基礎數學 MA-1015A

Ching-hsiao Arthur Cheng 鄭經教 基礎數學 MA-1015A

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Chapter 4. Functions

- §4.1 Functions as Relations
- §4.2 Construction of Functions
- §4.3 Functions that are Onto; One-to-One Functions
- §4.4 Inverse Functions
- §4.5 Set Images

(a)

臣

Recall the usual definition of functions from A to B:

Definition

Let *A* and *B* be sets. A *function* $f: A \to B$ consists of two sets *A* and *B* together with a "rule" that assigns to each $x \in A$ a special element of *B* denoted by f(x). One writes $x \mapsto f(x)$ to denote that *x* is mapped to the element f(x). *A* is called the *domain* of *f*, and *B* is called the *target* or *co-domain* of *f*. The *range* of *f* or the *image* of *f*, is the subset of *B* defined by $f(A) = \{f(x) \mid x \in A\}$.

Each function is associated with a collection of ordered pairs

$$\{(x, f(x)) \mid x \in A\} \subseteq A \times B.$$

Since a collection of ordered pairs is a relation, we can say that a function is a relation from one set to another.

・ロト ・回ト ・ヨト ・ヨト

However, not every relation can serve as a function. A function is a relation with additional special properties and we have the following

Definition (Alternative Definition of Functions)

A **function** (or **mapping**) from A to B is a relation f from A to B such that

• the domain of f is A; that is, $(\forall x \in A)(\exists y \in B)((x, y) \in f)$, and

2 if $(x, y) \in f$ and $(x, z) \in f$, then y = z.

We write $f: A \rightarrow B$, and this is read "f is a function from A to B" or "f maps A to B". The set B is called the **co-domain** of f. In the case where B = A, we say f is a function on A.

When $(x, y) \in f$, we write y = f(x) instead of *xfy*. We say that *y* is the *image* of *f* at *x* (or value of *f* at *x*) and that *x* is a *pre-image* of *y*.

Remark:

- A function has only one domain and one range but many possible co-domains.
- ② A function on ℝ is usually called a real-valued function or simply real function. The domain of a real function is usually understood to be the largest possible subset of ℝ on which the function takes values.

Definition

A function x with domain \mathbb{N} is called an *infinite sequence*, or simply a *sequence*. The image of the natural number n is usually written as x_n instead of x(n) and is called the *n*-th term of the sequence.

Definition

- Let A, B be sets, and $A \subseteq B$.
 - The the *identity function/map* on A is the function $I_A : A \rightarrow A$ given by $I_A(x) = x$ for all $x \in A$.
 - **2** The *inclusion function/map* from A to B is the function ι : $A \rightarrow B$ given by $\iota(x) = x$ for all $x \in A$.
 - The *characteristic/indicator function* of A (defined on B) is the map 1_A : B → ℝ given by

$$\mathbf{1}_{\mathcal{A}}(x) = \begin{cases} 1 & \text{if } x \in \mathcal{A} \,, \\ 0 & \text{if } x \in \mathcal{B} \backslash \mathcal{A} \,. \end{cases}$$

Definition (Cont'd)

- The greatest integer function on ℝ is the function [·] : ℝ → ℤ given by
 - [x] = the largest integer which is not greater than x.

The function $[\cdot]$ is also called the *floor function* or the *Gauss function*.

Let R be an equivalence relation on A. The canonical map for the equivalence relation R is the map from A to A/R which maps x ∈ A to x̄, the equivalence class of x modulo R.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Two functions f and g are equal if and only if

$$Dom(f) = Dom(g), and$$

2 for all
$$x \in \text{Dom}(f)$$
, $f(x) = g(x)$.

Example

The identity map of A and the inclusion map from A to B are identical functions.

Example

$$f(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x}}$$
 and $g(\mathbf{x}) = 1$ are different functions since they have different domains.

イロト イヨト イヨト イヨト

Remark:

When a rule of correspondence assigns more than one values to an object in the domain, we say "the function is not well-defined", meaning that it is not really a function. A proof that a function is well-defined is nothing more than a proof that the relation defined by a given rule is single valued.

Example

Let \bar{x} denote the equivalence class of x modulo the congruence relation modulo 4 and \tilde{y} denote the equivalence class of y modulo the congruence relation modulo 10. Define $f(\bar{x}) = 2 \cdot \bar{x}$. Then this "function" is not really a function since $\bar{0} = \bar{4}$ but $2 \cdot \bar{0} = 0$ while $2 \cdot \bar{4} = 8 \neq 0$. In other words, the way f assigns value to \bar{x} is not well-defined.

Э

Example

Let \bar{x} denote the equivalence class of x modulo the congruence relation modulo 8 and \tilde{y} denote the equivalence class of y modulo the congruence relation modulo 4. The function $f: \mathbb{Z}_8 \to \mathbb{Z}_4$ given by $f(\bar{x}) = \tilde{x+2}$ is well-defined. To see this, suppose that $\bar{x} = \bar{z}$ in \mathbb{Z}_8 . Then 8 divides x-z which implies that 4 divides x-z; thus 4 divides (x+2) - (z+2). Therefore, $x+2 = z+2 \pmod{4}$ or equivalently, $\tilde{x+2} = \tilde{z+2}$. So f is well-defined.

<回 > < 回 > < 回 > < 回 >

Definition

Let $f: A \rightarrow B$. The *inverse* of f is the relation from B to A:

$$f^{-1} = \{(y, x) \in B \times A \mid y = f(x)\} = \{(y, x) \in B \times A \mid (x, y) \in f\}.$$

When f^{-1} describes a function, f^{-1} is called the *inverse function/map* of *f*.

Definition

Let $f : A \to B$ and $g : B \to C$ be functions. The *composite* of f and g is the relation from A to C:

$$g \circ f = \{(x, z) \in A \times C \mid \text{there exists (a unique) } y \in B \text{ such that} \\ (x, y) \in f \text{ and } (y, z) \in g \}.$$

イロト イヨト イヨト イヨト

Remark: Using the notation in the definition of functions, if $(x, z) \in g \circ f$, then $z = (g \circ f)(x)$. On the other hand, if $(x, z) \in g \circ f$, there exists (a unique) $y \in B$ such that $(x, y) \in f$ and $(y, z) \in g$. Then y = f(x) and z = g(y). Therefore, we also have z = g(f(x)); thus $(g \circ f)(x) = g(f(x))$.

Theorem

Let A, B and C be sets, and $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Then $g \circ f$ is a function from A to C.

・ロ・・ (日・・ヨ・・ヨ・・ヨ

Proof of $g \circ f$ is a function from A to C.

By the definition of composition of relations, $g \circ f$ is a relation from A to C.

- First, we show that Dom(g ∘ f) = A. Clearly Dom(g ∘ f) ⊆ A, so it suffices to show that A ⊆ Dom(g ∘ f). Let x ∈ A. Since f: A → B is a function, there exists y ∈ B such that (x, y) ∈ f. Since g : B → C is a function, there exists z ∈ C such that (y, z) ∈ g. This shows that for every x ∈ A, there exists z ∈ C such that (x, z) ∈ g ∘ f; thus Dom(g ∘ f) = A.
- Next, we show that if (x, z₁) ∈ g ∘ f and (x, z₂) ∈ g ∘ f, then z₁ = z₂. Suppose that (x, z₁) ∈ g ∘ f and (x, z₂) ∈ g ∘ f. Then there exists y₁, y₂ ∈ B such that (x, y₁) ∈ f and (y₁, z₁) ∈ g, while (x, y₂) ∈ f and (y₂, z₂) ∈ g. Since f is a function, y₁ = y₂; thus that g is a function implies that z₁ = z₂.

Recall that if A, B, C, D are sets, R be a relation from A to B, S be a relation from B to C, and T be a relation from C to D. Then

$$T \circ (S \circ R) = (T \circ S) \circ R.$$

$$I_B \circ R = R \text{ and } R \circ I_A = R.$$

Theorem

Let A, B, C, D be sets, and $f : A \rightarrow B$, $g : B \rightarrow C$, $h : C \rightarrow D$ be functions. Then $h \circ (g \circ f) = (h \circ g) \circ f$.

Theorem

Let $f: A \to B$ be a function. Then $f \circ I_A = f$ and $I_B \circ f = f$.

Theorem

Let $f : A \to B$ be a function, and $C = \operatorname{Rng}(f)$. If $f^{-1} : C \to A$ is a function, then $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_C$.

イロト イヨト イヨト イヨト

臣

Definition

Let $f: A \to B$ be a function, and $D \subseteq A$. The *restriction* of f to D, denoted by $f|_D$, is the function

$$f|_D = \{(x, y) | y = f(x) \text{ and } x \in D\}.$$

If g and h are functions and g is a restriction of h, the h is called an *extension* of g.

Example

Let F and G be functions

$$\begin{split} \mathbf{F} &= \left\{ (1,2), (2,6), (3,-9), (5,7) \right\}, \\ \mathbf{G} &= \left\{ (1,8), (2,6), (4,8), (5,7), (8,3) \right\} \end{split}$$

Then $F \cap G = \{(2, 6), (5, 7)\}$ is a function with domain $\{2, 5\}$ which is a proper subset of $Dom(F) \cap Dom(G) = \{1, 2, 5\}$. On the other hand, $\{(1, 2), (1, 8)\} \subseteq F \cup G$; thus $F \cup G$ cannot be a function.

Theorem

Suppose that f and g are functions. Then $f \cap g$ is a function with domain $A = \{x \mid f(x) = g(x)\}$, and $f \cap g = f|_A = g|_A$.

Proof.

Let
$$(x, y) \in f \cap g$$
. Then $y = f(x) = g(x)$; thus

$$\mathsf{Dom}(f \cap g) = \big\{ x \, \big| \, f(x) = g(x) \big\} (\equiv A) \, .$$

If $(x, y_1), (x, y_2) \in f \cap g$, $(x, y_1), (x, y_2) \in f$ which, by the fact that f is a function, implies that $y_1 = y_2$. Therefore, $f \cap g$ is a function. Moreover,

$$f \cap g = \left\{ (x, y) \, \middle| \, \exists x \in A, y = f(x) \right\}$$

イロン (個) (注) (注) [

which implies that $f \cap g = f|_A$.

For $f \cup g$ being a function, it is (sufficient and) necessary that if $x \in \text{Dom}(f) \cap \text{Dom}(g)$, then f(x) = g(x). Moreover, if $f \cup g$ is a function, then $f = (f \cup g)|_{\text{Dom}(f)}$ and $g = (f \cup g)|_{\text{Dom}(g)}$. In particular, we have the following

Theorem

Let f and g be functions with Dom(f) = A and Dom(g) = B. If $A \cap B = \emptyset$, then $f \cup g$ is a function with domain $A \cup B$. Moreover, $(f_{i} + e^{i})(x) = \int_{-\infty}^{\infty} f(x) \quad \text{if } x \in A$,

$$f \cup g(x) = \begin{cases} g(x) & \text{if } x \in B. \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

Let f and g be functions with Dom(f) = A and Dom(g) = B. If $A \cap B = \emptyset$, then $f \cup g$ is a function with domain $A \cup B$. Moreover,

$$(f \cup g)(x) = \begin{cases} f(x) & \text{if } x \in A, \\ g(x) & \text{if } x \in B. \end{cases}$$

 (\star)

イロン イヨン イヨン イヨン

Proof.

Clearly $Dom(f \cup g) = A \cup B$. Suppose that $(x, y_1), (x, y_2) \in f \cup g$. If $(x, y_1) \in f$, then $x \in Dom(f)$; thus by the fact that $A \cap B = \emptyset$, we must have $(x, y_2) \in f$. Since f is a function, $y_1 = f(x) = y_2$. Similarly, if $(x, y_1) \in g$, then $(x, y_2) \in g$ which also implies that $y_1 = g(x) = y_2$. Therefore, $f \cup g$ is a function and (\star) is valid. \Box

Definition Let f be a real-valued function defined on an interval $I \subseteq \mathbb{R}$. increasing **①** The function f is said to be on *I* if $x \leq y$ implies decreasing that $\begin{array}{c} f(x) \leq f(y) \\ f(x) \geq f(y) \end{array}$ for all $x, y \in I$. strictly increasing on *I* if x < yO The function f is said to be strictly decreasing implies that $\frac{f(x) < f(y)}{f(x) > f(y)}$ for all $x, y \in I$.

Ching-hsiao Arthur Cheng 鄭經戰 基礎數學 MA-1015A

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ……

Definition

- Let $f: A \to B$ be a function.
 - The function f is said to be *surjective* or *onto* B if Rng(f) = B. When f is surjective, f is called a surjection, and we write f: A → B.
 - 2 The function f is said to be *injective* or *one-to-one* if it holds that "f(x) = f(y) ⇒ x = y". When f is injective, f is called a injection, and we write f: A ¹⁻¹/_→ B.
 - O The function *f* is called a *bijection* if it is both injective and surjective. When *f* is a bijection, we write *f*: A → B.

(日) (四) (三) (三) (三) (三)

Remark:

- It is always true that Rng(f) ⊆ B; thus f: A → B is onto if and only if B ⊆ Rng(f). In other words, f: A → B is onto if and only if every b ∈ B has a pre-image. Therefore, to prove that f: A → B is onto B, it is sufficient to show that for every b ∈ B there exists a ∈ A such that f(a) = b.
- O The direct proof of that f: A → B is injective is to verify the property that "f(x) = f(y) ⇒ x = y". A proof of the injectivity of f by contraposition assumes that x ≠ y and one needs to show that f(x) ≠ f(y).

(日) (日) (日) (日) (日)

Theorem

- If f: A → B is onto B and g: B → C is onto C, then g ∘ f is onto C.
- If f: A → B is one-to-one and g: B → C is one-to-one, then g ∘ f is one-to-one.

Proof.

• Let $c \in C$. By the surjectivity of g, there exists $b \in B$ such that g(b) = c. The surjectivity of f then implies the existence of $a \in A$ such that f(a) = b. Therefore, $(g \circ f)(a) = g(f(a)) = g(b) = c$ which concludes ①.

Assume that (g ∘ f)(x) = (g ∘ f)(y). Then g(f(x)) = g(f(y)); thus by the injectivity of g, f(x) = f(y). Therefore, the injectivity of f implies that x = y which concludes ②.

Theorem

If $f : A \to B$, $g : B \to C$ are bijections, then $g \circ f : A \to C$ is a bijection.

Theorem

- Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
 - If $g \circ f$ is onto C, then g is onto C.
 - 2 If $g \circ f$ is one-to-one, then f is one-to-one.

Proof.

- Let $c \in C$. Since $g \circ f$ is onto C, there exists $a \in A$ such that $(g \circ f)(a) = c$. Let b = f(a). Then $g(b) = g(f(a)) = (g \circ f)(a) = c$.
- Suppose that f(x) = f(y). Then $(g \circ f)(x) = g(f(x)) = g(f(y)) = (g \circ f)(y)$, and the injectivity of $g \circ f$ implies that x = y.

Remark:

- In part ① of the theorem above, we cannot conclude that f is also onto B since there might be a proper subset $\tilde{B} \subsetneq B$ such that $f: A \to \tilde{B}$, $g: \tilde{B} \to C$ and $g \circ f$ is onto C. For example, Let $A = B = \mathbb{R}$, $C = \mathbb{R}^+ \cup \{0\}$, and $f(x) = g(x) = x^2$. Then clearly f is not onto B but $g \circ f$ is onto C.
- In part ② of the theorem above, we cannot conclue that g is one-to-one since it might happen that g is one-to-one on Rng(f) ⊊ B but g is not one-to-one on B. For example, let A = C = ℝ⁺ ∪ {0}, B = ℝ, and f(x) = x², g(x) = log(1 + |x|). Then clearly g is not one-to-one, but g ∘ f is one-to-one.

イロト イヨト イヨト イヨト

Theorem

If $f: A \rightarrow B$ is one-to-one, then every restriction of f is one-to-one.

In the following we consider the function $f \cup g$. Recall that if $Dom(f) \cap Dom(g) = \emptyset$, then $(f \cup g)(x) \stackrel{(\star)}{=} \begin{cases} f(x) & \text{if } x \in Dom(f) \\ g(x) & \text{if } x \in Dom(g) . \end{cases}$

Theorem

Let $f : A \to C$ and $g : B \to D$ be functions. Suppose that A and B are disjoint sets.

- If f is onto C and g is onto D, then $f \cup g : A \cup B \rightarrow C \cup D$ is onto $C \cup D$.
- ② If f is one-to-one, g is one-to-one, and C and D are disjoint, then $f \cup g : A \cup B \rightarrow C \cup D$ is one-to-one.

イロト イヨト イヨト イヨト 三日

Proof.

We note that $f \cup g : A \cup B \rightarrow C \cup D$ is a function.

- Let $y \in C \cup D$. Then $y \in C$ or $y \in D$. W.L.O.G., we can assume that $y \in C$. Since $f : A \to C$ is onto C, there exists $x \in A$ such that $(x, y) \in f$. Using (\star) , $(f \cup g)(x) = f(x) = y$. Therefore, $f \cup g$ is onto $C \cup D$.
- Suppose that (x₁, y), (x₂, y) ∈ f ∪ g ⊆ (A × C) ∪ (B × D). Then (x₁, y) ∈ f or (x₁, y) ∈ g. W.L.O.G., we can assume that (x₁, y) ∈ f. Since f ⊆ A × C and g ⊆ B × D, by the fact that C ∩ D = Ø we must have (x₂, y) ∈ f for otherwise y ∈ C ∩ D, a contradiction. Now, since (x₁, y), (x₂, y) ∈ f, the injectivity of f then implies that x₁ = x₂.

イロト イヨト イヨト イヨト

Recall that the inverse of a relation $f: A \rightarrow B$ is the relation f^{-1} satisfying

$$yf^{-1}x \iff xfy \iff (x,y) \in f \iff y = f(x)$$
.

This relation is a function, called the inverse function of f, if the relation itself is a function with certain domain.

Definition

A function $f: A \rightarrow B$ is said to be a **one-to-one correspondence** if f is a bijection.

(4月) トイヨト イヨト

Theorem

- Let $f: A \rightarrow B$ be a function.
 - f^{-1} is a function from $\operatorname{Rng}(f)$ to A if and only if f is one-to-one.
 - 2 If f^{-1} is a function, then f^{-1} is one-to-one.

Proof.

"⇒" If (x₁, y), (x₂, y) ∈ f, then (y, x₁), (y, x₂) ∈ f⁻¹. Since f⁻¹ is a function, we must have x₁ = x₂. Therefore, f is one-to-one. "⇐" If (y, x₁), (y, x₂) ∈ f⁻¹, then (x₁, y), (x₂, y) ∈ f, and the injectivity of f implies that x₁ = x₂. Therefore, by the fact that Rng(f) = Dom(f⁻¹), f⁻¹ is a function with domain Rng(f).
Suppose that f⁻¹ is a function, and (y₁, x), (y₂, x) ∈ f⁻¹. Then (x, y₁), (x, y₂) ∈ f which, by the fact that f is a function, implies

that $y_1 = y_2$. Therefore, f^{-1} is one-to-one.

Corollary

The inverse of a one-to-one correspondence is a one-to-one correspondence.

Theorem

Let $f: A \rightarrow B$, $g: B \rightarrow A$ be functions. Then

- $g = f^{-1}$ if and only if $g \circ f = I_A$ and $f \circ g = I_B$ (if and only if $f = g^{-1}$).
- 2 If f is surjective, and $g \circ f = I_A$, then $g = f^{-1}$.
- **()** If f is injective, and $f \circ g = I_B$, then $g = f^{-1}$.

Recall that "If $C = \operatorname{Rng}(f)$ and $f^{-1} : C \to A$ is a function, then $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_C$ ". Therefore, the \Rightarrow direction in (1) has already been proved.

・ロ・・ (日・・ヨ・・ヨ・・ヨ

Proof.

We first prove the following two claims:

(a) If $g \circ f = I_A$, then $f^{-1} \subseteq g$. (b) If $f \circ g = I_B$, then $g \subseteq f^{-1}$. To see (a), let $(y, x) \in f^{-1}$ be given. Then $(x, y) \in f$ or y = f(x). Since $(g \circ f) = I_A$, we must have

$$g(y) = g(f(x)) = (g \circ f)(x) = I_{\mathcal{A}}(x) = x$$

or equivalently, $(y, x) \in g$. Therefore, $f^{-1} \subseteq g$.

To see (b), let $(y, x) \in g$ be given. Then x = g(y); thus the fact that $(f \circ g) = I_B$ implies that

$$f(x) = f(g(y)) = (f \circ g)(y) = I_B(y) = y$$

or equivalently, $(x, y) \in f$. Therefore, $(y, x) \in f^{-1}$; thus $g \subseteq f^{-1}$.

"⇐" This direction is a direct consequence of the claims.

・ロト ・回ト ・ヨト ・ヨト

Proof. (Cont'd).

Suppose that f: A → B is surjective and g ∘ f = I_A. Then claim
(a) implies that f⁻¹ ⊆ g; thus it suffices to show that g ⊆ f⁻¹. Let (y, x) ∈ g. Then by the surjectivity of f there exists x₁ ∈ A such that y = f(x₁) or equivalently, (y, x₁) ∈ f⁻¹. On the other hand,

$$x = g(y) = g(f(x_1)) = (g \circ f)(x_1) = I_A(x_1) = x_1$$
.

Therefore, $g \subseteq f^{-1}$.

Now suppose that f: A → B is injective and f ∘ g = I_B. Then claim (b) implies that g ⊆ f⁻¹; thus it suffices to show that f⁻¹ ⊆ g. Let (y, x) ∈ f⁻¹ or equivalently, (x, y) ∈ f or y = f(x). By the fact that f ∘ g = I_B, we have f(g(y)) = y; thus the injectivity of f implies that g(y) = x or (y, x) ∈ g. Therefore, f⁻¹ ⊆ g which completes the proof.

Since we have shown in the previous theorem that for functions $f: A \rightarrow B$ and $g: B \rightarrow A$,

$$g = f^{-1} \text{ if and only if } g \circ f = I_A \text{ and } f \circ g = I_B,$$

2 If f is surjective, and $g \circ f = I_A$, then $g = f^{-1}$,

③ If f is injective, and $f \circ g = I_B$, then $g = f^{-1}$,

we can conclude the following

Corollary

If $f: A \to B$ is an one-to-one correspondence, and $g: B \to A$ be a function. Then $g = f^{-1}$ if and only if $g \circ f = I_A$ or $f \circ g = I_B$.

Example

Let $A = \mathbb{R}$ and $B = \{x | x \ge 0\}$. Define $f : A \to B$ by $f(x) = x^2$ and $g : B \to A$ by $g(y) = \sqrt{y}$. Then $f \circ g = I_B$ but g is not inverse function of f since $(g \circ f)(x) = |x|$ for all $x \in A$.

Definition

Let A be a non-empty set. A **permutation** of A is a one-to-one correspondence from A onto A.

Theorem

Let A be a non-empty set. Then

- the identity map I_A is a permutation of A.
- 2 the composite of permutations of A is a permutation of A.
- **(3)** the inverse of a permutation of A is a permutation of A.
- if f is a permutation of A, then $f \circ I_A = I_A \circ f = f$.
- **(**) if f is a permutation of A, then $f \circ f^{-1} = f^{-1} \circ f = I_A$.
- if f and g are permutations of A, then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

イロト イヨト イヨト イヨト

Definition

Let $f: A \to B$ be a function, and $X \subseteq A$, $Y \subseteq B$. The *image* of X (under f) or *image set* of X, denoted by f(X), is the set

$$f(X) = \{ y \in B \mid y = f(x) \text{ for some } x \in X \} = \{ f(x) \mid x \in X \},\$$

and the **pre-image** of Y (under f) or the **inverse image** of Y, denoted by $f^{-1}(Y)$, is the set

$$f^{-1}(Y) = \{x \in A \mid f(x) \in Y\}.$$

Remark: Here are some facts about images of sets that follow from the definitions:

Theorem

Let $f : A \rightarrow B$ be a function. Suppose that C, D are subsets of A, and E, F are subsets of B. Then

• $f(C \cap D) \subseteq f(C) \cap f(D)$. In particular, if $C \subseteq D$, then $f(C) \subseteq f(D)$.

$$f(C \cup D) = f(C) \cup f(D).$$

③ $f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$. In particular, if $E \subseteq F$, then $f^{-1}(E) \subseteq f^{-1}(F)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

•
$$f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F).$$

$$C \subseteq f^{-1}(f(C)).$$

$$\bullet f(f^{-1}(E)) \subseteq E.$$

Proof of $f(C \cap D) \subseteq f(C) \cap f(D)$.

Let $y \in f(C \cap D)$. Then there exists $x \in C \cap D$ such that y = f(x). Therefore, $y \in f(C)$ and $y \in f(D)$; thus $y \in f(C) \cap f(D)$.

Remark: It is possible that $f(C \cap D) \subsetneq f(C) \cap f(D)$. For example, $f(x) = x^2$, $C = (-\infty, 0)$ and $D = (0, \infty)$. Then $C \cap D = \emptyset$ which implies that $f(C \cap D) = \emptyset$; however, $f(C) = f(D) = (0, \infty)$.

Proof of $f(C \cup D) = f(C) \cup f(D)$.

Let $y \in B$ be given. Then $y \in f(C \cup D) \Leftrightarrow (\exists x \in C \cup D) (y = f(x))$ $\Leftrightarrow (\exists x \in C) (y = f(x)) \lor (\exists x \in D) (y = f(x))$ $\Leftrightarrow (y \in f(C)) \lor (y \in f(D))$ $\Leftrightarrow y \in f(C) \cup f(D).$

<ロ> (四) (四) (三) (三) (三) (三)

Proof of $f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$.

Let $x \in A$ be given. Then

$$\begin{aligned} x \in f^{-1}(E \cap F) \Leftrightarrow f(x) \in E \cap F \\ \Leftrightarrow (f(x) \in E) \land (f(x) \in F) \\ \Leftrightarrow (x \in f^{-1}(E)) \land (x \in f^{-1}(F)) \\ \Leftrightarrow x \in f^{-1}(E) \cap f^{-1}(F). \end{aligned}$$

Proof of $f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$.

Let $x \in A$ be given. Then $x \in f^{-1}(E \cup F) \Leftrightarrow f(x) \in E \cup F$ $\Leftrightarrow (f(x) \in E) \lor (f(x) \in F)$ $\Leftrightarrow (x \in f^{-1}(E)) \lor (x \in f^{-1}(F))$ $\Leftrightarrow x \in f^{-1}(E) \cup f^{-1}(F).$

イロト イヨト イヨト イヨト

E.

Proof of $C \subseteq f^{-1}(f(C))$.

Let $x \in C$. Then $f(x) \in f(C)$; thus $x \in f^{-1}(f(C))$. Therefore, $C \subseteq f^{-1}(f(C))$.

Remark: It is possible that $C \subsetneq f^{-1}(f(C))$. For example, if $f(x) = x^2$ and C = [0, 1], then $f^{-1}(f(C)) = f^{-1}([0, 1]) = [-1, 1] \supsetneq [0, 1]$.

Proof of $f(f^{-1}(E)) \subseteq E$.

Suppose that $y \in f(f^{-1}(E))$. Then there exists $x \in f^{-1}(E)$ such that f(x) = y. Since $x \in f^{-1}(E)$, there exists $z \in E$ such that f(x) = z. Then y = z which implies that $y \in E$. Therefore, $f(f^{-1}(E)) \subseteq E$. \Box

Remark: It is possible that $f(f^{-1}(E)) \subsetneq E$. For example, if $f(x) = x^2$ and E = [-1, 1], then $f(f^{-1}(E)) = f([0, 1]) = [0, 1] \subsetneq [-1, 1]$.