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Chapter 2

Differentiation

2.1 The Derivatives of Functions

Definition 2.1
Let f be a function defined on an open interval containing c. If the limit

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= m exists, then the line passing through

(
c, f(c)

)
with slope

m is the tangent line to the graph of f at point
(
(c, f(c)

)
.

Definition 2.2
Let f be a function defined on an open interval I containing c. f is said to be
differentiable at c if the limit

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x

exists. If the limit above exists, the limit is denoted by f 1(c) and called the derivative
of f at c. When the derivative of f at each point of I exists, f is said to be differentiable
on I and the derivative of f is a function denoted by f 1.

‚ Notation: The prime notation 1 is associated with a function (of one variable) and is
used to denote the derivative of that function. For a given function f defined on an open
interval I and x being the name of the variable, the limit operation

lim
∆xÑ0

f(x+∆x) ´ f(x)

∆x
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is denoted by d

dx
f(x)

(
or df(x)

dx
or even dy

dx
if y = f(x)

)
, and the limit

lim
∆xÑ0

f(c+∆) ´ f(c)

∆x

is denoted by d

dx

ˇ

ˇ

ˇ

x=c
f(x) but not d

dx
f(c)

( d
dx
f(c) is in fact 0

)
. The operator d

dx
is a

differential operator called the differentiation and is applied to functions of variable x.
However, for historical (and convenient) reason, d

dx
f(x) is sometimes denoted by (f(x)) 1

(so that 1 is treated as the differential operator d

dx
) and f 1 is sometimes denoted by df

dx
(so

that f is always treated as a function of variable x).

Remark 2.3. Letting x = c+∆x in the definition of the derivatives, then

f 1(c) = lim
xÑc

f(x) ´ f(c)

x ´ c

if the limit exists.

Example 2.4. Let f be a constant function. Then f 1 is the zero function.

Example 2.5. Let f(x) = xn, where n is a positive integer. Then

f(x+∆x) = xn + Cn
1 x

n´1∆x+ Cn
2 x

n´2(∆x)2 + ¨ ¨ ¨ + Cn
n´1x(∆x)

n´1 + (∆x)n ;

thus if ∆x ‰ 0,
f(x+∆x) ´ f(x)

∆x
= nxn´1 + Cn

2 x
n´2∆x+ ¨ ¨ ¨ + Cn

n´1x(∆x)
n´2 + (∆x)n´1 .

The limit on the right-hand side is clearly nxn´1, so we establish that
d

dx
xn = nxn´1 .

Example 2.6. Now suppose that f(x) = x´n, where n is a positive integer. Then if
x+∆x ‰ 0,

f(x+∆x) =
1

xn + Cn
1 x

n´1∆x+ Cn
2 x

n´2(∆x)2 + ¨ ¨ ¨ + Cn
n´1x(∆x)

n´1 + (∆x)n
;

thus if x ‰ 0, ∆x ‰ 0, and x+∆x ‰ 0 (which can be achieved if |∆x| ! 1),

f(x+∆x) ´ f(x)

∆x
=

´
[
Cn

1 x
n´1 + Cn

2 x
n´2∆x+ ¨ ¨ ¨ + Cn

n´1x(∆x)
n´2 + (∆x)n´1

]
xn

[
xn + Cn

1 x
n´1∆x+ Cn

2 x
n´2(∆x)2 + ¨ ¨ ¨ + Cn

n´1x(∆x)
n´1 + (∆x)n

] .



Therefore, if x ‰ 0,

lim
∆xÑ0

f(x+∆x) ´ f(x)

∆x
=

´nxn´1

x2n
= ´nx´n´1

which shows d

dx
x´n = ´nx´n´1.

Combining the previous three examples, we conclude that

d

dx
xn =

"

nxn´1 @x P R if n P N Y t0u ,

nxn´1 @x ‰ 0 if n P Z and n ă 0 .
(2.1.1)

Combining Example 2.4-2.6, we conclude that

d

dx
xn =

"

nxn´1 @x P R if n P N Y t0u ,

nxn´1 @x ‰ 0 if n P Z and n ă 0 .
(2.1.2)

我們注意到當 n 是負整數時，在計算
d

dx

ˇ

ˇ

ˇ

x=c
xn 時，已經必須先假設 c ‰ 0 才能計算導

數，並非最後算出來
d

dx

ˇ

ˇ

ˇ

x=c
xn = ncn´1 時發現 c 不可為零所以不能代入。這是一個非常

重要的觀念！不能搞錯順序！

Example 2.7. Let f(x) = sinx. By the sum and difference formula,

f(x+∆x) ´ f(x) = sin(x+∆x) ´ sinx = sinx cos∆x+ sin∆x cosx ´ sinx
= sinx(cos∆x ´ 1) + sin∆x cosx ;

thus by the fact that lim
xÑ0

sinx
x

= 1 and lim
xÑ0

cosx´ 1

x
= 0, we find that

lim
∆xÑ0

f(x+∆x) ´ f(x)

∆x
= lim

∆xÑ0

[
sinxcos∆x´ 1

∆x
+

sin∆x

∆x
cosx

]
= cosx . (2.1.3)

In other words, the derivative of the sine function is cosine.
On the other hand, let g(x) = cosx. Then g(x) = ´f

(
x ´

π

2

)
. Then if ∆x ‰ 0,

g(x+∆x) ´ g(x)

∆x
= ´

f
(
x´

π

2
+∆x

)
´ f

(
x´

π

2

)
∆x

;

thus
lim

∆xÑ0

g(x+∆x) ´ g(x)

∆x
= ´ cos

(
x ´

π

2

)
= ´ sinx .

In other words, the derivative of the cosine function is minus sine. To summarize,
d

dx
sinx = cosx and d

dx
cosx = ´ sinx . (2.1.4)



Example 2.8. Consider the function g : R Ñ R defined by

g(x) =

"

x2 if x is rational ,
´x2 if x is irrational .

Then g(x) = xf(x), where f is given in Example 1.22. By the fact that lim
xÑ0

f(x) = 0,

lim
∆xÑ0

g(∆x) ´ g(0)

∆x
= lim

∆xÑ0
f(∆x) = 0 .

In other words, g is differentiable at 0. Moreover, similar argument used to explain that the
function f in Example 1.22 is only continuous at 0 can be used to show that the function g
is only continuous at 0. Therefore, we obtain a function which is differentiable at one point
but discontinuous elsewhere.

Remark 2.9. If f is a function defined on a interval I, and c is one of the end-point. Then
it is possible to define the one-sided derivative. For example, if c is the left end-point of I,
then we can consider the limit

lim
∆xÑ0+

f(c+∆x) ´ f(c)

∆x
= lim

xÑc+

f(x) ´ f(c)

x ´ c

if it exists. The limit above, if exists, is called the derivatives of f at c from the right.

Theorem 2.10: 可微必連續
Let f be a function defined on an open interval I, and c P I. If f is differentiable at
c, then f is continuous at c.

Proof. If x ‰ c, f(x) ´ f(c) =
f(x) ´ f(c)

x´ c
(x´ c). Since the limit lim

xÑc

f(x) ´ f(c)

x´ c
exists and

lim
xÑc

(x ´ c) = 0, by Theorem 1.14 we conclude that

lim
xÑc

[
f(x) ´ f(c)

]
=

(
lim
xÑc

f(x) ´ f(c)

x´ c

)(
lim
xÑc

(x ´ c)
)
= 0 .

Therefore, lim
xÑc

f(x) = f(c) which shows that f is continuous at c.

Remark 2.11. When f is continuous on an open interval I, f is not necessary differentiable
on I. For example, consider f(x) = |x|. Then Theorem 1.14 implies that f is continuous

on I, but lim
∆xÑ0

f(∆x) ´ f(0)

∆x
= lim

∆xÑ0

|∆x|

∆x
D.N.E.



2.2 Rules of Differentiation
Theorem 2.12

We have the following differentiation rules:

1. If k is a constant, then d

dx
k = 0.

2. If n is a non-zero integer, then d

dx
xn = nxn´1 (whenever xn´1 makes sense).

3. d

dx
sinx = cosx, d

dx
cosx = ´ sinx.

4. If k is a constant and f : (a, b) Ñ R is differentiable at c P (a, b), then kf is
differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c

[
kf(x)

]
= kf 1(c) .

5. If f, g : (a, b) Ñ R are differentiable at c P (a, b), then f ˘ g is differentiable at
c and

d

dx

ˇ

ˇ

ˇ

x=c

[
f(x) ˘ g(x)

]
= f 1(c) ˘ g 1(c) .

Proof of 5. Let h(x) = f(x) + g(x). Then if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=
f(c+∆x) ´ f(c)

∆x
+
g(c+∆x) ´ g(c)

∆x
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) and lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x

exist. Therefore, by Theorem 1.14,

h 1(c) = f 1(c) + g 1(c) .

The conclusion for the difference can be proved in the same way.

Example 2.13. Let f(x) = 3x2 ´ 5x+ 7. Then

d

dx
f(x) =

d

dx
(3x2 ´ 5x) +

d

dx
7 =

d

dx
(3x2) ´

d

dx
(5x)

= 3
d

dx
x2 ´ 5

d

dx
x = 3 ¨ (2x) ´ 5 = 6x ´ 5 .



In general, for a polynomial function

p(x) = anx
n + an´1x

n´1 + ¨ ¨ ¨ + a1x+ a0 ”

n
ÿ

k=0

akx
k ,

where a0, a1, ¨ ¨ ¨ , an P R, by induction we can show that

d

dx
p(x) = nanx

n´1 + (n ´ 1)an´1x
n´2 + ¨ ¨ ¨ + a1 =

n
ÿ

k=1

kakx
k´1 .

Theorem 2.14: Product Rule
Let f, g : (a, b) Ñ R be real-valued functions, and c P (a, b). If f and g are differen-
tiable at c, then fg is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c
(fg)(x) = f 1(c)g(c) + f(c)g 1(c) .

Proof. Let h(x) = f(x)g(x). Then

h(c+∆x) ´ h(c) = f(c+∆x)g(c+∆x) ´ f(c)g(c)

= f(c+∆x)g(c+∆x) ´ f(c)g(c+∆x) + f(c)g(c+∆x) ´ f(c)g(c)

=
[
f(c+∆x) ´ f(c)

]
g(c+∆x) + f(c)

[
g(c+∆x) ´ g(c)

]
.

Therefore, if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=
f(c+∆x) ´ f(c)

∆x
g(c+∆x) + f(c)

g(c+∆x) ´ g(c)

∆x
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) , lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x
, and lim

∆xÑ0
g(c+∆x) = g(c)

exist. By Theorem 1.14,
h 1(c) = f 1(c)g(c) + f(c)g 1(c)

which concludes the product rule.

Example 2.15. Let f(x) = x3 sinx. Then the product rule implies that

f 1(x) = 3x2 sinx+ x3 cosx .



Theorem 2.16: Quotient Rule
Let f, g : (a, b) Ñ R be real-valued functions, and c P (a, b). If f and g are differen-

tiable at c and g(c) ‰ 0, then f

g
is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c

f

g
(x) =

f 1(c)g(c) ´ f(c)g 1(c)

g(c)2
.

Proof. Let h(x) = f(x)

g(x)
. Then

h(c+∆x) ´ h(c) =
f(c+∆x)

g(c+∆x)
´
f(c)

g(c)
=
f(c+∆x)g(c) ´ f(c)g(c+∆x)

g(c)g(c+∆x)

=
f(c+∆x)g(c) ´ f(c)g(c) + f(c)g(c) ´ f(c)g(c+∆x)

g(c)g(c+∆x)

=

[
f(c+∆x) ´ f(c)

]
g(c) ´ f(c)

[
g(c+∆x) ´ g(c)

]
g(c)g(c+∆x)

.

Therefore, if ∆x ‰ 0,

h(c+∆x) ´ h(c)

∆x
=

1

g(c)g(c+∆x)

[f(c+∆x) ´ f(c)

∆x
g(c) ´ f(c)

g(c+∆x) ´ g(c)

∆x

]
.

Since f, g are differentiable at c,

lim
∆xÑ0

f(c+∆x) ´ f(c)

∆x
= f 1(c) , lim

∆xÑ0

g(c+∆x) ´ g(c)

∆x
, and lim

∆xÑ0
g(c+∆x) = g(c)

exist. By Theorem 1.14,

h 1(c) =
1

g(c)2

[
f 1(c)g(c) ´ f(c)g 1(c)

]
which concludes the quotient rule.

Remark 2.17. Suppose that in addition to the assumption in Theorem 2.16 one has already
known that h = f/g is differentiable at c, then applying the product rule to f = gh one
finds that

f 1(c) = g 1(c)h(c) + g(c)h 1(c) = g 1(c)
f(c)

g(c)
+ g(c)h 1(c)

which, after rearranging terms, shows the quotient rule. The proof of Theorem 2.16 indeed
is based on the fact that we do not know the differentiability of h at c yet.



Example 2.18. Let n be a positive integer and f(x) = x´n. We have shown by definition
that f 1(x) = ´nx´n´1 if x ‰ 0. Now we use Theorem 2.16 to compute the derivative of f :
if x ‰ 0,

d

dx
x´n =

d

dx

1

xn
= ´

d

dx
xn

x2n
= ´

nxn´1

x2n
= ´nx´n´1 .

Example 2.19. Since tanx =
sinx
cosx , by Theorem 2.16 we have

d

dx
tanx =

cos2 x+ sin2 x

cos2 x =
1

cos2 x = sec2 x .

Similarly, we also have
d

dx
cotx =

´ sin2 x ´ cos2 x
sin2 x

= ´ csc2 x ,
d

dx
secx = ´

´ sinx
cos2 x = secx tanx ,

d

dx
cscx = ´

cosx
sin2 x

= ´ cscx cotx .

We note that without using the quotient rule, the derivative of the tangent function can be
found using the sum-and-difference formula

tan(x ´ y) =
tanx ´ tan y
1 + tanx tan y . (2.2.1)

Using (2.2.1), we find that

tan(x+∆x) ´ tanx = tan∆x
[
1 + tan(x+∆x) tanx

]
;

thus if ∆x ‰ 0,

tan(x+∆x) ´ tanx
∆x

=
sin∆x

∆x
¨
1 + tan(x+∆x) tanx

cos∆x
which, using (1.2.2), shows that

lim
∆xÑ0

tan(x+∆x) ´ tanx
∆x

=
(

lim
∆xÑ0

sin∆x

∆x

)(
lim

∆xÑ0

1 + tan(x+∆x) tanx
cos∆x

)
= sec2 x .

‚ Higher-order derivatives:
Let f be defined on an open interval I = (a, b). If f 1 exists on I and possesses derivatives

at every point in I, by definition we use f 11 to denote the derivative of f 1.In other words,

f 11(x) =
d

dx
f 1(x) =

d

dx

d

dx
f(x) ”

d2

dx2
f(x) =

d2f(x)

dx2

(
=
d2y

dx2
if y = f(x)

)
.



The function f 11 is called the second derivative of f . Similar as the “first” derivative case,

f 11(c) =
d2

dx2

ˇ

ˇ

ˇ

x=c
f(x).

The third derivatives and even higher-order derivatives are denoted by the following: if
y = f(x),

Third derivative: y 12 f 12(x)
d3

dx3
f(x)

d3f(x)

dx3

Fourth derivative: y(4) f (4)(x)
d4

dx4
f(x)

d4f(x)

dx4

...

n-th derivative: y(n) f (n)(x)
dn

dxn
f(x)

dnf(x)

dxn
.

2.3 The Chain Rule
The chain rule is used to study the derivative of composite functions.
Theorem 2.20: Chain Rule - 連鎖律

Let I, J be open intervals, f : J Ñ R, g : I Ñ R be real-valued functions, and the
range of g is contained in J . If g is differentiable at c P I and f is differentiable at
g(c), then f ˝ g is differentiable at c and

d

dx

ˇ

ˇ

ˇ

x=c
(f ˝ g)(x) = f 1(g(c))g 1(c) .

Proof. To simplify the notation, we set d = g(c).
Let ε ą 0 be given. Since f is differentiable at d and g is differentiable at c, there exist

δ1, δ2 ą 0 such that
ˇ

ˇ

ˇ

f(d+ k) ´ f(d)

k
´ f 1(d)

ˇ

ˇ

ˇ
ă

ε

2(1 + |g 1(c)|)
whenever 0 ă |k| ă δ1 ,

ˇ

ˇ

ˇ

g(c+ h) ´ g(c)

h
´ g 1(c)

ˇ

ˇ

ˇ
ă min

!

1,
ε

2(1 + |f 1(d)|)

)

whenever 0 ă |h| ă δ2 .

Therefore,
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)k
ˇ

ˇ ď
ε

2(1 + |g 1(c)|)
|k| whenever |k| ă δ1 ,

ˇ

ˇg(c+ h) ´ g(c) ´ g 1(c)h
ˇ

ˇ ď min
!

1,
ε

2(1 + |f 1(d)|)

)

|h| whenever |h| ă δ2 .



By Theorem 2.10, g is continuous at c; thus lim
hÑ0

g(c + h) = g(c). This fact provides δ3 ą 0

such that
ˇ

ˇg(c+ h) ´ g(c)
ˇ

ˇ ă δ1 whenever |h| ă δ3 .

Define δ = mintδ2, δ3u. Then δ ą 0. Moreover, if |h| ă δ, the number k ” g(c+h)´ g(c)

satisfies |k| ă δ1. As a consequence, if |h| ă δ,
ˇ

ˇ(f ˝ g)(c+ h) ´ (f ˝ g)(c) ´ f 1(d)g 1(c)h
ˇ

ˇ =
ˇ

ˇf(g(c+ h)) ´ f(d) ´ f 1(d)g 1(c)h
ˇ

ˇ

=
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)g 1(c)h
ˇ

ˇ

=
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)k + f 1(d)k ´ f 1(d)g 1(c)h
ˇ

ˇ

ď
ˇ

ˇf(d+ k) ´ f(d) ´ f 1(d)k
ˇ

ˇ+
ˇ

ˇf 1(d)
ˇ

ˇ

ˇ

ˇk ´ g 1(c)h
ˇ

ˇ

ď
ε

2(1 + |g 1(c)|)
|k| +

ˇ

ˇf 1(d)
ˇ

ˇ

ˇ

ˇg(c+ h) ´ g(c) ´ g 1(c)h
ˇ

ˇ

ď
ε

2(1 + |g 1(c)|)

(
|k ´ g 1(c)h| + |g 1(c)||h|

)
+
ˇ

ˇf 1(d)
ˇ

ˇ

ε

2(1 + |f 1(d)|)

ď
ε

2(1 + |g 1(c)|)

(
|h| + |g 1(c)||h|

)
+
ˇ

ˇf 1(d)
ˇ

ˇ

ε|h|

2(1 + |f 1(d)|)

=
ε

2
|h| +

ˇ

ˇf 1(d)
ˇ

ˇ

2(1 + |f 1(d)|)
ε|h| .

The inequality above implies that if 0 ă |h| ă δ,

ˇ

ˇ

ˇ

(f ˝ g)(c+ h) ´ (f ˝ g)(c)

h
´ f 1(d)g 1(c)

ˇ

ˇ

ˇ
ď
ε

2
+

ˇ

ˇf 1(d)
ˇ

ˇ

2(1 + |f 1(d)|)
ε ă ε

which concludes the chain rule.

How to memorize the chain rule? Let y = g(x) and u = f(y). Then the derivative

u = (f ˝ g)(x) is du
dx

=
du

dy

dy

dx
.

Example 2.21. Let f(x) = (3x ´ 2x2)3. Then f 1(x) = 3(3x ´ 2x2)2(3 ´ 4x).

Example 2.22. Let f(x) =
(
3x´ 1

x2 + 3

)2

. Then

f 1(x) = 2
(3x ´ 1

x2 + 3

)2´1 d

dx

3x ´ 1

x2 + 3
=

2(3x ´ 1)

x2 + 3
¨
3(x2 + 3) ´ 2x(3x ´ 1)

(x2 + 3)2

=
2(3x ´ 1)(´3x2 + 2x+ 9)

(x2 + 3)3
.



Example 2.23. Let f(x) = tan3
[
(x2 ´ 1)2

]
. Then

f 1(x) =
!

3 tan2
[
(x2 ´ 1)2

]
sec2

[
(x2 ´ 1)2

])
ˆ
[
2(x2 ´ 1) ¨ (2x)

]
= 12x(x2 ´ 1) tan2

[
(x2 ´ 1)2

]
sec2

[
(x2 ´ 1)2

]
.

Example 2.24. Let f : R Ñ R be defined by

f(x) =

#

x2 sin 1

x
if x ‰ 0

0 if x = 0 .

Then if x ‰ 0, by the chain rule we have

f 1(x) =
(
d

dx
x2
)

sin 1

x
+ x2

(
d

dx
sin 1

x

)
= 2x sin 1

x
+ x2 cos 1

x

(
d

dx

1

x

)
= 2x sin 1

x
+ x2 cos 1

x

(
´

1

x2

)
= 2x sin 1

x
´ cos 1

x
.

Next we compute f 1(0). If ∆x ‰ 0, we have

ˇ

ˇ

ˇ

f(∆x) ´ f(0)

∆x

ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ
∆x sin 1

∆x

ˇ

ˇ

ˇ
ď |∆x| ;

thus ´|∆x| ď
f(∆x) ´ f(0)

∆x
ď |∆x| for all ∆x ‰ 0 and the Squeeze Theorem implies that

f 1(0) = lim
∆xÑ0

f(∆x) ´ f(0)

∆x
= 0 .

Therefore, we conclude that

f 1(x) =

$

&

%

2x sin 1

x
´ cos 1

x
if x ‰ 0 ,

0 if x = 0 .

Definition 2.25
Let f be a function defined on an open interval I. f is said to be continuously
differentiable on I if f is differentiable on I and f 1 is continuous on I.

The function f given in Example 2.24 is differentiable on R but not continuously differ-
entiable since lim

xÑ0
f 1(x) D.N.E.



2.4 Implicit Differentiation
An implicit function is a function that is defined implicitly by an equation that x and y

satisfy, by associating one of the variables (the value y) with the others (the arguments x).
For example, x2 + y2 = 1 and x = cos y are implicit functions. Sometimes we know how
to express y in terms of x from the equation (such as the first case above y =

?
1 ´ x2

or y = ´
?
1 ´ x2), while in most cases there is no way to know what the function y of x

exactly is.
Given an implicit function (without solving for y in terms of x from the equation),

can we find the derivative of y? This is the main topic of this section. We first focus on
implicit functions of the form f(x) = g(y). If f(a) = g(b), we are interested in how the set
␣

(x, y)
ˇ

ˇ f(x) = g(y)
(

looks like “mathematically” near (a, b).
Theorem 2.26: Implicit Function Theorem - 隱函數定理簡單版

Let f, g be continuously differentiable functions defined on some open intervals, and
f(a) = g(b). If g 1(b) ‰ 0, then there exists a unique continuously differentiable
function y = h(x), defined in an open interval containing a, satisfying that b = h(a)

and f(x) = g(h(x)).

Example 2.27. Let us compute the derivative of h(x) = xr, where r = p

q
for some p, q P N

and (p, q) = 1. Write y = h(x). Then yq = xp. Since d

dy
yq = qyq´1 ‰ 0 if y ‰ 0, by the

Implicit Function Theorem we find that h is differentiable at every x satisfying x ‰ 0. Since
h(x)q = xp, by the chain rule we find that

qh(x)q´1h 1(x) = pxp´1 @x ‰ 0 ;

thus
h 1(x) =

p

q
h(x)1´qxp´1 =

p

q
x

p
q
(1´q)+p´1 = rxr´1 @x ‰ 0 .

If r is a negative rational number, we can apply the quotient and find that

d

dx
xr =

d

dx

1

x´r
=
rx´r´1

x´2r
= rxr´1 @x ‰ 0 .

Therefore, we conclude that

d

dx
xr = rxr´1 @x ‰ 0 . (2.4.1)



Remark 2.28. The derivative of xr can also be computed by first finding the derivative of

x
1
p
(
that is, find the limit lim

∆xÑ0

(x+∆x)
1
p ´ x

1
p

∆x

)
and then apply the chain rule.

Example 2.29. Suppose that y is an implicit function of x given that y3+y2´5y´x2 = ´4.

1. Find dy

dx
.

2. Find the tangent line passing through the point (3,´1).

Let f(x) = x2 ´ 4 and g(y) = y3 + y2 ´ 5y. Then g 1(y) = 3y2 + 2y ´ 5; thus if y ‰ 1 or

y ‰ ´
5

3

(
or equivalently, x ‰ ˘1 or x ‰ ˘

c

283

27

)
,

dy

dx
=

2x

3y2 + 2y ´ 5
.

Since (1,´3) satisfies the relation y3 + y2 ´ 5y ´ x2 = ´4, the slope of the tangent line
passing through (3,´1) is 2 ¨ 3

3(´1)2 + 2(´1) ´ 5
= ´

3

2
; thus the desired tangent line is

y = ´
3

2
(x ´ 3) ´ 1 .

Example 2.30. Find dy

dx
implicitly for the equation sin y = x.

Let f(x) = x and g(y) = sin y. Then g 1(y) = cos y; thus if y ‰ nπ +
π

2
(or equivalently,

x ‰ ˘1),
dy

dx
=

1

cos y . (2.4.2)

Similarly, for function y defined implicitly by cos y = x, we find that if y ‰ nπ (or equiva-
lently, x ‰ ˘1),

dy

dx
= ´

1

sin y . (2.4.3)

Remark 2.31. The curve consisting of points (x, y) satisfying the relation sin y = x cannot
be the graph of a function since one x may corresponds to several y; however, the curve
consisting of points (x, y) satisfying the relation sin y = x as well as ´

π

2
ă y ă

π

2
is the

graph of a function called arcsin. In other words, for each x P (´1, 1), there exists a unique
y P

(
´
π

2
,
π

2

)
satisfying sin y = x, and such y is denoted by arcsin x. Since for y P

(
´
π

2
,
π

2

)
we must have cos y ą 0, by the fact that sin2 y + cos2 y = 1, using (2.4.2) we find that

d

dx
arcsinx =

1
?
1 ´ x2

@x P (´1, 1) . (2.4.4)



Similarly, the curve consisting of points (x, y) satisfying the relation cos y = x as well as
0 ă y ă π is the graph of a function called arccos, and (2.4.3) implies that

d

dx
arccosx = ´

1
?
1 ´ x2

@x P (´1, 1) . (2.4.5)

x

y

y = arcsinx

sin y = x

sin y = x

sin y = x

x

y

y = arccosx

cos y = x

cos y = x

cos y = x

cos y = x

Figure 2.1: The graph of functions y = arcsinx and y = arccosx

There are, unfortunately, many implicit functions that are not given by the equation
of the form f(x) = g(y). Nevertheless, there is a more powerful version of the Implicit
Function Theorem that guarantees the continuous differentiability of the implicit functions
defined through complicated relations between x and y (written in the form f(x, y) = 0).
In the following, we always assume that the implicit function given by the equation that x
and y satisfy is differentiable.

Example 2.32. Find the second derivative of the implicit function given by the equation
y = cos(5x ´ 3y).

Differentiate in x once, we find that dy

dx
= ´ sin(5x ´ 3y) ¨

(
5 ´ 3

dy

dx

)
; thus

dy

dx
=

´5 sin(5x ´ 3y)

1 ´ 3 sin(5x ´ 3y)
=

5

3

[
1 ´

1

1 ´ 3 sin(5x ´ 3y)

]
. (2.4.6)

Differentiate the equation above in x, we obtain that
d2y

dx2
= ´

5

3
¨
3 cos(5x ´ 3y)(5 ´ 3y 1)[
1 ´ 3 sin(5x ´ 3y)

]2 = ´
5 cos(5x ´ 3y)(5 ´ 3y 1)[
1 ´ 3 sin(5x ´ 3y)

]2
and (2.4.6) further implies that d

2y

dx2
= ´

25 cos(5x´ 3y)[
1 ´ 3 sin(5x´ 3y)

]3 .



Example 2.33. Show that if it is possible to draw three normals from the point (a, 0) to
the parabola x = y2, then a ą

1

2
.

Suppose that the line L connecting (a, 0) and (b2, b), where b ‰ 0, is normal to the
parabola x = y2. The derivative of the function defined implicitly by x = y2 satisfies that

1 = 2y
dy

dx
;

thus the slope of the tangent line passing through (b2, b) is 1

2b
. Since line L is perpendicular

to the tangent line passing through (b2, b), we must have

1

2b
¨
b ´ 0

b2 ´ a
= ´1 .

Therefore, a =
1

2
+ b2. Since b ‰ 0, a ą

1

2
.
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