is not obtained by an = f(n) for some decreasing function

f : [1,8) Ñ R, the convergence of the series
8
ř

k=1

ak cannot be judged by the convergence

of the improper integral
ż 8

1
f(x) dx. To determine the convergence of this kind of series,

usually one uses comparison tests.

9.4.1 Direct Comparison Test
Theorem 9.39

Let tanu8
n=1, tbnu8

n=1 be sequences of real numbers, and 0 ď an ď bn for all n P N.

1. If
8
ř

k=1

bk converges, then
8
ř

k=1

ak converges.

2. If
8
ř

k=1

ak diverges, then
8
ř

k=1

ak diverges.

Proof. Let Sn and Tn be the n-th partial sum of the series
8
ř

k=1

ak and
8
ř

k=1

bk, respectively;
that is,

Sn =
n
ÿ

k=1

ak and Tn =
n
ÿ

k=1

bk .

Then by the assumption that 0 ď an ď bn for all n P N, we find that 0 ď Sn ď Tn for all
n P N, and tSnu8

n=1 and tTnu8
n=1 are monotone increasing sequences.



1. If
8
ř

k=1

bk converges, lim
nÑ8

Tn = T exists; thus 0 ď Sn ď Tn ď T for all n P N. Since

tSnu8
n=1 is increasing, the monotone sequence property shows that lim

nÑ8
Sn exists; thus

8
ř

k=1

ak converges.

2. If
8
ř

k=1

ak diverges, lim
nÑ8

Sn = 8; thus by the fact that Sn ď Tn for all n P N, we find

that lim
nÑ8

Tn = 8. Therefore,
8
ř

k=1

bk diverges (to 8).

Remark 9.40. It does not require that 0 ď an ď bn for all n P N for the direct comparison
test to hold. The condition can be relaxed by that “0 ď an ď bn for all n ě N” for some N
since the sum of the first N ´ 1 terms does not affect the convergence of the series.

Example 9.41. The series
8
ř

k=1

1 + sin k
k2

converges since 1 + sinn
n2

ď
2

n2
for all n P N and the

p-series
8
ř

k=1

2

k2
converges.

Example 9.42. The series
8
ř

k=1

1

2 + 3k
converges since 1

2 + 3n
ď

1

3n
for all n P N and the

geometric series
8
ř

k=1

1

3k
converges.

Example 9.43. The series
8
ř

k=1

1

2 +
?
k

diverges since 1

2 +
?
n

ě
1

3
?
n

for all n P N and the

p-series
8
ř

k=1

1

3
?
k
=

1

3

8
ř

k=1

1
?
k

diverges.

One can also use the fact that 1

2 +
?
n

ě
1

n
for all n ě 4 and

8
ř

k=1

1

k
diverges to conclude

that
8
ř

k=1

1

2 +
?
k

diverges.

9.4.2 Limit Comparison Test
Theorem 9.44

Let tanu8
n=1, tbnu8

n=1 be sequences of real numbers, an, bn ą 0 for all n P N, and

lim
nÑ8

an
bn

= L ,

where L is a non-zero real number. Then
8
ř

k=1

ak converges if and only if
8
ř

k=1

bk con-
verges.



Proof. We first note that if L ‰ 0, then L ą 0 since an
bn

ą 0 for all n P N. By the fact that

lim
nÑ8

an
bn

= L, there exists N ą 0 such that
ˇ

ˇ

ˇ

an
bn

´ L
ˇ

ˇ

ˇ
ă
L

2
whenever n ě N . In other words,

L

2
ă
an
bn

ă
3L

2
for all n ě N ; thus

0 ă an ă
3L

2
bn and 0 ă bn ă

2

L
an whenever n ě N .

By Theorem 9.39 and Remark 9.40, we find that
8
ř

k=1

ak converges if and only if
8
ř

k=1

bk

converges.

Remark 9.45. 1. If lim
nÑ8

an
bn

= 0, then the convergence of
8
ř

k=1

bk implies the convergence of
8
ř

k=1

ak, but not necessary the reverse direction.

2. The condition “an, bn ą 0 for all n P N” can be relaxed by “an and bn are sign-definite
for n ě N , where a sequence tcnu8

n=1 is called sign-definite for n ě N if cn ą 0 for all
n ě N or cn ă 0 for all n ě N .

Example 9.46. Recall that in Example 9.42 and 9.43 we have shown that the series
8
ř

k=1

1

2 + 3k
converges and the series

8
ř

k=1

1

2 +
?
k

diverges using the direct comparison test.

Note that since

lim
nÑ8

1

2 + 3n

1

3n

= 1 and lim
nÑ8

1

2 +
?
n

1
?
n

= 1 ,

using the convergence of the p-series and the limit comparison test we can also conclude

that
8
ř

k=1

1

2 + 3k
converges and

8
ř

k=1

1

2 +
?
k

diverges.

Example 9.47. The general harmonic series
8
ř

k=1

1

ak + b
diverges for the following reasons:

1. if a = 0, then clearly
8
ř

k=1

1

b
diverges.

2. if a ‰ 0, then
8
ř

k=1

1

ak
diverges and lim

nÑ8

1

ak
1

ak + b

= 1.



9.5 The Ratio and Root Tests
9.5.1 The Ratio Test
Theorem 9.48: Ratio Test

Let
8
ř

k=1

ak be a series with positive terms.

1. The series
8
ř

k=1

ak converges if lim
nÑ8

an+1

an
ă 1.

2. The series
8
ř

k=1

ak diverges (to 8) if lim
nÑ8

an+1

an
ą 1.

Proof. Suppose that lim
nÑ8

an+1

an
= L exists. Define r = L+ 1

2
.

1. Assume that L ă 1. Then for ε = 1 ´ L

2
, there exists N ą 0 such that

ˇ

ˇ

ˇ

an+1

an
´ L| ă

1 ´ L

2
whenever n ě N ;

thus
0 ă

an+1

an
ă r whenever n ě N .

Note that 0 ă r ă 1, and the inequality above implies that if n ě N , an+1 ă ran.
Therefore,

0 ă an ď aNr
n´N for all n ě N .

Now, since the series
8
ř

k=1

aNr
k converges, the comparison test implies that

8
ř

k=1

ak con-
verges as well.

2. Assume that L ą 1. Then for ε = L´ 1

2
, there exists N ą 0 such that

ˇ

ˇ

ˇ

an+1

an
´ L| ă

L ´ 1

2
whenever n ě N ;

thus
r ă

an+1

an
whenever n ě N .

Note that r ą 1, and the inequality above implies that if n ě N , an+1 ą ran.
Therefore,

0 ă aNr
n´N ď an for all n ě N .



Now, since the series
8
ř

k=1

aNr
k´N diverges, the comparison test implies that

8
ř

k=1

ak

diverges as well.

Remark 9.49. When lim
nÑ8

an+1

an
= 1, the convergence or divergence of

8
ř

n=1

ak cannot be
concluded. For example, the p-series could converge or diverge depending on how large p
is, but no matter what p is,

lim
nÑ8

(n+ 1)p

np
= 1 .

Example 9.50. The series
8
ř

k=1

2k

k!
converges since

lim
nÑ8

2n+1/(n+ 1)!

2n/n!
= lim

nÑ8

2

n+ 1
= 0 ă 1 .

Example 9.51. The series
8
ř

k=1

k22k+1

3k
converges since

lim
nÑ8

(n+ 1)22n+2/3n+1

n22n+1/3n
= lim

nÑ8

2

3

(n+ 1)2

n2
=

2

3
ă 1 .

Example 9.52. The series
8
ř

k=1

kk

k!
diverges since

lim
nÑ8

(n+ 1)n+1/(n+ 1)!

nn/n!
= lim

nÑ8

(
1 +

1

n

)n

= e ą 1 .

9.5.2 The Root Test
Theorem 9.53: Root Test

Let
8
ř

k=1

ak be a series with positive terms.

1. The series
8
ř

k=1

ak converges if lim
nÑ8

n
?
an ă 1.

2. The series
8
ř

k=1

ak diverges (to 8) if lim
nÑ8

n
?
an ą 1.

Proof. Suppose that lim
nÑ8

n
?
an = L exists. Define r = L+ 1

2
.



1. Assume that L ă 1. Then for ε = 1 ´ L

2
, there exists N ą 0 such that

ˇ

ˇ
n
?
an ´ L

ˇ

ˇ ă
1 ´ L

2
whenever n ě N ;

thus
0 ă n

?
an ă r whenever n ě N

or equivalently,
0 ă an ď rn whenever n ě N .

By the fact that 0 ă r ă 1, the series
8
ř

k=1

rk converges; thus the comparison test

implies that
8
ř

k=1

ak converges as well.

2. Left as an exercise.

Remark 9.54. When lim
nÑ8

n
?
an = 1, the convergence or divergence of

8
ř

n=1

ak cannot be
concluded. For example, the p-series could converge or diverge depending on how large p
is, but no matter what p is,

lim
nÑ8

n
?
np =

(
lim
nÑ8

n
?
n
)p

= 1 .

Example 9.55. The series
8
ř

k=1

e2k

kk
converges since

lim
nÑ8

(e2n
nn

) 1
n
= lim

nÑ8

e2

n
= 0 ă 1 .

We also note that the convergence of this series can be obtained through the ratio test:

lim
nÑ8

e2(n+1)/(n+ 1)n+1

e2n/nn
= lim

nÑ8

e2

n+ 1

(
1 +

1

n

)´n

= 0 ă 1 .

Example 9.56. The series
8
ř

k=1

k22k+1

3k
converges since

lim
nÑ8

(n22n+1

3n

) 1
n
= lim

nÑ8

2(2n2)
1
n

3
=

2

3
ă 1 .

Example 9.57. The series
8
ř

k=1

kk

k!
diverges since

lim
nÑ8

(nn

n!

) 1
n
= lim

nÑ8

( nn

?
2πnnne´n

?
2πnnne´n

n!

) 1
n
= lim

nÑ8

( en
?
2πn

) 1
n
= e ą 1 ,

here we have used Stirling’s formula (9.1.2) to compute the limit.



Remark 9.58. Observe from Example 9.51, 9.52, 9.56 and 9.57, we see that as long as
lim
nÑ8

an+1

an
and lim

nÑ8

n
?
an exists, then the limits are the same. This is in fact true in general,

but we will not prove it since this is not our focus.

9.6 Absolute and Conditional Convergence
In the previous three sections we consider the convergence of series whose terms do not have
different signs. How about the convergence of series like

8
ÿ

k=1

(´1)k+1

kp
,

8
ÿ

k=1

sin k
kp

and etc.

In the following two sections, we will focus on how to judge the convergence of a series that
has both positive and negative terms.
Definition 9.59

An infinite series
8
ř

k=1

ak is said to be absolutely convergent or converge absolutely if the

series
8
ř

k=1

|ak| converges. An infinite series
8
ř

k=1

ak is said to be conditionally convergent

or converge conditionally if
8
ř

k=1

ak converges but
8
ř

k=1

|ak| diverges (to 8).

Example 9.60. The series
8
ř

k=1

(´1)k

kp
converge absolutely for p ą 1 but does not converge

absolutely for p ď 1 since the p-series
8
ř

k=1

1

kp
converges for p ą 1 and diverges for p ď 1.

Example 9.61. The series
8
ř

k=1

sin k
kp

converges absolutely for p ą 1 since

0 ď

ˇ

ˇ

ˇ

sinn
np

ˇ

ˇ

ˇ
ď

1

np
@n P N

and the p-series
8
ř

k=1

1

kp
converges for p ą 1.

Theorem 9.62
An absolutely convergent series is convergent.（絕對收斂則收斂）



Proof. Let
8
ř

k=1

ak be an absolutely convergent series, and ε ą 0 be given. Since
8
ř

k=1

|ak|

converges, the Cauchy criteria implies that there exists N ą 0 such that

ˇ

ˇ

ˇ

n+p
ÿ

k=n

|ak|

ˇ

ˇ

ˇ
ă ε whenever n ě N and p ě 0 .

Therefore, if n ě N and p ě 0,

ˇ

ˇ

ˇ

n+p
ÿ

k=n

ak

ˇ

ˇ

ˇ
ď

n+p
ÿ

k=n

|ak| ă ε �

thus the Cauchy criteria implies that
8
ř

k=1

ak converges.

Corollary 9.63: Ratio and Root Tests

The series
8
ř

k=1

ak converges if lim
nÑ8

|an+1|

|an|
ă 1 or lim

nÑ8

n
a

|an| ă 1.

Example 9.64. The series
8
ř

k=1

(´1)k2k

k!
converges since

lim
nÑ8

ˇ

ˇ

ˇ

(´1)n+12n+1

(n+ 1)!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(´1)n2n

n!

ˇ

ˇ

ˇ

= lim
nÑ8

2n+1

(n+ 1)!
2n

n!

= lim
nÑ8

2

n+ 1
= 0 ă 1

which shows the absolute convergence of the series the series
8
ř

k=1

(´1)k2k

k!
.

Example 9.65. The series
8
ř

k=1

(´1)k+1k!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2k + 1)
converges since

lim
nÑ8

ˇ

ˇ

ˇ

(´1)n+2(n+ 1)!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n+ 3)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(´1)n+1n!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n+ 1)

ˇ

ˇ

ˇ

= lim
nÑ8

(n+ 1)!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n+ 3)

n!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2n+ 1)

= lim
nÑ8

n+ 1

2n+ 3
=

1

2
ă 1

which shows the absolute convergence of the series
8
ř

k=1

(´1)k+1k!

1 ¨ 3 ¨ 5 ¨ ¨ ¨ ¨ ¨ (2k + 1)
.



Example 9.66. Consider the series
8
ř

k=1

(k2 sin k)k
(k!)k

. Since

lim
nÑ8

[ n2n

(n!)n

] 1
n
= lim

nÑ8

n2

n!
= lim

nÑ8

n

n ´ 1

1

(n ´ 2)!
= 0 ă 1 ,

the series
8
ř

k=1

k2k

(k!)k
converges absolutely. By the fact that

ˇ

ˇ

ˇ

(n2 sinn)n
(n!)n

ˇ

ˇ

ˇ
ď

(n2)n

(n!)n
@n P N ,

the comparison test implies that the series
8
ř

k=1

(k2 sin k)k
(k!)k

converges absolutely.

9.6.1 Alternating Series

In the previous two sections we consider the convergence of series whose terms do not have
different signs. How about the convergence of series like

8
ÿ

k=1

(´1)k+1

k
,

8
ÿ

k=1

sin k
k

and etc.

In the following two sections, we will focus on how to judge the convergence of a series that
has both positive and negative terms.
Theorem 9.67: Dirichlet’s Test

Let tanu8
n=1, tpnu8

n=1 be sequences of real numbers such that

1. the sequence of partial sums of the series
8
ř

k=1

ak is bounded; that is, there exists

M P R such that
ˇ

ˇ

ˇ

n
ř

k=1

ak

ˇ

ˇ

ˇ
ď M for all n P N.

2. tpnu8
n=1 is a decreasing sequence, and lim

nÑ8
pn = 0.

Then
8
ř

k=1

akpk converges.

Proof. Let ε ą 0 be given. Since tpnu8
n=1 is decreasing and lim

nÑ8
pn = 0, there exists N ą 0

such that
0 ď pn ă

ε

2M + 1
whenever n ě N .



Define Sn =
n
ř

k=1

ak. Then if n ě N and ℓ ě 0,

ˇ

ˇ

ˇ

n+ℓ
ÿ

k=n

akpk

ˇ

ˇ

ˇ
=
ˇ

ˇ(Sn ´ Sn´1)pn + (Sn+1 ´ Sn)pn+1 + (Sn+2 ´ Sn+1)pn+2 + ¨ ¨ ¨

+ (Sn+ℓ´1 ´ Sn+ℓ´2)pn+ℓ´1 + (Sn+ℓ ´ Sn+ℓ´1)pn+ℓ

ˇ

ˇ

=
ˇ

ˇ´Sn´1pn + Sn(pn ´ pn+1) + Sn+1(pn+1 ´ pn+2) + ¨ ¨ ¨ + Sn+ℓ´1(pn+ℓ´1 ´ pn+ℓ)

+ Sn+ℓpn+ℓ

ˇ

ˇ

ď |Sn´1pn| + |Sn(pn ´ pn+1)| + |Sn+1(pn+1 ´ pn+2)| + ¨ ¨ ¨ + |Sn+ℓ(pn+ℓ´1 ´ pn+ℓ)|

+ |Sn+ℓ+1pn+ℓ|

ď Mpn +M(pn ´ pn+1) +M(pn+1 ´ pn+2) + ¨ ¨ ¨ +M(pn+ℓ´1 ´ pn+ℓ) +Mpn+ℓ

= 2Mpn ă
2Mε

2M + 1
ă ε .

The convergence of
8
ř

k=1

akpk then follows from the Cauchy criteria (Theorem 9.27).

Corollary 9.68

Let tpnu8
n=1 be a decreasing sequence of real numbers. If lim

nÑ8
pn = 0, then

8
ř

k=1

(´1)kpk

and
8
ř

k=1

(´1)k+1pk converge.

Example 9.69. The series
8
ř

k=1

(´1)k+1

kp
converges conditionally for 0 ă p ď 1 since

1.
8
ř

k=1

(´1)k+1

kp
converges due the fact that

ˇ

ˇ

ˇ

n
ÿ

k=1

(´1)k+1
ˇ

ˇ

ˇ
ď 1 and

! 1

np

)8

n=1
is decreasing and converges to 0 .

2.
8
ř

k=1

ˇ

ˇ

ˇ

(´1)k+1

kp

ˇ

ˇ

ˇ
diverges for it is a p-series with 0 ă p ď 1.

Similarly,
8
ř

k=1

(´1)k

ln(k + 1)
converges conditionally.

Example 9.70. The series
8
ř

k=1

sin k
kp

converges for p ą 0 since



1.
n
ř

k=1

sin k =
cos 1

2 ´ cos 2k+1
2

2 sin 1
2

;
(

thus
ˇ

ˇ

ˇ

n
ř

k=1

sin k
ˇ

ˇ

ˇ
ď

1

sin 1
2

)
.

2.
␣ 1

np

(8

n=1
is decreasing and lim

nÑ8

1

np
= 0.

We remark here that
8
ř

k=1

sin k
k

=
π ´ 1

2
. In fact,

8
ř

k=1

sin(kx)
k

is the Fourier series of the

function π ´ x

2
.

‚ Alternating Series Remainder

Theorem 9.71
Let tanu8

n=1, tpnu8
n=1 be sequences of real numbers satisfying conditions in Theorem

9.67. If
ˇ

ˇ

ˇ

n
ř

k=1

ak

ˇ

ˇ

ˇ
ď M for all n P N, then

ˇ

ˇ

ˇ

8
ÿ

k=1

akpk ´

n
ÿ

k=1

akpk

ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

8
ÿ

k=n+1

akpk

ˇ

ˇ

ˇ
ď 2Mpn+1 .

Moreover, if ak = (´1)k, then

ˇ

ˇ

8
ÿ

k=1

(´1)k+1pk ´

n
ÿ

k=1

(´1)k+1pk
ˇ

ˇ ď pn+1 @n P N .

Sketch of Proof. Let Sn =
n
ř

k=1

ak. According to the proof of the Abel test, we have

ˇ

ˇ

ˇ

n+ℓ
ÿ

k=n

akpk

ˇ

ˇ

ˇ
ď |Sn´1|pn + |Sn|(pn ´ pn+1) + |Sn+1|(pn+1 ´ pn+2) + ¨ ¨ ¨ + |Sn+ℓ|(pn+ℓ´1 ´ pn+ℓ)

+ |Sn+ℓ+1|pn+ℓ . (9.6.1)

Note that for the general case, by the fact that |Sn| ď M for all n P N and tpnu8
n=1 is

decreasing, we conclude that for all ℓ ě 0,
ˇ

ˇ

ˇ

n+ℓ
ÿ

k=n

akpk

ˇ

ˇ

ˇ
ď 2Mpn @n P N ;

thus if n P N,
ˇ

ˇ

ˇ

8
ÿ

k=1

akpk ´

n
ÿ

k=1

akpk

ˇ

ˇ

ˇ
= lim

ℓÑ8

ˇ

ˇ

ˇ

n+1+ℓ
ÿ

k=1

akpk ´

n
ÿ

k=1

akpk

ˇ

ˇ

ˇ
= lim

ℓÑ8

ˇ

ˇ

ˇ

n+1+ℓ
ÿ

k=n+1

akpk

ˇ

ˇ

ˇ
ď 2Mpn+1 .



For the case of alternating series, we note that terms of tSnu8
n=1 are t1, 0, 1, 0, 1, ¨ ¨ ¨ u;

thus (9.6.1) implies that
ˇ

ˇ

8
ÿ

k=1

(´1)k+1pk ´

n
ÿ

k=1

(´1)k+1pk
ˇ

ˇ ď pn+1 @n P N .

Example 9.72. Approximate the sum of the series
8
ř

k=1

(´1)k+1 1

k!
by its first six terms, we

obtain that
6
ÿ

k=1

(´1)k+1 1

k!
=

1

1!
´

1

2!
+

1

3!
´

1

4!
+

1

5!
´

1

6!
« 0.63194 .

Moreover, by Theorem 9.71, we find that

ˇ

ˇ

ˇ

8
ÿ

k=1

(´1)k+1 1

k!
´

6
ÿ

k=1

(´1)k+1 1

k!

ˇ

ˇ

ˇ
ď

1

7!
=

1

5040
« 0.0002 .

Example 9.73. Determine the number of terms required to approximate the sum of the

series
8
ř

k=1

(´1)k+1

k4
with an error of less than 0.0001.

By Theorem 9.71,

ˇ

ˇ

ˇ

8
ÿ

k=1

(´1)k+1

k4
´

n
ÿ

k=1

(´1)k+1

k4

ˇ

ˇ

ˇ
ď

1

(n+ 1)4
;

thus choosing n such that 1

(n+ 1)4
ď 0.0001 (that is, n ě 9), we obtain that

ˇ

ˇ

ˇ

8
ÿ

k=1

(´1)k+1

k4
´

n
ÿ

k=1

(´1)k+1

k4

ˇ

ˇ

ˇ
ď 0.001 @n ě 9 .

9.7 Taylor Polynomials and Approximations

Suppose that f : (a, b) Ñ R is (n + 1)-times continuously differentiable; that is, dkf

dxk
is

continuous on (a, b) for 1 ď k ď n + 1, then for x P (a, b), the Fundamental Theorem of



Calculus and integration-by-parts imply that

f(x) ´ f(c) =

ż x

c

f 1(t) dt = f 1(t)(t ´ x)
ˇ

ˇ

ˇ

t=x

t=c
´

ż x

c

f 11(t)(t ´ x) dt

= ´f 1(c)(c ´ x) ´

ż x

c

f 11(t)(t ´ x) dt

= f 1(c)(x ´ c) ´

[
f 11(t)

(t´ x)2

2

ˇ

ˇ

ˇ

t=x

t=c
´

ż x

c

f 12(t)
(t´ x)2

2
dt
]

= f 1(c)(x ´ c) ´

[
´
f 11(c)

2
(c ´ x)2 ´

ż x

c

f 12(t)
(t´ x)2

2
dt
]

= f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 +

ż x

c

f 12(t)
(t´ x)2

2
dt

= ¨ ¨ ¨ ¨ ¨ ¨

= f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 + ¨ ¨ ¨ +

f (n)(c)

n!
(x ´ c)n

+ (´1)n
ż x

c

f (n+1)(t)
(t´ x)n

n!
dt ,

where the last equality can be shown by induction. Therefore,

f(x) =
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)n

ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt . (9.7.1)

Definition 9.74
If f has n derivatives at c, then the polynomial

Pn(x) =
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k

is called the n-th (order) Taylor polynomial for f at c. The n-th Taylor polynomial
for f at 0 is also called the n-th (order) Maclaurin polynomial for f .

Example 9.75. The n-th Maclaurin polynomial for the function f(x) = ex is

Pn(x) =
n
ÿ

k=0

f (k)(0)

k!
xk =

n
ÿ

k=0

1

k!
xk = 1 + x+

x2

2!
+
x3

3!
+ ¨ ¨ ¨ +

xn

n!
.



Example 9.76. The n-th Maclaurin polynomial for the function f(x) = ln(1 + x) is given
by

Pn(x) =
n
ÿ

k=0

f (k)(0)

k!
xk =

n
ÿ

k=1

f (k)(0)

k!
xk =

n
ÿ

k=1

(´1)k´1(k ´ 1)!

k!
xk =

n
ÿ

k=1

(´1)k´1

k
xk

= x ´
x2

2
+
x3

3
´
x4

4
+ ¨ ¨ ¨ +

(´1)n´1

n
xn ,

here we have used g(k)(x) = (´1)k´1(k ´ 1)!(x+ 1)´k to compute g(k)(0).
The n-th Taylor polynomial for the function g(x) = lnx at 1 is given by

Qn(x) =
n
ÿ

k=0

g(k)(1)

k!
(x ´ 1)k =

n
ÿ

k=1

g(k)(1)

k!
(x ´ 1)k =

n
ÿ

k=1

(´1)k´1(k ´ 1)!

k!
(x ´ 1)k

=
n
ÿ

k=1

(´1)k´1

k
(x ´ 1)k

= (x ´ 1) ´
(x ´ 1)2

2
+

(x ´ 1)3

3
´

(x ´ 1)4

4
+ ¨ ¨ ¨ +

(´1)n´1

n
(x ´ 1)n ,

here we have used g(k)(x) = (´1)k´1(k ´ 1)!x´k to compute g(k)(1). We note that Qn(x) =

Pn(x ´ 1) (and g(x) = f(x ´ 1)).

Example 9.77. The (2n)-th Maclaurin polynomial for the function f(x) = cosx is given
by

P2n(x) =
2n
ÿ

k=0

f (k)(0)

k!
xk = 1 +

2n
ÿ

k=1

f (k)(0)

k!
xk = 1 +

n
ÿ

k=1

f (2k´1)(0)

(2k ´ 1)!
x2k´1 +

n
ÿ

k=1

f (2k)(0)

(2k)!
x2k

= 1 +
n
ÿ

k=1

f (2k)(0)

(2k)!
x2k = 1 ´

x2

2
+
x4

4!
´
x6

6!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n ,

here we have used f (k)(x) = cos
(
x +

kπ

2

)
to compute f (k)(0). We also note that P2n(x) =

P2n+1(x) for all n P N.
The (2n ´ 1)-th Maclaurin polynomial for the function g(x) = sinx is given by

Q2n´1(x) =
2n´1
ÿ

k=0

g(k)(0)

k!
xk =

2n´1
ÿ

k=1

g(k)(0)

k!
xk =

n
ÿ

k=1

g(2k´1)(0)

(2k ´ 1)!
x2k´1 +

n
ÿ

k=1

g(2k)(0)

(2k)!
x2k

=
n
ÿ

k=1

g(2k´1)(0)

(2k ´ 1)!
x2k´1 = x ´

x3

3!
+
x5

5!
´
x7

7!
+ ¨ ¨ ¨ +

(´1)n´1

(2n ´ 1)!
x2n´1 ,

here we have used g(k)(x) = sin
(
x+

kπ

2

)
to compute g(k)(0). We also note that Q2n´1(x) =

Q2n(x) for all n P N.



9.7.1 Remainder of Taylor Polynomials

To measure the accuracy of approximating a function value f(x) by the Taylor polynomial,
we look for the difference Rn(x) ” f(x) ´ Pn(x), where Pn is the n-th Taylor polynomial
for f (centered at a certain number c). The function Rn is called the remainder associated
with the approximation Pn.

‚ Integral form of the remainder

By (9.7.1), we find that if Pn is the n-th Taylor polynomial for f at c, then

Rn(x) = (´1)n
ż x

c

f (n+1)(t)
(t ´ x)n

n!
dt . (9.7.2)

Example 9.78. Consider the function f(x) = exp(x) = ex. If Pn is the n-th Maclaurin
polynomial for f , the remainder Rn associated with Pn is given by

Rn(x) = (´1)n
ż x

0

f (n+1)(t)
(t ´ x)n

n!
dt = (´1)n

ż x

0

et
(t ´ x)n

n!
dt .

Therefore, if x ą 0,
ˇ

ˇ

ˇ
ex ´

n
ÿ

k=0

xk

k!

ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

ż x

0

et
(t ´ x)n

n!
dt
ˇ

ˇ

ˇ
ď

ż x

0

et
(x ´ t)n

n!
dt ď

ż x

0

ex
xn

n!
dt =

exxn+1

n!
. (9.7.3)

Note that for each x ą 0, the series
8
ř

k=0

ex
xn+1

n!
converges since

lim
nÑ8

ex
x(n+1)+1

(n+ 1)!

ex
xn+1

n!

= lim
nÑ8

x

n+ 1
= 0 ;

thus the n-th term test shows that lim
nÑ8

ex
xn+1

n!
= 0. Therefore, for each x ą 0,

lim
nÑ8

ˇ

ˇ

ˇ
ex ´

n
ÿ

k=0

xk

k!

ˇ

ˇ

ˇ
= 0

or equivalently,

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ ¨ ¨ ¨ +

xn

n!
+ ¨ ¨ ¨ .



In particular, if x = 1, (9.7.3) implies that

ˇ

ˇ

ˇ
e ´

n
ÿ

k=0

1

k!

ˇ

ˇ

ˇ
ď

e

n!
;

thus
ˇ

ˇ

ˇ
e ´

17
ř

k=0

1

k!

ˇ

ˇ

ˇ
ă 10´8.

Example 9.79. Consider the function f(x) = cosx and its (2n)-th Maclaurin polynomial
P2n in Example 9.77. If x ą 0,

ˇ

ˇf(x) ´ P2n(x)
ˇ

ˇ =
ˇ

ˇf(x) ´ P2n+1(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż x

0

f (2n+2)(t)
(t ´ x)2n+1

(2n+ 1)!
dt
ˇ

ˇ

ˇ
ď

ż x

0

(x ´ t)2n+1

(2n+ 1)!
dt

=
´(x ´ t)2n+2

(2n+ 2)!

ˇ

ˇ

ˇ

t=x

t=0
=

x2n+2

(2n+ 2)!
,

while if x ă 0,

ˇ

ˇf(x) ´ P2n(x)
ˇ

ˇ =
ˇ

ˇf(x) ´ P2n+1(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż x

0

f (2n+2)(t)
(t ´ x)2n+1

(2n+ 1)!
dt
ˇ

ˇ

ˇ
ď

ż 0

x

(t ´ x)2n+1

(2n+ 1)!
dt

=
(t ´ x)2n+2

(2n+ 2)!

ˇ

ˇ

ˇ

t=x

t=0
=

(´x)2n+2

(2n+ 2)!
.

Therefore,
ˇ

ˇ

ˇ
cosx ´

n
ÿ

k=0

(´1)k

(2k)!
x2k

ˇ

ˇ

ˇ
ď

|x|2n+2

(2n+ 2)!
@x P R . (9.7.4)

Similarly,
ˇ

ˇ

ˇ
sinx ´

n
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1

ˇ

ˇ

ˇ
ď

|x|2n+3

(2n+ 3)!
@x P R . (9.7.5)

Moreover, by the fact that

lim
nÑ8

|x|2(n+1)+2

[2(n+ 1) + 2]!

|x|2n+2

(2n+ 2)!

= lim
nÑ8

x2

(2n+ 3)(2n+ 4)
= 0 ă 1

and

lim
nÑ8

|x|2(n+1)+3

[2(n+ 1) + 3]!

|x|2n+3

(2n+ 3)!

= lim
nÑ8

x2

(2n+ 4)(2n+ 5)
= 0 ă 1



the ratio test implies that
8
ř

k=0

|x|2n+2

(2n+ 2)!
and

8
ř

k=0

|x|2n+3

(2n+ 3)!
converge; thus for each x P R,

lim
nÑ8

|x|2n+2

(2n+ 2)!
= lim

nÑ8

|x|2n+3

(2n+ 3)!
= 0 ;

thus

cosx =
8
ÿ

k=0

(´1)k

(2k)!
x2k = 1 ´

x2

2!
+
x4

4!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n + ¨ ¨ ¨ ,

sinx =
8
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1 = x ´

x3

3!
+
x5

5!
+ ¨ ¨ ¨ +

(´1)n

(2n+ 1)!
x2n+1 + ¨ ¨ ¨ .

Using (9.7.4), we conclude that

ˇ

ˇ

ˇ
cos(0.1) ´

3
ÿ

k=0

(´1)k

(2k)!
(0.1)2k

ˇ

ˇ

ˇ
ď

0.18

8!
;

thus cos(0.1) «
3
ř

k=0

(´1)k

(2k)!
(0.1)2k « 0.995004165 which is accurate to nine decimal points.

Remark 9.80. By Example 9.78 and 9.79, conceptually we can explain why the Euler
identity eiθ = cos θ + i sin θ for all θ P R. Recall that the (2n)-th Maclaurin polynomial for
exp, cos, sin are

P e
2n(x) = 1 + x+

x2

2!
+ ¨ ¨ ¨ +

x2n

(2n)!
,

P c
2n(x) = 1 ´

x2

2!
+
x4

4!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n ,

P s
2n(x) = x ´

x3

3!
+
x5

5!
+ ¨ ¨ ¨ +

(´1)n´1

(2n ´ 1)!
x2n´1 .

Substitution x = iθ, we find that

P e
2n(iθ) = P c

2n(θ) + iP s
2n(θ) @ θ P R .

Passing n Ñ 8, by the fact that the remainders Rn(x) for exp, sin and cos all converges to
zero as n Ñ 8 for each x P R (and even x P C), we conclude that

eiθ = cos θ + i sin θ @ θ P R .



‚ Lagrange form of the remainder

Theorem 9.81: Taylor’s Theorem

Let f : (a, b) Ñ R be (n + 1)-times differentiable, and c P (a, b). Then for each
x P (a, b), there exists ξ between x and c such that

f(x) = f(c) + f 1(c)(x ´ c) +
f 11(c)

2
(x ´ c)2 + ¨ ¨ ¨ +

f (n)(c)

n!
(x ´ c)n +Rn(x) , (9.7.6)

where Lagrange form of the remainder Rn(x) is given by

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x ´ c)n+1 .

Proof. We first show that if h : (a, b) Ñ R is m-times differentiable, and c P (a, b). Then for
all d P (a, b) and d ‰ c there exists ξ between c and d such that

h(d) ´
m
ř

k=0

h(k)(c)

k!
(d ´ c)k

(d ´ c)m+1
=

1

m+ 1

h 1(ξ) ´
m´1
ř

k=0

(h 1)(k)(c)

k!
(ξ ´ c)k

(ξ ´ c)m
. (9.7.7)

Let F (x) = h(x) ´
m
ř

k=0

h(k)(c)

k!
(x ´ c)k and G(x) = (x ´ c)m. Then F,G are continuous on

[c, d] (or [d, c]) and differentiable on (c, d) (or (d, c)), and G 1(x) ‰ 0 for all x ‰ c. Therefore,
the Cauchy Mean Value Theorem implies that there exists ξ between c and d such that

F (d) ´ F (c)

G(d) ´ G(c)
=
F 1(ξ)

G 1(ξ)
,

and (9.7.7) is exactly the explicit form of the equality above.
Now we apply (9.7.7) successfully for h = f , f 1, f 11, ¨ ¨ ¨ and f (n) and find that

f(d) ´
n
ř

k=0

f (k)(c)

k!
(d ´ c)k

(d ´ c)n+1
=

1

n+ 1

f 1(d1) ´
n´1
ř

k=0

(f 1)(k)(c)

k!
(d1 ´ c)k

(d1 ´ c)n

=
1

n+ 1
¨
1

n

f 11(d2) ´
n´2
ř

k=0

(f 11)(k)(c)

k!
(d2 ´ c)k

(d2 ´ c)n´1

= ¨ ¨ ¨ ¨ ¨ ¨

=
1

(n+ 1)!

f (n)(dn) ´ f (n)(c)

dn ´ c
=

1

(n+ 1)!
f (n+1)(ξ) ;



thus
f(d) ´

n
ÿ

k=0

f (k)(c)

k!
(d ´ c)k =

1

(n+ 1)!
f (n+1)(ξ)(d ´ c)n+1 .

(9.7.6) then follows from the equality above since d P (a, b) is given arbitrary.

Example 9.82. In Example 9.76 we compute the Taylor polynomial Qn for the function
y = ln(1 + x). Note that the Taylor Theorem implies that

ln(1 + x) = Pn(x) +Rn(x) ,

where
Rn(x) =

1

(n+ 1)!

(
dn+1

dxn+1

ˇ

ˇ

ˇ

x=ξ
ln(1 + x)

)
xn+1 =

(´1)n

n+ 1
(1 + ξ)´n´1xn+1

for some ξ between 0 and x.

1. If ´1 ă x ă 0, then Rn(x) =
´1

n+ 1

(
´x

1 + ξ

)n+1

ă 0; thus

ln(1 + x) ď x ´
x2

2
+
x3

3
´
x4

4
+ ¨ ¨ ¨ +

(´1)n

n
xn @x P (´1, 0) and n P N .

2. If x ą 0, then

(a) Rn(x) ă 0 if n is odd; thus

ln(1 + x) ď x ´
x2

2
+
x3

3
´
x4

4
+ ¨ ¨ ¨ +

1

2k + 1
x2k+1 @x ą 0 and k P N .

(b) Rn(x) ą 0 if n is even; thus

ln(1 + x) ě x ´
x2

2
+
x3

3
´
x4

4
+ ¨ ¨ ¨ +

´1

2k
x2k @x ą 0 and k P N .

Example 9.83. In this example we show that

ln(1 + x) =
8
ÿ

k=1

(´1)k´1xk

k
= x ´

x2

2
+
x3

3
+ ¨ ¨ ¨ +

(´1)n´1xn

n
+ ¨ ¨ ¨ @x P (0, 1] . (9.7.8)

Note that Taylor’s Theorem implies that for all x ą ´1, there exists ξ between 0 and x such

that the remainder associated with Pn(x) =
n
ř

k=1

(´1)k´1xk

k
is given by

Rn(x) =
(´1)n

n+ 1
(1 + ξ)´n´1xn+1 .



Note that since ξ is between 0 and x, we always have

0 ă
x

1 + ξ
ă 1 @x P (0, 1] ;

thus |Rn(x)| ď
1

n+ 1
for all x P (´1, 1] and (9.7.8) is concluded because

lim
nÑ8

ˇ

ˇRn(x)
ˇ

ˇ = 0 .

Example 9.84. In this example we compute ln 2. Note that using (9.7.8) we find that

ln 2 = 1 ´
1

2
+

1

3
´

1

4
+ ¨ ¨ ¨ +

(´1)n´1

n
+Rn(1) ,

where
Rn(1) =

1

(n+ 1)!

( dn+1

dxn+1

ˇ

ˇ

ˇ

x=ξ
ln(1 + x)

)
1n+1 =

(´1)n

n+ 1
(1 + ξ)´(n+1)

for some ξ between 0 and 1. Since ξ could be very closed to 0, in this case the best we can
estimate Rn(1) is

ˇ

ˇRn(1)
ˇ

ˇ ď
1

n+ 1
.

Therefore, to evaluate ln 2 accurate to eight decimal point, it is required that n = 108.
Let c = e

2
« 1.359140914. Then

ln c = ln
(
1 + (c ´ 1)

)
= (c ´ 1) ´

(c ´ 1)2

2
+ ¨ ¨ ¨ +

(´1)n´1

n
(c ´ 1)n +Rn(c ´ 1) ,

where Rn(c ´ 1) is given by

Rn(c ´ 1) =
1

(n+ 1)!

( dn+1

dxn+1

ˇ

ˇ

ˇ

x=ξ
ln(1 + x)

)
(c ´ 1)n+1 =

(´1)n

n+ 1
(1 + ξ)´(n+1)(c ´ 1)n+1

for some ξ between 0 and c ´ 1. Note that
ˇ

ˇRn(c)
ˇ

ˇ ď
(c ´ 1)n+1

n+ 1
;

thus the value

(c ´ 1) ´
(c ´ 1)2

2
+

(c ´ 1)3

3
´

(c ´ 1)4

4
+ ¨ ¨ ¨ +

1

17
(c ´ 1)17

to approximate ln c is accurate to eight decimal points
(
since 1

18
0.418 ă 10´8

)
. On the other

hand, we have ln 2 = 1 ´ ln c, so the value

1 ´ (c ´ 1) +
(c ´ 1)2

2
´

(c ´ 1)3

3
+

(c ´ 1)4

4
+ ¨ ¨ ¨ ´

1

17
(c ´ 1)17

to approximate ln 2 is also accurate to eight decimal points.



9.8 Power Series
Recall that for all x P R, we have shown that

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ ¨ ¨ ¨ +

xn

n!
+ ¨ ¨ ¨ ,

cosx =
8
ÿ

k=0

(´1)k

(2k)!
x2k = 1 ´

x2

2!
+
x4

4!
+ ¨ ¨ ¨ +

(´1)n

(2n)!
x2n + ¨ ¨ ¨ ,

sinx =
8
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1 = x ´

x3

3!
+
x5

5!
+ ¨ ¨ ¨ +

(´1)n

(2n+ 1)!
x2n+1 + ¨ ¨ ¨ .

The identities above show that the functions y = exp(x), y = cosx, y = sinx can be defined
using series whose terms are multiples of monomials of x. These kind of series are called
power series. To be more precise, we have the following
Definition 9.85: Power Series

Let c be a real number. A power series (of one variable x) centered at c is an infinite
series of the form

8
ÿ

k=0

ak(x ´ c)k = a0 + a1(x ´ c)1 + a2(x ´ c)2 + ¨ ¨ ¨ ,

where ak is independent of x and represents the coefficient of the k-th term.

Theorem 9.86

Let taku8
k=0 be a sequence of real numbers. If

8
ř

k=0

akd
k converges, then

8
ř

k=0

ak(x ´ c)k

converges absolutely for all x P (c ´ |d|, c+ |d|).

Proof. First we note that since
8
ř

k=0

akd
k converges, lim

nÑ8
and

n = 0; thus the boundedness of
convergent sequence implies that there exists M ą 0 such that

|and
n| ď M @n P N .

Suppose that |x ´ c| ă |d|. Then there exists ε ą 0 such that |x ´ c| ă |d| ´ ε. Then

|an||x ´ c|n = |an||d|n
|x ´ c|n

(|d| ´ ε)n

( |d| ´ ε

|d|

)n

ď M
( |d| ´ ε

|d|

)n

.



Therefore, by the convergence of geometric series with ratio between ´1 and 1, the direct
comparison test implies that the series

8
ř

n=0

an(x ´ c)n converges absolutely.

Corollary 9.87
For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.

2. There exists R ą 0 such that the series converges absolutely for |x´ c| ă R and
diverges for |x ´ c| ą R.

3. The series converges absolutely for all x.

Definition 9.88: Radius of Convergence and Interval of Convergence
Let a power series centered at c be given. If the power series converges only at c,
we say that the radius of convergence of the power series is 0. If the power series
converges for |x ´ c| ă R but diverges for |x ´ c| ą R, we say that the radius of
convergence of the power series is R. If the power series converges for all x, we say
that the radius of converges of the power series is 8. The set of all values of x for
which the power series converges is called the interval of convergence of the power
series.

Remark 9.89. The radius of convergence of a power series centered at c is the greatest
lower bound of the set

␣

r ą 0
ˇ

ˇ there exists x P (c ´ r, c+ r) such that the power series diverges
(

.

Example 9.90. Consider the power series
8
ř

k=0

k!xk. Note that for each x ‰ 0,

lim
kÑ8

ˇ

ˇ(k + 1)!xk+1
ˇ

ˇ

ˇ

ˇk!xk
ˇ

ˇ

= lim
kÑ8

(k + 1)|x| = 8 ;

thus the ratio test implies that the power series
8
ř

k=0

k!xk diverges for all x ‰ 0. Therefore,

the radius of convergence of
8
ř

k=0

k!xk is 0, and the interval of convergence of
8
ř

k=0

k!xk is t0u.



Example 9.91. Consider the power series
8
ř

k=0

3(x ´ 2)k. Note that for each x P R,

lim
kÑ8

3|x ´ 2|k+1

3|x ´ 2|k
= lim

kÑ8
|x ´ 2| = |x ´ 2| ;

thus the ratio test implies that the power series
8
ř

k=0

3(x´2)k converges absolutely if |x´2| ă 1

and diverges if |x ´ 2| ą 1. Therefore, the radius of convergence is 1.
To see the interval of convergence, we still need to determine if the power series converges

at end-point 1 or 3. However, the power series clearly does not converge at 1 and 3; thus
the interval of convergence is (1, 3).

Example 9.92. Consider the power series
8
ř

k=1

xk

k2
. Note that for each x P R,

lim
kÑ8

ˇ

ˇ

ˇ

xk+1

(k + 1)2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xk

k2

ˇ

ˇ

ˇ

= lim
kÑ8

k2|x|

(k + 1)2
= |x| ;

thus the ratio test implies that the power series
8
ř

k=0

xk

k2
converges absolutely if |x| ă 1 and

diverges if |x| ą 1. Therefore, the radius of convergence is 1.

To see the interval of convergence, we note that
8
ř

k=1

1

k2
converges since it is a p-series

with p = 2, and
8
ř

k=1

(´1)k

k2
converges since it converges absolutely (or simply because it is

an alternating series). Therefore, the interval of convergence of the power series is [´1, 1].

Example 9.93. Consider the power series
8
ř

k=1

xk

k
. Note that for each x P R,

lim
kÑ8

ˇ

ˇ

ˇ

xk+1

k + 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xk

k

ˇ

ˇ

ˇ

= lim
kÑ8

k|x|

k + 1
= |x| ;

thus the ratio test implies that the power series
8
ř

k=0

xk

k
converges absolutely if |x| ă 1 and

diverges if |x| ą 1. Therefore, the radius of convergence is 1.

To see the interval of convergence, we note that
8
ř

k=1

1

k
diverges since it is a p-series with

p = 1, and
8
ř

k=1

(´1)k

k2
converges since it is an alternating series. Therefore, the interval of

convergence of the power series is [´1, 1).



Similarly, the power series
8
ř

k=1

(´1)kxk

k
has interval of convergence (´1, 1].

Example 9.94. Consider the power series
8
ř

k=1

xk

k2
. Note that for each x P R,

lim
nÑ8

ˇ

ˇ

ˇ

xn+1

(n+ 1)2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xn

n2

ˇ

ˇ

ˇ

= lim
nÑ8

n2|x|

(n+ 1)2
= |x| ;

thus the ratio test implies that the power series
8
ř

k=1

xk

k2
converges absolutely if |x| ă 1 and

diverges if |x| ą 1. Therefore, the radius of convergence is 1.
To see the interval of convergence, we note that

8
ř

k=1

1

k2
converges since it is a p-series with

p = 2, and
8
ř

k=1

(´1)k

k2
also converges since it converges absolutely (or because of Dirichlet’s

test). Therefore, the interval of convergence of the power series is [´1, 1].

Remark 9.95. Even though the examples above all has radius of convergence 1, it is not
necessary that the radius of convergence of a power series is always 1. For example, the
power series

8
ř

k=1

xk

2kk
is obtained by replacing x by x

2
in Example 9.93; thus

8
ÿ

k=1

xk

2kk
converges for x

2
P [´1, 1)

or equivalent, the interval of convergence of
8
ř

k=1

xk

2kk
is [´2, 2); thus the radius of convergence

of this power series is 2.

Example 9.96. The radius of convergence of the power series
8
ř

k=0

(´1)kx2k+1

(2k + 1)!
is 8 since for

all x P R,

lim
kÑ8

ˇ

ˇ

ˇ

(´1)k+1x2(k+1)+1

[2(k + 1) + 1]!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(´1)kx2k+1

(2k + 1)!

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

(´1)k+1x2k+3

(2k + 3)!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(´1)kx2k+1

(2k + 1)!

ˇ

ˇ

ˇ

= lim
kÑ8

x2

(2k + 3)(2k + 2)
= 0 .

‚ Differentiation and Integration of Power Series

Let taku8
k=0 be a sequence of real numbers and c P R. If the power series

8
ř

k=0

ak(x ´ c)k

converges in an interval (c´r, c+r), we can ask ourselves whether the function f : (c´r, c+r)



defined by f(x) =
8
ř

k=0

ak(x´c)k is differentiable or not. We note that even though the power

series is an infinite sum of differentiable functions (in fact, monomials), it is not clear if the
limiting process d

dx
commutes with

8
ř

k=0

since

lim
nÑ8

lim
hÑ0

nh2 = 0 but lim
hÑ0

lim
nÑ8

nh2 = 8 .

Theorem 9.97: Properties of Functions Defined by Power Series
If the function

f(x) =
8
ÿ

k=0

ak(x ´ c)k = a0 + a1(x ´ c) + a2(x ´ c)2 + ¨ ¨ ¨

has a radius of convergence of R ą 0, then

1. f is differentiable on (c ´ R, c+R) and

f 1(x) =
8
ÿ

k=1

kak(x ´ c)k´1 = a1 + 2a2(x ´ c) + 3a3(x ´ c)2 + ¨ ¨ ¨ .

2. an anti-derivative of f on (c ´ R, c+R) is given by
ż

f(x) dx = C +
8
ÿ

k=0

ak
k + 1

(x ´ c)k+1 = C + a0(x ´ c) +
a1
2
(x ´ c)2 + ¨ ¨ ¨ .

The radius of convergence of the power series obtained by differentiating or integrating
a power series term by term is the same as the original power series.

Remark 9.98. Theorem 9.97 states that, in many ways, a function defined by a power
series behaves like a polynomial; that is, the derivative (or anti-derivative) of a power series
can be obtained by term-by-term differentiation (or integration). However, it is not true for

general functions defined by series of the form
8
ř

k=0

bk(x). For example, we have talked about

(but did not prove) the series
8
ř

k=1

sin kx
k

which is the same as π ´ x

2
on (0, 2π); that is,

8
ÿ

k=1

sin kx
k

=
π ´ x

2
@x P (0, 2π) .



Then
´
1

2
=

d

dx

8
ÿ

k=1

sin kx
k

@x P (0, 2π)

but
d

dx

8
ÿ

k=1

sin kx
k

‰

8
ÿ

k=1

d

dx

sin kx
k

=
8
ÿ

k=1

cos kx @x P (0, 2π)

since the series
8
ř

k=1

cos kx does not converges for all x P (0, 2π).

Example 9.99. Consider the function f defined by power series

f(x) =
8
ÿ

k=1

xk

k
= x+

x2

2
+
x3

3
+ ¨ ¨ ¨ @ x P [´1, 1) .

Then the function
g(x) =

8
ÿ

k=1

xk´1 =
8
ÿ

k=0

xk = 1 + x+ x2 + ¨ ¨ ¨ ,

obtained by term-by-term differentiation, converges for x P (´1, 1), and the function

h(x) =
8
ÿ

k=1

xk+1

k(k + 1)
=

8
ÿ

k=2

xk

k(k ´ 1)
=
x2

2
+
x3

6
+
x4

12
+ ¨ ¨ ¨

obtained by term-by-term differentiation, converges for x P [´1, 1].

Example 9.100. Suppose that x is a function of t satisfying

x 11(t) + x(t) = 0 , x(0) = x 1(0) = 1 .

Assume that x(t) =
8
ř

k=0

akt
k for t P (´R,R) with some radius of convergence R ą 0. Then

Theorem 9.97 implies that

x 11(t) =
8
ÿ

k=2

k(k ´ 1)akt
k´2 =

8
ÿ

k=0

(k + 2)(k + 1)ak+2t
k @ t P (´R,R) ;

thus if t P (´R,R),
8
ÿ

k=0

[
(k + 2)(k + 1)ak+2 + ak

]
tk =

8
ÿ

k=0

(k + 2)(k + 1)ak+2t
k +

8
ÿ

k=0

akt
k = x 11(t) + x(t) = 0 .

The equality above implies that

(k + 2)(k + 1)ak+2 + ak = 0 @ k P N Y t0u .



Therefore,

a2k =
´1

(2k)(2k ´ 1)
a2k´2 =

(´1)2

(2k)(2k ´ 1)(2k ´ 2)(2k ´ 4)
a2k´4 = ¨ ¨ ¨ =

(´1)k

(2k)!
a0 ,

a2k+1 =
´1

(2k + 1)(2k)
a2k´1 =

(´1)2

(2k + 1)(2k)(2k ´ 1)(2k ´ 2)
a2k´3 = ¨ ¨ ¨ =

(´1)k

(2k + 1)!
a1 .

Since x(0) = x 1(0) = 1 implies a0 = a1 = 1, we have

x(t) =
8
ÿ

k=0

[(´1)k

(2k)!
t2k +

(´1)k

(2k + 1)!
t2k+1

]
=

8
ÿ

k=0

(´1)k

(2k)!
t2k +

8
ÿ

k=0

(´1)k

(2k + 1)!
t2k+1 = cos t+ sin t .

Corollary 9.101
For a function defined by power series

f(x) =
8
ÿ

k=0

ak(x ´ c)k

(on a certain interval of convergence), the n-th Taylor polynomial for f at c is the

n-th partial sum
n
ř

k=0

ak(x ´ c)k of the power series.

9.9 Representation of Functions by Power Series
We have shown the following identities:

exp(x) =
8
ÿ

k=0

xk

k!
@x P R ,

sinx =
8
ÿ

k=0

(´1)kx2k+1

(2k + 1)!
@x P R ,

cosx =
8
ÿ

k=0

(´1)kx2k

(2k)!
@x P R ,

ln(1 + x) =
8
ÿ

k=1

(´1)k´1xk

k
@x P (´1, 1] .

In this section, we are interested in finding the power series representation (centered at c)
of functions of the form

f(x) =
1

b ´ x
.



(without differentiating the function). In other words, for a given c P Rztbu we would like
to find taku8

k=0 (which usually depends on c) such that f(x) agrees with the power series
8
ÿ

k=0

ak(x ´ c)k

on a certain interval of convergence without differentiating f . For example, we know that

1

1 ´ x
=

8
ÿ

k=0

xk @x P (´1, 1) ;

thus to “expand the function about 1

2
”; that is, to write the function y =

1

1 ´ x
as a power

series centered at 1

2
, we have

1

1 ´ x
=

1
1

2
´
(
x ´

1

2

) = 2 ¨
1

1 ´ 2
(
x ´

1

2

) = 2
8
ÿ

k=0

[
2
(
x ´

1

2

)]k
if x satisfying 2

ˇ

ˇx ´
1

2

ˇ

ˇ ă 1 .

In other words, we obtain

1

1 ´ x
=

8
ÿ

k=0

2k+1
(
x ´

1

2

)k

@x P (0, 1)

without computing the derivatives of the function y =
1

1 ´ x
at 1

2
.

We emphasize that f is defined on Rztcu and the power series
8
ř

k=0

ak(x ´ c)k converges

only on an interval; thus the function y = f(x) is never the same as the function defined by
power series.

‚ Geometric Power Series

Recall that the geometric series
8
ř

k=0

rk converges if and only if |r| ă 1. The function g(x) =
1

1 ´ x
is defined on Rzt1u, and by the fact that

1 ´ xn+1

1 ´ x
= 1 + x+ x2 + ¨ ¨ ¨ + xn =

n
ÿ

k=0

xk @x ‰ 1 ,

we find that if |x| ă 1, then

lim
nÑ8

n
ÿ

k=0

xk = lim
nÑ8

1 ´ xn+1

1 ´ x
=

1

1 ´ x
;



thus 1

1 ´ x
=

8
ř

k=0

xk on (´1, 1). Therefore, for c ‰ b,

1

b ´ x
=

1

b ´ c
¨

1

1 ´
x´ c

b´ c

=
1

b ´ c

8
ÿ

k=0

(x ´ c

b ´ c

)k

@x satisfying
ˇ

ˇ

ˇ

x ´ c

b ´ c

ˇ

ˇ

ˇ
ă 1 ,

or equivalently,
1

b ´ x
=

8
ÿ

k=0

1

(b ´ c)k+1
(x ´ c)k @x P (c ´ |b ´ c|, c+ |b ´ c|) .

Replacing x by ´x, we find that
1

b+ x
=

8
ÿ

k=0

(´1)k

(b ´ c)k+1
(x+ c)k @x P (´c ´ |b ´ c|,´c+ |b ´ c|) .

Example 9.102. Find a power series representation for f(x) = 1

x
, centered at 1.

To find the power series centered at 1, we rewrite 1

x
=

1

1 + (x´ 1)
; thus

1

x
=

1

1 ´ (1 ´ x)
=

8
ÿ

k=0

(1 ´ x)k =
8
ÿ

k=0

(´1)k(x ´ 1)k @ |x ´ 1| ă 1 .

Example 9.103. Find a power series representation for f(x) = lnx centered at 1.

Note that d

dx
lnx =

1

x
; thus

d

dx
lnx =

8
ÿ

k=0

(´1)k(x ´ 1)k @x P (0, 2) .

Therefore, by Theorem 9.97,

lnx = C +
8
ÿ

k=0

(´1)k

k + 1
(x ´ 1)k+1 = C +

8
ÿ

k=1

(´1)k´1

k
(x ´ 1)k @x P (0, 2) .

To determine the constant C, we let x = 1 and find that ln 1 = C; thus C = 0 and we
conclude that

lnx =
8
ÿ

k=1

(´1)k´1

k
(x ´ 1)k @x P (0, 2) .

We note that the power series converges at x = 2, and Example 9.84 shows that

ln 2 =
8
ÿ

k=1

(´1)k´1

k
.

In other words, the power series
8
ř

k=1

(´1)k´1

k
(x ´ 1)k is continuous at 2



‚ Operations with Power Series

Let f(x) =
8
ř

k=0

ak(x ´ c)k have interval of convergence I1 and g(x) =
8
ř

k=0

bk(x ´ c)k have

interval of convergence I2.

1. f(αx) =
8
ř

k=0

akα
k
(
x ´

c

α

)k on I ”
␣

x P R
ˇ

ˇαx P I1
(

.

2. f(x) + g(x) =
8
ř

k=0

(ak + bk)x
k on I ” I1 X I2.

3. If c = 0 and N P N, then f(xN) =
8
ř

k=0

akx
Nk on I ”

␣

x P R
ˇ

ˇxN P I1
(

.

4. f(x)g(x) =
8
ř

k=0

dk(x ´ c)k on I ” I1 X I2, where dk =
k
ř

j=0

akbj´k.

Example 9.104. Find a power series for f(x) = arctanx centered at 0.

Note that d

dx
arctanx =

1

1 + x2
; thus

d

dx
arctanx =

1

1 + x2
=

8
ÿ

k=0

(´1)kx2k @x P (´1, 1) .

By Theorem 9.97,

arctanx = C +
8
ÿ

k=0

(´1)k

2k + 1
x2k+1 @x P (´1, 1) ,

and the constant C is determined by applying the identity above at x = 0; thus C = arctan 0

and
arctanx =

8
ÿ

k=0

(´1)k

2k + 1
x2k+1 @x P (´1, 1) ,

We note that the power series converges at x = ˘1. Is it true that arctan 1 = 1 ´
1

3
+

1

5
´

1

7
+ ¨ ¨ ¨ ?

In general, suppose that the function f defined by power series
8
ř

k=0

ak(x´c)k has a radius

of convergence R ą 0, and g is a continuous function defined on some interval I such that
f(x) = g(x) for all x P (c ´ R, c + R) Ĺ I. If f is also defined on c + R (or c ´ R), by
Theorem 9.97 it is not clear if lim

xÑc+R
f(x) = g(c + R)

(
or lim

xÑc´R
f(x) = g(c ´ R)

)
. The

following theorem concerns with this issue.



Theorem 9.105: Continuity of Power Series at End-points

Let the radius of convergence of the power series f(x) =
8
ř

k=0

ak(x ´ c)k be r for some
r ą 0.

1. If
8
ř

k=0

akr
k converges, then f is continuous at c+ r; that is,

lim
xÑ(c+r)´

f(x) = f(c+ r) .

2. If
8
ř

k=0

ak(´r)
k converges, then f is continuous at c ´ r; that is,

lim
xÑ(c´r)+

f(x) = f(c ´ r) .

Therefore, it is true that
π

4
= 1 ´

1

3
+

1

5
´

1

7
+

1

9
+ ¨ ¨ ¨ +

(´1)n

2n+ 1
+ ¨ ¨ ¨ .

9.10 Taylor and Maclaurin Series
Definition 9.106

If a function f has derivatives of all orders at x = c, then the series
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k

is called the Taylor series for f at c. It is also called the Maclaurin series for f if
c = 0.

Theorem 9.107: Convergence of Taylor Series
Let f be a function that has derivatives of all orders at x = c, and Pn be the n-
th Taylor polynomial for f at c. If Rn, the remainder associated with Pn, has the
property that

lim
nÑ8

Rn(x) = 0 @x P I

for some interval I, then the Taylor series for f converges and equals f(x); that is,

f(x) =
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k @x P I .



Corollary 9.108
Let f be a function that has derivatives of all orders in an open interval I containing
c. If there exists M ą 0 such that

ˇ

ˇf (k)(x)
ˇ

ˇ ď M for all x P I and each k P N, then

f(x) =
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k @x P I .

Proof. By the Taylor Theorem,

f(x) =
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k +Rn(x) ,

where

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x ´ c)n+1

for some ξ between c and x. Since
ˇ

ˇf (k)(x)
ˇ

ˇ ď M for all x P I and k P N, we find that

ˇ

ˇRn(x)
ˇ

ˇ ď
M

(n+ 1)!
|x ´ c|n+1 @x P I .

Therefore, by the fact that lim
nÑ8

an

n!
= 0 for all a P R (the same reasoning as in Example

9.79), the Squeeze Theorem implies that

lim
nÑ8

Rn(x) = 0 @x P I

and Theorem 9.107 further shows that f(x) =
8
ř

k=0

f (k)(c)

k!
(x ´ c)k.

Example 9.109. Since the k-th derivatives of the sine function is bounded by 1; that is,

ˇ

ˇ

ˇ

dk

dxk
sinx

ˇ

ˇ

ˇ
ď 1 @x P R and k P N ,

Corollary 9.108 implies that for all c P R,

sinx =
8
ÿ

k=0

1

k!
sin

(
c+

kπ

2

)
(x ´ c)k @x P R ,



here we have used dk

dxk
sinx = sin

(
x +

kπ

2

)
to compute the k-th derivative of the sine

function. In particular,

sinx =
8
ÿ

k=0

(´1)k

(2k + 1)!
x2k+1 = x ´

x3

3!
+
x5

5!
+ ¨ ¨ ¨ @ x P R .

Similarly, for all c P R,

cosx =
8
ÿ

k=0

1

k!
cos

(
c+

kπ

2

)
(x ´ c)k @x P R .

Example 9.110. Consider the natural exponential function y = exp(x). Note that for all
real numbers R ą 0, we have

ˇ

ˇ

ˇ

dk

dxk
ex
ˇ

ˇ

ˇ
= ex ď eR @x P (´R,R) and k P N ;

thus Corollary 9.108 implies that

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+ ¨ ¨ ¨ @x P (´R,R) .

Since the identity above holds for all R ą 0, we conclude that

ex =
8
ÿ

k=0

xk

k!
= 1 + x+

x2

2!
+ ¨ ¨ ¨ @x P R .

Example 9.111 (Binomial Series). In this example we consider the Maclaurin series, called
the binomial series, of the function f(x) = (1 + x)α, where α P R and α ‰ N Y t0u.

We compute the derivative of f and find that

dk

dxk
(1 + x)α = α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)(1 + x)α´k .

Therefore,

f (k)(0) =
dk

dxk

ˇ

ˇ

ˇ

x=0
(1 + x)α = α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

and the Maclaurin series for f is
8
ÿ

k=0

f (k)(0)

k!
xk =

8
ÿ

k=0

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

k!
xk .



To see the radius of convergence of the Maclaurin series above, we use the ratio test and
find that

lim
nÑ8

ˇ

ˇα(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ (n+ 1) + 1)
ˇ

ˇ

(n+ 1)!
|x|n+1

ˇ

ˇα(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ n+ 1)
ˇ

ˇ

n!
|x|n

= lim
nÑ8

|α ´ n|

n+ 1
|x| = |x| ;

thus the radius of convergence of the power series
8
ř

k=0

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

k!
xk is 1.

Moreover, by Taylor’s theorem, for each x P (´1, 1) there exists ξ between 0 and x such
that

(1 + x)α =
n
ÿ

k=0

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

k!
xk +Rn(x) ,

where
Rn(x) =

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ n)

(n+ 1)!
(1 + ξ)α´n´1xn+1 .

Similar to Example 9.76, we have

ˇ

ˇRn(x)
ˇ

ˇ ď

ˇ

ˇα(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ n)
ˇ

ˇ

(n+ 1)!
xα @x P (0, 1);

thus (without detail reasoning) we find that

lim
nÑ8

Rn(x) = 0 @x P (0, 1) .

Therefore,

(1 + x)α =
8
ÿ

k=0

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

k!
xk @x P (0, 1) .

In fact,

(1 + x)α =
8
ÿ

k=0

α(α ´ 1)(α ´ 2) ¨ ¨ ¨ (α ´ k + 1)

k!
xk @x P (´1, 1) .
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