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Chapter 4. Functions

§4.1 Functions as Relations

Recall the usual definition of functions from A to B:

Definition

Let A and B be sets. A function f: A — B consists of two sets A
and B together with a “rule” that assigns to each x € A a special
element of B denoted by f(x). One writes x — f(x) to denote that
x is mapped to the element f(x). A is called the domain of f, and

B is called the target or co-domain of f. The range of f or the
image of f, is the subset of B defined by f(A) = {f(x) |x < A}.

Each function is associated with a collection of ordered pairs
{(x,f(x))|xe A} = Ax B.

Since a collection of ordered pairs is a relation, we can say that a
function is a relation from one set to another.
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However, not every relation can serve as a function. A function is a
relation with additional special properties and we have the following

Definition (Alternative Definition of Functions)

A function (or mapping) from A to B is a relation f from A to B
such that

© the domain of fis A; thatis, (Vxe A)(Jye B)((x,y) € f), and
Q if (x,y)efand (x,z) € f, then y = z
We write f: A — B, and this is read “fis a function from A to B”

or “fmaps A to B". The set B is called the co-domain of f. In the
case where B= A, we say fis a function on A.

When (x,y) € f, we write y = f(x) instead of xfy. We say that y is
the image of f at x (or value of fat x) and that x is a pre-image

of y.
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Remark:

@ A function has only one domain and one range but many pos-
sible co-domains.

@ A function on R is usually called a real-valued function or sim-
ply real function. The domain of a real function is usually
understood to be the largest possible subset of R on which the
function takes values.

Definition

A function x with domain N is called an infinite sequence, or simply
a sequence. The image of the natural number n is usually written

as x, instead of x(n) and is called the n-th term of the sequence.
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§4.1 Functions as Relations

Definition
Let A, B be sets, and A C B.
© The the identity function/map on A is the function 4 : A —
A given by [4(x) = x for all xe A.
@ The inclusion function/map from A to B is the function ¢ :
A — B given by (x) = x for all xe€ A.
© The characteristic/indicator function of A (defined on B) is
the map 14 : B — R given by

1a) = 1 ifxeA,
AT 0 if xe B\A.
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§4.1 Functions as Relations

Definition (Cont'd)
Q The greatest integer function on R is the function [-] : R — Z
given by
[x] = the largest integer which is not greater than x.
The function [-] is also called the floor function or the Gauss
function.
© Let R be an equivalence relation on A. The canonical map

for the equivalence relation R is the map from A to A/R which

maps x € A to x, the equivalence class of x modulo R.
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Two functions f and g are equal if and only if
@ Dom(f) = Dom(g), and
Q for all xe Dom(f), f(x) = g(x).

v

The identity map of A and the inclusion map from A to B are

identical functions. |

f(x) = E and g(x) = 1 are different functions since they have differ-

ent domains. )
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§4.1 Functions as Relations

Remark:

When a rule of correspondence assigns more than one values to
an object in the domain, we say “the function is not well-defined”,
meaning that it is not really a function. A proof that a function is
well-defined is nothing more than a proof that the relation defined

by a given rule is single valued.

Let x denote the equivalence class of x modulo the congruence re-

lation modulo 4 and y denote the equivalence class of y modulo
the congruence relation modulo 10. Define f(x) = 2-x. Then this
“function” is not really a function since 0 = 4 but 2-0 = 0 while

24 =8 # 0. In other words, the way f assigns value to X is not

well-defined. )
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§4.1 Functions as Relations

Let X denote the equivalence class of x modulo the congruence re-
lation modulo 8 and y denote the equivalence class of y modulo the
congruence relation modulo 4. The function f: Zg — Z,4 given by
f(X) = x+ 2 is well-defined. To see this, suppose that X = z in Zs.
Then 8 divides x— z which implies that 4 divides x— z; thus 4 divides
(x+2) — (z+2). Therefore, x+2 = z+ 2 (mod 4) or equivalently,

——

x+2=2z+2 So fis well-defined.

Ching-hsiao Arthur Cheng #:5 % A##E MA-1015A



Chapter 4. Functions

§4.2 Construction of Functions

Definition
Let f: A— B. The inverse of fis the relation from B to A:
P ={(y,xeBxAly=fx)}={(r,x)eBxA|(xy)ef}.

When f~' describes a function, f~! is called the inverse function/
map of f.

Definition

Let f: A— Band g: B — C be functions. The composite of f
and g is the relation from A to C

go f={(x,z) € Ax C| there exists (a unique) y € B such that
(x,y) e fand (y,z) € g}.
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§4.2 Construction of Functions

Remark: Using the notation in the definition of functions, if (x, z) €
go f, then z= (go f)(x). On the other hand, if (x,z) € go f, there
exists (a unique) y € B such that (x,y) € fand (y,z) € g Then
y = f(x) and z = g(y). Therefore, we also have z = g(f(x)); thus
(g0 () = (F()

Let A, B and C be sets, and f: A— B and g: B — C be functions.
Then go fis a function from A to C.
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§4.2 Construction of Functions

By the definition of composition of relations, go fis a relation from
Ato C

© First, we show that Dom(go f) = A. Clearly Dom(go f) € A,
so it suffices to show that A < Dom(go f). Let x € A. Since
f: A — B is a function, there exists y € B such that (x,y) € f.
Since g : B — Cis a function, there exists z € C such that
(y,z) € g. This shows that for every x € A, there exists z€ C
such that (x,z) € go f; thus Dom(go f) = A.

@ Next, we show that if (x,z1) € go fand (x,z2) € go f, then
71 = z5. Suppose that (x,z;) € go fand (x,z2) € gof. Then
there exists y1,y2 € B such that (x,y1) € fand (y1,z1) € g,
while (x, y2) € fand (y2,z2) € g. Since fis a function, y1 = y»;
thus that g is a function implies that z; = z. o
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§4.2 Construction of Functions

Recall that if A, B, C, D are sets, R be a relation from A to B, S be
a relation from B to C, and T be a relation from C to D. Then

Q@ To(SoR)=(ToS)oR

Q /BOR: R and RO/A:R.

Let A,B,C,D be sets, and f: A— B, g: B— C, h: C > D be
functions. Then ho (gof) = (hog)of.

Let f: A— B be a function. Then foly = fand Igof=f.

Let f: A— B be a function, and C = Rng(f). If f': C— Aisa
function, then f~' o f=I4 and fo f~! = I.
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§4.2 Construction of Functions

Definition
Let f: A — B be a function, and D € A. The restriction of fto D,
denoted by f|p, is the function

flo={(xy)|y=f(x) and xe D}.
If g and h are functions and g is a restriction of h, the h is called an
extension of g.

.

Let F and G be functions

F={(1,2),(2,6),(3,-9),(5,7)},
G= {18,(2,6)( 8),(5,7),(8,3)}.
Then Fn G = {(2,6), (5,7)} is a function with domain {2, 5} which

is a proper subset of Dom(F) N Dom(G) = {1, 2, 5}.
On the other hand, {(1,2),(1,8)} < Fu G; thus F U G cannot be
a function.
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§4.2 Construction of Functions

Suppose that f and g are functions. Then fn g is a function with
domain A = {x} fix) = g(x)}, and fn g = fla = gla.

Let (x,y) € fn g Then y = f(x) = g(x); thus

Dom(fn g) = {x‘ flx) = g(x)}(z A).
If (x,y1),(xy2) € fn g (x,y1), (X, y2) € f which, by the fact that f

is a function, implies that y; = y». Therefore, fn g is a function.
Moreover,

fng= {(x,y)|§|xe Ay= f(x)}
which implies that fn g = f|a. o

.
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§4.2 Construction of Functions

For fu g being a function, it is (sufficient and) necessary that if
x € Dom(f) n Dom(g), then f(x) = g(x). Moreover, if fu g is
a function, then f = (f U g)|pom(r) and & = (f U &)lpom(g)- In
particular, we have the following

Let f and g be functions with Dom(f) = A and Dom(g) = B. If
An B=, then fu g is a function with domain A U B. Moreover,

fix) ifxeA,

(Fug)ld = { gx) ifxeB.
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§4.2 Construction of Functions

Let f and g be functions with Dom(f) = A and Dom(g) = B. If
An B= (&, then fu g is a function with domain A u B. Moreover,
f(x) ifxeA,
f —
(Fug®) { gx) ifxeB. ()

V.

Clearly Dom(fu g) = AU B. Suppose that (x,y1),(x,y2) € fug.
If (x,y1) € f, then x € Dom(f); thus by the fact that An B = ,
we must have (x, y2) € f. Since fis a function, y; = f(x) = y.
Similarly, if (x,y1) € g, then (x,y2) € g which also implies that
y1 = g(x) = y2. Therefore, fu gis a function and (*) is valid. o
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§4.2 Construction of Functions

Definition
Let f be a real-valued function defined on an interval / < R.
increasing

@ The function fis said to be .
decreasing

flx) < f(y)
f(x) = f(y)

@ The function fis said to be

that for all x,ye I.

strictly increasing
strictly decreasing

implies that for all x,y e I.

on [ if x< y implies

onlifx<y
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Let f: A — B be a function.
@ The function fis said to be surjective or onto B if Rng(f) =

B. When fis surjective, fis called a surjection, and we write
fAS B

@ The function fis said to be injective or one-to-one if it holds
that “f(x) = f(y) = x = y". When fis injective, fis called a
injection, and we write f: A =B

© The function fis called a bijection if it is both injective and

surjective. When fis a bijection, we write f: Al;tl»B.
onto
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§4.3 Functions that are Onto; One-to-One Functions

Remark:
© It is always true that Rng(f) < B; thus f: A — B is onto if
and only if B < Rng(f). In other words, f: A — B is onto if
and only if every b € B has a pre-image. Therefore, to prove
that f: A — B is onto B, it is sufficient to show that for every
b € B there exists a € A such that f(a) = b.

@ The direct proof of that f: A — B is injective is to verify the
property that “f(x) = f(y) = x=y". A proof of the injectivity
of f by contraposition assumes that x # y and one needs to
show that f(x) # f(y).
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§4.3 Functions that are Onto; One-to-One Functions

Q@ Iff: A— Bisonto Bandg: B— Cisonto C, then gofis
onto C.
Q Iff: A — B is one-to-one and g: B — C is one-to-one, then

go fis one-to-one.
V.

@ Let ce C. By the surjectivity of g, there exists b € B such that
g(b) = c. The surjectivity of f then implies the existence of
a € A such that f(a) = b. Therefore, (go f)(a) = g(f(a)) =
g(b) = c which concludes (D.

@ Assume that (go f)(x) = (go f)(y). Then g(f(x)) = g(f(y));
thus by the injectivity of g, f(x) = f(y). Therefore, the injec-

tivity of fimplies that x = y which concludes ). g
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§4.3 Functions that are Onto; One-to-One Functions

Iff: A— B, g: B — C are bijections, then gof: A — Cis a
bijection.

V.

Let f: A— B and g: B— C be functions.
@ Ifgofisonto C, then g is onto C.
@ If go fis one-to-one, then f is one-to-one.

@ Let c € C. Since go fis onto C, there exists a € A such
that (gof)(a) = c. Let b = f(a). Then g(b) = g(f(a)) =
(gof)(a) =c

@ Suppose that f(x) = f(y). Then (go f)(x) = g(f(x)) =
g(f(y)) = (go f)(y), and the injectivity of go f implies that
X=y. .
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§4.3 Functions that are Onto; One-to-One Functions

Remark:

O In part D of the theorem above, we cannot conclude that fis
also onto B since there might be a proper subset B < B such
that f: A — B, g: B — Cand go fis onto C. For example,
Let A= B=R, C=R*" U {0}, and f(x) = g(x) = x2. Then
clearly fis not onto B but go fis onto C.

@ In part @ of the theorem above, we cannot conclue that g
is one-to-one since it might happen that g is one-to-one on
Rng(f) < B but g is not one-to-one on B. For example, let
A= C=R"uU{0}, B=R, and f(x) = x2, g(x) = log(1+|x]).
Then clearly g is not one-to-one, but go fis one-to-one.
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§4.3 Functions that are Onto; One-to-One Functions

If f: A— B is one-to-one, then every restriction of f is one-to-one.

In the following we consider the function fuU g Recall that if

* f(x) if x om(f),
e el = 2, Huam (g = { gEx; ifxi Bong;.

Let f: A— C and g: B— D be functions. Suppose that A and B
are disjoint sets.

@ Iffis onto C and g is onto D, then fug: AuB— CuD s
onto Cu D.

@ If f is one-to-one, g is one-to-one, and C and D are disjoint,

then fug: Au B— Cu D is one-to-one.
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§4.3 Functions that are Onto; One-to-One Functions

We note that fu g: Au B— Cu D is a function.

O Let ye CuD. Then ye Cor ye D. W.L.O.G., we can assume
that y e C. Since f: A — Cis onto C, there exists x € A such
that (x,y) € f. Using (%), (fug)(x) = f(x) = y. Therefore,
fugisonto Cu D.

@ Suppose that (x1,y),(x2,y) € fug < (A x C) u (B x D).
Then (x1,y) € for (x1,y) € g W.L.O.G., we can assume that
(x1,y) € f. Since f€ Ax Cand g < B x D, by the fact that

Cn D= & we must have (x2,y) € f for otherwise y e Cn D,

a contradiction. Now, since (x1,y), (x2, y) € f, the injectivity of

f then implies that x; = xo. E
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Recall that the inverse of a relation f: A — B is the relation !
satisfying

yf'x < xfy < (xy)ef < y=f(x).

This relation is a function, called the inverse function of f, if the
relation itself is a function with certain domain.

Definition

A function f: A — B is said to be a one-to-one correspondence
if fis a bijection.
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Let f: A— B be a function.
Q@ f ' is a function from Rng(f) to A if and only if f is one-to-one.

@ If ' is a function, then f~' is one-to-one.

Q "="If (x1,y), (x2,y) € f, then (y,x1), (¥, x2) € f'. Since !
is a function, we must have x; = xo. Therefore, fis one-to-one.
<" If (y,x1),(y,x2) € ', then (x1,y),(x2,y) € f, and the
injectivity of f implies that x; = xo. Therefore, by the fact that
Rng(f) = Dom(f~'), ! is a function with domain Rng(f).

@ Suppose that 7! is a function, and (y1, x), (y2,x) € f~*. Then
(%, y1), (x, y2) € f which, by the fact that f is a function, implies

that y; = y». Therefore, f~* is one-to-one. B
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The inverse of a one-to-one correspondence is a one-to-one corre-
spondence.

V.

Let f: A— B, g: B— A be functions. Then
Q@ g=1f"'ifand only ifgo f=la and fo g = Ig (if and only if
f=g").
@ If fis surjective, and go f= I, then g= f".

© If fis injective, and fo g = Ig, then g= '.

V.

Recall that “If C = Rng(f) and f~' : C — A is a function, then
f~'of= 1, and fof~' = Ic". Therefore, the = direction in @ has
already been proved.
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We first prove the following two claims:
(a) If gof= s, then "' < g (b)If fog=Ig, then g< .
To see (a), let (y,x) € f ' be given. Then (x,y) € for y = f(x).
Since (go f) = la, we must have
8(y) = 8(f(x) = (8o F)(x) = laly) = x
or equivalently, (v, x) € g. Therefore, ! < g.
To see (b), let (y,x) € g be given. Then x = g(y); thus the fact
that (fo g) = Ig implies that
) = f(ely)) = (fog)(y) = Is(y) = ¥
or equivalently, (x,y) € . Therefore, (y,x) € f'; thus g < 1.
© “=" Done.

<" This direction is a direct consequence of the claims. o
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Proof. (Cont'd).

@ Suppose that f: A — Biis surjective and gof= l4. Then claim
(a) implies that f~' < g; thus it suffices to show that g < .
Let (y,x) € g Then by the surjectivity of fthere exists x; € A
such that y = f(xq) or equivalently, (y,x;) € f~'. On the other
hand,

x = gly) = g(f(x1)) = (go f)(x1) = lalx1) = x1.
Therefore, g < 1.
© Now suppose that f: A — B is injective and fo g = Ig. Then

claim (b) implies that g < f'; thus it suffices to show that
f~' < g Let (y,x) € f' or equivalently, (x,y) € for y = f(x).
By the fact that fo g = Ig, we have f(g(y)) = y; thus the
injectivity of fimplies that g(y) = x or (y,x) € g. Therefore,

f~! € g which completes the proof. .
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Since we have shown in the previous theorem that for functions
f:A— Band g: B— A,

@ g=f"'ifandonlyif gof=1I4 and fog= I,

@ If fis surjective, and go f= I, then g= 1,

@ If fis injective, and fo g = Ig, then g= 71,
we can conclude the following

If f: A— B is an one-to-one correspondence, and g: B — A be a
function. Then g = f~' if and only if go f= 14 or fo g= Ig.

Let A=R and B = {x|x > 0}. Define f: A — B by f(x) = x>
and g: B— A by g(y) = \/y. Then fo g= Ig but gis not inverse

function of fsince (go f)(x) = |x| for all xe A.
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Definition

Let A be a non-empty set. A permutation of A is a one-to-one
correspondence from A onto A.

Let A be a non-empty set. Then

@ the identity map |, is a permutation of A.
the composite of permutations of A is a permutation of A.

the inverse of a permutation of A is a permutation of A.

if fis a permutation of A, then fof~' =f'of= 4.

(2]
(8]
Q if fis a permutation of A, then fo s = lp0 f=f.
(5]
(6]

if f and g are permutations of A, then (go f)~! = ftog L
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Definition
Let f: A — B be a function, and X € A, Y < B. The image of X
(under f) or image set of X, denoted by f(X), is the set

= {ye B|y = f(x) for some xe X} = {f(x) | xe X},
and the pre-image of Y (under f) or the inverse image of Y,
denoted by f~'(Y), is the set

F(Y)={xeA|f(x) e Y}.

Remark: Here are some facts about images of sets that follow from
the definitions:

(a) If ae D, then f(a) € f(D).

(b) If ae f*(E), then f(a) €

(c) If f(a) € E, then ae (E)

(d) If f(a) € f(D) and fis one-to-one, then a€ D.
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§4.5 Set Images

Let f: A — B be a function. Suppose that C, D are subsets of A,
and E, F are subsets of B. Then

o

(2]
o

© 00

f(Cn D)< f(C) n (D). In particular, if C < D, then f(C) <
f(D).

f(CuD)=f(C)uf(D).

Y (EnF)=1f"YE)n *(F). In particular, if E < F, then
f~(E)c f'(F).

f(EuF)=f"E)uf(F).

Cc 1(f(0)).

f(f-*(E)) c E
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Proof of .
Let y € f(Cn D). Then there exists x € Cn D such that y = f(x).
Therefore, ye f(C) and y € f(D); thus ye f(C) n f(D). o

Remark: It is possible that f(Cn D) < f(C) n f(D). For example,
f(x) = x2, C= (—0,0) and D = (0,00). Then Cn D = & which
implies that f(Cn D) = ¢F; however, f(C) = f(D) = (0, ).
Proof of
Let y € B be given. Then
yef(CuD) <« (Ixe CuD)(y=f(x))
< (Axe C)(y=f(x) v @xe D)(y = f(x)
< (yef(C)) v (ye f(D)
< yef(C)u f(D). .
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Proof of
Let x € A be given. Then
xef ' (EnF)s f(x) e EnF
< (f)e E) A (f(x) € F)
< (xe fH(E)) A (xe FI(F))
< xefHE)n f*(F). o

Proof of
Let xe A be given. Then
xef(EUF)< f(x) e EUF
< (f)e E) v (f(x) € F)
< (xe fY(E)) v (xe FI(F))
< xefY(E)u f'(F). -
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Proof of .
Let x e C. Then f(x) € f(C); thus x € f'(f(C)). Therefore,
Cc H(f(Q)). o

Remark: It is possible that C < f~'(f(C)). For example, if f(x) =
x2 and C=0,1], then f~}(f(C)) = f*([0,1]) = [-1,1] 2 [0, 1].

Suppose that y € f(f~'(E)). Then there exists x € f~'(E) such that
f(x) = y. Since x € f'(E), there exists z € E such that f(x) = z
Then y = z which implies that y € E. Therefore, f(f'(E)) € E. o

Remark: It is possible that f(f~'(E)) < E. For example, if f(x) =
x? and E= [—1,1], then f(f"'(E)) = f([0,1]) = [0,1] < [-1,1].
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