基礎數學 MA-1015A

Chapter 4. Functions

 \leftarrow σ \rightarrow

 \leftarrow \Box

 299

Chapter 4. Functions

- §4.1 Functions as Relations
- §4.2 Construction of Functions
- §4.3 Functions that are Onto; One-to-One Functions
- §4.4 Inverse Functions
- §4.5 Set Images

§4.1 Functions as Relations

Recall the usual definition of functions from *A* to *B*:

Definition

Let *A* and *B* be sets. A *function* $f: A \rightarrow B$ consists of two sets *A* and *B* together with a "rule" that assigns to each $x \in A$ a special element of *B* denoted by $f(x)$. One writes $x \mapsto f(x)$ to denote that *x* is mapped to the element $f(x)$. *A* is called the *domain* of *f*, and *B* is called the *target* or *co-domain* of *f*. The *range* of *f* or the *image* of *f*, is the subset of *B* defined by $f(A) = \{f(x) | x \in A\}$.

Each function is associated with a collection of ordered pairs

$$
\{(x, f(x))\,|\, x\in A\}\subseteq A\times B.
$$

Since a collection of ordered pairs is a relation, we can say that a function is a relation from one set to another.

§4.1 Functions as Relations

However, not every relation can serve as a function. A function is a relation with additional special properties and we have the following

Definition (Alternative Definition of Functions)

A *function* (or *mapping*) from *A* to *B* is a relation *f* from *A* to *B* such that

1 the domain of *f* is *A*; that is, $(\forall x \in A)(\exists y \in B)((x, y) \in f)$, and

2 if $(x, y) \in f$ and $(x, z) \in f$, then $y = z$.

We write $f: A \rightarrow B$, and this is read "*f* is a function from *A* to *B*" or "*f* maps *A* to *B*". The set *B* is called the *co-domain* of *f*. In the case where $B = A$, we say *f* is a function on *A*.

When $(x, y) \in f$, we write $y = f(x)$ instead of *xfy*. We say that *y* is the *image* of *f* at *x* (or value of *f* at *x*) and that *x* is a *pre-image* of *y*.

§4.1 Functions as Relations

Remark:

- **1** A function has only one domain and one range but many possible co-domains.
- **2** A function on ℝ is usually called a real-valued function or simply real function. The domain of a real function is usually understood to be the largest possible subset of $\mathbb R$ on which the function takes values.

Definition

A function *x* with domain N is called an *infinite sequence*, or simply a *sequence*. The image of the natural number *n* is usually written as x_n instead of $x(n)$ and is called the *n*-th term of the sequence.

§4.1 Functions as Relations

Definition

Let A, B be sets, and $A \subseteq B$.

- **1** The the *identity function/map* on *A* is the function $I_A : A \rightarrow$ *A* given by $I_A(x) = x$ for all $x \in A$.
- **²** The *inclusion function/map* from *A* to *B* is the function *ι* : *A* \rightarrow *B* given by $\iota(x) = x$ for all $x \in A$.
- **³** The *characteristic/indicator function* of *A* (defined on *B*) is the map $1_A : B \to \mathbb{R}$ given by

$$
\mathbf{1}_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \in B \backslash A. \end{cases}
$$

 $\overline{\oplus}$

 \Box

 299

§4.1 Functions as Relations

Definition (Cont'd)

4 The *greatest integer function* on $\mathbb R$ is the function $[\cdot] : \mathbb R \to \mathbb Z$ given by

 $[x]$ = the largest integer which is not greater than *x*.

The function [¨] is also called the *floor function* or the *Gauss function*.

⁵ Let *R* be an equivalence relation on *A*. The *canonical map* for the equivalence relation *R* is the map from *A* to *A*/*R* which maps $x \in A$ to \overline{x} , the equivalence class of *x* modulo *R*.

ă

同

 \Box

§4.1 Functions as Relations

Theorem

Two functions f and g are equal if and only if

- **1** Dom(f) = Dom(g), and
- **2** *for all* $x \in \text{Dom}(f)$ *,* $f(x) = g(x)$ *.*

Example

The identity map of *A* and the inclusion map from *A* to *B* are identical functions.

Example

 $f(x) = \frac{x}{x}$ and $g(x) = 1$ are different functions since they have different domains.

§4.1 Functions as Relations

Remark:

When a rule of correspondence assigns more than one values to an object in the domain, we say "the function is not well-defined", meaning that it is not really a function. A proof that a function is well-defined is nothing more than a proof that the relation defined by a given rule is single valued.

Example

Let \bar{x} denote the equivalence class of x modulo the congruence relation modulo 4 and \widetilde{y} denote the equivalence class of y modulo the congruence relation modulo 10. Define $f(\vec{x}) = 2 \cdot \vec{x}$. Then this "function" is not really a function since $\overline{0} = \overline{4}$ but $\widetilde{2 \cdot 0} = \widetilde{0}$ while $\widetilde{2 \cdot 4} = \widetilde{8} \neq \widetilde{0}$. In other words, the way *f* assigns value to \overline{x} is not well-defined.

§4.1 Functions as Relations

Example

Let \bar{x} denote the equivalence class of x modulo the congruence relation modulo 8 and \tilde{y} denote the equivalence class of *y* modulo the congruence relation modulo 4. The function $f: \mathbb{Z}_8 \to \mathbb{Z}_4$ given by $f(\overline{x}) = \widetilde{x+2}$ is well-defined. To see this, suppose that $\overline{x} = \overline{z}$ in \mathbb{Z}_8 . Then 8 divides $x - z$ which implies that 4 divides $x - z$; thus 4 divides $(x+2) - (z+2)$. Therefore, $x+2 = z+2$ (mod 4) or equivalently, $\widetilde{x+2} = \widetilde{z+2}$. So *f* is well-defined.

§4.2 Construction of Functions

Definition

Let $f: A \rightarrow B$. The *inverse* of *f* is the relation from *B* to *A*:

$$
f^{-1} = \{(y, x) \in B \times A \mid y = f(x)\} = \{(y, x) \in B \times A \mid (x, y) \in f\}.
$$

When f^{-1} describes a function, f^{-1} is called the *inverse function/ map* of *f*.

Definition

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. The *composite* of *f* and *g* is the relation from *A* to *C*:

 $g \circ f = \{(x, z) \in A \times C \vert \text{ there exists (a unique}) } y \in B \text{ such that }$ $(x, y) \in f$ and $(y, z) \in g$.

 200

 $\bar{\Xi}$

 $\mathcal{A}(\bigoplus_{i=1}^n\mathcal{F}_i)\mathcal{A}_i\subseteq\mathcal{F}_i\mathcal{F}_i\subseteq\mathcal{F}_i\mathcal{A}_i\subseteq\mathcal{F}_i$

 \Box \rightarrow

§4.2 Construction of Functions

Remark: Using the notation in the definition of functions, if $(x, z) \in$ *g* \circ *f*, then $z = (g \circ f)(x)$. On the other hand, if $(x, z) \in g \circ f$, there exists (a unique) $y \in B$ such that $(x, y) \in f$ and $(y, z) \in g$. Then $y = f(x)$ and $z = g(y)$. Therefore, we also have $z = g(f(x))$; thus $(g \circ f)(x) = g(f(x)).$

Theorem

Let A, *B* and *C be sets, and* f : $A \rightarrow B$ and g : $B \rightarrow C$ *be functions. Then* $g \circ f$ *is a function from A to C.*

 \Box (句) 2990

§4.2 Construction of Functions

Proof of $g \circ f$ is a function from A to C.

By the definition of composition of relations, $g \circ f$ is a relation from *A* to *C*.

- **1** First, we show that $Dom(g \circ f) = A$. Clearly $Dom(g \circ f) \subseteq A$, so it suffices to show that $A \subseteq Dom(g \circ f)$. Let $x \in A$. Since *f* : $A \rightarrow B$ is a function, there exists $y \in B$ such that $(x, y) \in f$. Since $g : B \to C$ is a function, there exists $z \in C$ such that $(y, z) \in g$. This shows that for every $x \in A$, there exists $z \in C$ such that $(x, z) \in g \circ f$; thus $Dom(g \circ f) = A$.
- **2** Next, we show that if $(x, z_1) \in g \circ f$ and $(x, z_2) \in g \circ f$, then *z*₁ = *z*₂. Suppose that $(x, z_1) \in g \circ f$ and $(x, z_2) \in g \circ f$. Then there exists $y_1, y_2 \in B$ such that $(x, y_1) \in f$ and $(y_1, z_1) \in g$, while $(x, y_2) \in f$ and $(y_2, z_2) \in g$. Since *f* is a function, $y_1 = y_2$; thus that *g* is a function implies that $z_1 = z_2$.

§4.2 Construction of Functions

Recall that if *A, B, C, D* are sets, *R* be a relation from *A* to *B*, *S* be a relation from *B* to *C*, and *T* be a relation from *C* to *D*. Then \bullet $\mathcal{T} \circ (S \circ R) = (\mathcal{T} \circ S) \circ R$. **2** $I_B \circ R = R$ and $R \circ I_A = R$. Theorem *Let* A, B, C, D *be sets, and* $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$ *be functions. Then* $h \circ (g \circ f) = (h \circ g) \circ f$ *.* Theorem *Let* $f: A \rightarrow B$ *be a function. Then* $f \circ I_A = f$ *and* $I_B \circ f = f$. Theorem Let $f: A \rightarrow B$ be a function, and $C = \text{Rng}(f)$. If $f^{-1}: C \rightarrow A$ is a *function, then* $f^{-1} \circ f = I_A$ *and* $f \circ f^{-1} = I_C$ *.* $\Box \rightarrow \neg \leftarrow \Box \Box$ 2990 **Ching-hsiao Arthur Cheng** 鄭經斅 基礎數學 **MA-1015A**

§4.2 Construction of Functions

Definition

Let $f: A \rightarrow B$ be a function, and $D \subseteq A$. The *restriction* of *f* to *D*, denoted by $f|_{D}$, is the function

$$
f|_D = \{(x, y) | y = f(x) \text{ and } x \in D\}.
$$

If *g* and *h* are functions and *g* is a restriction of *h*, the *h* is called an *extension* of *g*.

Example

Let *F* and *G* be functions $\mathcal{F} = \{(1, 2), (2, 6), (3, -9), (5, 7)\},\$ $G = \{(1, 8), (2, 6), (4, 8), (5, 7), (8, 3)\}.$ Then $\mathit{F} \cap \mathit{G} = \big\{(2,6), (5,7)\big\}$ is a function with domain $\{2,5\}$ which

is a proper subset of $Dom(F) \cap Dom(G) = \{1, 2, 5\}.$ ${\sf On}$ the other hand, $\big\{(1,2),(1,8)\big\} \subseteq F \cup \mathsf{G}$; thus $F \cup \mathsf{G}$ cannot be a function.

§4.2 Construction of Functions

Theorem

Suppose that f and g are functions. Then $f \cap g$ *is a function with domain* $A = \{x \mid f(x) = g(x)\},\$ and $f \cap g = f|_A = g|_A$.

Proof.

Let $(x, y) \in f \cap g$. Then $y = f(x) = g(x)$; thus $Dom(f \cap g) = \{x \mid f(x) = g(x)\} (\equiv A).$ If $(x, y_1), (x, y_2) \in f \cap g$, $(x, y_1), (x, y_2) \in f$ which, by the fact that *f* is a function, implies that $y_1 = y_2$. Therefore, $f \cap g$ is a function. Moreover, $f \cap g = \{(x, y) | \exists x \in A, y = f(x) \}$ which implies that $f \cap g = f | A$.

§4.2 Construction of Functions

For $f \cup g$ being a function, it is (sufficient and) necessary that if $x \in Dom(f) \cap Dom(g)$, then $f(x) = g(x)$. Moreover, if $f \cup g$ is a function, then $f = (f \cup g)|_{\mathsf{Dom}(f)}$ and $g = (f \cup g)|_{\mathsf{Dom}(g)}$. In particular, we have the following

Theorem

Let f and g be functions with $Dom(f) = A$ and $Dom(g) = B$. If $A\cap B=\varnothing$, then $f\cup g$ is a function with domain $A\cup B$. Moreover,

> $(f \cup g)(x) = \begin{cases} f(x) & \text{if } x \in A, \\ 0 & \text{if } x > R, \end{cases}$ $g(x)$ *if* $x \in B$ *.*

 \Box)

 299

§4.2 Construction of Functions

Theorem

Let f and g be functions with $Dom(f) = A$ and $Dom(g) = B$. If $A \cap B = \emptyset$, then $f \cup g$ is a function with domain $A \cup B$. Moreover,

$$
(f \cup g)(x) = \begin{cases} f(x) & \text{if } x \in A, \\ g(x) & \text{if } x \in B. \end{cases} (\star)
$$

Proof.

Clearly $Dom(f \cup g) = A \cup B$. Suppose that $(x, y_1), (x, y_2) \in f \cup g$. If $(x, y_1) \in f$, then $x \in Dom(f)$; thus by the fact that $A \cap B = \emptyset$, we must have $(x, y_2) \in f$. Since *f* is a function, $y_1 = f(x) = y_2$. Similarly, if $(x, y_1) \in g$, then $(x, y_2) \in g$ which also implies that $y_1 = g(x) = y_2$. Therefore, $f \cup g$ is a function and (\star) is valid. \Box

 2980

§4.2 Construction of Functions

Definition

Let *f* be a real-valued function defined on an interval $I \subseteq \mathbb{R}$.

\n- **①** The function *f* is said to be **increasing** on *I* if
$$
x \leq y
$$
 implies **that** $f(x) \leq f(y)$ for all $x, y \in I$.
\n- **②** The function *f* is said to be **strictly increasing** on *I* if $x < y$ implies that $f(x) < f(y)$ for all $x, y \in I$.
\n- **①** The function *f* is said to be **strictly decreasing** on *I* if $x < y$ implies that $f(x) < f(y)$ for all $x, y \in I$.
\n

§4.3 Functions that are Onto; One-to-One Functions

Definition

Let $f: A \rightarrow B$ be a function.

- **1** The function *f* is said to be *surjective* or *onto B* if $\text{Rng}(f) =$ *B*. When *f* is surjective, *f* is called a surjection, and we write $f: A \xrightarrow{\text{onto}} B$.
- **²** The function *f* is said to be *injective* or *one-to-one* if it holds that " $f(x) = f(y) \Rightarrow x = y$ ". When *f* is injective, *f* is called a injection, and we write $f \colon A \stackrel{1-1}{\longrightarrow} B$.
- **³** The function *f* is called a *bijection* if it is both injective and surjective. When *f* is a bijection, we write f : $A\frac{1-1}{\text{onto}}B$.

§4.3 Functions that are Onto; One-to-One Functions

Remark:

- **1** It is always true that Rng(f) \subseteq *B*; thus $f : A \rightarrow B$ is onto if and only if $B \subseteq \text{Rng}(f)$. In other words, $f : A \rightarrow B$ is onto if and only if every $b \in B$ has a pre-image. Therefore, to prove that $f: A \rightarrow B$ is onto *B*, it is sufficient to show that for every *b* \in *B* there exists *a* \in *A* such that *f*(*a*) = *b*.
- **2** The direct proof of that $f: A \rightarrow B$ is injective is to verify the property that " $f(x) = f(y) \Rightarrow x = y$ ". A proof of the injectivity of *f* by contraposition assumes that $x \neq y$ and one needs to show that $f(x) \neq f(y)$.

§4.3 Functions that are Onto; One-to-One Functions

Theorem

- **1 If** $f : A \rightarrow B$ is onto B and $g : B \rightarrow C$ is onto C, then $g \circ f$ is *onto C.*
- **2** If $f: A \rightarrow B$ is one-to-one and $g: B \rightarrow C$ is one-to-one, then *g* ˝ *f is one-to-one.*

Proof.

- **1** Let $c \in C$. By the surjectivity of *g*, there exists $b \in B$ such that *g*(*b*) = *c*. The surjectivity of *f* then implies the existence of $a \in A$ such that $f(a) = b$. Therefore, $(g \circ f)(a) = g(f(a)) =$ $g(b) = c$ which concludes $\textcircled{1}$.
- **2** Assume that $(g \circ f)(x) = (g \circ f)(y)$. Then $g(f(x)) = g(f(y))$; thus by the injectivity of g , $f(x) = f(y)$. Therefore, the injectivity of *f* implies that $x = y$ which concludes 2.

§4.3 Functions that are Onto; One-to-One Functions

Theorem

If $f : A \rightarrow B$, $g : B \rightarrow C$ are bijections, then $g \circ f : A \rightarrow C$ is a *bijection.*

Theorem

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.

- **1 1** *f* $g \circ f$ *is onto C*, then g *is onto C*.
- **2** If $g \circ f$ is one-to-one, then f is one-to-one.

Proof.

1 Let $c \in C$. Since $g \circ f$ is onto *C*, there exists $a \in A$ such that $(g \circ f)(a) = c$. Let $b = f(a)$. Then $g(b) = g(f(a)) =$ $(g \circ f)(a) = c.$

2 Suppose that $f(x) = f(y)$. Then $(g \circ f)(x) = g(f(x)) =$ $g(f(y)) = (g \circ f)(y)$, and the injectivity of $g \circ f$ implies that $x = y$.

§4.3 Functions that are Onto; One-to-One Functions

Remark:

- **1** In part (1) of the theorem above, we cannot conclude that *f* is also onto *B* since there might be a proper subset $\widetilde{B} \subsetneq B$ such that $f: A \rightarrow \widetilde{B}$, $g: \widetilde{B} \rightarrow C$ and $g \circ f$ is onto *C*. For example, Let $A = B = \mathbb{R}$, $C = \mathbb{R}^+ \cup \{0\}$, and $f(x) = g(x) = x^2$. Then clearly *f* is not onto *B* but $g \circ f$ is onto *C*.
- **2** In part 2 of the theorem above, we cannot conclue that *g* is one-to-one since it might happen that *g* is one-to-one on $Rng(f) \subsetneq B$ but *g* is not one-to-one on *B*. For example, let $A = C = \mathbb{R}^+ \cup \{0\}, B = \mathbb{R}$, and $f(x) = x^2$, $g(x) = \log(1 + |x|)$. Then clearly g is not one-to-one, but $g \circ f$ is one-to-one.

 2990

§4.3 Functions that are Onto; One-to-One Functions

Proof.

We note that $f \cup g : A \cup B \rightarrow C \cup D$ is a function.

1 Let $y \in C \cup D$. Then $y \in C$ or $y \in D$. W.L.O.G., we can assume that $y \in C$. Since $f : A \rightarrow C$ is onto *C*, there exists $x \in A$ such that $(x, y) \in f$. Using (\star) , $(f \cup g)(x) = f(x) = y$. Therefore, *f* \cup *g* is onto $C \cup D$.

2 Suppose that $(x_1, y), (x_2, y) \in f \cup g \subseteq (A \times C) \cup (B \times D)$. Then $(x_1, y) \in f$ or $(x_1, y) \in g$. W.L.O.G., we can assume that $(x_1, y) \in f$. Since $f \subseteq A \times C$ and $g \subseteq B \times D$, by the fact that $C \cap D = \emptyset$ we must have $(x_2, y) \in f$ for otherwise $y \in C \cap D$, a contradiction. Now, since (x_1, y) , $(x_2, y) \in f$, the injectivity of *f* then implies that $x_1 = x_2$.

§4.4 Inverse Functions

Recall that the inverse of a relation $f: A \rightarrow B$ is the relation f^{-1} satisfying

 $y f^{-1}x \Leftrightarrow x f y \Leftrightarrow (x, y) \in f \Leftrightarrow y = f(x)$.

This relation is a function, called the inverse function of *f*, if the relation itself is a function with certain domain.

Definition

A function $f: A \rightarrow B$ is said to be a *one-to-one correspondence* if *f* is a bijection.

§4.4 Inverse Functions

Theorem

Let $f: A \rightarrow B$ be a function.

- \bullet f^{-1} is a function from $\mathrm{Rng}(f)$ to A if and only if f is one-to-one.
- $\bf{2}$ If f^{-1} is a function, then f^{-1} is one-to-one.

Proof.

§4.4 Inverse Functions

Corollary

The inverse of a one-to-one correspondence is a one-to-one correspondence.

Theorem

Let $f: A \rightarrow B$, $g: B \rightarrow A$ *be functions. Then*

- \bullet $g = f^{-1}$ *if and only if* $g \circ f = I_A$ *and* $f \circ g = I_B$ *(if and only if* $f = g^{-1}$.
- **2** If f is surjective, and $g \circ f = I_A$, then $g = f^{-1}$.
- **3** If f is injective, and $f \circ g = I_{B}$, then $g = f^{-1}$.

Recall that "If $C = \text{Rng}(f)$ and $f^{-1} : C \rightarrow A$ is a function, then $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_C$ ". Therefore, the \Rightarrow direction in $\textcircled{1}$ has already been proved.

 \Box)

§4.4 Inverse Functions

Proof.

We first prove the following two claims: (a) If $g \circ f = I_A$, then $f^{-1} \subseteq g$. (b) If $f \circ g = I_B$, then $g \subseteq f^{-1}$. To see (a), let $(y, x) \in f^{-1}$ be given. Then $(x, y) \in f$ or $y = f(x)$. Since $(g \circ f) = I_A$, we must have $g(y) = g(f(x)) = (g \circ f)(x) = I_A(x) = x$ or equivalently, $(y, x) \in g$. Therefore, $f^{-1} \subseteq g$. To see (b), let $(y, x) \in g$ be given. Then $x = g(y)$; thus the fact that $(f \circ g) = I_B$ implies that $f(x) = f(g(y)) = (f \circ g)(y) = I_B(y) = y$ or equivalently, $(x, y) \in f$. Therefore, $(y, x) \in f^{-1}$; thus $g \subseteq f^{-1}$. \bullet " \Rightarrow " Done. " \Leftarrow " This direction is a direct consequence of the claims. \Box the con- 290

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 **MA-1015A**

§4.4 Inverse Functions

Proof. (Cont'd).

2 Suppose that $f: A \rightarrow B$ is surjective and $g \circ f = I_A$. Then claim (a) implies that $f^{-1} \subseteq g$; thus it suffices to show that $g \subseteq f^{-1}$. Let $(y, x) \in g$. Then by the surjectivity of *f* there exists $x_1 \in A$ such that $y = f(x_1)$ or equivalently, $(y, x_1) \in f^{-1}$. On the other hand,

 $x = g(y) = g(f(x_1)) = (g \circ f)(x_1) = I_A(x_1) = x_1$. Therefore, $g \subseteq f^{-1}$.

3 Now suppose that $f: A \rightarrow B$ is injective and $f \circ g = I_B$. Then claim (b) implies that $g\subseteq f^{-1};$ thus it suffices to show that $f^{-1} \subseteq g$. Let $(y, x) \in f^{-1}$ or equivalently, $(x, y) \in f$ or $y = f(x)$. By the fact that $f \circ g = I_B$, we have $f(g(y)) = y$; thus the injectivity of *f* implies that $g(y) = x$ or $(y, x) \in g$. Therefore, $f^{-1} \subseteq g$ which completes the proof. \Box

§4.4 Inverse Functions

Since we have shown in the previous theorem that for functions $f: A \rightarrow B$ and $g: B \rightarrow A$,

- **1** $g = f^{-1}$ if and only if $g \circ f = I_A$ and $f \circ g = I_B$,
- **2** If *f* is surjective, and $g \circ f = I_A$, then $g = f^{-1}$,
- **3** If *f* is injective, and $f \circ g = I_B$, then $g = f^{-1}$,

we can conclude the following

Corollary

If f : $A \rightarrow B$ *is an one-to-one correspondence, and g* : $B \rightarrow A$ *be a function.* Then $g = f^{-1}$ *if and only if* $g \circ f = I_A$ *or* $f \circ g = I_B$ *.*

Example

Let $A = \mathbb{R}$ and $B = \{x | x \ge 0\}$. Define $f : A \rightarrow B$ by $f(x) = x^2$ and $g : B \to A$ by $g(y) = \sqrt{y}$. Then $f \circ g = I_B$ but g is not inverse function of *f* since $(g \circ f)(x) = |x|$ for all $x \in A$.

§4.4 Inverse Functions

Definition

Let *A* be a non-empty set. A *permutation* of *A* is a one-to-one correspondence from *A* onto *A*.

Theorem

Let A be a non-empty set. Then

- **¹** *the identity map I^A is a permutation of A.*
- **²** *the composite of permutations of A is a permutation of A.*
- **³** *the inverse of a permutation of A is a permutation of A.*
- **4 if** *f* is a permutation of A, then $f \circ I_A = I_A \circ f = f$.
- **5** if f is a permutation of A, then $f \circ f^{-1} = f^{-1} \circ f = I_A$.
- \bullet *if f and g are permutations of A, then* $(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$

 OQ \mathbb{R}^d

§4.5 Set Images

Definition

Let $f: A \rightarrow B$ be a function, and $X \subseteq A$, $Y \subseteq B$. The *image* of X (under f) or *image set* of X , denoted by $f(X)$, is the set

$$
f(X) = \{ y \in B \mid y = f(x) \text{ for some } x \in X \} = \{ f(x) \mid x \in X \},
$$

and the *pre-image* of *Y* (under *f*) or the *inverse image* of *Y*, denoted by $f^{-1}(Y)$, is the set

 $f^{-1}(Y) = \{x \in A \mid f(x) \in Y\}$.

Remark: Here are some facts about images of sets that follow from the definitions:

- (a) If $a \in D$, then $f(a) \in f(D)$.
- (b) If $a \in f^{-1}(E)$, then $f(a) \in E$.
- (c) If $f(a) \in E$, then $a \in f^{-1}(E)$.
- (d) If $f(a) \in f(D)$ and *f* is one-to-one, then $a \in D$.

§4

Chapter 4. Functions

§4.5 Set Images

Proof of $f(C \cap D) \subseteq f(C) \cap f(D)$.

Let $y \in f(C \cap D)$. Then there exists $x \in C \cap D$ such that $y = f(x)$. Therefore, $y \in f(C)$ and $y \in f(D)$; thus $y \in f(C) \cap f(D)$.

Remark: It is possible that $f(C \cap D) \subsetneq f(C) \cap f(D)$. For example, $f(x) = x^2$, $C = (-\infty, 0)$ and $D = (0, \infty)$. Then $C \cap D = \emptyset$ which implies that $f(C \cap D) = \emptyset$; however, $f(C) = f(D) = (0, \infty)$.

Proof of $f(C \cup D) = f(C) \cup f(D)$.

Let $y \in B$ be given. Then $y \in f(C \cup D) \Leftrightarrow (\exists x \in C \cup D)(y = f(x))$ \Leftrightarrow $(\exists x \in C)(y = f(x)) \vee (\exists x \in D)(y = f(x))$ \Leftrightarrow $(y \in f(C)) \vee (y \in f(D))$ \Leftrightarrow *y* \in *f*(*C*) \cup *f*(*D*).

> $\Box \rightarrow \neg \leftarrow \Box \Box$ 299 **Ching-hsiao Arthur Cheng** 鄭經斅 基礎數學 **MA-1015A**

§4.5 Set Images

Proof of \subset

Let $x \in C$. Then $f(x) \in f(C)$; thus $x \in f^{-1}(f(C))$. Therefore, $C \subseteq f^{-1}(f(C)).$

Remark: It is possible that $C \subsetneq f^{-1}(f(C))$. For example, if $f(x) =$ x^2 and $C = [0, 1]$, then $f^{-1}(f(C)) = f^{-1}([0, 1]) = [-1, 1] \supsetneq [0, 1]$.

Proof of $f(f^{-1}(E)) \subseteq E$.

Suppose that $y \in f(f^{-1}(E))$. Then there exists $x \in f^{-1}(E)$ such that $f(x) = y$. Since $x \in f^{-1}(E)$, there exists $z \in E$ such that $f(x) = z$. Then $y = z$ which implies that $y \in E$. Therefore, $f(f^{-1}(E)) \subseteq E$. \Box

Remark: It is possible that $f(f^{-1}(E)) \subsetneq E$. For example, if $f(x) =$ x^2 and $E = [-1, 1]$, then $f(f^{-1}(E)) = f([0, 1]) = [0, 1] \subsetneq [-1, 1]$.