基礎數學 MA-1015A

Chapter 3. Relations and Partitions

 \leftarrow σ \rightarrow

 \leftarrow \Box

 299

Chapter 3. Relations and Partitions

- §3.1 Relations
- §3.2 Equivalence Relations
- §3.3 Partitions
- §3.4 Modular Arithmetic
- §3.5 Ordering Relations

§3.1 Relations

Definition

Let *A* and *B* be sets. *R* is a *relation* from *A* to *B* if *R* is a subset of $A \times B$. A relation from A to A is called a relation on A. If $(a, b) \in R$, we say *a* is *R*-related (or simply related) to *b* and write *aRb.* If $(a, b) \notin R$, we write *aRb*.

Example

Let *R* be the relation "is older than" on the set of all people. If *a* is 32 yrs old, *b* is 25 yrs old, and *c* is 45 yrs old, then *aRb*, *cRb*, *aRc*/ . Similarly, the "less than" relation on $\mathbb R$ is the set $\{(x, y) | x < y\}$.

 \Box

 2990

§3.1 Relations

Remark:

Let *A* and *B* be sets. Every subset of $A \times B$ is a relations from *A* to *B*; thus every collection of ordered pairs is a relation. In particular, the empty set \emptyset and the set $A \times B$ are relations from *A* to *B* ($R = \emptyset$) is the relation that "nothing" is related, while $R = A \times B$ is the relation that "everything" is related).

§3.1 Relations

Definition

For any set *A*, the *identity relation on A* is the (diagonal) set $I_A = \{(a, a) | a \in A\}.$

Definition

Let *A* and *B* be sets, and *R* be a relation from *A* to *B*. The *domain* of *R* is the set

$$
Dom(R) = \{x \in A \mid (\exists y \in B)(xRy)\},\
$$

and the *range* of *R* is the set

 $\mathsf{Rng}(R) = \{ y \in B \mid (\exists x \in A)(xRy) \}.$

In other words, the domain of a relation *R* from *A* to *B* is the collection of all first coordinate of ordered pairs in *R*, and the range of *R* is the collection of all second coordinates.

§3.1 Relations

Definition

Let *A* and *B* be sets, and *R* be a relation from *A* to *B*. The *inverse* of R , denoted by R^{-1} , is the relation

$$
R^{-1} = \left\{ (y, x) \in B \times A \, \middle| \, (x, y) \in R \text{ (or equivalently, } xRy) \right\}.
$$

In other words, xRy if and only if $yR^{-1}x$ or equivalently, $(x, y) \in R$ if and only if $(y, x) \in R^{-1}$.

Example

Let $T = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y < 4x^2 - 7\}$. To find the inverse of *T*, we note that $(x, y) \in \mathcal{T}^{-1} \Leftrightarrow (y, x) \in \mathcal{T} \Leftrightarrow x < 4y^2 - 7 \Leftrightarrow x + 7 < 4y^2$ \Leftrightarrow $(x, y) \in \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x + 7 < 0\} \cup$ $\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 0 \leq \frac{x+7}{4}$ $\frac{+7}{4} < y^2$. 200

§3.1 Relations

Theorem

Let A and B be sets, and R be a relation from A to B.

- **1** $\text{Dom}(R^{-1}) = \text{Rng}(R)$.
- **2** Rng (R^{-1}) = Dom (R) *.*

Proof.

The theorem is concluded by

$$
b \in \text{Dom}(R^{-1}) \Leftrightarrow (\exists a \in A) [(b, a) \in R^{-1}] \Leftrightarrow (\exists a \in A) [(a, b) \in R]
$$

$$
\Leftrightarrow b \in \text{Rng}(R),
$$

and

$$
a \in \text{Rng}(R^{-1}) \Leftrightarrow (\exists b \in B) [(b, a) \in R^{-1}] \Leftrightarrow (\exists b \in B) [(a, b) \in R]
$$

$$
\Leftrightarrow a \in \text{Dom}(R).
$$

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 **MA-1015A**

§3.1 Relations

Definition

Let *A, B, C* be sets, and *R* be a relation from *A* to *B*, *S* be a relation from *B* to *C*. The *composite* of *R* and *S* is a relation from *A* to *C*, denoted by $S \circ R$, given by

$$
S \circ R = \left\{ (a, c) \in A \times C \middle| (\exists b \in B) [(aRb) \wedge (bSc)] \right\}.
$$

We note that $Dom(S \circ R) \subseteq Dom(R)$ and it may happen that $Dom(S \circ R) \subsetneq Dom(R)$.

 \Box

§3.1 Relations

Example

Let $A = \{1, 2, 3, 4, 5\}$, $B = \{p, q, r, s, t\}$ and $C = \{x, y, z, w\}$. Let R be the relation from *A* to *B*:

$$
R = \{(1, p), (1, q), (2, q), (3, r), (4, s)\}
$$

and *S* be the relation from *B* to *C*:

$$
S = \{(p, x), (q, x), (q, y), (s, z), (t, z)\}.
$$

Then $S \circ R = \{(1, x), (1, y), (2, x), (2, y), (4, z)\}.$

Example

Let $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x + 1\}$ and $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x + 2\}$ x^2 . Then $R \circ S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2 + 1\},\$ $S \circ R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = (x + 1)^2\}.$ Therefore, $S \circ R \neq R \circ S$.

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 **MA-1015A**

 2990

§3.1 Relations

Theorem

Suppose that A, B, C, D are sets, R be a relation from A to B, S be a relation from B to C, and T be a relation from C to D.

- (a) $(R^{-1})^{-1} = R$.
- (b) $T \circ (S \circ R) = (T \circ S) \circ R$ (*so composition is associative*).
- (c) $I_B \circ R = R$ and $R \circ I_A = R$.
- (d) $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ *.*

Proof of (a).

(a) holds since

 $(a, b) \in (R^{-1})^{-1} \Leftrightarrow (b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$.

§3.1 Relations

Proof of (b) $T \circ (S \circ R) = (T \circ S) \circ R$.

Since $S \circ R$ is a relation from *A* to *C*, $T \circ (S \circ R)$ is a relation from $A \rightarrow D$. Similarly, $(T \circ S) \circ R$ is also a relation from *A* to *D*. Let $(a, d) \in A \times D$. Then $(a, d) \in T \circ (S \circ R)$ \Leftrightarrow $(\exists c \in C)$ $[(a, c) \in S \circ R \wedge (c, d) \in T]$ \Leftrightarrow $(\exists c \in C)(\exists b \in B)[(a, b) \in R \wedge (b, c) \in S \wedge (c, d) \in T]$ \Leftrightarrow $(\exists (b, c) \in B \times C)[(a, b) \in R \wedge (b, c) \in S \wedge (c, d) \in T]$ \Leftrightarrow $(\exists b \in B)(\exists c \in C)[(a, b) \in R \wedge (b, c) \in S \wedge (c, d) \in T]$ \Leftrightarrow $(\exists b \in B) [(a, b) \in R \wedge (b, d) \in T \circ S]$ \Leftrightarrow (*a*, *d*) \in (*T* \circ *S*) \circ *R*. Therefore, $T \circ (S \circ R) = (T \circ S) \circ R$.

 \Box 290 4 伊 **Ching-hsiao Arthur Cheng** 鄭經斅 基礎數學 **MA-1015A**

§3.2 Equivalence Relations

Definition

Let *A* be a set and *R* be a relation on *A*.

- **1** *R* is *reflexive* on *A* if $(\forall x \in A)(xRx)$.
- **2** *R* is *symmetric* on *A* if $[\forall (x, y) \in A \times A](xRy \Leftrightarrow yRx)$.
- **³** *R* is *transitive* on *A* if

 $[\forall (x, y, z) \in A \times A \times A] [(xRy) \wedge (yRz)] \Rightarrow (xRz)].$

A relation *R* on *A* which is reflexive, symmetric and transitive is called an *equivalence relation* on *A*.

An equivalence relation is often denoted by \sim (the same symbol as negation but \sim as negation is always in front of a proposition while \sim as an equivalence relation is always between two elements in a set).

(包)

 \Box

 2990

§3.2 Equivalence Relations

Example

The relation "divides" on $\mathbb N$ is reflexive and transitive, but not symmetric. The relation "is greater than" on $\mathbb N$ is only transitive (遞移 律) but not reflexive and transitive.

Example

Let *A* be a set. The relation "is a subset of" on the power set $P(A)$ is reflexive, transitive but not symmetric.

Example

The relation $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 = y^2\}$ is reflexive, symmetric and transitive on R.

Example

The relation *R* on \mathbb{Z} defined by $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + y \text{ is even}\}$ is reflexive, symmetric and transitive.

 \Box

naa

§3.2 Equivalence Relations

Definition

Let *A* be a set and *R* be an equivalence relation on *A*. For $x \in A$, the *equivalence class of* x *modulo* R (or simply x *mod* R) is a subset of *A* given by

$$
\bar{x} = \{y \in A \,|\, xRy\}.
$$

Each element of \overline{x} is called a *representative* of this class. The collection of all equivalence classes modulo *R*, called *A modulo R*, is denoted by A/R (and is the set $A/R = {\overline{x} | x \in A}$).

Example

The relation $H = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$ is an equivalence relation on the set $A = \{1, 2, 3\}$. Then

 $\overline{1} = \overline{2} = \{1, 2\}$ and $\overline{3} = \{3\}$. Therefore, $A/H = \{\{1, 2\}, \{3\}\}.$

 2990

§3.2 Equivalence Relations

Theorem

Let A be a non-empty set and R be an equivalence relation on A. For all $x, y \in A$ *, we have*

- (a) $x \in \overline{x}$ and $\overline{x} \subseteq A$. (b) *xRy if and only if* $\overline{x} = \overline{y}$.
- (c) $x \cancel{R} y$ if and only if $\overline{x} \cap \overline{y} = \emptyset$.

Proof.

It is clear that (a) holds. To see (b) and (c), it suffices to show that " $xRy \Rightarrow \bar{x} = \bar{y}$ " and " $xRy \Rightarrow \bar{x} \cap \bar{y} = \varnothing$ ". Assume that *xRy*. Then if $z \in \overline{x}$, we have *xRz*. The symmetry and transitivity of *R* then implies that *yRz*; thus $z \in \overline{y}$ which implies that $\overline{x} \subseteq \overline{y}$. Similarly, $\overline{y} \subseteq \overline{x}$; hence we conclude that "*xRy* $\Rightarrow \overline{x} = \overline{y}$ ".

Now assume that $\bar{x} \cap \bar{y} \neq \emptyset$. Then for for some $z \in A$ we have $z \in \overline{x} \cap \overline{y}$. Therefore, *xRz* and *yRz*. Since *R* is symmetric and transitive, then *xRy* which implies that "*xRy* $\Rightarrow \overline{x} \cap \overline{y} = \emptyset$ ". transitive, then *xRy* which implies that " $xRy \Rightarrow \bar{x} \cap \bar{y} = \emptyset$ ".

 $a \circ$

§3.2 Equivalence Relations

Definition

Let *m* be a fixed positive integer. For $x, y \in \mathbb{Z}$, we say x *is congruent to y modulo m*(以 *m* 為除數時 *x* 同餘 *y*)and write *x* = *y* (*mod m*) if *m* divides $(x - y)$. The number *m* is called the *modulus* of the congruence.

Example

Using 4 as the modulus, we have $3 = 3$ (mod 4) because 4 divides $3 - 3 = 0$, $9 = 5$ (mod 4) because 4 divides $9 - 5 = 4$, $-27 = 1$ (mod 4) because 4 divides $-27 - 1 = -28$, $20 = 8 \pmod{4}$ because 4 divides $20 - 8 = 12$, $100 = 0$ (mod 4) because 4 divides $100 - 0 = 100$.

§3.2 Equivalence Relations

Theorem

For every fixed positive integer m, the relation "congruence modulo m" is an equivalence relation on Z*.*

Proof.

- **1 (Reflexivity)** It is easy to see that $x = x$ (mod *m*) for all $x \in \mathbb{Z}$. Therefore, congruence modulo *m* is reflexive on Z.
- **² (Symmetry)** Assume that *x* = *y* (mod *m*). Then *m* divides *x* – *y*; that is, $x - y = mk$ for some $k \in \mathbb{Z}$. Therefore, $y - x =$ $m(-k)$ which implies that *m* divides $y - x$; thus $y = x$ (mod *m*).
- **3** (Transitivity) Assume that $x = y$ (mod *m*) and $y = z$ (mod *m*). Then $x - y = mk$ and $y - z = ml$ for some $k, l \in \mathbb{Z}$. Therefore, $x - z = m(k + \ell)$ which implies that *m* divides $x - z$; thus $x = z \pmod{m}$.

§3.2 Equivalence Relations

Definition

The set of equivalence classes for the relation congruence modulo *m* is denoted by \mathbb{Z}_m .

Remark: The elements of \mathbb{Z}_m are sometimes called the *residue* (or *remainder*) classes modulo *m*.

Example

For congruence modulo 4, there are four equivalence classes: $\overline{0} = {\dots, -16, -12, -8, -4, 0, 4, 8, 12, 16, \dots} = {4k | k \in \mathbb{Z}},$ $\overline{1} = {\dots, -15, -11, -7, -3, 1, 5, 9, 13, 17, \dots} = {4k + 1 | k \in \mathbb{Z}},$ $\overline{2} = {\cdots, -14, -10, -6, -2, 2, 6, 10, 14, 18, \cdots} = {4k + 2 | k \in \mathbb{Z}},$ $\overline{3} = {\dots, -13, -9, -5, -1, 3, 7, 11, 15, 19, \dots} = \{4k + 3 \, | \, k \in \mathbb{Z} \}.$

 $E = \Omega Q$

 $(0 \rightarrow 0)$. $(1 \rightarrow 0)$

§3.2 Equivalence Relations

In general, we will prove that the equivalence relation "congruence modulo *m*" produces *m* equivalence classes

 $\overline{j} = \{mk + j | k \in \mathbb{Z}\}, \qquad j = 0, 1, \dots, m - 1.$

The collection of these equivalence classes, by definition $\mathbb{Z}/(\text{mod } m)$, is usually denoted by \mathbb{Z}_m .

Theorem

Let m be a fixed positive integer. Then

- **1** For integers x and y, $x = y \pmod{m}$ if and only if the remainder *when x is divided by m equals the remainder when y divided by m.*
- **²** Z*^m consists of m distinct equivalence classes:*

 $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \cdots, \overline{m-1}\}.$

 \mathbb{R}^d

§3.2 Equivalence Relations

Proof.

1 For a given $x \in \mathbb{Z}$, let $(q(x), r(x))$ denote the unique pair in $\mathbb{Z} \times \mathbb{Z}$ obtained by the division algorithm satisfying $x = mq(x) + r(x)$ and $0 \le r(x) < m$. Then $x = y \pmod{m} \Leftrightarrow m$ divides $x - y$ \Leftrightarrow *m* divides $m(q(x) - q(y)) + r(x) - r(y)$ \Leftrightarrow *m* divides $r(x) - r(y)$ \Leftrightarrow $r(x) - r(y) = 0$. where the last equivalence following from the fact that $0 \leq$ $r(x), r(y) < m.$

 \triangleleft \oplus \rightarrow

 \equiv

 \Box \rightarrow

 $\bar{\Xi}$ 2990

§3.2 Equivalence Relations

Proof. (Cont'd).

² Using *⃝*¹ , *x* and *y* are in the same equivalence classes (produced by the equivalence relation "congruence modulo *m*") if and only if *x* and *y* has the same remainder when they are divided by *m*. Therefore, we find that

$$
\overline{x} = \{mk + r(x) | k \in \mathbb{Z}\} = \overline{r(x)} \qquad \forall x \in \mathbb{Z}.
$$

Since $r(x)$ has values from $\{0, 1, \dots, m-1\}$, we find that $\mathbb{Z}_m =$ $\{\overline{0}, \overline{1}, \cdots, \overline{m-1}\}$. The proof is completed if we show that $\overline{k} \cap \overline{j} = \emptyset$ if $k \neq j$ and $k, j \in \{0, 1, \dots, m-1\}$. However, if $x \in \overline{k} \cap \overline{j}$, then

 $x = mq_1 + k = mq_2 + j$

which is impossible since $k \neq j$ and $k, j \in \{0, 1, \dots, m-1\}.$ Therefore, there are exactly m equivalence classes. \Box

§3.3 Partitions

Definition

Let *A* be a non-empty set. P is a *partition* of *A* if P is a collection of subsets of *A* such that

- **0** if $X \in \mathcal{P}$, then $X \neq \emptyset$.
- **2** if $X \in \mathcal{P}$ and $Y \in \mathcal{P}$, then $X = Y$ or $X \cap Y = \emptyset$.
- **3** Ť *X*∈ P $X = A$.

In other words, a partition of a set *A* is a pairwise disjoint collection of non-empty subsets of *A* whose union is *A*.

§3.3 Partitions

Example

The family $\mathcal{G} = \{ [n, n+1) \mid n \in \mathbb{Z} \}$ is a partition of \mathbb{R} .

Example

Each of the following is a partition of \mathbb{Z} :

- $\mathbf{P} = \{E, D\}$, where *E* is the collection of even integers and *D* is the collection of odd integers.
- $\mathbf{2}^\top\mathbf{\mathcal{X}}=\{\mathbb{N},\{0\},\mathbb{Z}^+\},$ where \mathbb{Z}^+ is the collection of negative integers.
- **3** $\mathcal{H} = \{A_k | k \in \mathbb{Z}\},\$ where $A_k = \{3k, 3k + 1, 3k + 2\}.$

 \Box

 2990

 \equiv

§3.3 Partitions

Theorem

If R is an equivalent relation on a non-empty set A, then A/*R is a partition of A.*

Proof.

First of all, each equivalence class $\bar{x} \in A/R$ must be non-empty since it contains *x*. Let \bar{x} and \bar{y} be two equivalence classes in A/R . If $\bar{x} \cap \bar{y} \neq \emptyset$, then there exists $z \in \bar{x} \cap \bar{y}$ which implies that *xRz* and *yRz*. By the symmetry and the transitivity of *R* we have *xRy* which implies that $\bar{x} = \bar{y}$. Finally, it is clear that $\bigcup_{\overline{x} \in A/R} \overline{x} \subseteq A$ since each $\overline{x} \subseteq A$. On the other $\overline{x} \in \overline{A}/R$

hand, since each *y* \in *A* belongs to the equivalence class \overline{y} , we must have *A* \subset 1 | \overline{x} . Therefore. *A* = 1 | \overline{x} . have $A \subseteq \bigcup_{\overline{x} \in A/R} \overline{x}$. Therefore, $A = \bigcup_{\overline{x} \in A/R} \overline{x}$ $\overline{x} \in \overline{A}/R$ $\overline{x} \in \overline{A}/R$ \overline{x} . \Box

gac

§3.3 Partitions

Theorem

Let P *be a partition of a non-empty set A. For* $x, y \in A$ *, define* xQy *if and only if there exists* $C \in \mathcal{P}$ *such that* $x, y \in C$ *. Then*

- **¹** *Q is an equivalence relation on A.*
- \bullet $A/Q = P$ *.*

Proof.

It is clear that *Q* is reflexive and symmetric on *A*, so it suffices to show the transitivity of *Q* to complete ①. Suppose that *xQy* and yQz . By the definition of the relation Q there exists C_1 and C_2 in *P* such that $x, y \in C_1$ and $y, z \in C_2$; hence $C_1 \cap C_2 \neq \emptyset$. Then $C_1 = C_2$ by the fact that P is a partition and $C_1, C_2 \in P$. Therefore, $x, z \in C_1$ which implies that *xQz*.

§3.3 Partitions

Proof. (Cont'd).

Next, we claim that if $C \in \mathcal{P}$, then $x \in C$ if and only if $\bar{x} = C$. It suffices to show the direction " \Rightarrow " since $x \in \overline{x}$.

Suppose that $C \in \mathcal{P}$ and $x \in C$.

- **1** " $C \subseteq \overline{x}$ ": Let $y \in C$ be given. By the fact that $x \in C$ we must have *yQx*. Therefore, $y \in \overline{x}$ which shows $C \subseteq \overline{x}$.
- **2** " $\bar{x} \subseteq C$ ": Let $y \in \bar{x}$ be given. Then there exists $\tilde{C} \in \mathcal{P}$ such that $x, y \in \widetilde{C}$. By the fact that $x \in C$, we find that $C \cap \widetilde{C} \neq \emptyset$. Since P is a partition of A and C , $\widetilde{C} \in \mathcal{P}$, we must have $C = \widetilde{C}$; thus $y \in C$. Therefore, $\bar{x} \subseteq C$.

§3.3 Partitions

Proof. (Cont'd).

Now we show that $A/Q = P$. If $C \in P$, then $C \neq \emptyset$; thus there exists $x \in C$ for some $x \in A$. Then the claim above shows that $C = \bar{x} \in A/Q$. Therefore, $P \subseteq A/Q$. On the other hand, if $\bar{x} \in A/Q$, by the fact that P is a partition of A , there exists $C \in P$ such that *x* \in *C*. Then the claim above shows that \bar{x} = *C*. Therefore, $A/Q \subseteq \mathcal{P}$. $A/Q \subseteq P$.

Remark: The relation *Q* defined in the theorem proved above is called *the equivalence relation associated with the partition P*.

§3.3 Partitions

Example

Let $A = \{1, 2, 3, 4\}$, and let $\mathcal{P} = \{\{1\}, \{2, 3\}, \{4\}\}$ be a partition of *A* with three sets. The equivalence relation *Q* associated with *P* $\{(1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (3, 2)\}.$ The three equivalence classes for *Q* are $\overline{1} = \{1\}$, $\overline{2} = \overline{3} = \{2,3\}$ and $\overline{4} = \{4\}$. The collection of all equivalence classes *A*/*Q* is precisely *P*.

Example

The collect $P = \{A_0, A_1, A_2, A_3\}$, where

 $A_j = \{4k + j \mid k \in \mathbb{Z}\}\$ for $j = \{0, 1, 2, 3\},\$

is a partition of $\mathbb Z$ because of the division algorithm. The equivalence relation associated with the partition P is the relation of congruence modulo 4, and each A_j is the residue class of *j* modulo 4 for $j =$ 0*,* 1*,* 2*,* 3.

ogo

§3.4 Modular Arithmetic

Theorem

Let m be a positive integer and a, b, c and d be integers. If $a = c$ $(mod m)$ and $b = d$ (mod m), then $a + b = c + d$ (mod m) and $a \cdot b = c \cdot d \pmod{m}$.

Proof.

Since $a = c$ (mod m) and $b = d$ (mod m), we have $a - c = mk_1$ and $b - d = mk_2$ for some $k_1, k_2 \in \mathbb{Z}$. Then

$$
a+b=c+mk_1+d+mk_2=c+d+m(k_1+k_2)
$$

and

$$
a \cdot b = (c + mk_1) \cdot (d + mk_2) = c \cdot d + m(c \cdot k_2 + d \cdot k_1 + k_1 \cdot k_2).
$$

Therefore, $a + b = c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$.

§3.4 Modular Arithmetic

Definition

For each natural number *m*,

- **1** the *sum of the classes* \overline{x} and \overline{y} in \mathbb{Z}_m , denoted by $\overline{x} + \overline{y}$, is defined to be the class containing the integer $x + y$;
- **2** the *product of the classes* \overline{x} and \overline{y} in \mathbb{Z}_m , denoted by $\overline{x} \cdot \overline{y}$, is defined to be the class containing the integer $x \cdot y$.

In symbols, $\overline{x} + \overline{y} = \overline{x + y}$ and $\overline{x} \cdot \overline{y} = \overline{x \cdot y}$.

Example

In \mathbb{Z}_6 , $\overline{5} + \overline{3} = \overline{2}$ and $\overline{4} \cdot \overline{5} = \overline{2}$.

Example

In \mathbb{Z}_8 , $(\bar{5} + \bar{7}) \cdot (\bar{6} + \bar{5}) = \bar{12} \cdot \bar{11} = \bar{4} \cdot \bar{3} = \bar{12} = \bar{4}$.

§3.4 Modular Arithmetic

Example

Find 3^{63} in \mathbb{Z}_7 . Since $3^1 = \overline{3}$, $3^2 = \overline{2}$, $3^3 = \overline{6}$, $3^4 = \overline{4}$, $3^5 = \overline{5}$, $3^6 = \overline{1}$, we have $3^{63} = 3^{60} \cdot 3^3 = 6$.

Example

For every integer k , 6 divides $k^3 + 5k$. In fact, by the division algorithm, for each $k \in \mathbb{Z}$ there exists a unique pair (q, r) such that $k = 6q + r$ for some $0 \le r < 5$. Therefore, in \mathbb{Z}_6 we have $k^3 + 5k = (6q + r)^3 + 5(6q + r) = r^3 + \overline{5 \cdot r}$ $= r^3 + (-1) \cdot r = r^3 - r.$ It is clear that then $k^3 + 5k = 0$ since $0^3 - 0 = 1^3 - 1 = 2^3 - 2 = 3^3 - 3 = 4^3 - 4 = 5^3 - 5$. 2990 **Ching-hsiao Arthur Cheng** 鄭經斅 基礎數學 **MA-1015A**

§3.4 Modular Arithmetic

Theorem

Let m be a positive composite integer. Then there exists non-zero equivalence classes \bar{x} *and* \bar{y} *in* \mathbb{Z}_m *such that* $\bar{x} \cdot \bar{y} = \bar{0}$ *.*

Proof.

Since *m* is a positive composite integer, $m = x \cdot y$ for some $x, y \in \mathbb{N}$, $1 < x, y < m$. Since $1 < x, y < m$, $\overline{x}, \overline{y} \neq \overline{0}$. Therefore, in \mathbb{Z}_m
 $\overline{0} = \overline{m} = \overline{x} \cdot \overline{y}$ which concludes the theorem. $\overline{0} = \overline{m} = \overline{x} \cdot \overline{y}$ which concludes the theorem.

Theorem

Let p be a prime. If $\bar{x} \cdot \bar{y} = \bar{0}$ *in* \mathbb{Z}_p *, then either* $\bar{x} = \bar{0}$ *or* $\bar{y} = \bar{0}$ *.*

Proof.

Let $\overline{x}, \overline{y} \in \mathbb{Z}_p$ and $\overline{x} \cdot \overline{y} = \overline{0}$. Then $x \cdot y = 0$ (mod *p*). Therefore, *p* divides *x* · *y*. Since *p* is prime, $p | x$ or $p | y$ which implies that $\bar{x} = \overline{0}$ or $\bar{y} = \overline{0}$. or $\bar{y} = \bar{0}$.

nac

§3.4 Modular Arithmetic

Theorem

Let p be a prime. If $xy = xz \pmod{p}$ *and* $x \ne 0 \pmod{p}$, then *y* = *z* (*mod p*)*.*

Proof.

If $xy = xz$ (mod *p*), then $x(y - z) = 0$ (mod *p*). By the previous theorem $\bar{x} = \bar{0}$ or $\bar{y} - \bar{z} = \bar{0}$. Since $x \neq 0$ (mod *p*), we must have $\bar{y} = \bar{z}$; thus $y = z$ (mod *p*). $\overline{y} = \overline{z}$; thus $y = z$ (mod p).

Corollary (Cancellation Law for \mathbb{Z}_p)

Let p be a prime, and $\overline{x}, \overline{y}, \overline{z} \in \mathbb{Z}_p$ *. If* $\overline{x} \cdot \overline{y} = \overline{x} \cdot \overline{z}$ *, then* $\overline{x} \neq \overline{0}$ *or* $\bar{y} = \bar{z}$.