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Chapter 8

Integration Techniques and Improper
Integrals

8.1 Basic Integration Rules
We recall the following formula:

1. Let f, g be functions and k be a constant. Then
ż

kf(x) dx = k
ż

f(x) dx ,

ż

(f + g)(x) dx =

ż

f(x) dx+

ż

g(x) dx .

2. Let r be a real number. Then

ż

xr dx =

$

&

%

1

r + 1
xr+1 + C if r ‰ ´1 ,

lnx+ C if r = ´1 .

3. If a ą 0, then
ż

ax dx =
1

ln aa
x + C. In particular,

ż

ex dx = ex + C.

4. If a ‰ 0,
ż

sin(ax) dx = ´
1

a
cos(ax) + C,

ż

cos(ax) dx =
1

a
sin(ax) + C,

ż

tan(ax) dx =
1

a
ln | sec(ax)| + C,

ż

cot(ax) dx =
1

a
ln | sin(ax)| + C,

ż

sec(ax) dx =
1

a
ln | sec(ax)+tan(ax)|+C,

ż

cscx dx = ´
1

a
ln | csc(ax)+cot(ax)|+C.

5.
ż

sec2 x dx = tanx+ C,
ż

secx tanx dx = secx+ C.
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6. If a ą 0, then
ż

dx
?
a2 ´ x2

= arcsin x
a
+ C ,

ż

dx

a2 + x2
=

1

a
arctan x

a
+ C

ż

dx

x
?
x2 ´ a2

=
1

a
arctan

?
x2 ´ a2

a
+ C .

Example 8.1. Find the indefinite integrals
ż

4

x2 + 9
dx,

ż

4x

x2 + 9
dx and

ż

4x2

x2 + 9
dx.

From the formula above, it is easy to see that
ż

4

x2 + 9
dx =

4

3
arctan x

3
+ C .

Noting that 4x

x2 + 9
= 2

d
dx(x

2 + 9)

x2 + 9
, using the formula d

dx
ln |f(x)| =

f 1(x)

f 1(x)
, we find that

ż

4x

x2 + 9
dx = 2 ln |x2 + 9| + C = 2 ln(x2 + 9) + C .

Finally, noting that 4x2

x2 + 9
=

4(x2 + 9) ´ 36

x2 + 9
= 4´

36

x2 + 9
, by the formula above we find that

ż

4x2

x2 + 9
dx = 4x ´ 12 arctan x

3
+ C .

Example 8.2. Find the indefinite integrals
ż

3
?
4 ´ x2

dx,
ż

3x
?
4 ´ x2

dx and
ż

3x2
?
4 ´ x2

dx.
From the formula above,

ż

3
?
4 ´ x2

dx = 3 arcsin x
2
+ C .

For the second integral, we let 4 ´ x2 = u. Then ´2xdx = du; thus
ż

3x
?
4 ´ x2

dx = ´
3

2

ż

u´ 1
2 du = ´

3

2

1

1 ´ 1
2

u
1
2 + C = ´3(4 ´ x2)

1
2 + C .

For the third integral, first we observe that
ż

3x2
?
4 ´ x2

dx =

ż

3(x2 ´ 4)
?
4 ´ x2

dx+

ż

12
?
4 ´ x2

dx = ´3

ż

?
4 ´ x2 dx+ 12 arcsin x

2
.

Let x = 2 sinu. Then dx = 2 cosu du; thus
ż

?
4 ´ x2 dx =

ż

b

4(1 ´ sin2 u) ¨ 2 cosu du =

ż

4 cos2 u du =

ż [
2 + 2 cos(2u)

]
du

= 2u+ sin(2u) + C = 2u+ 2 sinu cosu+ C

= 2 arcsin x
2
+ x

c

1 ´
x2

4
+ C = 2 arcsin x

2
+
x

?
4 ´ x2

2
+ C .



Therefore,
ż

3x2
?
4 ´ x2

dx = 6 arcsin x
2

´
3

2
x

?
4 ´ x2 + C .

Remark 8.3. One should add
ż

x
?
a2 ´ x2

dx = ´
?
a2 ´ x2 + C and

ż

x
?
a2 + x2

dx =
?
a2 + x2 + C

into the table of integrations.

Example 8.4. Find the indefinite integral
ż

dx

1 + ex
.

Let u = 1 + ex. Then du = exdx which implies that dx =
du

u´ 1
. Therefore,

ż

dx

1 + ex
=

ż

du

u(u ´ 1)
=

ż ( 1

u ´ 1
´

1

u

)
du = ln |u ´ 1| ´ ln |u| + C

= x ´ ln(1 + ex) + C .

Another way of finding the integral is by observing that

1

1 + ex
=

1 + ex

1 + ex
´

ex

1 + ex
= 1 ´

d
dx
(1 + ex)

1 + ex
;

thus using the formula d

dx
ln |f(x)| =

f 1(x)

f(x)
, we find that

ż

dx

1 + ex
= x ´ ln(1 + ex) + C .

8.2 Integration by Parts - 分部積分
Suppose that u, v are two differentiable functions of x. Then the product rule implies that

d

dx
(uv) =

du

dx
v + u

dv

dx
.

Therefore, if du
dx
v and u

dv

dx
are Riemann integrable (on the interval of interests),
ż

du

dx
v dx+

ż

u
dv

dx
dx = (uv)(x) + C .

Symbolically, we write du

dx
v dx ad v du and u

dv

dx
dx as u dv, the formula above implies

that
ż

udv = uv ´

ż

vdu .



Theorem 8.5: Integration by Parts
If u and v are functions of x and have continuous derivatives, then

ż

u dv = uv ´

ż

v du .

Example 8.6. Find the indefinite integral
ż

lnx dx. Recall that we have shown that

ż

lnx dx = x lnx ´ x+ C

using the Riemann sum. Let u = lnx and v = x (so that dv = dx). Then integration by
parts shows that

ż

lnx dx = x lnx ´

ż

x d(lnx) = x lnx ´

ż

x ¨
1

x
dx = x lnx ´

ż

dx = x lnx ´ x+ C .

Example 8.7. Find the indefinite integral
ż

x cosx dx. Recall that we have shown that

ż

x cosx dx = x sinx+ cosx+ C

using the Riemann sum. Let u = x and v = sinx (so that dv = cosx dx). Then integration
by parts shows that

ż

x cosx dx = x sinx ´

ż

sinx dx = x sinx+ cosx+ C .

Principles of applying integration by parts: Choose u and v such that v du has simpler
form than u dv, and this is usually achieved by

1. finding u such that the derivative of u is a function simpler than u, or

2. finding v such that the derivative of v is more complicate than v.

Example 8.8. Find the indefinite integral
ż

xex dx.

Let u = x and v = ex (so that dv = exdx). Then integration by parts shows that
ż

xex dx = xex ´

ż

ex dx = (x ´ 1)ex + C .



Example 8.9. Find the indefinite integral
ż

xr lnx dx, where r is a real number.

Suppose first that r ‰ ´1. Let u = lnx and v =
1

r + 1
xr+1. Then integration by parts

shows that
ż

xr lnx dx =
1

r + 1
xr+1 lnx ´

ż

1

r + 1
xr+1 ¨

1

x
dx =

1

r + 1
xr+1 lnx ´

1

r + 1

ż

xr dx

=
1

r + 1
xr+1 lnx ´

1

(r + 1)2
xr+1 + C .

Now if r = ´1. Let u = v = lnx. Then integration by parts implies that
ż

x´1 lnx dx = (lnx)2 ´

ż

lnx ¨
1

x
dx = (lnx)2 ´

ż

x´1 lnx dx

which implies that
ż

x´1 lnx dx =
1

2
(lnx)2 + C .

Therefore,

ż

xr lnx dx =

$

’

&

’

%

1

r + 1
xr+1 lnx ´

1

(r + 1)2
xr+1 + C if r ‰ ´1 ,

1

2
(lnx)2 + C if r = ´1 .

Example 8.10. Find the indefinite integral
ż

x2 cosx dx.
Let u = x2 and v = sinx (so that dv = cosx dx). Then integration by parts shows that

ż

x2 cosx dx = x2 sinx ´

ż

sinx ¨ 2x dx = x2 sinx ´ 2

ż

x sinx dx .

Integrating by parts again, we find that
ż

x sinx dx = ´x cosx+
ż

cosx dx = ´x cosx+ sinx+ C ;

thus we obtain the
ż

x2 cosx dx = x2 sinx+ 2x cosx ´ 2 sinx+ C .

Example 8.11. Find the indefinite integrals
ż

eax sin(bx) dx and
ż

eax cos(bx) dx, where
a, b are non-zero constants.



Let u = sin(bx) (or u = cos(ax)) and v = a´1eax (so that dv = eax dx). Then
ż

eax sin(bx) dx =
1

a
eax sin(bx) ´

b

a

ż

eax cos(bx) dx ,
ż

eax cos(bx) dx =
1

a
eax cos(bx) + b

a

ż

eax cos(bx) dx .

The two identities above further imply that
ż

eax sin(bx) dx =
1

a
eax sin(bx) ´

b

a

ż

eax cos(bx) dx

=
1

a
eax sin(bx) ´

b

a

[1
a
eax cos(bx) + b

a

ż

eax sin(bx) dx
]

=
1

a
eax sin(bx) ´

b

a2
eax cos(bx) ´

b2

a2

ż

eax sin(bx) dx ;

thus
ż

eax sin(bx) dx =
1

a2 + b2
[
aeax sin(bx) ´ beax cos(bx)

]
+ C . (8.2.1)

Similarly,
ż

eax cos(bx) dx =
1

a2 + b2
[
aeax cos(bx) + beax sin(bx)

]
+ C . (8.2.2)

Remark 8.12. By the Euler identity (5.9.1),
ż

eax sin(bx) dx and
ż

eax cos(bx) dx are the

real and imaginary part of the integral
ż

eaxeibx dx. By the fact that eaxeibx = e(a+ib)x and

pretending that
ż

ecx dx =
1

c
ecx + C for complex number c, we find that

ż

eaxeibx dx =
1

a+ ib
e(a+ib)x + C =

1

a+ ib
eax

[
cos(bx) + i sin(bx)

]
+ C

=
a ´ ib

a2 + b2
eax

[
cos(bx) + i sin(bx)

]
+ C

=
eax

a2 + b2
[
a cos(bx) + b sin(bx) + i

(
a sin(bx) ´ b cos(bx)

)]
+ C ;

thus we conclude (8.2.1) and (8.2.2).

Example 8.13. Find the indefinite
ż

xneax dx,
ż

xn sin(ax) dx and
ż

xn cos(ax) dx, where
a ą 0 is a constant.

Let u = xn and v = a´1eax (so that dv = eax dx), v = ´a´1 cos(ax) (so that dv = sin(ax))
and v = a´1 sin(ax) (so that dv = cos(ax)) in these three cases. Then

ż

xneax dx =
1

a
xneax ´

ż

1

a
eax ¨ nxn´1 dx =

1

a
xneax ´

n

a

ż

xn´1eax dx .



Moreover,
ż

xn sin(ax) dx = ´
1

a
xn cos(ax) + n

a

ż

xn´1 cos(ax) dx ,
ż

xn cos(ax) dx =
1

a
xn sin(ax) ´

n

a

ż

xn´1 sin(ax) dx .

The two identities above further imply that the following recurrence relations
ż

xn sin(ax) dx = ´
1

a
xn cos(ax) + n

a2
xn´1 sin(ax) ´

n(n ´ 1)

a2

ż

xn´2 sin(ax) dx ,
ż

xn cos(ax) dx =
1

a
xn sin(ax) + n

a2
xn´1 cos(ax) ´

n(n ´ 1)

a2

ż

xn´2 cos(ax) dx .

Example 8.14. Using integration by parts, we have
ż

cosn x dx =

ż

cosn´1 x d(sinx) = sinx cosn´1 x ´

ż

sinx d(cosn´1 x)

= sinx cosn´1 x+ (n ´ 1)

ż

sin2 x cosn´2 x dx

= sinx cosn´1 x+ (n ´ 1)

ż

(1 ´ cos2 x) cosn´2 x dx

= sinx cosn´1 x+ (n ´ 1)

ż

cosn´2 x dx ´ (n ´ 1)

ż

cosn x dx ;

thus rearranging terms, we conclude that
ż

cosn x dx =
sinx cosn´1 x

n
+
n ´ 1

n

ż

cosn´2 x dx . (8.2.3)

Similarly,
ż

sinn x dx = ´
cosx sinn´1 x

n
+
n ´ 1

n

ż

sinn´2 x dx . (8.2.4)

Theorem 8.15: Wallis’s Formulas
If n is a non-negative integer, then

ż π
2

0

sin2n+1 x dx =

ż π
2

0

cos2n+1 x dx =
(2nn!)2

(2n+ 1)!

and
ż π

2

0

sin2n x dx =

ż π
2

0

cos2n x dx =
(2n)!

(2nn!)2
¨
π

2
.



Proof. Note that (8.2.3) implies that
ż π

2

0

cosn x dx =
sinx cosn´1 x

n

ˇ

ˇ

ˇ

x=π
2

x=0
+
n ´ 1

n

ż π
2

0

cosn´2 x dx =
n ´ 1

n

ż π
2

0

cosn´2 x dx .

Therefore,
ż π

2

0

cos2n+1 x dx =
2n

2n+ 1

ż π
2

0

cos2n´1 x dx =
2n

2n+ 1
¨
2n ´ 2

2n ´ 1

ż π
2

0

cos2n´3 x dx = ¨ ¨ ¨

=
2n

2n+ 1
¨
2n ´ 2

2n ´ 1
¨
2n ´ 4

2n ´ 3
¨ ¨ ¨

2

3

ż π
2

0

cosx dx =
2

3
¨
4

5
¨ ¨ ¨

2n

2n+ 1

=
2242 ¨ ¨ ¨ (2n)2

(2n+ 1)!
=

(2nn!)2

(2n+ 1)!

and
ż π

2

0

cos2n x dx =
2n ´ 1

2n

ż π
2

0

cos2n´2 x dx =
2n ´ 1

2n
¨
2n ´ 3

2n ´ 2

ż π
2

0

cos2n´4 x dx = ¨ ¨ ¨

=
2n ´ 1

2n
¨
2n ´ 3

2n ´ 2
¨
2n ´ 5

2n ´ 4
¨ ¨ ¨

1

2

ż π
2

0

cos0 x dx =
1

2
¨
3

4
¨ ¨ ¨

2n ´ 1

2n
¨
π

2

=
(2n)!

2242 ¨ ¨ ¨ (2n)2
¨
π

2
=

(2n)!

(2nn!)2
¨
π

2
.

The substitution x =
π

2
´ u shows that

ż π
2

0

sinn x dx =

ż π
2

0

cosn x dx for all non-negative integers n ,

so we conclude the theorem.

Theorem 8.16: Stirling’s Formula

lim
nÑ8

n!

nn+0.5e´n
=

?
2π.

Proof. Let In =
ż π

2

0
sinn x dx. Then Wallis’s formula shows that

I2n =
(2n)!

(2nn!)2
¨
π

2
and I2n+1 =

(2nn!)2

(2n+ 1)!
.

Moreover, since sin2n+2 x ď sin2n+1 x ď sin2n x on
[
0,
π

2

]
, we also have I2n+2 ď I2n+1 ď I2n

for all n ě 0. Therefore,
I2n+2

I2n
ď
I2n+1

I2n
ď 1 @n ě 0 .



Note that

I2n+2

I2n
=
I2(n+1)

I2n
=

(2(n+ 1))!

22(n+1)((n+ 1)!)2

(2n)!

22n(n!)2

=
2n+ 1

2(n+ 1)
;

thus lim
nÑ8

I2n+2

I2n
= 1. As a consequence, the Squeeze Theorem implies that lim

nÑ8

I2n+1

I2n
= 1 .

Let sn =
n!

nn+0.5e´n
. Then the fact that the function y =

(
1 +

1

x

)x+0.5 is decreasing on
(0,8) (left as an exercise) and (5.4.3) show that sn ě sn+1 ě 0 for all n P N. Therefore,
the completeness of the real number (see Theorem 9.20) implies that lim

nÑ8
sn = s exists.

Moreover,

I2n+1

I2n
=

22n(n!)2

(2n+ 1)!

(2n)!

22n(n!)2
π

2

=
24n(n!)4

(2n)!(2n+ 1)!
¨
2

π

=
24n(snn

n+0.5e´n)4

s2n(2n)2n+0.5e´2ns2n+1(2n+ 1)2n+1.5e´2n´1
¨
2

π

=
s4n

s2ns2n+1

e

2π
(1 +

1

2n
)´2n´1.5 ;

thus (5.4.3) implies that

1 = lim
nÑ8

I2n+1

I2n
= lim

nÑ8

s4n
s2ns2n+1

¨
1

2π
=
s2

2π
.

The theorem is then concluded by the fact that s ě 0.

8.3 Trigonometric Integrals
In this section, we are concerned with the integrals

ż

sinm x cosn x dx and
ż

secm x tann x dx ,

where m,n are non-negative integers.

8.3.1 The integral of sinm x cosn x
‚ The case when one of m and n is odd

Suppose m = 2k + 1 or n = 2ℓ+ 1. Write
ż

sin2k+1 x cosn x dx =

ż

cosn x(1 ´ cos2 x)k sinx dx = ´

ż

cosn x(1 ´ cosx x)k d(cosx)



and
ż

sinm x cos2ℓ+1 x dx =

ż

sinm x(1 ´ sin2 x)ℓ cosx dx =

ż

sinm x(1 ´ sin2 x)ℓ d(sinx)

so that the integral can be obtained by integrating polynomials.

Example 8.17. Find the indefinite integral
ż

sin3 x cos4 x dx.
Let u = cosx. Then du = ´ sinx dx; thus

ż

sin3 x cos4 x dx =

ż

(1 ´ cos2 x) cos4 x sinx dx = ´

ż

(1 ´ u2)u4 du

= ´
1

5
u5 +

1

7
u7 + C = ´

1

5
cos5 x+ 1

7
cos7 x+ C .

We also write
ż

sin3 x cos4 x dx =

ż

(1 ´ cos2 x) cos4 x sinx dx = ´

ż

(1 ´ cos2 x) cos4 x d(cosx)

= ´
1

5
cos5 x+ 1

7
cos7 x+ C .

‚ The case when m and n are both even

First we talk about how to integrate cosn x. We have shown the recurrence relation (8.2.3)
in previous section, and there are other ways of finding the integral of cosn x without using
integration by parts. The case when n = 2ℓ+ 1 can be dealt with the previous case, so we
focus on the case n = 2ℓ. Make use of the half angle formula

cos2 x =
1 + cos(2x)

2
,

we can write
ż

cos2ℓ x dx =

ż (1 + cos(2x)
2

)ℓ

dx =
ℓ
ÿ

i=0

Cℓ
i

2ℓ

ż

cosi(2x) dx (u=2x)
=

ℓ
ÿ

i=0

Cℓ
i

2ℓ+1

ż

cosi u du

which is a linear combination of integrals of the form
ż

cosi u du, while the power i is at most

half of n. Keeping on applying the half angle formula for even powers of cosine, eventually
integral

ż

cosi u du will be reduced to sum of integrals of cosine with odd powers (which

can be evaluated by the previous case).



Example 8.18. Find the indefinite integral
ż

cos6 x dx.
By the half angle formula,
ż

cos6 x dx =

ż (1 + cos(2x)
2

)3

dx =
1

8

ż [
1 + 3 cos(2x) + 3 cos2(2x) + cos3(2x)

]
dx

=
1

8

ż [
1 + 3 cos(2x) + 3

2

(
1 + cos(4x)

)
+
(
1 ´ sin2(2x)

)
cos(2x)

]
dx

=
1

8

ż (5
2
+ 4 cos(2x) + 3

2
cos(4x)

)
dx ´

1

16

ż

sin2(2x) d
(

sin(2x)
)

=
1

8

[5x
2

+ 2 sin(2x) + 3

8
sin(4x)

]
´

1

48
sin3(2x) + C .

Now suppose that m = 2k and n = 2ℓ. Make use of the half angle formulas

sin2 x =
1 ´ cos(2x)

2
and cos2 x =

1 + cos(2x)
2

to write
ż

sin2k x cos2ℓ x dx =
1

2k+ℓ

ż (
1 ´ cos(2x)

)k(
1 + cos(2x)

)ℓ
dx .

Expanding parenthesis, the integral above becomes the linear combination of integrals of

the form
ż

cosi(2x) dx.

Example 8.19. Find the indefinite integral
ż

sin2 x cos4 x dx.
By the half angle formula,

ż

sin2 x cos4 x dx =

ż

1 ´ cos(2x)
2

(1 + cos(2x)
2

)2

dx

=
1

8

ż [
1 ´ cos(2x)

][
1 + 2 cos(2x) + cos2(2x)

]
dx

=
1

8

ż [
1 + cos(2x) ´ cos2(2x) ´ cos3(2x)

]
dx

=
1

8

ż (1 ´ cos(4x)
2

+ sin2(2x) cos(2x)
]
dx

=
1

8

[x
2

´
sin(4x)

8

]
+

1

48
sin3(2x) + C .

8.3.2 The integral of secm x tann x

Rule of thumb: make use of d

dx
tanx = sec2 x and d

dx
secx = secx tanx.



‚ The case when m is even

Suppose that m = 0 and n ě 2. Then we obtain the recurrence relation
ż

tann x dx =

ż

tann´2 x tan2 x dx =

ż

tann´2(sec2 x ´ 1) dx

=

ż

tann´2 d(tanx) ´

ż

tann´2 x dx =
1

n ´ 1
tann´1 x ´

ż

tann´2 x dx .

Suppose that m = 2k is even and positive. Using the substitution u = tanx, we have
ż

sec2k x tann x dx =

ż

sec2(k´1) x tann x sec2 x dx =

ż

(1 + tan2 x)k´1 tann x d(tanx)

which can be obtained by integrating polynomials.

‚ The case when n is odd

Suppose that n = 2ℓ+ 1 is odd and m ě 1. Then
ż

secm x tan2ℓ+1 x dx =

ż

secm´1 x tan2ℓ secx tanx dx =

ż

secm´1 x(sec2 x ´ 1)ℓ d(secx)

which can be obtained by integrating polynomials.

‚ The case when m is odd and n is even

Suppose that m = 2k + 1 and n = 2ℓ. Then
ż

sec2k+1 x tan2ℓ x dx =

ż

sec2k+1 x(sec2 x ´ 1)ℓ dx ;

thus it suffices to know how to compute
ż

secm x dx.
Using integration by parts,

ż

secm x dx =

ż

secm´2 x d(tanx) = tanx secm´2 x ´

ż

tanx d(secm´2 x)

= tanx secm´2 x ´ (m ´ 2)

ż

tan2 x secm´2 x dx

= tanx secm´2 x ´ (m ´ 2)

ż

(sec2 x ´ 1) secm´2 x dx

thus rearranging terms we obtain the recurrence relation
ż

secm x dx =
m ´ 2

m ´ 1
tanx secm´2 x+

m ´ 2

m ´ 1

ż

secm´2 x dx .



Example 8.20. Find the indefinite integral
ż

sec4(3x) tan3(3x) dx.
By the discussion above,

ż

sec4(3x) tan3(3x) dx =
1

3

ż

sec2(3x) tan3(3x)d(tan(3x))

=
1

3

ż [
tan2(3x) + 1

]
tan3(3x)d(tan(3x))

=
1

3

[1
6

tan6(3x) +
1

4
tan4(3x)

]
+ C .

Example 8.21. Find the indefinite integral
ż ?

a2 + x2 dx.
By the substitution of variable x = a tan θ (so that dx = a sec2 θdθ), we find that

ż

?
a2 + x2 dx =

ż

a2 sec3 θ dθ = a2
(1
2

tan θ sec θ + 1

2

ż

sec θ dθ
)

=
a2

2

(
tan θ sec θ + ln | sec θ + tan θ|

)
+ C

=
a2

2

(x
a

¨

?
a2 + x2

a
+ ln

ˇ

ˇ

ˇ

x+
?
a2 + x2

a

ˇ

ˇ

ˇ

)
+ C

=
x

?
a2 + x2

2
+
a2

2
ln
(
x+

?
a2 + x2

)
+ C . (8.3.1)

8.3.3 Other techniques of integration involving trigonometric func-
tions

‚ Integration by substitution (for integrand with special structures):

Example 8.22. Find the indefinite integral
ż cos3 x

?
sinx

dx.
Let u = sinx. Then du = cosx dx; thus

ż cos3 x
?

sinx
dx =

ż

(1 ´ u2)
?
u

du =

ż (
u´ 1

2 ´ u
3
2

)
du

=
1

1 ´ 1
2

u
1
2 ´

1

1 + 3
2

u
5
2 + C = 2

?
sinx ´

5

2
sin 5

2 x+ C .

Example 8.23. Find the indefinite integral
ż secx

tan2 x
dx.

Rewrite the integrand into a fraction of sine and cosine, we find that
ż secx

tan2 x
dx =

ż cosx
sin2 x

dx =

ż

1

sin2 x
d(sinx) = ´ sin´1 x+ C = ´ cscx+ C .



Example 8.24. Find the indefinite integral
ż tan3 x

?
secx dx.

Let u = secx. Then du = secx tanx dx; thus
ż tan3 x

?
secx dx =

ż

(sec2 x ´ 1) secx tanx
sec 3

2 x
dx =

ż

u2 ´ 1

u
3
2

du =

ż (
u

1
2 ´ u´ 3

2

)
du

=
2

3
u

3
2 + 2u´ 1

2 + C =
2

3
sec 3

2 x+ 2 cos 1
2 x+ C .

‚ When the angular variable are different, making use of the sum and difference formula:

Example 8.25. Find the indefinite integral
ż

sin3(5x) cos(4x) dx.
Using the sum and difference formula

sin θ cosϕ =
1

2

[
sin(θ + ϕ) + sin(θ ´ ϕ)

]
, sin θ sinϕ =

1

2

[
cos(θ ´ ϕ) ´ sin(θ + ϕ)

]
,

we find that
ż

sin3(5x) cos(4x) dx =
1

2

ż

sin2(5x)
[

sin(9x) + sinx
]
dx

=
1

4

ż

sin(5x)
[

cos(4x) ´ cos(14x) + cos(4x) ´ cos(6x)
]
dx

=
1

8

ż [
2 sin(9x) + 2 sinx ´ sin(19x) + sin(9x) ´ sin(11x) + sinx

]
dx

=
1

8

[
´

1

3
cos(9x) ´ 3 cosx+ 1

19
cos(19x) + 1

11
cos(11x)

]
+ C .

8.4 Partial Fractions - 部份分式
In this section, we are concerned with the integrals

ż

N(x)

D(x)
dx, where N,D are polynomial

functions.
Write N(x) = D(x)Q(x) +R(x), where Q,R are polynomials such that the degree of R

is less than the degree of D (such an R is called a remainder). Then N(x)

D(x)
= R(x) +

R(x)

D(x)
.

Since it is easy to find the indefinite integral of R, it suffices to consider the case when the
degree of the numerator is less than the degree of the denominator.

W.L.O.G., we assume that N and D no common factor, deg(N) ă deg(D), and the
leading coefficient of D is 1. Since D is a polynomial with real coefficients,

D(x) =
( m
ź

j=1

(x+ qj)
rj
)( n

ź

j=1

(x2 + bjx+ cj)
dj
)
,



where rj, dj P N, qj ‰ qk for all j ‰ k, bj ‰ bk or cj ‰ ck for all j ‰ k, and b2j ´4cj ă 0 for all

1 ď j ď m. In other words, ´qj are zeros of D with multiplicity rj, and
´bj ˘ i

b

4cj ´ b2j

2
are zeros of D with multiplicity dj, here i =

?
´1. Therefore,

N(x)

D(x)
=

m
ÿ

j=1

[ rj
ÿ

ℓ=1

Ajℓ

(x+ qj)ℓ

]
+

n
ÿ

j=1

[ rj
ÿ

ℓ=1

Bjℓx+ Cjℓ

(x2 + bjx+ cj)ℓ

]
(8.4.1)

for some constants Ajℓ, Bjℓ and Cjℓ. Note that there are
m
ř

j=1

rj+2
n
ř

j=1

dj ” deg(D) constants

to be determined, and this can be done by the comparison of coefficients after the reduction
of common denominator.

Remark 8.26. In this remark we “show” that a rational function N/D with deg(N) ă

deg(D) can always be written as the sum of partial fractions (8.4.1). Suppose that α is a
zero of D with multiplicity k so that D(x) = (x´ α)kf(x), where f(x) is a polynomial and
f(α) ‰ 0. Since

N(x)

D(x)
´

N(α)

(x ´ α)kf(α)
=
N(x)f(α) ´ f(x)N(α)

(x ´ α)kf(x)f(α)
=

g(x)

(x ´ α)kf(x)
,

where g(x) = N(x) ´ f(x)
N(α)

f(α)
. Since g vanishes at x = α, g(x) = (x ´ α)mh(x) for some

polynomial h satisfying h(α) ‰ 0 (and we remark that here m is not necessarily less than

k). Therefore, with β denoting the constant N(α)

f(α)
, we obtain that

N(x)

D(x)
´

β

(x ´ α)k
=

(x ´ α)mh(x)

(x ´ α)kf(x)
=

h1(x)

(x ´ α)k1f(x)
,

where k1 ě 0 and h1(α) ‰ 0 if k1 ą 0. We note that f and h1 are both polynomials satisfying
degh1 ă k1 + deg(f) and f(α) ‰ 0. Applying the process continuously, we obtain that

N(x)

D(x)
=

k
ÿ

i=1

Ck

(x ´ α)k
+
N1(x)

D1(x)

for some polynomials N1, D1(= f) with deg(N1) ă deg(D1) = deg(D)´k and some sequence
of constants C1, C2, ¨ ¨ ¨ , Ck, where D1(α) ‰ 0. This explains the presence of the first sum on
the right-hand side of (8.4.1)

(
and also shows how to find the coefficient Ajrj in the highest

order term 1

(x+ qj)rj
for each j

)
.



Example 8.27. Write 5x2 + 20x+ 6

x3 + 2x2 + x
in the form of (8.4.1).

Note that x3 +2x2 + x = x(x2 +2x+1) = x(x+1)2; thus to write the rational function
above in the form of (8.4.1), we must have

5x2 + 20x+ 6

x3 + 2x2 + x
=
A

x
+

B

x+ 1
+

C

(x+ 1)2

for some constant A,B,C.
Multiplying both sides of the equality above by x(x+ 1)2, we find that

5x2 + 20x+ 6 = A(x+ 1)2 +Bx(x+ 1) + Cx = (A+B)x2 + (2A+B + C)x+ A ;

thus A,B,C satisfy

A+B = 5

2A+B + C = 20

A = 6 .

Therefore, A = 6, B = ´1 and C = 9; thus
5x2 + 20x+ 6

x3 + 2x2 + x
=

6

x
´

1

x+ 1
+

9

(x+ 1)2
.

Example 8.28. Write 1

x4 + 1
in the form of (8.4.1).

Note that x4 + 1 = (x2 +
?
2x+ 1)(x2 ´

?
2x+ 1), so

1

x4 + 1
=

Ax+B

x2 +
?
2x+ 1

+
Cx+D

x2 ´
?
2x+ 1

.

Multiplying both sides of the equality above by x4 + 1, we have

1 = (Ax+B)(x2 ´
?
2x+ 1) + (Cx+D)(x2 +

?
2x+ 1)

= (A+ C)x3 + (´
?
2A+B +

?
2C +D)x2 + (A ´

?
2B + C +

?
2D)x+ (B +D) ;

thus comparing the coefficients, we find that A,B,C,D satisfy

A+ C = 0

´
?
2A+B +

?
2C +D = 0

A ´
?
2B + C +

?
2D = 0

B +D = 1 .



Therefore, the first and the third equations imply that A = ´C and B = D; thus the second
and the fourth equation shows that A = ´C =

1

2
?
2

and B = D =
1

2
. As a consequence,

1

x4 + 1
=

1

2
?
2

[ x+
?
2

x2 +
?
2x+ 1

+
´x+

?
2

x2 ´
?
2x+ 1

]
.

In order to find the integral of N(x)

D(x)
, by writing N(x)

D(x)
in the form of (8.4.1), it suffices

to find the integral of Bjℓx+ Cjℓ

(x2 + bjx+ cj)ℓ
for

ż

Ajℓ

(x+ qj)ℓ
dx =

$

&

%

Ajℓ

1 ´ ℓ
(x+ qj)

1´ℓ + C if ℓ ‰ 1 ,

Ajℓ ln |x+ qj| + C if ℓ = 1 .

Note that

Bjℓx+ Cjℓ

(x2 + bjx+ c)ℓ
=
Bjℓ

2

2x+ bj
(x2 + bjx+ cj)ℓ

+
(
Cjℓ ´

bjBjℓ

2

) 1

(x2 + bjx+ cj)ℓ

and
ż

2x+ bj
(x2 + bjx+ cj)ℓ

dx =

$

&

%

1

1 ´ ℓ
(x2 + bjx+ cj)

1´ℓ + C if ℓ ‰ 1 ,

ln(x2 + bjx+ cj) + C if ℓ = 1 ;

thus to find the integral of Bjℓx+ Cjℓ

(x2 + bjx+ cj)ℓ
, it suffices to compute

ż

1

(x2 + bjx+ cj)ℓ
dx.

Nevertheless, with a denoting the number
4cj ´ b2j

4
,

ż

1

(x2 + bjx+ cj)ℓ
dx =

ż

1[(
x ´

bj
2

)2
+

4cj´b2j
4

]ℓ dx =

ż

1[(
x ´

bj
2

)2
+ a2

]ℓ d(x ´
bj
2

)

which can be computed through the substitution x ´
bj
2
= a tanu:

ż

1[(
x ´

bj
2

)2
+ a2

]ℓ d(x ´
bj
2

)
= a1´2ℓ

ż

cos2ℓ´2 u du .

Example 8.29. Find the indefinite integral
ż

dx

x4 + 1
.



Using the conclusion from Example 8.28, we find that

ż

dx

x4 + 1
=

1

2
?
2

ż [ x+
?
2

x2 +
?
2x+ 1

+
´x+

?
2

x2 ´
?
2x+ 1

]
dx

=
1

2
?
2

ż [1
2

¨
2x+

?
2

x2 +
?
2x+ 1

´
1

2
¨

2x ´
?
2

x2 ´
?
2x+ 1

]
dx

+
1

2
?
2

ż [1
2

¨

?
2

x2 +
?
2x+ 1

+
1

2
¨

?
2

x2 ´
?
2x+ 1

]
dx

=
1

4
?
2

ż [
2x+

?
2

x2 +
?
2x+ 1

+

?
2(

x+ 1?
2

)2
+ ( 1?

2
)2

´
2x´

?
2

x2 ´
?
2x+ 1

+

?
2(

x´ 1?
2

)2
+ ( 1?

2
)2

]
dx

=
1

4
?
2

[
ln x

2 +
?
2x+ 1

x2 ´
?
2x+ 1

+ 2 arctan(
?
2x+ 1) + 2 arctan(

?
2x ´ 1)

]
+ C .

Example 8.30. Find the indefinite integral
ż secx

tan3 x
dx.

Let u = secx. Then du = secx tanx; thus
ż secx

tan3 x
dx =

ż secx tanx
tan4 x

dx =

ż

du

(u2 ´ 1)2
=

ż

du

(u+ 1)2(u ´ 1)2
.

Write 1

(u+ 1)2(u´ 1)2
is the form of (8.4.1):

1

(u+ 1)2(u ´ 1)2
=

A

u+ 1
+

B

(u+ 1)2
+

C

u ´ 1
+

D

(u ´ 1)2
,

where A,B,C,D satisfy

A(u+ 1)(u ´ 1)2 +B(u ´ 1)2 + C(u ´ 1)(u+ 1)2 +D(u+ 1)2 = 1 .

Therefore, A,B,C,D satisfy

A+ C = 0

´A+B + C +D = 0

´A ´ 2B ´ C + 2D = 0

A+B ´ C +D = 1



which implies that A = B = ´C = D =
1

4
. As a consequence,

ż

du

(u+ 1)2(u ´ 1)2
=

1

4

ż [ 1

u+ 1
+

1

(u+ 1)2
´

1

u ´ 1
+

1

u ´ 1)2

]
du

=
1

4

[
ln |u+ 1| ´

1

u+ 1
´ ln |u ´ 1| ´

1

u ´ 1

]
+ C

=
1

4

[
ln
ˇ

ˇ

ˇ

u+ 1

u ´ 1

ˇ

ˇ

ˇ
´

2u

u2 ´ 1

]
+ C ;

thus
ż secx

tan3 x
dx =

1

4

[
ln
ˇ

ˇ

ˇ

secx+ 1

secx ´ 1

ˇ

ˇ

ˇ
´

2 secx
tan2 x

]
+ C .

Example 8.31. Find the indefinite integral
ż ?

tanx dx.

Let u =
?

tanx. Then u2 = tanx which implies that 2udu = sec2 x dx or 2udu

1 + u4
= dx.

Therefore,
ż

?
tanx dx =

ż

2u2

1 + u4
du =

1
?
2

ż [ u

u2 ´
?
2u+ 1

´
u

u2 +
?
2u+ 1

]
du

=
1

2
?
2

ln
ˇ

ˇ

ˇ

u2 ´
?
2u+ 1

u2 +
?
2u+ 1

ˇ

ˇ

ˇ
+

1

2

ż [ 1

u2 ´
?
2u+ 1

+
1

u2 +
?
2u+ 1

]
du

=
1

2
?
2

ln
ˇ

ˇ

ˇ

u2 ´
?
2u+ 1

u2 +
?
2u+ 1

ˇ

ˇ

ˇ
+

?
2

2
arctan(

?
2u ´ 1) + arctan(

?
2u+ 1) + C

=
1

2
?
2

ln
ˇ

ˇ

ˇ

tanx ´
?
2 tanx+ 1

tanx+
?
2 tanx+ 1

ˇ

ˇ

ˇ
+

?
2

2
arctan

?
2 tanx

1 ´ tanx + C ,

where we have use the fact that

arctanx+ arctan y = arctan x+ y

1 ´ xy
+ C

to conclude the last equality.

Example 8.32. Find the indefinite integral
ż

dx

(1 + xn)
1
n

, where n is a positive integer.

Let 1 + x´n = un. Then xn =
1

un ´ 1
and ´x´n´1 dx = un´1 du; thus

ż

dx

(1 + xn)
1
n

=

ż

dx

x(1 + x´n)
1
n

=

ż

´xn

(1 + x´n)
1
n

(´x´n´1) dx = ´

ż

un´2

un ´ 1
du



which is the indefinite integral of a rational function of u and we know how to compute it.
In particular, when n = 4,

u2

u4 ´ 1
=

u2

(u ´ 1)(u+ 1)(u2 + 1)
=

1

4
¨

1

u ´ 1
´

1

4
¨

1

u+ 1
+

1

2
¨

1

u2 + 1
;

thus
ż

u2

u4 ´ 1
du =

1

4
ln |u ´ 1| ´

1

4
ln |u+ 1| +

1

2
arctanu+ C

which further implies that
ż

dx

(1 + x4)
1
4

=
1

4
ln
ˇ

ˇ

ˇ

(1 + x´4)
1
4 ´ 1

(1 + x´4)
1
4 + 1

ˇ

ˇ

ˇ
+

1

2
arctan

[
(1 + x´4)

1
4

]
+ C .

‚ The substitution of t = tan x
2

In Section 5.3 we have introduced the substitution t = tan x
2

to find the anti-derivative of
trigonometric functions. We recall that if t = tan x

2
, then

sinx =
2t

1 + t2
, cosx =

1 ´ t2

1 + t2
and dx =

2dt

1 + t2
.

Using this substitution, the anti-derivative of rational functions of sine and cosine can be
computed via the integration of rational functions.

Example 8.33. Find the indefinite integral
ż secx

tan3 x
dx.

Rewriting the integrand, we have
ż

secx
tan3 x

dx =

ż

cos2 x
sin3 x

dx .

Let t = tan x
2

. Then sin x =
2t

1 + t2
, cos x =

1 ´ t2

1 + t2
and dx =

2dt

1 + t2
; thus

ż

secx
tan3 x

dx =

ż (1´t2)2

(1+t2)2

(2t)3

(1+t2)3

2dt

1 + t2
=

1

4

ż

(1 ´ t2)2

t3
dt =

1

4

ż (
t´3 ´ 2t´1 + t

)
dt

=
1

4

[
´

1

2
t´2 ´ 2 ln |t| +

1

2
t2
]
+ C

=
1

8

[
tan2 x

2
´ cot2 x

2

]
´

1

2
ln
ˇ

ˇ

ˇ
tan x

2

ˇ

ˇ

ˇ
+ C .



Example 8.34. Find the indefinite integral
ż

1

2 + sinx dx.

Let t = tan x
2

. Then sin x =
2t

1 + t2
, cos x =

1 ´ t2

1 + t2
and dx =

2dt

1 + t2
; thus

ż

1

2 + sinx dx =

ż

1

2 + 2t
1+t2

2dt

1 + t2
=

ż

dt

t2 + t+ 1
=

ż

dt(
t+ 1

2

)2
+
(?

3
2

)2
=

2
?
3

arctan t+
1
2

?
3
2

+ C =
2

?
3

arctan 2t+ 1
?
3

+ C

=
2

?
3

arctan
(

2
?
3

tan x
2
+

1
?
3

)
+ C .

8.5 Improper Integrals - 瑕積分

Recall that given a non-negative continuous function f : [a, b] Ñ R, the area of the region

enclosed by the graph of f , the x-axis and lines x = a, x = b is given by
ż b

a
f(x) dx.What

happened when

1. the function under consideration is non-negative and continuous on the whole real line
and we would like to know, for example, the area of the region enclosed by the graph
of f and the x-axis and is on the right-hand (or left-hand) side of the line x = c?

2. the function under consideration blows up at a point c P [a, b]; that is, lim
xÑc˘

f(x)

diverges to 8 or ´8 (so that f is not continuous at c but everywhere else) and we
would like to know the area of the region enclosed by the graph of f , the x-axis and
lines x = a and x = b?

Note that the definition of a definite integral
ż b

a
f(x) dx requires that the interval [a, b] be

finite and f be bounded. Therefore,
ż 8

a
f(x) dx,

ż b

´8

f(x) dx and
ż b

a
f(x) dx when f is

unbounded are meaningless in the sense of Riemann integrals. How do we compute the area
of those unbounded regions?



Definition 8.34: Improper Integrals with Infinite Integration Limits

1. If f is Riemann integrable on the interval [a, b] for all a ă b, then
ż 8

a

f(x) dx ” lim
bÑ8

ż b

a

f(x) dx .

2. If f is Riemann integrable on the interval [a, b] for all a ă b, then
ż b

´8

f(x) dx ” lim
aÑ´8

ż b

a

f(x) dx .

3. If f is Riemann integrable on the interval [a, b] for all a ă b, then
ż 8

´8

f(x) dx ”

ż c

´8

f(x) dx+

ż 8

c

f(x) dx ,

where c is any real number.
In the first two cases, the improper integral converges when the limit exists. Other-
wise, the improper integral diverges. If the limits, as b approaches 8 (or a approaches
´8), approaches 8 or ´8, then the improper integral diverges to 8 or ´8. In the
third case, the improper integral on the left converges when both of the improper
integrals on the right converges, and diverges when either of the improper integrals
on the right diverges. The improper integral on the left diverges to 8 (or ´8) if
it diverges and the improper integrals on the right is 8 + 8, 8 + C or C + 8 (or
(´8) + (´8), (´8) + C or C + (´8)).

Example 8.35. Evaluate
ż 8

0
e´x dx and

ż 8

0

1

x2 + 1
dx.

Since an anti-derivative of the function y = e´x and y =
1

x2 + 1
is y = ´e´x and

y = arctanx, the Fundamental Theorem of Calculus implies that
ż 8

0

e´x dx = lim
bÑ8

ż b

0

e´x dx = lim
bÑ8

(´e´x)
ˇ

ˇ

ˇ

x=b

x=0
= lim

bÑ8
(1 ´ e´b) = 1 ´ lim

bÑ8
e´b = 1

and
ż 8

0

1

x2 + 1
dx = lim

bÑ8

ż b

0

1

x2 + 1
dx = lim

bÑ8
arctanx

ˇ

ˇ

ˇ

x=b

x=0
= lim

bÑ8
arctan b = π

2
.

Example 8.36. Evaluate
ż 8

1
(1 ´ x)e´x dx.

Let u = 1 ´ x and v = ´e´x (so that dv = e´x dx). For any real number b, integration



by parts implies that
ż b

1

(1 ´ x)e´x dx =
[
(1 ´ x)(´e´x)

]ˇ
ˇ

ˇ

x=b

x=1
´

ż b

1

(´e´x)(´dx) = ´(1 ´ b)e´b ´

ż b

1

e´x dx

= ´(1 ´ b)e´b + e´x
ˇ

ˇ

ˇ

x=b

x=1
= ´(1 ´ b)e´b + e´b ´ e´1 = be´b ´ e´1 .

Therefore,
ż 8

1

(1 ´ x)e´x dx = lim
bÑ8

ż b

1

(1 ´ x)e´x dx = lim
bÑ8

(be´b ´ e´1) = ´e´1 .

Example 8.37. Evaluate
ż 8

´8

ex

1 + e2x
dx.

To evaluate the integral above, we evaluate the two integrals
ż 8

0

ex

1 + e2x
dx and

ż 0

´8

ex

1 + e2x
dx .

By the substitution of variable u = ex, we find that du = ex dx; thus
ż

ex

1 + e2x
dx =

ż

1

1 + u2
du = arctanu+ C = arctan(ex) + C .

Therefore,
ż 8

0

ex

1 + e2x
dx = lim

bÑ8

ż b

0

ex

1 + e2x
dx = lim

bÑ8
arctan(ex)

ˇ

ˇ

ˇ

x=b

x=0

= lim
bÑ8

[
arctan(eb) ´ arctan 1

]
=
π

4

and similarly,
ż 0

´8

ex

1 + e2x
dx = lim

aÑ´8

ż 0

a

ex

1 + e2x
dx = lim

aÑ´8
arctan(ex)

ˇ

ˇ

ˇ

x=0

x=a

= lim
aÑ´8

[
arctan 1 ´ arctan(ea)

]
=
π

4
.

The two integrals above implies that
ż 8

´8

ex

1 + e2x
dx =

π

4
+
π

4
=
π

2
.

Example 8.38. The improper integral
ż 8

0
x dx diverges to 8, and the improper integral

ż 8

´8

(sinx ´ 1) dx diverges to ´8. The improper integral
ż 8

0
sinx dx diverges, but not

diverges to 8 or ´8, and the improper integrals
ż 8

´8

x dx diverges but not diverges to 8

or ´8.



Example 8.39. The improper integral
ż 8

0

sinx
x

dx converges although it is not obvious
what its value is. In fact,

ż 8

0

sinx
x

dx =
π

2
.

Theorem 8.40

1. If f is Riemann integrable on the interval [a, b] for all a ă b, then
ż 8

a

f(x) dx =

ż c

a

f(x) dx+

ż 8

c

f(x) dx @ a ă c ,

provided that the improper integrals on both sides converge or diverge to 8 (or
´8).

2. If f is Riemann integrable on the interval [a, b] for all a ă b, then
ż b

´8

f(x) dx =

ż c

´8

f(x) dx+

ż b

c

f(x) dx @ c ă b ,

provided that the improper integrals on both sides converge or diverge to 8 (or
´8).

3. If f is Riemann integrable on the interval [a, b] for all a ă b and
ż 8

´8

f(x) dx

converges or diverges to 8 (or ´8), then
ż a

´8

f(x) dx+

ż 8

a

f(x) dx =

ż b

´8

f(x) dx+

ż 8

b

f(x) dx @ a, b P R .

Proof. We only prove 1 and 3, for the proof of 2 is similar to the proof of 1.

1. By the properties of the definite integrals, for a ă c we have
ż b

a

f(x) dx =

ż c

a

f(x) dx+

ż b

c

f(x) dx ;

thus
ż 8

a

f(x) dx = lim
bÑ8

ż b

a

f(x) dx = lim
bÑ8

[ ż c

a

f(x) dx+

ż b

c

f(x) dx
]

=

ż c

a

f(x) dx+ lim
bÑ8

ż b

c

f(x) dx =

ż c

a

f(x) dx+

ż 8

c

f(x) dx .



3. If
ż 8

´8

f(x) dx converges or diverges to 8 (or ´8), then both improper integrals
ż 8

c
f(x) dx and

ż c

´8

f(x) dx converge or diverge to 8 (or ´8). Therefore,

ż b

´8

f(x) dx+

ż 8

b

f(x) dx =

ż a

´8

f(x) dx+

ż b

a

f(x) dx+

ż 8

b

f(x) dx

=

ż a

´8

f(x) dx+

ż 8

a

f(x) dx .

Definition 8.41: Improper integrals with Infinite Discontinuities

1. If f is Riemann integrable on [a, c] for all a ă c ă b, and f has an infinite
discontinuity at b; that is, lim

xÑb´
f(x) = 8 or ´ 8, then

ż b

a

f(x) dx ” lim
cÑb´

ż c

a

f(x) dx .

2. If f is Riemann integrable on [c, b] for all a ă c ă b, and f has an infinite
discontinuity at a; that is, lim

xÑa+
f(x) = 8 or ´ 8, then

ż b

a

f(x) dx ” lim
cÑa+

ż b

c

f(x) dx .

3. Suppose that a ă c ă b. If f is Riemann integrable on [a, c´ϵ] and [c+ϵ, b] for all
0 ă ϵ ! 1, and f has an infinite discontinuity at c; that is lim

xÑc+
f(x) = 8 or ´8

and lim
xÑc´

f(x) = 8 or ´ 8, then
ż b

a

f(x) dx ”

ż c

a

f(x) dx+

ż b

c

f(x) dx .

The convergence and divergence of the improper integrals with infinite discontinuities

are similar to the statements in Definition 8.34.

Example 8.42. Evaluate
ż 1

0
x´ 1

3 dx.

We observe that the integrand has an infinite discontinuity at 0. Therefore,
ż 1

0

x´ 1
3 dx = lim

aÑ0+

ż 1

a

x´ 1
3 dx = lim

aÑ0+

3

2
x

2
3

ˇ

ˇ

ˇ

x=1

x=a
= lim

aÑ0+

3

2
(1 ´ a

2
3 ) =

3

2
.

Example 8.43. Evaluate
ż 2

0
x´3 dx.



We observe that the integrand has an infinite discontinuity at 0. Therefore,
ż 2

0

x´3 dx = lim
aÑ0+

ż 2

a

x´3 dx = lim
aÑ0+

(´x´2

2

)ˇ
ˇ

ˇ

x=2

x=a
= lim

aÑ0+

(́ 1

8
+

1

2a2

)
= 8 ;

thus the improper integral
ż 2

0
x´3 dx diverges to 8.

Example 8.44. Evaluate
ż 2

´1
x´3 dx.

Since the integrand has an infinite discontinuity at 0,
ż 2

´1

x´3 dx =

ż 0

´1

x´3 dx+

ż 2

0

x´3 dx .

We have shown in previous example that the second integral on the right-hand side diverges
to 8. Similarly, the first integral on the right-hand side diverges to ´8 since

ż 0

´1

x´3 dx = lim
bÑ0´

ż b

´1

x´3 dx = lim
bÑ0´

´x´2

2

ˇ

ˇ

ˇ

x=b

x=´1
= lim

bÑ0´

(́ 1

2b2
+

1

2

)
= ´8 ;

thus the improper integral
ż 2

´1
x´3 dx diverges (but not diverges to 8 or ´8).

Remark 8.45. Even though y = ´
x´2

2
is an anti-derivative of the function y = x´3, you

cannot apply the “Fundamental Theorem of Calculus” to conclude that
ż 2

´1

x´3 dx =
x´2

´2

ˇ

ˇ

ˇ

x=2

x=´1
= ´

1

8
+

1

2
=

3

8

since y = x´3 is not Riemann integrable on [´1, 2].

Similar to Theorem 8.40, we also have the following
Theorem 8.46

If f is Riemann integrable on [a, c] for all a ă c ă b, and f has an infinite discontinuity
at a or b, then

ż b

a

f(x) dx =

ż c

a

f(x) dx+

ż b

c

f(x) dx @ a ă c ă b ,

provided that the improper integrals on both sides converge or diverge to 8 (or ´8).



We can also consider improper integral
ż b

a
f(x) dx in which a = ´8 or b = 8, and f

has an infinite discontinuity at c for a ă c ă b. In this case, we define
ż 8

a

f(x) dx =

ż d

a

f(x) dx+

ż 8

d

f(x) dx @ d ą c ,

ż b

´8

f(x) dx =

ż d

´8

f(x) dx+

ż b

d

f(x) dx @ d ă c ,

and etc. In other words, when the integrand and the domain of integration are unbounded,
we divide the integral into improper integrals of one type and compute those integrals
separately, pretending that the summing rule

ż b

a

f(x) dx =

ż c1

a

f(x) dx+

ż c2

c1

f(x) dx+ ¨ ¨ ¨ +

ż cn

cn´1

f(x) dx+

ż b

cn

f(x) dx

also holds for improper integrals.

Example 8.47. Evaluate
ż 8

0

dx
?
x(x+ 1)

.

We observe that the integrand has an infinite discontinuity at 0, and the domain of
integration is unbounded. Therefore,

ż 8

0

dx
?
x(x+ 1)

=

ż 1

0

dx
?
x(x+ 1)

+

ż 8

1

dx
?
x(x+ 1)

.

By the substitution u =
?
x, du =

dx

2
?
x

; thus
ż

dx
?
x(x+ 1)

=

ż

2du

u2 + 1
= 2 arctanu+ C = 2 arctan

?
x+ C .

Therefore,
ż 1

0

dx
?
x(x+ 1)

= lim
aÑ0+

ż 1

a

dx
?
x(x+ 1)

= lim
aÑ0+

2 arctan
?
x
ˇ

ˇ

ˇ

x=1

x=a

= lim
aÑ0+

(
2 ¨

π

4
´ 2 arctan

?
a
)
=
π

2

and
ż 8

1

dx
?
x(x+ 1)

= lim
bÑ8

ż b

1

dx
?
x(x+ 1)

= lim
bÑ8

2 arctan
?
x
ˇ

ˇ

ˇ

x=b

x=1

= lim
bÑ8

(
2 arctan

?
b ´ 2 ¨

π

4

)
= π ´

π

2
=
π

2
.

As a consequence,
ż 8

0

dx
?
x(x+ 1)

=
π

2
+
π

2
= π .



Definition 8.48

Let
ż b

a
f(x) dx, where a, b could be infinite, be an improper integral.

1. The improper integral
ż b

a
f(x) dx is said to be absolutely convergent or converge

absolutely if
ż b

a

ˇ

ˇf(x)
ˇ

ˇ dx converges.

2. The improper integral
ż b

a
f(x) dx is said to be conditionally convergent or con-

verge conditionally if
ż b

a
f(x) dx converges but

ż b

a

ˇ

ˇf(x)
ˇ

ˇ dx diverges (to 8).

Remark 8.49. Even though it is not required in the definition that an absolutely convergent
improper integral has to converge, it is in fact true an absolutely convergent improper
integral converges.

Example 8.50. The improper integral
ż 8

0

sinx
x

dx is conditionally convergent but not
absolutely convergent. To see that the improper integral is not absolutely convergent, we
note that if n P N,

ż 2nπ

0

ˇ

ˇ

ˇ

sinx
x

ˇ

ˇ

ˇ
dx =

n
ÿ

k=1

ż 2kπ

2(k´1)π

ˇ

ˇ

ˇ

sinx
x

ˇ

ˇ

ˇ
dx =

n
ÿ

k=1

ż 2π

0

ˇ

ˇ

ˇ

sin
[
x+ 2(k ´ 1)π

]
x+ 2(k ´ 1)π

ˇ

ˇ

ˇ
dx

=
n
ÿ

k=1

ż 2π

0

| sinx|
ˇ

ˇx+ 2(k ´ 1)π
ˇ

ˇ

dx =
n
ÿ

k=1

ż 2π

0

| sinx|

2kπ
dx ě

2

π

n
ÿ

k=1

1

k
;

thus by the fact that
2n
ÿ

k=1

1

k
= 1 +

1

2
+
(1
3
+

1

4

)
+
(1
5
+

1

6
+

1

7
+

1

8

)
+ ¨ ¨ ¨ +

( 1

2n´1 + 1
+

1

2n´1 + 2
+ ¨ ¨ ¨ +

1

2n

)
ě 1 +

1

2
+
(1
4
+

1

4

)
+
(1
8
+

1

8
+

1

8
+

1

8

)
+ ¨ ¨ ¨ +

( 1

2n
+

1

2n
+ ¨ ¨ ¨ +

1

2n
looooooooooomooooooooooon

2n´1 terms

)
= 1 +

1

2
+

1

2
+ ¨ ¨ ¨ +

1

2
loooooooomoooooooon

n terms

=
n

2
+ 1 ě

n

2
,

we find that
ż 2n+1π

0

ˇ

ˇ

ˇ

sinx
x

ˇ

ˇ

ˇ
dx ě

2

π

2n
ÿ

k=1

1

k
ě
n

π

which approaches 8 as n Ñ 8.



Theorem 8.51: A special type of improper integral

ż 8

1

dx

xp
=

$

&

%

1

p´ 1
if p ą 1 ,

diverges to 8 if p ď 1 .

‚ Comparison Test for Improper Integrals
In the last part of this section, we consider some criteria which can be used to judge if an

improper integral converges or diverges, without evaluating the exact value of the improper
integral.
Theorem 8.52: Direct Comparison Test

Let f and g be continuous functions and 0 ď g(x) ď f(x) on the interval [a,8).

1. If the improper integral
ż 8

a
f(x) dx converges, then the improper integral

ż 8

a
g(x) dx converges.

2. If the improper integral
ż 8

a
g(x) dx diverges to 8, then the improper integral

ż 8

a
f(x) dx diverges.

Similar result also holds for improper integrals given by other two cases in Definition
8.34 and the case with infinite discontinuities.

Proof. For b ą a, define G(b) =
ż b

a
g(x) dx and F (b) =

ż b

a
f(x) dx. By the Fundamental

Theorem of Calculus, F,G : [a,8) Ñ R is differentiable (hence continuous). Since 0 ď

g(x) ď f(x) on [a,8), for all b ą a we have 0 ď G(b) ď F (b), and F,G are monotone
increasing.

1. If the improper integral
ż 8

a
f(x) dx converges, the lim

bÑ8
F (b) = M exists. Since F is

monotone increasing, F (b) ď M for all b ą a; thus G(b) ď M for all b ą a. By the
monotonicity of G, lim

bÑ8
G(b) exists.

2. If the improper integral
ż 8

a
g(x) dx diverges to 8, lim

bÑ8
G(b) = 8; thus the fact that

G(b) ď F (b) implies that lim
bÑ8

F (b) = 8.

Example 8.53. Consider the improper integral
ż 8

1
e´x2

dx. Note that e´x2
ď e´x for all



x P [1,8). Since
ż 8

1

e´x dx = lim
bÑ8

ż b

1

e´x dx = lim
bÑ8

(´e´x)
ˇ

ˇ

ˇ

x=b

x=1
= lim

bÑ8
(e´b ´ e´1) = ´e´1 ,

by Theorem 8.52 we find that the improper integral
ż 8

1
e´x2

dx converges.

Example 8.54. Consider the improper integral
ż 8

1

sin2 x

x2
dx. Note that sin2 x

x2
ď

1

x2
for all

x P [1,8). Since
ż 8

1

1

x2
dx = lim

bÑ8

ż b

1

1

x2
dx = lim

bÑ8

(
´

1

x

)ˇ
ˇ

ˇ

x=b

x=1
= lim

bÑ8

(1
b

´ 1
)
= ´1 ,

by Theorem 8.52 we find that the improper integral
ż 8

1
e´x2

dx converges.

Example 8.55 (The Gamma Function). The Gamma function Γ : (0,8) Ñ R is defined
by

Γ(x) =

ż 8

0

tx´1e´t dt .

We note that for each x P R, the integrand f(t) = tx´1e´t is positive on [0,8).

1. If x ě 1, the function y = tx´1e´ t
2 is differentiable on [0,8) and has a maximum at

the point t = 2(x ´ 1). Therefore,

0 ď f(t) ď 2x´1(x ´ 1)x´1e´ t
2 @ t ě 0 .

By the fact that
ż 8

0

e´ t
2 dt = lim

bÑ8

ż b

0

e´ t
2 dt = lim

bÑ8

(
´ 2e´ t

2

)ˇ
ˇ

ˇ

t=b

t=0
= lim

bÑ8

(
2 ´ 2e´ b

2

)
= 2,

we find that the improper integral
ż 8

0
tx´1e´t dt converges.

2. If 0 ă x ă 1, the function f has an infinite discontinuity at 0. Therefore,
ż 8

0

tx´1e´t dt =

ż 1

0

tx´1e´t dt+

ż 8

1

tx´1e´t dt .

Again, the function y = tx´1e´ t
2 is bounded from above by 2x´1(x ´ 1)x´1; thus the



same reason as above show that the improper integral
ż 8

1
tx´1e´t dt converges.

On the other hand, note that f(t) ď tx´1 for all t P [0, 1]. By the fact that
ż 1

0

tx´1 dt = lim
aÑ0+

ż 1

a

tx´1 dx = lim
aÑ0+

tx

x

ˇ

ˇ

ˇ

t=1

t=a
= lim

aÑ0+

1 ´ ax

x
=

1

x
,

we find that the improper integral
ż 1

0
tx´1e´t dt converges. Therefore, the improper

integral
ż 8

0
tx´1e´t dt converges.

3. If x ď 0, then tx´1e´t ě tx´1e´1 for all t P [0, 1]. By the fact that
ż 1

0

tx´1e´1 dt = lim
aÑ0+

ż 1

a

tx´1e´1 dt = 8 ,

Theorem 8.52 implies that the improper integral
ż 1

0
tx´1e´t dt diverges to 8. This

implies that the improper integral
ż 8

0
tx´1e´t dt diverges to 8 as well.

Theorem 8.56: Limit Comparison Test
Let f and g be positive continuous functions on the interval [a,8). If the limit

lim
xÑ8

f(x)

g(x)
= L for some 0 ă L ă 8, then

ż 8

a

f(x) dx converges if and only if
ż 8

a

g(x) dx converges.

Similar result also holds for improper integrals given by other two cases in Definition
8.34 and the case with infinite discontinuities.

Proof. By the fact lim
xÑ8

f(x)

g(x)
= L, there exists M ą a such that

ˇ

ˇ

ˇ

f(x)

g(x)
´ L

ˇ

ˇ

ˇ
ă
L

2
whenever x ą M .

Therefore,
0 ă

L

2
g(x) ă f(x) ă

3L

2
g(x) whenever x ą M .

By the direct comparison test,
ż 8

M

f(x) dx converges if and only if
ż 8

M

g(x) dx converges.



The theorem is then concluded since
ż M

a
f(x) dx and

ż M

a
g(x) dx are both finite.

Example 8.57. Consider the improper integral
ż 8

1

1 + e´x

x
dx. Since lim

xÑ8

(1 + e´x)/x

1/x
= 1,

the limit comparison test implies that
ż 8

1

1 + e´x

x
dx converges if and only if

ż 8

1

dx

x
converges.

By Theorem 8.51, we find that the integral
ż 8

1

dx

x
diverges; thus the improper integral

ż 8

1

1 + e´x

x
dx diverges.

Example 8.58. Consider the improper integral
ż π

4

0

dx

x+ tanx . Note that this is an improper
integral with infinite discontinuity at x = 0. Since

lim
xÑ0+

x+ tanx
x

= 1 + lim
xÑ0+

tanx
x

= 1 + lim
xÑ0+

sinx
x cosx = 2 ,

the limit comparison test implies that
ż π

4

0

dx

x+ tanx converges if and only if
ż π

4

0

dx

x
converges.

Since the improper integral
ż π

4

0

dx

x
diverges (to 8), we must have

ż π
4

0

dx

x+ tanx diverges.

Example 8.59. Determine the convergence of the improper integral
ż 8

0

dx
3
?
x4 ´ x2

.

Note that 1
3
?
x4 ´ x2

= x´ 2
3 (x+ 1)´ 1

3 (x ´ 1)´ 1
3 . In the interval [0,8), the integrand has

singular points at 0 and 1. Write
ż 8

0

dx
3
?
x4 ´ x2

=

ż 1
2

0

dx
3

?
x4 ´ x2

+

ż 1

1
2

dx
3
?
x4 ´ x2

+

ż 2

1

dx
3

?
x4 ´ x2

+

ż 8

2

dx
3
?
x4 ´ x2

. (8.5.1)

1. Let f(x) = ´x´ 2
3 (x+1)´ 1

3 (x´1)´ 1
3 and g(x) = x´ 2

3 . Then f, g are positive continuous
on

[
a,

1

2

]
for all a ą 0. Moreover,

lim
xÑ0+

f(x)

g(x)
= lim

xÑ0+

[
´(x+ 1)´ 1

3 (x ´ 1)´ 1
3

]
= 1 ą 0 ,



and
ż 1

2

0

g(x) dx = lim
aÑ0+

ż 1
2

a

x´ 2
3 dx = lim

aÑ0+
3x

1
3

ˇ

ˇ

ˇ

x= 1
2

x=a
=

3
3
?
2

which shows that the improper integral
ż 1

2

0
g(x) dx converges. Therefore, the limit

comparison test implies that
ż 1

2

0
f(x) dx = ´

ż 1
2

0

dx
3
?
x4 ´ x2

converges.

2. Let f(x) = ´x´ 2
3 (x + 1)´ 1

3 (x ´ 1)´ 1
3 and g(x) = ´(x ´ 1)

1
3 . Then f, g are positive

continuous on
[1
2
, b
]

for all 1

2
ă b ă 1. Moreover,

lim
xÑ1´

f(x)

g(x)
= lim

xÑ1´
x´ 2

3 (x+ 1)´ 1
3 = 2´ 1

3 ą 0 ,

and
ż 1

1
2

g(x) dx = ´ lim
bÑ1´

ż b

1
2

(x ´ 1)´ 1
3 dx = ´ lim

bÑ1´

3

2
(x ´ 1)

2
3

ˇ

ˇ

ˇ

x=b

x= 1
2

=
3

2 3
?
4

which shows that the improper integral
ż 1

1
2

g(x) dx converges. Therefore, the limit

comparison test implies that
ż 1

1
2

f(x) dx = ´

ż 1

1
2

dx
3
?
x4 ´ x2

converges.

3. Similar to the previous case, we let f(x) = x´ 2
3 (x+1)´ 1

3 (x´1)´ 1
3 and g(x) = (x´1)

1
3 .

Then f, g are positive continuous on [a, 2] for all 1 ă a ă 2. Moreover,

lim
xÑ1+

f(x)

g(x)
= lim

xÑ1+
x´ 2

3 (x+ 1)´ 1
3 = 2´ 1

3 ą 0 ,

and
ż 2

1

g(x) dx = lim
aÑ1+

ż 2

a

(x ´ 1)´ 1
3 dx = ´ lim

aÑ1+

3

2
(x ´ 1)

2
3

ˇ

ˇ

ˇ

x=2

x=a
=

3

2

which shows that the improper integral
ż 2

1
g(x) dx converges. Therefore, the limit

comparison test implies that
ż 2

1
f(x) dx =

ż 2

1

dx
3
?
x4 ´ x2

converges.

4. Let f(x) = x´ 2
3 (x+1)´ 1

3 (x´ 1)´ 1
3 and g(x) = x´ 4

3 . Then f, g are positive continuous
on [2, b] for all b ą 2. Moreover,

lim
xÑ8

f(x)

g(x)
= lim

xÑ8

x´ 2
3 (x+ 1)´ 1

3 (x ´ 1)´ 1
3

x´ 4
3

= lim
xÑ8

3

d

x2

(x ´ 1)(x+ 1)
= 1 ą 0 ,



and
ż 8

2

g(x) dx = lim
bÑ8

ż b

2

x´ 4
3 dx = ´ lim

bÑ8
3x´ 1

3

ˇ

ˇ

ˇ

x=b

x=2
= 3

which shows that the improper integral
ż 8

2
g(x) dx converges. Therefore, the limit

comparison test implies that
ż 8

2
f(x) dx =

ż 8

2

dx
3
?
x4 ´ x2

converges.

Since the four improper integrals on the right-hand side of (8.5.1) converges, we find that

the improper integral
ż 8

0

dx
3
?
x4 ´ x2

converges.

8.5.1 The Laplace transform（補充，不考）
Definition 8.60: Laplace Transform

Let f : [0,8) Ñ R be continuous. The Laplace transform of f , denoted by L (f), is
the function defined by

L (f)(s) =

ż 8

0

e´stf(t) dt
(
= lim

RÑ8

ż R

0

e´stf(t)dt
)
,

and the domain of L (f) is the set consisting of all numbers s for which the integral
converges.

Remark 8.61. In general, the Laplace transform of f can be defined, without assuming

that f is continuous on [0,8), as long as the integral
ż 8

0
e´stf(t) dt makes sense. Moreover,

if f is continuous and satisfies

ˇ

ˇf(t)
ˇ

ˇ ď Meαt @ t P [0,8) , (8.5.2)

then L (f)(s) exists for all s ą α. A function f is said to be of exponential order α if there
exist M ą 0 such that the growth condition (8.5.2) holds.

Example 8.62. Let f : [0,8) Ñ R be given by f(t) = tp for some p ą ´1. Recall that the

Gamma function Γ : (0,8) Ñ R is defined by

Γ(x) =

ż 8

0

e´ttx´1 dt .



We note that if ´1 ă p ă 0, f is not of exponential order a for all a P R; however, the
Laplace transform of f still exists. In fact, for s ą 0,

L (f)(s) = lim
RÑ8

ż R

0

e´sttp dt = lim
RÑ8

ż sR

0

e´t
( t
s

)pdt

s
=

Γ(p+ 1)

sp+1
.

In particular, if p = n P N Y t0u, then

L (f)(s) =
n!

sn+1
@ s ą 0 .

Example 8.63. Let g : [0,8) Ñ R be given by g(t) = eat sin(bt) for some b ‰ 0. Using
(8.2.1), we find that

ż

e(a´s)t sin(bt) dt = 1

(s ´ a)2 + b2

[
(a ´ s)e(a´s)t sin(bt) ´ be(a´s)t cos(bt)

]
+ C .

Therefore, for s ą a,

L (g)(s) =

ż 8

0

e(a´s)t sin(bt) dt

= lim
bÑ8

1

(s ´ a)2 + b2

[
(a ´ s)e(a´s)t sin(bt) ´ be(a´s)t cos(bt)

]ˇ
ˇ

ˇ

t=b

t=0

=
b

(s ´ a)2 + b2
.

Similarly, if h(t) = eat cos(bt), using (8.2.2) we find that for s ą a,

L (h)(s) =

ż 8

0

e(a´s)t cos(bt) dt

= lim
bÑ8

1

(s ´ a)2 + b2

[
(a ´ s)e(a´s)t cos(bt) + be(a´s)t sin(bt)

]ˇ
ˇ

ˇ

t=b

t=0

=
s ´ a

(s ´ a)2 + b2
.

Theorem 8.65: Linearity of the Laplace transform

Let f, g : [0,8) Ñ R be functions whose Laplace transform exist for s ą α and c be
a constant. Then for s ą α,

1. L (f + g)(s) = L (f)(s) + L (g)(s). 2. L (cf)(s) = cL (f)(s).



Theorem 8.66
Suppose that f : [0,8) Ñ R is a function such that f, f 1, f 11, ¨ ¨ ¨ , f (n´1) are continuous
of exponential order α, and f (n) is piecewise continuous. Then L (f (n))(s) exists for
all s ą α, and

L (f (n))(s) = snL (f)(s)´sn´1f(0)´sn´2f 1(0)´¨ ¨ ¨´sf (n´2)(0)´f (n´1)(0) . (8.5.3)

Proof. We prove by induction. Suppose that f is continuously differentiable on [0,8) and
is of exponential order α. Then for s ą α,

ż 8

0

e´stf 1(t) dt = lim
bÑ8

ż b

0

e´stf 1(t) dt = lim
bÑ8

[
e´stf(t)

ˇ

ˇ

ˇ

t=b

t=0
+ s

ż b

0

e´stf(t) dt
]

= s

ż 8

0

e´stf(t) dt
]

´ f(0) + lim
bÑ8

e´sbf(b) = sL (f)(s) ´ f(0)

which shows that (8.5.3) holds for n = 1 and all continuously differentiable f .
Now suppose that (8.5.3) holds for all k-times continuously differentiable function f .

Then if s ą α and f is (k + 1)-times continuously differentiable function on [0,8),

L (f (k+1))(s) =L
(
(f 1)(k)

)
(s)

= skL (f 1)(s)´ sk´1f 1(0)´ sk´2(f 1) 1(0)´ ¨ ¨ ¨ ´ s(f 1)(n´2)(0)´ (f 1)(n´1)(0)

= sk
[
sL (f)(s)´f(0)

]
´ sk´1f 1(0)´ sk´2f 11(0)´ ¨ ¨ ¨ ´ sf (n´1)(0)´f (n)(0)

= sk+1L (f)(s)´ skf(0)´ sk´1f 1(0)´ sk´2f 11(0)´ ¨ ¨ ¨ ´ sf (n´1)(0)´f (n)(0)

which implies that (8.5.3) holds for the case n = k + 1. The theorem is then concluded by
induction.

‚ Applications in solving the ordinary differential equations

Let a0, a1, ¨ ¨ ¨ , an´1, y0, y1, ¨ ¨ ¨ , yn´1 be given numbers, and g : [0,8) Ñ R be a continuous
function of exponential order. The idea of solving an ordinary differential equation (here y
is the unknown function to be solved) of the form

any
(n) + an´1y

(n´1) + ¨ ¨ ¨ + a1y
1 + a0y = g(s) , (8.5.4a)

y(0) = y0, y
1(0) = y1, ¨ ¨ ¨ , y(n´1)(0) = yn´1 , (8.5.4b)

using the method of the Laplace transform is based on the following facts:



1. The Laplace transform is a one-to-one mapping in the sense that if f and g are
continuous function such that L (f) = L (g) for s ą α, then f = g on [0,8).

2. The solution of (8.5.4) is of exponential order α (so that the Laplace transform of
derivatives of y can be computed using Theorem 8.66).

Under these two facts, we then take the Laplace transform of (8.5.4a) and apply Theorem
8.65 and 8.66 to obtain, by letting Y (s) = L (y)(s), that

an
[
snY (s) ´ sn´1y0 ´ sn´2y1 ´ ¨ ¨ ¨ ´ syn´2 ´ yn´1

]
+ an´1

[
sn´1Y (s) ´ sn´2y0 ´ sn´3y1 ´ ¨ ¨ ¨ ´ syn´3 ´ yn´2

]
+ an´2

[
sn´2Y (s) ´ sn´3y0 ´ sn´4y1 ´ ¨ ¨ ¨ ´ syn´4 ´ yn´3

]
+ ¨ ¨ ¨ + a1

[
sY (s) ´ y0

]
+ a0Y (s) = L (g)(s) ;

thus

Y (s) =
1

ansn + an´1sn´1 + an´2sn´2 + ¨ ¨ ¨ + a1s+ a0
ˆ

ˆ

[
L (g)(s) + y0(ans

n´1 + an´1s
n´2 + ¨ ¨ ¨ + a2s+ a1)

+ y1(ans
n´2 + an´1s

n´2 + ¨ ¨ ¨ + a3s+ a2) + ¨ ¨ ¨ ¨ ¨ ¨ + yn´2(ans+ an´1) + yn´1

]
=

1

ansn + an´1sn´1 + an´2sn´3 + ¨ ¨ ¨ + a1s+ a0

[
L (g)(s) +

n´1
ÿ

j=0

yj

n´j´1
ÿ

ℓ=0

an´ℓs
n´j´ℓ´1

]
.

The final step is to identify which function gives the Laplace transform above.

Example 8.64. Find the function y satisfying

y 11 + 2y 1 + 5y = sin t , y(0) = 1 , y 1(0) = 0 .

Using the result in Example 8.63 and Theorem 8.66, with Y denoting L (y) we find that

s2Y (s) ´ s+ 2
[
sY (s) ´ 1

]
+ 5Y (s) =

1

s2 + 1
@ s ą a

for some a. Therefore,

Y (s) =
1

s2 + 2s+ 5

( 1

s2 + 1
+ s+ 2

)
=

s+ 2

(s+ 1)2 + 22
+

1

(s2 + 2s+ 5)(s2 + 1)
.



Writing the last term as the sum of partial fractions, we have

1

(s2 + 2s+ 5)(s2 + 1)
=

1

10

( s

s2 + 2s+ 5
´

s ´ 2

s2 + 1

)
;

thus

Y (s) =
s+ 2

(s+ 1)2 + 22
+

1

10

s

(s+ 1)2 + 22
´

1

10

s ´ 2

s2 + 1

=
11

10

s+ 1

(s+ 1)2 + 22
+

9

20

2

(s+ 1)2 + 22
´

1

10

s

s2 + 1
+

1

5

1

s2 + 1
.

Therefore, Fact 1 and Example 8.63 imply that

y(t) =
11

10
e´t cos(2t) + 9

20
e´t sin(2t) ´

1

10
cos t+ 1

5
sin t .
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