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Chapter 3. Relations and Partitions

§3.1 Relations
Definition
Let A and B be sets. R is a relation from A to B if R is a subset
of A ˆ B. A relation from A to A is called a relation on A. If
(a, b) P R, we say a is R-related (or simply related) to b and write
aRb. If (a, b) R R, we write a/Rb.

Example
Let R be the relation ”is older than” on the set of all people. If a is
32 yrs old, b is 25 yrs old, and c is 45 yrs old, then aRb, cRb, a/Rc.
Similarly, the ”less than” relation on R is the set

␣

(x, y)
ˇ

ˇ x ă y
(

.
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§3.1 Relations
Remark:
Let A and B be sets. Every subset of AˆB is a relations from A to B;
thus every collection of ordered pairs is a relation. In particular, the
empty set H and the set A ˆ B are relations from A to B (R = H

is the relation that “nothing” is related, while R = A ˆ B is the
relation that “everything” is related).
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§3.1 Relations
Definition
For any set A, the identity relation on A is the (diagonal) set

IA =
␣

(a, a)
ˇ

ˇ a P A
(

.

Definition
Let A and B be sets, and R be a relation from A to B. The domain
of R is the set

Dom(R) =
␣

x P A
ˇ

ˇ (D y P B)(xRy)
(

,

and the range of R is the set

Rng(R) =
␣

y P B
ˇ

ˇ (D x P A)(xRy)
(

.

In other words, the domain of a relation R from A to B is the
collection of all first coordinate of ordered pairs in R, and the range
of R is the collection of all second coordinates.
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§3.1 Relations
Definition
Let A and B be sets, and R be a relation from A to B. The inverse
of R, denoted by R´1, is the relation

R´1 =
␣

(y, x) P B ˆ A
ˇ

ˇ (x, y) P R (or equivalently, xRy)
(

.

In other words, xRy if and only if yR´1x or equivalently, (x, y) P R
if and only if (y, x) P R´1.

Example
Let T =

␣

(x, y) P R ˆ R
ˇ

ˇ y ă 4x 2 ´ 7
(

. To find the inverse of T,
we note that

(x, y) P T´1 ô (y, x) P T ô x ă 4y 2 ´ 7 ô x + 7 ă 4y 2

ô (x, y) P
␣

(x, y) P R ˆ R
ˇ

ˇ x + 7 ă 0
(

Y
␣

(x, y) P R ˆ R
ˇ

ˇ 0 ď
x + 7

4
ă y 2

(

.
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§3.1 Relations
Theorem
Let A and B be sets, and R be a relation from A to B.

1 Dom(R´1) = Rng(R).
2 Rng(R´1) = Dom(R).

Proof.
The theorem is concluded by
b P Dom(R´1) ô (D a P A)

[
(b, a) P R´1

]
ô (D a P A)

[
(a, b) P R

]
ô b P Rng(R) ,

and
a P Rng(R´1) ô (D b P B)

[
(b, a) P R´1

]
ô (D b P B)

[
(a, b) P R

]
ô a P Dom(R) . ˝
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§3.1 Relations
Definition
Let A,B,C be sets, and R be a relation from A to B, S be a relation
from B to C. The composite of R and S is a relation from A to C,
denoted by S ˝ R, given by

S ˝ R =
!

(a, c) P A ˆ C
ˇ

ˇ

ˇ
(D b P B)

[
(aRb) ^ (bSc)

])
.

We note that Dom(S ˝ R) Ď Dom(R) and it may happen that
Dom(S ˝ R) Ĺ Dom(R).
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§3.1 Relations
Example
Let A = t1, 2, 3, 4, 5u, B = tp, q, r, s, tu and C = tx, y, z,wu. Let R
be the relation from A to B:

R =
␣

(1, p), (1, q), (2, q), (3, r), (4, s)
(

and S be the relation from B to C:
S =

␣

(p, x), (q, x), (q, y), (s, z), (t, z)
(

.

Then S ˝ R =
␣

(1, x), (1, y), (2, x), (2, y), (4, z)
(

.

Example
Let R =

␣

(x, y) P R ˆ R
ˇ

ˇ y = x + 1
(

and S =
␣

(x, y) P R ˆ R
ˇ

ˇ y =
x 2
(

. Then
R ˝ S =

␣

(x, y) P R ˆ R
ˇ

ˇ y = x 2 + 1
(

,

S ˝ R =
␣

(x, y) P R ˆ R
ˇ

ˇ y = (x + 1)2
(

.

Therefore, S ˝ R ‰ R ˝ S.
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§3.1 Relations
Theorem
Suppose that A,B,C,D are sets, R be a relation from A to B, S be
a relation from B to C, and T be a relation from C to D.
(a) (R´1)´1 = R.
(b) T ˝ (S ˝ R) = (T ˝ S) ˝ R (so composition is associative).
(c) IB ˝ R = R and R ˝ IA = R.
(d) (S ˝ R)´1 = R´1 ˝ S´1.

Proof of (a).
(a) holds since

(a, b) P (R´1)´1 ô (b, a) P R´1 ô (a, b) P R . ˝
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§3.1 Relations
Proof of (b) T ˝ (S ˝ R) = (T ˝ S) ˝ R.
Since S ˝ R is a relation from A to C, T ˝ (S ˝ R) is a relation from
A Ñ D. Similarly, (T ˝ S) ˝ R is also a relation from A to D. Let
(a, d) P A ˆ D. Then

(a, d) P T ˝ (S ˝ R)
ô (D c P C)

[
(a, c) P S ˝ R ^ (c, d) P T

]
ô (D c P C)(D b P B)

[
(a, b) P R ^ (b, c) P S ^ (c, d) P T

]
ô (D (b, c) P B ˆ C)

[
(a, b) P R ^ (b, c) P S ^ (c, d) P T

]
ô (D b P B)(D c P C)

[
(a, b) P R ^ (b, c) P S ^ (c, d) P T

]
ô (D b P B)

[
(a, b) P R ^ (b, d) P T ˝ S

]
ô (a, d) P (T ˝ S) ˝ R .

Therefore, T ˝ (S ˝ R) = (T ˝ S) ˝ R. ˝

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



Chapter 3. Relations and Partitions

§3.1 Relations
Proof of (c) IB ˝ R = R = R ˝ IA.
Let (a, b) P A ˆ B be given. Then

(a, b) P IB ˝ R ô (D c P B)
[
(a, c) P R ^ (c, b) P IB

]
.

Note that (c, b) P IB if and only if c = b; thus
(D c P B)

[
(a, c) P R ^ (c, b) P IB

]
ô (a, b) P R .

Therefore, (a, b) P IB ˝ R ô (a, b) P R. Similarly, (a, b) P R ˝ IA ô

(a, b) P R. ˝

Proof of (d) (S ˝ R)´1 = R´1 ˝ S´1.
Let (a, c) P A ˆ C. Then

(c, a) P (S ˝ R)´1 ô (a, c) P S ˝ R
ô (D b P B)

[
(a, b) P R ^ (b, c) P S

]
ô (D b P B)

[
(c, b) P S´1 ^ (b, a) P R´1

]
ô (c, a) P R´1 ˝ S´1 . ˝
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§3.2 Equivalence Relations
Definition
Let A be a set and R be a relation on A.

1 R is reflexive on A if (@ x P A)(xRx).
2 R is symmetric on A if

[
@ (x, y) P A ˆ A

]
(xRy ô yRx).

3 R is transitive on A if[
@ (x, y, z) P A ˆ A ˆ A

][
(xRy) ^ (yRz)

]
ñ (xRz)

]
.

A relation R on A which is reflexive, symmetric and transitive is
called an equivalence relation on A.

An equivalence relation is often denoted by „ (the same symbol as
negation but „ as negation is always in front of a proposition while
„ as an equivalence relation is always between two elements in a
set).
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§3.2 Equivalence Relations
Example
The relation “divides” on N is reflexive and transitive, but not sym-
metric. The relation “is greater than” on N is only transitive（遞移
律）but not reflexive and transitive.

Example
Let A be a set. The relation “is a subset of” on the power set P(A)
is reflexive, transitive but not symmetric.

Example
The relation S =

␣

(x, y) P R ˆ R
ˇ

ˇ x 2 = y 2
(

is reflexive, symmetric
and transitive on R.
Example
The relation R on Z defined by R =

␣

(x, y) P Z ˆ Z
ˇ

ˇ x + y is even
(

is reflexive, symmetric and transitive.
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§3.2 Equivalence Relations
Definition
Let A be a set and R be an equivalence relation on A. For x P A,
the equivalence class of x modulo R (or simply x mod R) is a
subset of A given by

sx =
␣

y P A
ˇ

ˇ xRy
(

.

Each element of sx is called a representative of this class. The
collection of all equivalence classes modulo R, called A modulo R,
is denoted by A/R

(
and is the set A/R = tsx | x P Au

)
.

Example
The relation H =

␣

(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)
(

is an equiva-
lence relation on the set A = t1, 2, 3u. Then

s1 = s2 = t1, 2u and s3 = t3u .

Therefore, A/H =
␣

t1, 2u, t3u
(

.
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§3.2 Equivalence Relations
Theorem
Let A be a non-empty set and R be an equivalence relation on A.
For all x, y P A, we have
(a) x P sx and sx Ď A. (b) xRy if and only if sx = sy.
(c) x/Ry if and only if sx X sy = H.

Proof.
It is clear that (a) holds. To see (b) and (c), it suffices to show that
“xRy ñ sx = sy” and “x/Ry ñ sx X sy = H”.
Assume that xRy. Then if z P sx, we have xRz. The symmetry and
transitivity of R then implies that yRz; thus z P sy which implies that
sx Ď sy. Similarly, sy Ď sx; hence we conclude that “xRy ñ sx = sy”.
Now assume that sx X sy ‰ H. Then for for some z P A we have
z P sx X sy. Therefore, xRz and yRz. Since R is symmetric and
transitive, then xRy which implies that “x/Ry ñ sx X sy = H”. ˝
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§3.2 Equivalence Relations
Definition
Let m be a fixed positive integer. For x, y P Z, we say x is congruent
to y modulo m（以 m 為除數時 x 同餘 y）and write x = y (mod
m) if m divides (x ´ y). The number m is called the modulus of
the congruence.

Example
Using 4 as the modulus, we have

3 = 3 (mod 4) because 4 divides 3 ´ 3 = 0 ,

9 = 5 (mod 4) because 4 divides 9 ´ 5 = 4 ,

´27 = 1 (mod 4) because 4 divides ´27 ´ 1 = ´28 ,

20 = 8 (mod 4) because 4 divides 20 ´ 8 = 12 ,

100 = 0 (mod 4) because 4 divides 100 ´ 0 = 100 .
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§3.2 Equivalence Relations
Theorem
For every fixed positive integer m, the relation “congruence modulo
m” is an equivalence relation on Z.

Proof.
1 (Reflexivity) It is easy to see that x = x (mod m) for all x P Z.

Therefore, congruence modulo m is reflexive on Z.
2 (Symmetry) Assume that x = y (mod m). Then m divides

x ´ y; that is, x ´ y = mk for some k P Z. Therefore, y ´ x =

m(´k) which implies that m divides y ´ x; thus y = x (mod
m).

3 (Transitivity) Assume that x = y (mod m) and y = z (mod
m). Then x ´ y = mk and y ´ z = mℓ for some k, ℓ P Z.
Therefore, x ´ z = m(k+ ℓ) which implies that m divides x ´ z;
thus x = z (mod m). ˝
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§3.2 Equivalence Relations
Definition
The set of equivalence classes for the relation congruence modulo
m is denoted by Zm.

Remark: The elements of Zm are sometimes called the residue (or
remainder) classes modulo m.
Example
For congruence modulo 4, there are four equivalence classes:
s0 = t¨ ¨ ¨ ,´16,´12,´8,´4,0,4,8,12,16, ¨ ¨ ¨ u =

␣

4k
ˇ

ˇk P Z
(

,

s1 = t¨ ¨ ¨ ,´15,´11,´7,´3,1,5,9,13,17, ¨ ¨ ¨ u =
␣

4k + 1
ˇ

ˇk P Z
(

,

s2 = t¨ ¨ ¨ ,´14,´10,´6,´2,2,6,10,14,18, ¨ ¨ ¨ u =
␣

4k + 2
ˇ

ˇk P Z
(

,

s3 = t¨ ¨ ¨ ,´13,´9,´5,´1,3,7,11,15,19, ¨ ¨ ¨ u =
␣

4k + 3
ˇ

ˇk P Z
(

.
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§3.2 Equivalence Relations
In general, we will prove that the equivalence relation “congruence
modulo m” produces m equivalence classes

sj =
␣

mk + j
ˇ

ˇ k P Z
(

, j = 0, 1, ¨ ¨ ¨ ,m ´ 1 .

The collection of these equivalence classes, by definition Z/(mod m),
is usually denoted by Zm.
Theorem
Let m be a fixed positive integer. Then

1 For integers x and y, x = y (mod m) if and only if the remainder
when x is divided by m equals the remainder when y divided by
m.

2 Zm consists of m distinct equivalence classes:
Zm =

␣

s0,s1, ¨ ¨ ¨ , Ğm ´ 1
(

.
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§3.2 Equivalence Relations
Proof.

1 For a given x P Z, let
(
q(x), r (x)

)
denote the unique pair in

Z ˆ Z obtained by the division algorithm satisfying

x = mq(x) + r (x) and 0 ď r (x) ă m .

Then
x = y (mod m) ô m divides x ´ y

ô m divides m
(
q(x) ´ q(y)

)
+ r (x) ´ r (y)

ô m divides r (x) ´ r (y)
ô r (x) ´ r (y) = 0 .

where the last equivalence following from the fact that 0 ď

r (x), r (y) ă m. ˝
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§3.2 Equivalence Relations
Proof. (Cont’d).

2 Using 1⃝, x and y are in the same equivalence classes (produced
by the equivalence relation “congruence modulo m”) if and only
if x and y has the same remainder when they are divided by m.
Therefore, we find that

sx =
␣

mk + r (x)
ˇ

ˇ k P Z
(

= Ěr (x) @ x P Z .

Since r (x) has values from t0, 1, ¨ ¨ ¨ ,m´1u, we find that Zm =
␣

s0,s1, ¨ ¨ ¨ , Ğm ´ 1
(

. The proof is completed if we show that
sk Xsj = H if k ‰ j and k, j P t0, 1, ¨ ¨ ¨ ,m ´ 1u. However, if
x P sk Xsj, then

x = mq1 + k = mq2 + j
which is impossible since k ‰ j and k, j P t0, 1, ¨ ¨ ¨ ,m ´ 1u.
Therefore, there are exactly m equivalence classes. ˝
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§3.3 Partitions
Definition
Let A be a non-empty set. P is a partition of A if P is a collection
of subsets of A such that

1 if X P P, then X ‰ H.
2 if X P P and Y P P, then X = Y or X X Y = H.
3

Ť

XPP
X = A.

In other words, a partition of a set A is a pairwise disjoint collection
of non-empty subsets of A whose union is A.
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§3.3 Partitions
Example
The family G =

␣

[n, n + 1)
ˇ

ˇ n P Z
(

is a partition of R.

Example
Each of the following is a partition of Z:

1 P = tE,Du, where E is the collection of even integers and D is
the collection of odd integers.

2 X = tN, t0u,Z´u, where Z´ is the collection of negative inte-
gers.

3 H = tAk | k P Zu, where Ak = t3k, 3k + 1, 3k + 2u.
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§3.3 Partitions
Theorem
If R is an equivalent relation on a non-empty set A, then A/R is a
partition of A.

Proof.
First of all, each equivalence class sx P A/R must be non-empty
since it contains x. Let sx and sy be two equivalence classes in A/R.
If sx Xsy ‰ H, then there exists z P sx Xsy which implies that xRz and
yRz. By the symmetry and the transitivity of R we have xRy which
implies that sx = sy.
Finally, it is clear that

Ť

sx PA/R
sx Ď A since each sx Ď A. On the other

hand, since each y P A belongs to the equivalence class sy, we must
have A Ď

Ť

sx PA/R
sx. Therefore, A =

Ť

sx PA/R
sx. ˝
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§3.3 Partitions
Theorem
Let P be a partition of a non-empty set A. For x, y P A, define xQy
if and only if there exists C P P such that x, y P C. Then

1 Q is an equivalence relation on A.
2 A/Q = P.

Proof.
It is clear that Q is reflexive and symmetric on A, so it suffices to
show the transitivity of Q to complete 1⃝. Suppose that xQy and
yQz. By the definition of the relation Q there exists C1 and C2 in
P such that x, y P C1 and y, z P C2; hence C1 X C2 ‰ H. Then
C1 = C2 by the fact that P is a partition and C1,C2 P P. Therefore,
x, z P C1 which implies that xQz. ˝
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§3.3 Partitions
Proof. (Cont’d).
Next, we claim that if C P P, then x P C if and only if sx = C. It
suffices to show the direction “ñ” since x P sx.

Suppose that C P P and x P C.
1 “C Ď sx ”: Let y P C be given. By the fact that x P C we must

have yQx. Therefore, y P sx which shows C Ď sx.
2 “sx Ď C ”: Let y P sx be given. Then there exists rC P P such

that x, y P rC. By the fact that x P C, we find that C X rC ‰ H.
Since P is a partition of A and C, rC P P, we must have C = rC;
thus y P C. Therefore, sx Ď C. ˝
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§3.3 Partitions
Proof. (Cont’d).
Now we show that A/Q = P. If C P P, then C ‰ H; thus there
exists x P C for some x P A. Then the claim above shows that
C = sx P A/Q. Therefore, P Ď A/Q. On the other hand, if sx P A/Q,
by the fact that P is a partition of A, there exists C P P such
that x P C. Then the claim above shows that sx = C. Therefore,
A/Q Ď P. ˝

Remark: The relation Q defined in the theorem proved above is
called the equivalence relation associated with the partition P.

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



Chapter 3. Relations and Partitions

§3.3 Partitions
Example
Let A = t1, 2, 3, 4u, and let P =

␣

t1u, t2, 3u, t4u
(

be a partition
of A with three sets. The equivalence relation Q associated with P
is

␣

(1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (3, 2)
(

. The three equivalence
classes for Q are s1 = t1u, s2 = s3 = t2, 3u and s4 = t4u. The
collection of all equivalence classes A/Q is precisely P.

Example
The collect P = tA0,A1,A2,A3u, where

Aj = t4k + j | k P Zu for j = t0, 1, 2, 3u,
is a partition of Z because of the division algorithm. The equivalence
relation associated with the partition P is the relation of congruence
modulo 4, and each Aj is the residue class of j modulo 4 for j =
0, 1, 2, 3.
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§3.4 Modular Arithmetic
Theorem
Let m be a positive integer and a, b, c and d be integers. If a = c
(mod m) and b = d (mod m), then a + b = c + d (mod m) and
a ¨ b = c ¨ d (mod m).

Proof.
Since a = c (mod m) and b = d (mod m), we have a ´ c = mk1
and b ´ d = mk2 for some k1, k2 P Z. Then

a + b = c + mk1 + d + mk2 = c + d + m(k1 + k2)
and
a ¨ b = (c + mk1) ¨ (d + mk2) = c ¨ d + m(c ¨ k2 + d ¨ k1 + k1 ¨ k2) .
Therefore, a + b = c + d (mod m) and a ¨ b = c ¨ d (mod m). ˝
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§3.4 Modular Arithmetic
Definition
For each natural number m,

1 the sum of the classes sx and sy in Zm, denoted by sx + sy, is
defined to be the class containing the integer x + y;

2 the product of the classes sx and sy in Zm, denoted by sx ¨sy, is
defined to be the class containing the integer x ¨ y.

In symbols, sx + sy = x + y and sx ¨ sy = x ¨ y.

Example
In Z6, s5 + s3 = s2 and s4 ¨ s5 = s2.

Example
In Z8, (s5 + s7) ¨ (s6 + s5) = Ď12 ¨ Ď11 = s4 ¨ s3 = Ď12 = s4.
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§3.4 Modular Arithmetic
Example
Find 363 in Z7. Since

s31 = s3 , s32 = s2 , s33 = s6 , s34 = s4 , s35 = s5 , s36 = s1 ,

we have Ď363 = 360 ¨ 33 = s6.

Example
For every integer k, 6 divides k3 + 5k. In fact, by the division
algorithm, for each k P Z there exists a unique pair (q, r) such that
k = 6q + r for some 0 ď r ă 5. Therefore, in Z6 we have

k3 + 5k = (6q + r)3 + 5(6q + r) = r3 + 5 ¨ r
= r3 + (´1) ¨ r = r3 ´ r .

It is clear that then k3 + 5k = s0 since
03 ´ 0 = 13 ´ 1 = 23 ´ 2 = 33 ´ 3 = 43 ´ 4 = 53 ´ 5 .
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Chapter 3. Relations and Partitions

§3.4 Modular Arithmetic
Theorem
Let m be a positive composite integer. Then there exists non-zero
equivalence classes sx and sy in Zm such that sx ¨ sy = s0.

Proof.
Since m is a positive composite integer, m = x ¨ y for some x, y P N,
1 ă x, y ă m. Since 1 ă x, y ă m, sx,sy ‰ s0. Therefore, in Zm
s0 = sm = sx ¨ sy which concludes the theorem. ˝

Theorem
Let p be a prime. If sx ¨ sy = s0 in Zp, then either sx = s0 or sy = s0.

Proof.
Let sx,sy P Zp and sx ¨ sy = s0. Then x ¨ y = 0 (mod p). Therefore, p
divides x ¨ y. Since p is prime, p | x or p | y which implies that sx = s0
or sy = s0. ˝
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Chapter 3. Relations and Partitions

§3.4 Modular Arithmetic
Theorem
Let p be a prime. If xy = xz (mod p) and x ‰ 0 (mod p), then
y = z (mod p).

Proof.
If xy = xz (mod p), then x(y ´ z) = 0 (mod p). By the previous
theorem sx = s0 or y ´ z = s0. Since x ‰ 0 (mod p), we must have
sy = sz; thus y = z (mod p). ˝

Corollary (Cancellation Law for Zp)
Let p be a prime, and sx,sy,sz P Zp. If sx ¨ sy = sx ¨ sz, then sx ‰ s0 or
sy = sz.
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