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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Recall that a sequence is a function with domain N. For n P N, the
image of n is called the n-th term of the sequence and is written as
xn. In the following discussion, we only consider real sequences.
Definition
Let txnu8

n=1 Ď R be a sequence. txnu8
n=1 is said to be convergent

if there exists L P R such that for every ε ą 0,
#
␣

n P N
ˇ

ˇ xn R (L ´ ε, L + ε)
(

ă 8 .

Such an L is called a limit of the sequence. In notation,
txnu8

n=1 Ď R is convergent
ô (D L P R)(@ ε ą 0)

(
#tn P N | xn R (L ´ ε, L + ε)u ă 8

)
.

If L is a limit of txnu8
n=1, we say txnu8

n=1 converges to L and write
xn Ñ L as n Ñ 8. If txnu8

n=1 is not convergent, we say that txnu8
n=1

diverges or is divergent.
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Example

Let xn =
(´1)n

n + 1
. We show that txnu8

n=1 converges to 0. By defini-
tion, we need to show for every ε ą 0 the set

Aε =
␣

n P N
ˇ

ˇ xn R (´ε, ε)
(

is finite. Note that Aε =
␣

n P N
ˇ

ˇ |xn| ě ε
(

; thus

Aε =
␣

n P N
ˇ

ˇ

1

n + 1
ě ε

(

=
␣

n P N
ˇ

ˇ n ď
1

ε
´ 1

(

.

Therefore, #Aϵ =
[1
ε

]
´1 ă 8 which implies that txnu8

n=1 converges
to 0.
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Example

The sequence tynu8
n=1 given by yn =

3 + (´1)n

2
diverges. To see

this, we have to show that any real number L cannot be the limit of
tynu8

n=1.

Let L P R be given and ε =
1

2
. Then (L ´ ε, L+ ε) at most contains

one integer. Since yn only takes value 1 or 2 and #
␣

n P N | yn =

1
(

= #
␣

n P N | yn = 2
(

= 8, we find that

#
␣

n P N
ˇ

ˇ yn R (L ´ ε, L + ε)
(

= 8

which implies tynu8
n=1 cannot converges to L.
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Example
Recall that a permutation of a non-empty set A is a one-to-one
correspondence from A onto A. Let π : N Ñ N be a permutation of
N, and txnu8

n=1 be a convergent sequence. Then
␣

xπ(n)
(8

n=1
is also

convergent since if L is the limit of txnu8
n=1 and ε ą 0,

#
␣

n P N
ˇ

ˇ xπ(n) R (x ´ ε, x + ε)
(

= #
␣

n P N
ˇ

ˇ xn R (x ´ ε, x + ε)
(

ă 8 .

Theorem
Let txnu8

n=1 Ď R be a sequence and L be a real number. Then
txnu8

n=1 converges to L if and only if for every ε ą 0, there exists
N P N such that |xn ´ L| ă ε whenever n ě N. In notation,

(@ ε ą 0)(D N P N)(n ě N ñ |xn ´ L| ă ε) .
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Proof.

“ñ” Let ε ą 0 be given, and Aϵ =
␣

n P N
ˇ

ˇ xn R (L ´ ε, L + ε)
(

.
Since txnu8

n=1 converges to L, k ” #Aϵ ă 8 . Suppose that
n1 ă n2 ă ¨ ¨ ¨ ă nk belongs to Aϵ. Let N = nk + 1. Then
N P N and if n ě N, n R Aϵ which implies that if n ě N,
xn P (L ´ ε, L + ε) or equivalently,

|xn ´ L| ă ε whenever n ě N .

“ð” Let ε ą 0 be given. Then for some N P N, if n ě N, we have
|xn ´ L| ă ε or equivalently, if n ě N, xn P (L ´ ε, L + ε). This
implies that

#
␣

n P N
ˇ

ˇ xn R (L ´ ε, L + ε)
(

ă N ă 8 . ˝
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Theorem
If txnu8

n=1 Ď R is a sequence such that xn Ñ x and xn Ñ y as
n Ñ 8, then x = y. (The uniqueness of the limit).

Proof.
Assume the contrary that x ‰ y. W.L.O.G. we may assume that
x ă y, and let ε = y ´ x

2
ą 0. Then

#
␣

n P N
ˇ

ˇ xn R (x ´ ε, x + ε)
(

ă 8 , (‹)

and
#
␣

n P N
ˇ

ˇ xn R (y ´ ε, y + ε)
(

ă 8 .

Note that the latter implies that #
␣

n P N
ˇ

ˇ xn P (y ´ ε, y+ ε)
(

= 8

which contradicts to (‹) since
(x ´ ε, x + ε) X (y ´ ε, y + ε) = H . ˝
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Alternative proof using ε-N definition.
Assume the contrary that x ‰ y. W.L.O.G. we may assume that
x ă y, and let ε =

y ´ x
2

ą 0 (x + ε = y ´ ε). Since xn Ñ x and
xn Ñ y as n Ñ 8,

(D N1 P N)(n ě N1 ñ |xn ´ x | ă ε) ,

and
(D N2 P N)(n ě N2 ñ |xn ´ y | ă ε) .

Define N ” maxtN1,N2u. Then N P N. Moreover, if n ě N,
we have both |xn ´ x | ă ε and |xn ´ y | ă ε for all n ě N. As a
consequence, xn ă x+ε and xn ą y´ε for all n ě N, a contradiction.
So x = y. ˝
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Notation: Since the limit of a convergent sequence txnu8

n=1 is
unique, we use lim

nÑ8
xn to denote the limit of txnu8

n=1 when txnu8
n=1

is convergent.

Remark: A sequence txnu8
n=1 Ď R diverges if (and only if)

(@ L P R)(D ε ą 0)
(
#tn P N | xn R (L ´ ε, L + ε)u = 8

)
which is equivalent to that

(@ L P R)(D ε ą 0)(@ N P N)(D n ě N)(|xn ´ L| ě ε) .
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Example

Let xn =
(´1)n

n + 1
. We show that txnu8

n=1 converges to 0 using ε-N
argument.

Let ε ą 0 be given. Define N =
[1
ε

]
+ 1. Then N P N. Since[1

ε

]
ą

1

ε
´ 1, if n ě N we must have n ą

1

ε
; thus if n ě N,

1

n + 1
ă

1

n ă ε. Therefore,
|xn ´ 0| ă ε whenever n ě N

which implies that txnu8
n=1 converges to 0.
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Example
In this example we use ε-N argument to show that the sequence
tynu8

n=1 given by yn =
3 + (´1)n

2
diverges. We need to show that

(@ L P R)(D ε ą 0)(@ N P N)(D n ě N)(|yn ´ L| ě ε) .

Let L P R be given. Choose ε =
1

2
. For N P N, define

n =

#

N + 1 if |yN ´ L| ă ε ,

N + 2 if |yN ´ L| ě ε .

Then n ě N. Moreover, if |yN ´ L| ă ε, then |yn ´ L| ě |yn ´ yN| ´

|yN ´ L| ą 1´ ε = ε, while if |yN ´ L| ě ε then clearly |yn ´ L| ě ε.
Therefore,

(@ L P R)(D ε ą 0)(@ N P N)(D n ě N)(|yn ´ L| ě ε) .

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Example
Let π : N Ñ N be a permutation of N, and txnu8

n=1 be a conver-
gent sequence. We show that txπ(n)u8

n=1 converges using the ε-N
argument.

Suppose that txnu8
n=1 is a convergent sequence with limit L, and

ε ą 0 be given. Then by the convergence of txnu8
n=1 to L, there

exists N1 P N such that if n ě N1, we have |xn ´ L| ă ε. Define
N = max

␣

π ´1(1), π ´1(2), ¨ ¨ ¨ , π ´1(N1)
(

. Then if n ě N, π(n) ě

N1 which implies that
ˇ

ˇxπ(n) ´ L
ˇ

ˇ ă ε whenever n ě N .

Therefore, txπ(n)u8
n=1 converges to L.
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Theorem (Squeeze/Sandwich)
Suppose that tanu8

n=1, tbnu8
n=1 and tcnu8

n=1 are sequences of real
numbers such that an ď bn ď cn for all n P N. If lim

nÑ8
an =

lim
nÑ8

cn = L, then lim
nÑ8

bn = L.

Proof.
Let ε ą 0 be given. Since lim

nÑ8
an = L and lim

nÑ8
bn = L, by definition

(D N1 P N)(n ě N1 ñ L ´ ε ă an ă L + ε) ,

and
(D N2 P N)(n ě N2 ñ L ´ ε ă bn ă L + ε) .

Let N = maxtN1,N2u. Then N P N and if n ě N, L ´ ε ă an ď

cn ď bn ă L + ε; thus lim
nÑ8

cn = L. ˝
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Example

Let txnu8
n=1 be a sequence given by xn =

sin n
n . Then lim

nÑ8

sin n
n = 0.

Definition
Let txnu8

n=1 Ď R be a sequence.
1 txnu8

n=1 is said to be bounded（有界的）if there exists M ą 0

such that |xn| ď M for all n P N.
2 txnu8

n=1 is said to be bounded from above（有上界）if there
exists M P R, called an upper bound of the sequence, such
that xn ď M for all n P N.

3 txnu8
n=1 is said to be bounded from below（有下界）if there

exists m P R, called a lower bound of the sequence, such that
m ď xn for all n P N.
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Theorem
A convergent sequence is bounded（數列收斂必有界）.

Proof.
Let txnu8

n=1 be a convergent sequence with limit x. Then there
exists N ą 0 such that

|xn ´ x| ă 1 whenever n ě N
or equivalently,

xn P (x ´ 1, x + 1) whenever n ě N.

Let M = max
␣

|x1|, |x2|, ¨ ¨ ¨ , |xN´1|, |x| + 1
(

. Then |xn| ď M for all
n P N. ˝
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Theorem
Suppose that xn Ñ x and yn Ñ y as n Ñ 8. Then

1 xn ˘ yn Ñ x ˘ y as n Ñ 8.
2 xn ¨ yn Ñ x ¨ y as n Ñ 8.
3 If yn, y ‰ 0, then xn

yn
Ñ

x
y as n Ñ 8.

Proof.
1 Let ε ą 0 be given. Since xn Ñ x and yn Ñ y as n Ñ 8, there

exist N1,N2 P N such that |xn ´ x| ă
ε

2
for all n ě N1 and

|yn ´ x| ă
ε

2
for all n ě N2. Define N = maxtN1,N2u. Then

N P N and if n ě N,
|(xn ˘ yn) ´ (x ˘ y)| ď |xn ´ x | + |yn ´ y | ă ε ;

thus xn ˘ yn Ñ x ˘ y as n Ñ 8. ˝
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Proof (Cont’d).

2 Since xn Ñ x and yn Ñ y as n Ñ 8, by the boundedness of
convergent sequences, there exists M ą 0 such that |xn| ď M
and |yn| ď M. Let ε ą 0 be given. Then

(D N1 P N)
(
n ě N1 ñ |xn ´ x | ă

ε

2M
)
,

and
(D N2 P N)

(
n ě N2 ñ |yn ´ y | ă

ε

2M
)
.

Define N = maxtN1,N2u. Then N P N and if n ě N,
|xn ¨ yn ´ x ¨ y | = |xn ¨ yn ´ xn ¨ y + xn ¨ y ´ x ¨ y |

ď |xn ¨ (yn ´ y)| + |y ¨ (xn ´ x)|
ď M ¨ |yn ´ y | + M ¨ |xn ´ x |

ă M ¨
ε

2M + M ¨
ε

2M = ε.
˝
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§7.1 Convergent Sequences
Proof (Cont’d).

3 It suffices to show that lim
nÑ8

1

yn
=

1

y if yn, y ‰ 0 (because of 2⃝).

Since lim
nÑ8

yn = y, there exists N1 P N such that |yn ´ y| ă
|y|

2

whenever n ě N1. Therefore, |y| ´ |yn| ă
|y|

2
for all n ě N1

which further implies that |yn| ą
|y|

2
for all n ě N1.

Let ε ą 0 be given. Since lim
nÑ8

yn = y, there exists N2 P N

such that |yn ´ y| ă
|y|2

2
ε whenever n ě N2. Define N =

maxtN1,N2u. Then N P N and if n ě N,
ˇ

ˇ

ˇ

1

yn
´

1

y

ˇ

ˇ

ˇ
=

|yn ´ y|

|yn||y|
ă

|y|2

2
ε ¨

1

|y|

2

|y|
= ε .

˝
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Definition
A sequence tyju8

j=1 is called a subsequence of a sequence txnu8
n=1

if there exists an increasing function f : N Ñ N such that yj = xf (j).
In this case, we often write f (j) = nj and yj = xnj .

In other words, a subsequence of a sequence is derived by deleting
some elements without changing the order of remaining elements.
Example
Let txnu8

n=1 be a sequence. Then tx2nu8
n=1 is a subsequence of

txnu8
n=1. It is obtained by deleting all the odd terms of txnu8

n=1.
On the other hand, the sequence tx2n´1u8

n=1 is a subsequence of
txnu8

n=1 and is obtained by deleting all the even terms of txnu8
n=1.
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Chapter 7. Concepts of Analysis

§7.1 Convergent Sequences
Theorem
A sequence txnu8

n=1 Ď R converges if and only if every subsequence
of txnu8

n=1 converges (to the same limit).

Proof.
Since txnu8

n=1 itself is a subsequence of txnu8
n=1, it suffices to show

the implication from LHS to RHS.
Suppose that lim

nÑ8
xn = L. We claim that every subsequence of

txnu8
n=1 also converges to L.

Let ε ą 0 be given. Since lim
nÑ8

xn = L, there exists N P N such that
|xn ´ L| ă ε whenever n ě N. Choose J ą 0 such that nJ ě N (this
is possible since nj Ñ 8 as j Ñ 8). Then if j ě J, nj ě nJ ě N, we
must have

ˇ

ˇxnj ´ L
ˇ

ˇ ă ε. ˝
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§7.2 Limits and Continuity of Real-Valued Functions
Definition
Let I Ď R be an interval, a P I, and f be a real-valued function
defined on I ´ tau. We say that the limit of f as x approaches a
exists if for every sequence tanu8

n=1 Ď I satisfying
1 an ‰ a for all n P N,
2 lim

nÑ8
an = a,

the sequence tbnu8
n=1 given by bn = f (an) converges.

（一函數在 a 的極限存在如果「所有在 I 中取值不是 a 但收斂到
a 的數列其函數值所形成的數列都收斂」）
Using the logic notation, the limit of f at a exists if(

@ tanu8
n=1 Ď I ´ tau

)(
lim

nÑ8
an = a ñ lim

nÑ8
f (an) exists

)
.

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions
Theorem
Let I Ď R be an interval, a P I, and f be a real-valued function
defined on I ´ tau. If the limit of f as x approaches a exists, then
the limit is unique; that is, there exists a unique L P R such that
lim

nÑ8
f (an) = L for every sequence tanu8

n=1 Ď I´tau which converges
to a.

Proof.
Suppose that contrary that there exist two sequences tanu8

n=1,
tbnu8

n=1 Ď I´tau and two numbers L1, L2 such that an Ñ a, bn Ñ a
as n Ñ 8 and

lim
nÑ8

f (an) = L1 and lim
nÑ8

f (bn) = L2 .
˝
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§7.2 Limits and Continuity of Real-Valued Functions
Proof (Cont’d).

Define a sequence tcnu8
n=1 by cn =

#

a n+1
2

if n is odd ,
b n

2
if n is even ;

that is,

tcnu8
n=1 = ta1, b1, a2, b2, a3, b3, ¨ ¨ ¨ u. Then cn Ñ a as n Ñ 8; thus

by the definition of the limit of functions, there exists L such that
lim

nÑ8
f (cn) = L .

Since tf (an)u8
n=1 and tf (bn)u8

n=1 are subsequences of tf (cn)u8
n=1,

L1 = lim
nÑ8

f (an) = lim
nÑ8

f (cn) = lim
nÑ8

f (bn) = L2 ,

a contradiction. ˝

‚ Notation: Since the limit of a convergent sequence is unique, for
a convergent sequence tanu8

n=1, we use lim
xÑa

f (x) to denote the limit.
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§7.2 Limits and Continuity of Real-Valued Functions
Example
Consider the function f : [0, 1] Ñ R defined by

f (x) =
#

sin 1

x if x ‰ 0 ,

0 if x = 0 .

Then f is not continuous at 0 since letting xn =
1

2nπ and yn =
1

2nπ + π/2
, we have xn Ñ 0 and yn Ñ 0 as n Ñ 8 but f (xn) = 0

while f (yn) = 1 for all n P N.
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§7.2 Limits and Continuity of Real-Valued Functions
Theorem
Suppose that I Ď R is an interval, a P I, and f, g are two functions
defined on I, except possibly at a, such that f (x) = g(x) for all
x P I ´ tau. If lim

xÑa
f (x) exists, then lim

xÑa
g(x) exists, and lim

xÑa
f (x) =

lim
xÑa

g(x).

Proof.
Since lim

xÑa
f (x) exists, every sequence tanu8

n=1 Ď I ´ tau converging
to Let tanu8

n=1 Ď I ´ tau be a sequence converging to a. Since
lim
xÑa

f (x) exists, lim
nÑ8

f (an) = L for some L P R. By the fact that
f (x) = g(x) for x P I ´ tau, lim

nÑ8
g(an) = L. ˝
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§7.2 Limits and Continuity of Real-Valued Functions
Theorem
Let I Ď R be an interval, a P I, and f be a real-valued function
defined on I ´ tau. Then lim

xÑa
f (x) = L if and only if

(@ ε ą 0)(D δ ą 0)
[
(0 ă |x ´ a| ă δ) ^ (x P I) ñ |f (x) ´ L| ă ε

]
.

Proof.
“ñ” Assume the contrary that there exists ε ą 0 such that for all

δ ą 0, there exists xδ P I ´ tau with
0 ă |xδ ´ a| ă δ and

ˇ

ˇf (xδ) ´ b
ˇ

ˇ ě ε .

In particular, we can find txku8
k=1 Ď I ´ tau such that

0 ă |xk ´ a| ă
1

k and
ˇ

ˇf (xk) ´ L
ˇ

ˇ ě ε .

Then xk Ñ a as k Ñ 8 but f (xk) Û L as k Ñ 8, a contradic-
tion. ˝
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Chapter 7. Concepts of Analysis

§7.2 Limits and Continuity of Real-Valued Functions
Goal: lim

xÑa
f (x) = L if and only if

(@ ε ą 0)(D δ ą 0)
[
(0 ă |x ´ a| ă δ) ^ (x P I) ñ |f (x) ´ L| ă ε

]
Proof.
“ð” Let txku8

k=1 Ď I ´ tau be such that xk Ñ a as k Ñ 8, and
ε ą 0 be given. By assumption,

(D δ ą 0)
[
(0 ă |x ´ a| ă δ) ^ (x P I) ñ

ˇ

ˇf (x) ´ L
ˇ

ˇ ă ε
]
.

Since xk Ñ a as k Ñ 8, there exists N ą 0 such that |xk ´a| ă

δ whenever k ě N. Therefore,
ˇ

ˇf (xk) ´ L
ˇ

ˇ ă ε @ k ě N

which shows that lim
kÑ8

f (xk) = L.
˝
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§7.2 Limits and Continuity of Real-Valued Functions
Definition
Let I Ď R be an interval, and a P I. A function f : I Ñ R is said to
be continuous at a if lim

xÑa
f (x) = f (a). In other words, f : I Ñ R is

continuous at a if

(@ ε ą 0)(D δ ą 0)
[
(|x ´ a| ă δ) ^ (x P I) ñ

ˇ

ˇf (x) ´ f (a)
ˇ

ˇ ă ε
]
.

A function f : I Ñ R is said to be continuous on I if f is continuous
at every point of I.

Remark: Almost identical proof of showing the previous theorem
implies that “f is continuous at a if and only if for every sequence
txnu8

n=1 Ď I converging to a, one has lim
nÑ8

f (xn) = f (a).”（一函數
f 在 a 連續如果「所有在 I 中收斂到 a 的數列其函數值所形成的
數列都收斂到 f (a)」）
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§7.2 Limits and Continuity of Real-Valued Functions
Lemma
Let I, J Ď R be intervals, and f : I Ñ R, g : J Ñ R be functions. If
f (I) Ď J, lim

xÑa
f (x) = b P J, and g is continuous at b, then

lim
xÑa

(g ˝ f )(x) = g(b) .

Proof.
Let txnu8

n=1 Ď I ´ tau such that xn Ñ a as n Ñ 8. By the fact that
lim
xÑa

f (x) = b, we have lim
nÑ8

f (xn) = b. Since f (I) Ď J,
␣

f (xn)
(8

n=1

is a sequence in J and converges to b; thus by the continuity of g
at b and the previous remark, lim

nÑ8
g(f (xn)) = g(b). Therefore, for

every sequence txnu8
n=1 Ď I ´ tau such that xn Ñ a as n Ñ 8, one

has lim
nÑ8

(g ˝ f )(xn) = g(b). ˝
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§7.2 Limits and Continuity of Real-Valued Functions
f (I) Ď J ^ lim

xÑa
f (x) = b ^ g is continuous at b ñ lim

xÑa
(g ˝ f )(x) =

g(b).

Alternative proof.
Let ε ą 0 be given. Since g is continuous at b, there exists σ ą 0

such that
ˇ

ˇg(y) ´ g(b)
ˇ

ˇ ă ε whenever |y ´ b| ă σ and y P J .

For such δ ą 0, there exists δ ą 0 such that
ˇ

ˇf (x) ´ b
ˇ

ˇ ă δ whenever 0 ă |x ´ a| ă δ and x P I .

Therefore, if 0 ă |x ´ a| ă δ and x P I,
ˇ

ˇ(g ˝ f )(x) ´ g(b)
ˇ

ˇ =
ˇ

ˇg(f (x)) ´ g(b)
ˇ

ˇ ă ε

since we also have |f (x) ´ b| ă σ and f (x) P J. ˝
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§7.2 Limits and Continuity of Real-Valued Functions
What will happen if f (I) Ď J, lim

xÑa
f (x) = b but we only have

lim
xÑb

g(x) = c but not continuity of g at b? Can we still conclude
that lim

xÑa
(g ˝ f )(x) = c in this case?

Example
Let f (x) = b be a constant function, and g : R Ñ R be defined by

g(x) =
"

c if x ‰ b ,
c + 1 if x = b .

Then lim
xÑa

f (x) = b and lim
xÑb

g(x) = c. By the fact that (g ˝ f )(x) =
c + 1 for all x P R,

lim
xÑa

(g ˝ f )(x) = c + 1 ‰ c .

Therefore, lim
xÑa

f (x) = b ^ lim
xÑb

g(x) = c ñ̂ lim
xÑa

(g ˝ f )(x) = c.
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Theorem
Let I, J Ď R be intervals, and f : I Ñ R, g : J Ñ R be functions. If
f (I) Ď J, f is continuous at a P I, f (a) P J and g is continuous at
f (a), then g ˝ f is continuous at a. In particular, if f is continuous
on I and g is continuous on J, then (g ˝ f ) is continuous on I.
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§7.3 The Completeness Property
Definition
A set F is said to be a field (體) if there are two operations + and
¨ such that

1 x + y P F , x ¨ y P F if x, y P F . (封閉性)
2 x + y = y + x for all x, y P F . (commutativity, 加法的交換性)
3 (x+ y) + z = x+ (y+ z) for all x, y, z P F . (associativity, 加法
的結合性)

4 There exists 0 P F , called 加法單位元素, such that x + 0 = x
for all x P F . (the existence of zero)

5 For every x P F , there exists y P F (usually y is denoted by ´x
and is called x 的加法反元素) such that x+ y = 0. One writes
x ´ y ” x + (´y).
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§7.3 The Completeness Property
Definition (Cont’d)

6 x ¨ y = y ¨ x for all x, y P F . (乘法的交換性)
7 (x ¨ y) ¨ z = x ¨ (y ¨ z) for all x, y, z P F . (乘法的結合性)
8 There exists 1 P F , called 乘法單位元素, such that x ¨ 1 = x

for all x P F . (the existence of unity)
9 For every x P F , x ‰ 0, there exists y P F (usually y is denoted

by x´1 and is called x 的乘法反元素) such that x ¨ y = 1. One
writes x ¨ y ” x ¨ x´1 = 1.

10 x ¨ (y + z) = x ¨ y + x ¨ z for all x, y, z P F . (distributive law, 分
配律)

11 0 ‰ 1.
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§7.3 The Completeness Property
Definition
A partial order over a set P is a binary relation ď which is reflexive,
anti-symmetric and transitive, in the sense that

1 x ď x for all x P P (reflexivity).
2 x ď y and y ď x ñ x = y (anti-symmetry).
3 x ď y and y ď z ñ x ď z (transitivity).

A set with a partial order is called a partially ordered set.

Example
(Q,ě) and (2[0,1],Ď) are partially ordered sets.

Definition
Let (P,ď) be a partially ordered set. Two elements x, y P P are said
to be comparable if either x ď y or y ď x.
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§7.3 The Completeness Property
Definition
A partial order under which every pair of elements is comparable is
called a total order or linear order.

Example
The relation ě is a total order in Q.

Definition
An ordered field is a totally ordered field (F ,+, ¨,ď) satisfying that

1 If x ď y, then x + z ď y + z for all z P F (compatibility of ď

and +).
2 If 0 ď x and 0 ď y, then 0 ď x ¨ y (compatibility of ď and ¨).

Remark: 2⃝ in the definition above implies that 0 ď 1. In other
words, we exclude that possibility that the relation ě is used as the
total order in the ordered field (Q,+, ¨) or (R,+, ¨).

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



Chapter 7. Concepts of Analysis

§7.3 The Completeness Property
Example
(Q,+, ¨,ď) and (R,+, ¨,ď) are ordered fields.

Definition
Let (F ,+, ¨,ď) be an ordered field.

1 The relation ě is defined by “x ě y ô y ď x ”.
2 The relation ă is defined by “x ă y ô x ď y ^ x ‰ y ”.
3 The relation ą is defined by “x ą y ô y ă x ”.

Theorem
If a ă b in an ordered field (F ,+, ¨,ď), then there exists c P F such
that a ă c ă b.
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§7.3 The Completeness Property
Definition
Let (F ,+, ¨,ď) be an ordered field, and H ‰ A Ď F . A number
M P F is called an upper bound (上界) for A if x ď M for all x P A,
and a number m P F is called a lower bound (下界) for A if x ě m
for all x P A. If there is an upper bound for A, then A is said to be
bounded from above, while if there is a lower bound for A, then
A is said to be bounded from below. A number b P F is called a
least upper bound (最小上界) if

1 b is an upper bound for A, and
2 if M is an upper bound for A, then M ě b.

A number a is called a greatest lower bound (最大下界) if
1 a is a lower bound for A, and
2 if m is a lower bound for A, then m ď a.
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§7.3 The Completeness Property
Definition (Cont’d)
If A is not bounded above, the least upper bound of A is set to be
8, while if A is not bounded below, the greatest lower bound of
A is set to be ´8. The least upper bound of A is also called the
supremum of A and is usually denoted by lubA or sup A, and “the”
greatest lower bound of A is also called the infimum of A, and is
usually denoted by glbA or inf A. If A = H, then sup A = ´8,
inf A = 8.

Remark: Let (F ,+, ¨,ď) be an ordered field.
1 If b1, b2 P F are least upper bounds for a set A Ď F , then

b1 = b2. Therefore, sup A is a well-defined concept. Similarly,
inf A is a well-defined concept.

2 Since the sentence “x P H ñ x ď M” is true for all M P F , we
conclude that sup H = ´8. Similarly, inf H = 8.
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Example
Consider the ordered field (Q,+, ¨,ď) and A =

␣

x P Q
ˇ

ˇ x 2 ă 2
(

.

Then 2 is an upper bound for A; however, there is no least upper
bound for A in Q.

Reason: If M P Q is an upper bound for A, then M ą
?
2. By the

property of R there exists a rational number q P (
?
2,M). Such q

is also an upper bound for A. In other words, for any given rational
upper bound for A in Q there exists a smaller upper bound for A in
Q; thus there is no least upper bound for A in Q.
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§7.3 The Completeness Property
Theorem
Let (F ,+, ¨,ď) be an ordered field, and A be a subset of F . Then
s = sup A if and only if
(i) (@ ε ą 0)(@ x P A)(x ă s + ε). (ii) (@ ε ą 0)(D x P A)(x ą s ´ ε).

Definition (Completeness)
Let (F ,+, ¨,ď) be an ordered field. F is said to be complete（完
備）if every non-empty subset of F that has an upper bound in F
has a supremum that is an element of F .（非空有上界的集合必有
最小上界）

Theorem
The field (R,+, ¨,ď) is a complete ordered field.
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Theorem (Archimedean Principle for R)
For every real number x, there is a natural number n such that n ą x.

Proof.
Let x P R. If x ă 1, then the choice n = 1 validates n ą x. Suppose
x ě 1. Define A =

␣

n P N
ˇ

ˇ n ď x
(

. Then 1 P A and x is an upper
bound for A. By the completeness of R, s ” sup A P R exists. Since
s is the least upper bound for A, s ´ 1 is not an upper bound for A;
thus there exists m P A such that m ą s ´ 1 or s ă m + 1. Then
m + 1 R A which implies that m + 1 ď x. The choice n = m + 1

satisfies n ą x. ˝
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§7.4 The Heine-Borel Theorem
Definition
Let a and δ be real numbers with δ ą 0. The δ-neighborhood of a
is the set N (a, δ) =

␣

x P R
ˇ

ˇ |x ´ a| ă δ
(

.

Properties:
1 A sequence txnu8

n=1 converges to x if for every ε ą 0, there
are only finite number of n P N such that xn lies outside the
ε-neighborhood of x.

2 If 0 ă δ1 ă δ2, then N (a, δ1) Ď N (a, δ2).

Definition
For a set A Ď R, a point x is said to be an interior point of A if
there exists δ ą 0 such that N (a, δ) Ď A.
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§7.4 The Heine-Borel Theorem
Definition
A set A Ď R is said to be open if every point of A is an interior
point of A. In other words, A Ď R is open if

(@ x P A)(D δ ą 0)
(
N (x, δ) Ď A

)
.

Example
The empty set H is open since the conditional statement

(x P H) ñ (D δ ą 0)
(
N (x, δ) Ď H

)
is always true.

Example
The universe R is open since the conditional statement

(x P R) ñ (D δ ą 0)
(
N (x, δ) Ď R

)
is always true.

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



Chapter 7. Concepts of Analysis

§7.4 The Heine-Borel Theorem
Theorem
Every interval (a, b) Ď R, where ´8 ď a ă b ď 8, is an open set.

Proof.
Let x P (a, b). W.L.O.G., we can assume that at least one a and b
is finite. Define δ = mintx ´ a, b ´ xu. Then 0 ă δ ă 8. Moreover,
if y P N (x, δ), we must have |y ´ x| ă δ; thus if y P N (x, δ),

y ´ a = y ´ x + x ´ a ą ´δ + x ´ a ě 0

and
b ´ y = b ´ x + x ´ y ą b ´ x ´ δ ě 0

which implies that N (x, δ) Ď (a, b). ˝
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Theorem
Let F be a non-empty collection of open subsets of R. Then

1
Ť

APF

A is an open set.

2 If F has finitely many open sets, then
Ş

APF

A is an open set.

Proof.
1 Let x P

Ť

APF

A. Then x P A for some A P F. Since A is open,
x is an interior point of A; thus there exists δ ą 0 such that
N (x, δ) Ď A. Then N (x, δ) Ď

Ť

APF

A and we establish that
Ť

APF

A is open.
˝
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2 If F has finitely many open sets, then

Ş

APF

A is an open set.

Proof (Cont’d).
2 Suppose that F =

␣

A1,A2, ¨ ¨ ¨ ,An
(

and Aj’s are open for 1 ď

j ď k. Let x P
Ş

APF

A. Then x P Aj for all 1 ď j ď k. Since each

Aj is open, there exists δj ą 0 such that N (x, δj) Ď Aj. Define
δ = mintδ1, ¨ ¨ ¨ , δnu. Then δ ą 0 and N (x, δ) Ď N (x, δj) Ď Aj

for all 1 ď j ď k. Therefore, N (x, δ) Ď
k
Ş

j=1
Aj =

Ş

APF

A.
˝

Definition
A set A is said to be closed if its complement AA = RzA is open.
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Example
The set [a, b] is closed. To see this, we have to show that [a, b]A is
open. Note that

x P [a, b] ô
␣

x P R
ˇ

ˇ a ď x ^ x ď b
(

;

thus
x P [a, b]A ô

␣

x P R
ˇ

ˇ „(a ď x)_„(x ď b)
(

or equivalently,

x P [a, b]A ô
␣

x P R
ˇ

ˇ (a ą x) _ (x ą b)
(

.

Therefore, [a, b]A = (´8, a)Y(b,8) which, by the fact that (´8, a)
and (b,8) are open, implies that [a, b]A is open.
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§7.4 The Heine-Borel Theorem
Theorem
A subset A Ď R is closed if and only if every convergent sequence
in A converges to a limit in A. In logic notation,

A is closed ô
(
@ txnu8

n=1 Ď A
)(

lim
nÑ8

xn = x ñ x P A
)
.

Proof.
(ñ) Assume the contrary that txnu8

n=1 Ď A, lim
nÑ8

xn = x but x R A.
Then x P AA. By the closedness of A, there exists δ ą 0 such
that N (x, δ) Ď AA. Since txnu8

n=1 Ď A, |xn ´ x| ě δ; thus
lim

nÑ8
xn ‰ x, a contradiction.

(ð) Suppose the contrary that A is not closed. Then there exists
x P AA such that for all δ ą 0, N (x, δ) Ę AA; thus for all δ ą 0,
N (x, δ) X A ‰ H. Choose δ = 1/n and xn P N (x, 1/n) X A.
Then

(
D txnu8

n=1 Ď A
)(

lim
nÑ8

xn = x ^„(x P A)
)

.
˝
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§7.4 The Heine-Borel Theorem
Theorem
A subset A Ď R is closed if and only if every convergent sequence
in A converges to a limit in A. In logic notation,

A is closed ô
(
@ txnu8

n=1 Ď A
)(

lim
nÑ8

xn = x ñ x P A
)
.

Proof.
(ñ) Assume the contrary that txnu8

n=1 Ď A, lim
nÑ8

xn = x but x R A.
Then x P AA. By the closedness of A, there exists δ ą 0 such
that N (x, δ) Ď AA. Since txnu8

n=1 Ď A, |xn ´ x| ě δ; thus
lim

nÑ8
xn ‰ x, a contradiction.

(ð) Suppose the contrary that A is not closed. Then there exists
x P AA such that for all δ ą 0, N (x, δ) Ę AA; thus for all δ ą 0,
N (x, δ) X A ‰ H. Choose δ = 1/n and xn P N (x, 1/n) X A.
Then „

(
@ txnu8

n=1 Ď A
)(

lim
nÑ8

xn = x ñ x P A
)

.
˝
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Corollary
Let A Ď R be closed and x P R. If A X N (x, δ) ‰ H for all δ ą 0,
then x P A.

Theorem
If H ‰ A Ď R is closed and bounded, then sup A P A and inf A P A.

Proof.
We only prove the case that sup A P A since the proof of the coun-
terpart is similar.
Let x = sup A. Then x P R, and for all n P N, x ´ 1/n is no an
upper bound for A which implies that there exists xn P A such that

x ´
1

n ă xn ď x ;
thus we construct a sequence txnu8

n=1 Ď A and xn Ñ x (by the
squeeze theorem). The previous theorem then shows that x P A. ˝
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Definition
Let A Ď R. A collection F of open subsets of R is called an open
cover for A if A Ď

Ť

UPF

U. If B Ď F is a sub-collection of F and B

is also an open cover for A, B is called an subcover of F for A. B

is called a finite subcover if there is only finitely many elements in
B.

Example

For n P N, let Un denote the open set
(
n ´

1

n , n +
1

n
)
, and F be

the indexed family F ” tUn | n P Nu. Then F is an open cover of N
with no subcovers other than F itself.
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Example

Since
8
Ť

n=1
(´8, n) = R, the family F ”

␣

(´8, n)
ˇ

ˇ n P N
(

is an open
cover for R. There are many subcover of F for R, such as

␣

(´8, 2n)
ˇ

ˇ n P N
(

or
␣

(´8, 2n + 1)
ˇ

ˇ n P N
(

.

However, there is no finite subcover of F for R.

Definition
A subset K Ď R is said to be compact if for every open cover F

for K, there is a finite subcover of F for K. In logic notation, K is
compact if

(@F open cover for K)(DB Ď F)
(

#B ă 8 ^ K Ď
ď

UPB

U
)
.
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§7.4 The Heine-Borel Theorem
Example

The set A = t1u Y

!n + 1

n

ˇ

ˇ

ˇ
n P N

)

is compact.

Let F =
␣

Uα

ˇ

ˇα P I
(

be an open cover of A. Then 1 P Uα0 for
some α0 P I. Since Uα0 is open, there exists δ ą 0 such that
N (1, δ) Ď Uα0 . Since lim

nÑ8

n + 1

n = 1, there exists N ą 0 such that
n + 1

n P N (1, δ) for all n ě N. Therefore,

t1u Y

!n + 1

n

ˇ

ˇ

ˇ
n ě N

)

Ď Uα0 .

Let Uαj , where 1 ď j ď N´1, be open sets in F such that j + 1

j P Uαj .
We note that such αj exists since F is an open cover for A. Then

A Ď
N´1
ď

j=0

Uαj .
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Lemma
A compact set must be closed.

Proof.
Let K be a compact set. Suppose the contrary that there exists a
convergent sequence txnu8

n=1 Ď K with limit x R K. For each y P K,
the |x ´ y|

2
-neighborhood of y is open and non-empty; thus

F =
!

N
(
y, |x ´ y|

2

) ˇ
ˇ

ˇ
y P K

)

is an open cover of K. Since K is compact, there is a finite subcover

B =
!

N
(
yj,

|x ´ yj|

2

) ˇ
ˇ

ˇ
1 ď j ď M, y1, ¨ ¨ ¨ , yM P K

)

of F for K. ˝
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Proof (Cont’d).

Let δ = min
␣ |x ´ y1|

2
,

|x ´ y2|

2
, ¨ ¨ ¨ ,

|x ´ yM|

2

(

. Then |x ´ yj| ě 2δ for
1 ď j ď M and δ ą 0. Since xn Ñ x as n Ñ 8, there exists N ą 0

such that |xn ´ x| ă δ whenever n ě N. Then for 1 ď j ď M and
n ě N,

|yj ´ xn| ě |yj ´ x| ´ |x ´ xn| ą |yj ´ x| ´
|yj ´ x|

2
=

|yj ´ x|

2
.

Therefore, if n ě N, xn R N
(
yj,

|yj ´ x|

2

)
which implies that xn R

Ť

UPB

U, a contradiction (since xn P K). ˝
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Lemma
A compact set must be bounded.

Proof.
Let K Ď R be a compact set. Define F ”

␣

(´n, n)
ˇ

ˇ n P N
(

. Then
clearly F is an open cover of K since F also covers R. Since K is
compact, there is a finite subcover

B =
␣

(´nk, nk)
ˇ

ˇ 1 ď k ď M, n1, ¨ ¨ ¨ , nM P N
(

of F for K. Let L = maxtn1, ¨ ¨ ¨ , nku. Then

K Ď
M
ď

k=1

(´nk, nk) Ď (´L, L)

which implies that |x| ď L for all x P K. Therefore, K is bounded. ˝
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§7.4 The Heine-Borel Theorem
Theorem (Heine-Borel Theorem)
A subset K Ď R is compact if and only if K is closed and bounded.

Proof.
It suffices to shows that if K is closed and bounded, then K is
compact. Let F =

␣

Uα

ˇ

ˇα P I
(

be an open cover for K. For each
x P R, define Kx =

␣

a P K
ˇ

ˇ a ă x
(

. Define
D =

␣

x P R
ˇ

ˇ Kx is included in a union of finitely many
open sets from F

(

.

We claim that D is non-empty and D has no upper bound.
1 Since K is bounded, inf K P R exists. Let z ă inf K. Then Kz

is empty which implies that z P D. ˝
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§7.4 The Heine-Borel Theorem
Proof (Cont’d).

2 Suppose the contrary that D is bounded from above. Then
x0 = sup D exists in R. If there is δ ą 0 such that K X

N (x0, δ) = H, then x0 + δ P D which contradicts to that
x0 = sup D. Therefore, K X N (x0, δ) ‰ H for all δ ą 0. By
the closedness of K, x0 P K.

Since F is an open cover, x0 P Uα0 for some Uα0 P F. Since
Uα0 is open, there exists δ ą 0 such that N (x0, δ) Ď Uα0 . Since
x0 = sup D, there exists x1 P (x0 ´ δ, x0] X D. Since x1 P D
there exist Uα1 ,Uα2 , ¨ ¨ ¨ ,Uαn P F such that Kx1 Ď

n
Ť

j=1
Uαj . Let

x2 = x0 + δ

2
. Then x2 P Uα0 ; thus Kx2 Ď

n
Ť

j=0
Uαj which implies

that x2 P D which contradicts to that x0 = sup D. ˝
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§7.4 The Heine-Borel Theorem
Proof (Cont’d).
We have established that the set D given by

D =
␣

x P R
ˇ

ˇ Kx is included in a union of finitely many
open sets from F

(

has no upper bound. Now, since K is bounded, sup K P R. Since
D has no upper bound, there exists d P D such that d ą sup K.
Therefore, Kd = K which implies that K is included in a union of
finitely many open sets from F; thus K is compact. ˝
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