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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

Definition

A set is a collection of objects called elements or members of the
set. To denote a set, we make a complete list {xi,x2, -+ ,xn} or
use the notation
{X:P } or {X|P }

where the sentence P(x) describes the property that defines the set
(the set {x|P(x)} is in fact the truth set of the open sentence P(x)).
A set A is said to be a subset of S if every member of A is also a
member of S. We write x € A (or A contains x) if x is a member
of A, write x ¢ A if x is not a member of A, and write A< S (or S
includes A) if A is a subset of S. The empty set, denoted (J, is the

set with no member.
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

The set A= {1,3,5,7,9,11,13} may also be written as
{x‘xe N, x is odd, and x < 14} or {xe N‘xis odd, and x < 14}.

Remark:
@ Beware of the distinction between “is an element of” and "is

a subset of”. For example, let A = {1,{2,4},{5},8}. Then
4¢ A {5}eA {1,{5}} = Aand {{5}} = A, but {5} & A.

@ Not all open sentences P(x) can be used to defined sets. For
example, P(x) = “xis a set” is not a valid open sentence to
define sets for otherwise it will lead to the construction of a set

which violates the axiom of regularity.
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

e Direct proof of Ac B: (Vx)[(xe A) = (xe B)].

Direct proof of AcC B
Proof.

Let x be an element in A.

Thus, xe B.
Therefore, A < B. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

e Proof of A < B by contraposition: ~(xe€ B) = ~(x€ A).

Proof of A < B by contraposition
Proof.
Let x be an element.

Suppose that x ¢ B; that is, x is not an element of B.

Thus, x¢ A.
Therefore, A < B. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

e Proof of A < B by contraposition: ~(xe€ B) = ~(x€ A).

Proof of A € B by contraposiction
Proof.

Let x be an element which does not belong to B.

Thus, x¢ A.
Therefore, A < B. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

e Proof of A < B by contradiction: ~(3x)[(xe A)A~(x€ B)|.

Proof of A < B by contradiction
Proof.
Assume that there exists xe A but x ¢ B.

Thus, PA ~P, a contradiction.
Therefore, A < B. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

© For every set A, @ < A.

@ For every set A, AC A.
© For all sets A,B and C, if A< B and B< C, then A< C.

© Note that since there is no element in (J, the open sentence
P(x) = [(x € &) = (x € A)] is always true (since the an-
tecedent (x € ) is always false) for all x.

@ This follows from that the conditional sentence P = P is a
tautology (always true).

© This follows from that
(P=Q) A(Q=R)] = (P=R). o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

Definition

Two sets A and B are said to be equal, denoted by A = B, if
(Vx)(xe A< xe B); thatis (A< B) A (B< A). A set Bis said
to be a proper subset of a set A, denoted by B< A, if B< A but
A # B.

o Proof of A= B:

Two-part proof of A= B

Proof.

(i) Prove that A < B (by any method.)

(ii) Prove that B < A (by any method).
Therefore, A = B. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory
If A and B are sets with no elements, then A = B.

Let A, B be set. If A has no element, then A = ¢J; thus by the fact
that empty set is a subset of any set, A < B. Similarly, if B has no
element, then B < A. o

For any sets A and B, if A< B and A # (&, then B # (.

Let A, B be sets, A < B, and A # . Then there is an element
x such that x € A. By the assumption that A € B, we must have
x € B. Therefore, B # (. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

e Venn diagrams:

Ching-hsiao Arthur Cheng #:5 % A##E MA-1015A



Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

Let A be a set. The power set of A, denoted by P(A) or 24 is the
colloection of all subsets of A. In other words, P(A) = {B| B< A}.

If A= {a, b,c, d}, then

P(A) = {@»{a}, {b}, {c}, {d}, {a, b}, {a, ¢}, {a, d}, {b, ¢}, {b, d},
{c,d}.{a,b,c}, {a, b, d}. {a,c, d}, {b,c. d}, {a, b,c. d} }.

We note that #(A) = 4 and #(P(A)) = 16 = 2#(A).
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

If A is a set with n elements, then P(A) is a set with 2" elements.

Suppose that A is a set with n elements.
Q If n =0, then A = ; thus P(A) = {&} which shows that
P(A) has 2° = 1 element.

Q If n>1, we write A as {x1,xa, -+ ,Xxp}. To describe a subset

B of A, we need to know for each 1 < j < n whether Xx; is in B.
For each x;, there are two possibilities (either x; € B or x; ¢ B).
Thus, there are exactly 2" different ways of making a subset of
A. Therefore, P(A) has 2" elements. o

V.
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

Let A, B be sets. Then A < B if and only if P(A) < P(B).

Let A, B be sets.
(=) Suppose that A < B and C € P(A). Then Cis a subset of
A; thus the fact that A < B implies that C < B. Therefore,

Ce P(B).
(<) Suppose that A £ B. Then there exists x€ A but x¢ B. Then
{x} € A but {x} £ B which shows that P(A) &£ P(B). o
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Definition
Let A and B be sets.
© The union of A and B, denoted by A U B, is the set
{x| (xe A) v (xe B)}.
@ The intersection of A and B, denoted by A n B, is the set
{x|(xe A) A (xe B)}.
© The difference of A and B, denoted by A — B, is the set
{x| (xe A) A (x¢ B)}.

Chapter 2. Sets and Induction
§2.2 Set Operations

Definition
Two sets A and B are said to be disjoint if An B= .
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Chapter 2. Sets and Induction
§2.2 Set Operations
e Venn diagrams:

AUB ANB
A-B Disjoint sets 4 and B
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Chapter 2. Sets and Induction
§2.2 Set Operations

Let A, B and C be sets. Then

YJAC AUB; (b)ANBC A; () Ang =@, (d)Aug = A;
YANA=A: (HAUA=A; (AP =A (b)) Z\A=
i) AuB=BUA; .

) AnB=BnA; } (commutative laws)
JAU(BuC)=(AuB)u G
OAN(BNnC)=(AnB)nC
m)An(BuC)=(AnB)u(An C);
n) Au(BnC)=(AuB)n(Au C);

JACBe AUB=5; (p) ACBoAnB=A
JASCB=AuCcBuUuC (()AcB=AnCcBnC

Note: (AuB)n C# Au (Bn C) in general!

} (associative laws)

} (distributive laws)

O

(a
(e
(
(J
(k
(
(
(
(
(q
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Chapter 2. Sets and Induction
§2.2 Set Operations

Proof of (m)

Let x be an element in the universe, and P, Q and R denote the
propositions x € A, x € B and x € C, respectively. Note that from
the truth table, we conclude that
PA(QVR)= [[PAQ) v (PAR),
Q@ Let xe An(Bu C). Then x€ A and x € Bu G, thus the
proposition P A (Q v R) is true. Therefore, the proposition
[(P A Q) v (P AR)] is also true which implies that xe A B
or xe An C, thus
An(BuC)<c(AnB)Uu(An ().
@ Working conversely, we find that if xe An Bor xe An C,
then xe An (Bu C). Therefore,

(AnB)U(AnC)<An(Bu (). o
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Chapter 2. Sets and Induction
§2.2 Set Operations

Alternative proof of (m)

Let xe An(Bu C). Then xe A and xe Bu C. Thus,

Q@ if xe B, then xe An B.

Q if xe C, then xe An C.
Therefore, xe An Bor xe An C which shows xe (AnB)u (An C);
thus we establish that

An(BuC)c(AnB)u(AnC).

On the other hand, suppose that xe (An B) u (An C).

Q@ if xe An B, then x€ A and x€ B.

@ if xe An C, then xe A and xe C.
In either cases, x € A; thus if xe (An B)u (An C), then x€ A but
at the same time xe Bor xe C. Thus, xe A and xe B u C which
shows that xe An (Bu C). Therefore,

(AnB)U(AnC)<An(Bu (). o

= = =
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Chapter 2. Sets and Induction
§2.2 Set Operations

Proof of (p)

(=) Suppose that A < B. Let x be an element in A. Then x€ B
since A € B; thus x € A n B which implies that A € An B.

On the other hand, it is clear that An B < A, so we conclude

that An B=A.
(<) Supposethat An B= A. Let x be an element in A. Then
x € A n B which shows that xe B. Therefore, A < B. o

v
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Chapter 2. Sets and Induction
§2.2 Set Operations

Let U be the universe and A € U. The complement (& # ) of A,
denoted by A", is the set U — A.

.

Let U be the universe, and A, B< U. Then

) (AN = A (b) Au A = U.
JANA =g, (d)A-B=AnE.

e) AC B if and only if B* < A".

(f) An B= & if and only if A< B*

(g) (AuB) = A n B

(h) (An Bt = A" U B

(a
(c
(

} (De Morgan’s Law)

.
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Chapter 2. Sets and Induction

§2.2 Set Operations

Proof of (a)

By the definition of the complement, x € (A")® if and only if x ¢ A"
if and only if xe A. o

V.

Proof of (e)

By the equivalence of P = Q and ~Q =~ P, we conclude that
(Vx)[(xe A) = (xe B)] < (Yx)[(x¢B) = (x¢ A)]
and the bi-directional statement is identical to that
AcBe B c A 5

Alternative proof of (e)

Using (a), it suffices to show that A< B = B < A’. Suppose that
AcC B, but B en AC. Then there exists x€ B and x € A: however,
by the fact that A € B, x has to belong to B, a contradiction. o
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Chapter 2. Sets and Induction
§2.2 Set Operations

Proof of (g) .
By the equivalence of ~ (P v Q) and (~P) A (~Q), we find that
(Vx) ~[(xe A) v (xe B)] < (VX)[(x¢A) A (x¢ B)]

and the bi-directional statement is identical to that

(AUBf=A"nE. 0

Alternative proof of (g)

Let x be an element in the universe.
xe (AuB)tifandonlyif x¢ AuB
if and only if it is not the case that xe Aor xe B
if and only if x¢ A and x¢ B
if and only if xe A" and xe B
if and only if xe A® n B°. o
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Chapter 2. Sets and Induction
§2.2 Set Operations

Definition

An ordered pair (a, b) is an object formed from two objects a and
b, where a is called the first coordinate and b the second coor-
dinate. Two ordered pairs are equal whenever their corresponding
coordinates are the same.

An ordered n-tuples (a;,as, - ,a,) is an object formed from n
objects ay, ag, ---, a, where a; is called the j-th coordinate. Two
n-tuples (a1, a2, - ,an), (c1,¢, - ,cp) are equal if a; = ¢ for
ie{l,2,---,n}.

Definition

Let A and B be sets. The product of A and B, denoted by A x B, is
Ax B={(a,b)|ac A be B}.

The product of three or more sets are defined similarly.
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Chapter 2. Sets and Induction
§2.2 Set Operations

Let A={1,3,5} and B= {, ©}. Then
A A B: {(17 *)7 (37 *)7 (57 *)7 (170)7 (37 <>)7 (57 0)} °

If A, B, C and D are sets, then

(a) Ax (BuC)=(AxB)u (Ax ().
(b) Ax (BN C)=(AxB)n(Ax ().

(c) Ax =g

(d) (AxB) (CxD)=(AnC)x (BnD).
(e) (Ax B)u (CxD) (Au C) x (Bu D).
(f) (Ax B)n(Bx A)=(AnB)x(AnB).

Ching-hsiao Arthur Cheng #:5 %

A##HE MA-1015A



Definition

Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Let F be a family of sets.
© The wunion of the family & or the union over F, denoted by

J A, is the set {x’ x € A for some A € &"}. Therefore,
AeF
xe|JA ifandonlyif (3AeT)(xeA).
AeF
@ The intersection of the family & or the intersection over F,

denoted by (1) A, is the set {x|x e Aforall Ae F}. There-
AeF
fore,

xe (A ifandonlyif (¥AeT)(xeA).
AeT
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Let F be the collection of sets given by

= (21 |nen)

Then |J A = (0,2) and () A = {1}. We also write |J A and
AeF AeF AeF

© 11 1 X1 1 .
N Aas [7,27 f] and N [7,27 7}, respectively.
AcTF aq Ln n ey Ln n

\,

Let F be the collection of sets given by

1 1
F={(-7.2+)|nenN}.
Then | J A= (-1,3) and (] A=10,2]. We also write | J A and
AeF AeF

*© 1 1 % 1 1 .
() A as LJ (—;,2—# E) and ’Dl (—;,2—# ;). respectively.

>
m
Q@
3
il
\
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Let F be a family of sets.
(a) For every set B in the family &, (| A< B.
AT

(b) For every set B in the family ¥, B< | J A.
AeT

(¢) If the family F is non-empty, then (| A< | A.

AeF AeTF
(@) (N A) = U A

AT . A< (De Morgan’s Law)
e) (UA =N A
AeTF AeF
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Proof of (d)

Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Let x be an element in the universe. Then

c
X € ( N A) if and only if x¢ [ A
AeTF

AeT

if and only if ~ (xe N A)

AeF

if and only if ~(VAe JF)(xe A)
if and only if (3A€ F) ~(xe A)
if and only if (3A€ F)(x¢ A)
if and only if (3A € F)(xe AY)

if and only if xe |J A".
AeF O
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Let F be a non-empty family of sets and B a set.
Q@ IfBS Aforall Ae F, then BS ) A.
AeF

Q@ IfAc Bforall Ac J, then | J A< B.
AeF

\,

@ Suppose that B Aforall Ae F, and xe B. Then x € A for all

A € F. Therefore, (VA€ F)(xe A) or equivalently, xe () A.
AeF

@ Supposethat A< B for all Ae J, and xe |J A.Then xe A
AeF
for some A € F. By the fact that A < B, we find that xe B. o
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Let?:{ —rr +1|re]Randr O} Then |JA =R and

AeF
N =10,1). (We also write | J Aand () Aas |J[-r,r?+1) and
AeF AeF AeF r=0
N [=rr?+1), respectively.)
r=0

O If xe R, then x € [—r,r? + 1) with r = |x] since—|x] < x <
x? 4+ 1. Therefore, R < ] A.
AeF
Q If xe [0,1), then x € [—r,r? + 1) for all r > 0; thus [0,1) <
N A If xe (A then xe [—r,r? + 1) for all r > 0; thus

AeF AeF
x> —rand x < r?> 41 for all r > 0. In particular, x > 0 and
x < 1. o)
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Definition
Let A be a non-empty set such that for each @ € A there is a
corresponding set A,. The family {A,|a € A} is an indexed

family of sets, and A is called the indexing set of this family and

each o € A is called an index.

Remark:
@ The indexing set of an indexed family of sets may be finite or

infinite, the member sets need not have the same number of
elements, and different indices need not correspond to different
sets in the family.

Q If F={A,|a € A} is an indexed family of sets, we also write

J Aas |J A, and write () Aas [ A..
AeTF aeA AeF aeA
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

© Another way for the union and intersection of indexed family
of sets whose indexing set is N is

UA,,_UA an ﬂA,,_ﬂA

neN neN
Also, the union and intersection of sets A4, As, Ag, -+, A1oo
can be written as
100 100
Av=|JAr, and () An_ﬂA
4<n<100 n=4 4<n<100

and etc.

Definition

The indexed family F = {Aa | o€ A} of sets is said to be pairwise
disjoint if for all o, 3 € A, either A, = Ag or A, N Ag = .
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Chapter 2. Sets and Induction
§2.4 Mathematical Induction

e Peano’s Axiom for natural numbers:

© 1 is a natural number.

@ Every natural number has a unique successor which is a natural
number (+1 is defined on natural numbers).

© No two natural numbers have the same successor (n+1 = m+1
implies n = m).

Q 1 is not a successor for any natural number (1 is the “smallest”
natural number).

© |If a property is possessed by 1 and is possessed by the successor
of every natural number that possesses it, then the property is
possessed by all natural numbers. (4% % BAL p R#c 1 #t4
S I TR E SR Y T Y
PG o TRAEATF Shp BN E P BRI
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Chapter 2. Sets and Induction
e Principle of Mathematical Induction (PMI):
If S< N has the property that
Q@ 1S, and

@ n-+1eSwhenever ne S,
then S=N.

Definition

A set S of natural numbers is called inductive if it has the property
that whenever n€ S, then n+ 1€ S.

PMI can be rephrased as “if S is an inductive set and 1 € S, then
S=N"
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Chapter 2. Sets and Induction
§2.4 Mathematical Induction

e Inductive definition: Inductive definition is a way to define some
“functions” f(n) for all natural numbers n. It is done by describe the
first object f(1), and then the (n+ 1)-th object f(n+ 1) is defined
in terms of the n-th object f(n). We remark that in this way of
defining f, PMI ensures that the collection of all n for which the
corresponding object f(n) is defined is N.

The factorial n! can be defined by
Q 1!=1;

Q ForallneN, (n+ 1) =nlx (n+1).

Note: one can extend the definition of the factorial function by
defining 0! = 1.
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Chapter 2. Sets and Induction
§2.4 Mathematical Induction
n

The notation > x, can be defined by

L k=1
Q > x=xi;
k=1 n+1 n
Q Forall neN, > xk= > xk+ Xnt1-
k=1 k=1

v

The notation [] xx can be defined by

1 k=1
QO [] xk=x;
k=1 n+1 n
Q ForallneN, [] x = ( ka)  Xp41 -
k=1 k=1

¢
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Chapter 2. Sets and Induction
§2.4 Mathematical Induction

PMI can provide a powerful method for proving statements that are
true for all natural numbers.

Suppose that P(n) is an open sentence concerning the
natural numbers.

Proof of (V ne N)P(n) by mathematical induction
Proof.

Let S denote the truth of P.

(i) Basis Step. Show that 1 € S.

(i) Inductive Step. Show that S is inductive by showing
thatif ne S, then n+1€ S.

Therefore, PMI ensures that the truth set of P is N. o
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Chapter 2. Sets and Induction
§2.4 Mathematical Induction

PMI can provide a powerful method for proving statements that are
true for all natural numbers.

Suppose that P(n) is an open sentence concerning the
natural numbers.

Proof of (V ne N)P(n) by mathematical induction
Proof.

(i) Basis Step. Show that P(1) is true.
(i) Inductive Step. Suppose that P(n) is true.

Therefore, P(n+ 1) is true.
Therefore, PMI ensures that (V n e N)P(n) is true. o
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Chapter 2. Sets and Induction
§2.4 Mathematical Induction

Prove that for every natural number n,

14+3+5+---+(2n—1) =n?.

V.

Let P(n) be the open sentence 1 +3 + 5+ --- + (2n— 1) = n2.

@ P(1) is true since 1 = 12.

@ Suppose that P(n) is true. Then
14+3+5+-+(2n—1)+(2n+1) = n*+(2n+1) = (n+1)?
which shows that P(n+ 1) is true.

Therefore, PMI ensures that (V n e N)P(n) is true. o
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Example (De Moivre's formula)

Chapter 2. Sets and Induction
§2.4 Mathematical Induction

Let 6 be a real number. Prove that for every ne N,
(cosf + isin )" = cos(n@) + isin(nd) .

v

Let P(n) be the open sentence (cos 0+isin #)" = cos(nf)+isin(nh).

@ Obviously P(1) is true.
@ Suppose that P(n) is true. Then

(cosd + isin 6)" = [cos(nf) + isin(nf)] - (cosf + isin 6)
= [ cos(nf) cos  — sin(nd) sin 6]
+i[ cos(nB) sin @ + sin(nb) cos 4]
= cos(n+1)0 + isin(n+ 1)6
which shows that P(n+ 1) is true.
Therefore, PMI ensures that (V ne N)P(n) is true. o

Ching-hsiao Arthur Cheng #:5 % A##E MA-1015A



Chapter 2. Sets and Induction
§2.4 Mathematical Induction

Example (Archimedean Principle for N)

For any natural numbers a and b, there exists a natural number s
such that sb > a. )

Let b be a fixed natural number, and P(a) be the open sentence
(I3seN)(sb> a).

Q If a=1, then 2b > 1; thus P(1) is true.
@ Suppose that P(n) is true. Then there exists t € N such that
tb> n. Then (t+1)b=tb+ b > n+1; thus P(n+1) is true.
Therefore, PMI ensures that (V n e N)P(n) is true. o
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Chapter 2. Sets and Induction
e Generalized Principle of Mathematical Induction (GPMI):
If S Z has the property that
Q@ ke S, and
@ n-+1eSwhenever ne S,

then S contains all integers greater than or equal to k.

Reason: Let T={neN|k+n—1¢€ S}. Then T = N. Moreover,
@ 1 Tsince ke Sifandonlyif 1 e T.

Q Ifne T, then k+n—1¢€S; thus k+ n e S which implies that
n+1eT.

Therefore, PMI ensures that T = N which shows that
S:{neZ|n>k}.
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§2.4 Mathematical Induction

Prove by induction that n? — n — 20 > 0 for all natural number
n> 5.

V.

LetS:{neN|n2—n—20>O}.
Q@ 6eSsince62—6—20=10> 0.

@ Suppose that ne€ S. Then
(n+1)2—-(n+1)—20=n2+2n+1-n—-1-20
>2n>0.
Therefore, GPMI ensures that S = {n eN|n> 6}. =

.
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§2.5 Equivalent Forms of Induction

There are two other versions of mathematical induction.
@ Well-Ordering Principle (WOP):

Every nonempty subset of N has a smallest element.

@ Principle of Complete Induction (PCl):

Suppose S is a subset of N with the property:

for all natural number n, if {1,2,--- ;n—1} S,
then ne S.
Then S=N.
We remark here that in the statement of PCI we treat {1,2,--- 0}

as .
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Remark:

Similar to GPMI, PCI can be extended to a more general case stated
as follows:

Suppose S is a subset of N with the property:
there exists k € Z such that for all natural number n,
if {k,k+1,--- ,k+n—2}< S, thenk+n—1€S.
Then Sz{neZ|n> k}.

The same as the case of PCI, here we treat {k,k+1,--- , k—1} as
the empty set.

In the following, we prove that PMI = WOP = PCIl = PMI.

Ching-hsiao Arthur Cheng #:5 % A##E MA-1015A



Chapter 2. Sets and Induction

§2.5 Equivalent Forms of Induction

Assume the contrary that there exists a non-empty set S € N such
that S does not have the smallest element. Define T = N\S, and
= {ne N[{1,2,---,n} © T} (T ¢ i1 Biptcde F oot
¥ ¥ e#ics ). Then we have Ty € T. Also note that 1 ¢ S for
otherwise 1 is the smallest element in S, so 1 € T (thus 1 € Ty).
Assume ke Ty. Since {1,2,--- ,k} = T,1,2,---k¢ S. If k+1€ S,
then k + 1 is the smallest element in S. Since we assume that S
does not have the smallest element, k+ 1 ¢ S; thus k+ 1€ T =

k+1€e To.
Therefore, by PMI we conclude that Ty = N; thus T = N which
further implies that S = ¢, a contradiction. o

v
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Proof of .
Assume the contrary that for some S # N, S has the property

for all natural number n, if {1,2,--- ,n—1} < S, then n€ S.
Define T=N\S. Then T is a non-empty subset of N; thus WOP

implies that T has a smallest element k. Then 1,2,---  k—1¢ T
which is the same as saying that {1,2,--- .k — 1} < S. By the

property above, k € S which implies that k¢ T, a contradiction. o

v
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§2.5 Equivalent Forms of Induction

Let S < N has the property

(a)1e S, and (b) n+ 1€ S whenever ne S.
We show that S = N by verifying that
for all natural number n, if {1,2,--- ,n—1} < S, then ne S.
Q (a) implies 1 € S; thus the statement “{1,2,--- ,k—1} = & <
S=1¢€ 5" is true.
@ Suppose that {1,2,--- ,k—1} € S. Then k—1 € S. Using

(b) we find that k € S; thus the statement “{1,2,--- ,k—1} <
S= ke S" is also true.

Therefore, S has property (x) and PCI implies that S = N. =
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§2.5 Equivalent Forms of Induction

Theorem (Fundamental Theorem of Arithmetic)

Every natural number greater than 1 is prime or can be expressed
uniquely as a product of primes.

The meaning of the unique way to express a composite number
as a product of primes:

Let m be a composite number. Then there is a unique way of writing
m in the form

— %1 02 (e
m=p; py~ - Pn"
where p; < py < --- < pp are primes and o, as, - - - , ap are natural

numbers.
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§2.5 Equivalent Forms of Induction

We first show that every natural number greater than 1 is either
a prime or a products of primes, then show that the prime factor
decomposition, when it is not prime, is unique.

@ Suppose that there is at least one natural number that is greater
than 1, not a prime, and cannot be written as a product of
primes. Then the set S of such numbers is non-empty, so WOP
implies that S has a smallest element m. Since m is not a prime,
m = st for some natural numbers s and t that are greater than
1 and less than m. Both s and t are less than the smallest
element of S, so they are not in S. Therefore, each of sand tis

a prime or is the product of primes, which makes m a product

of primes, a contradiction. E
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Proof (Cont'd).

@ Suppose that there exist natural numbers that can be expressed
in two or more different ways as the product of primes, and let
n be the smallest such number (the existence of such a number

is guaranteed by WOP). Then
n=pip2:--"Pk=4q192 - dm

for some k, m € N, where each pj, g; is prime. Then p; divides

g1g2 - - - gm which, with the help of Euclid’'s Lemma, implies
that py = q; for some j € {1,---,m}. Then pi = qﬂ is a
1 i

natural number smaller than n that has two different prime
factorizations, a contradiction. E
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Alternative Proof of Fundamental Theorem of Arithmetic.

Let m be a natural number greater than 1. We note that 2 is a
prime, so the statement is true when m is 2. Now assume that k is
a prime or is a product of primes for all ksuch that 1 < k< m. If m
has no factors other than 1 and itself, then m is prime. Otherwise,
m = st for some natural numbers s and t that are greater than 1
and less than m. By the complete induction hypothesis, each of s
and t either is prime or is a product of primes. Thus, m = st is a
product of primes, so the statement is true for m. Therefore, we
conclude that every natural number greater than 1 is prime or is a

product of primes by PCI. o
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Let a and b be nonzero integers. Then there is a smallest positive

linear combination of a and b.

Let a and b be nonzero integers, and S be the set of all positive

linear combinations of a and b; that is,
S= {am—i—bn‘m,neZ,am—l— bn > 0}.

Then S # Jsincea-1+b-0>0o0ra-(—1)+b-0> 0. By
WOP, S has a smallest element, which is the smallest positive linear

combination of a and b. o
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Theorem (Division Algorithm)

For all integers a and b, where a # 0, there exist a unique pair of
integers (q, r) such that b= aq+ r and 0 < r < |a|. In notation,

(V (a,b) € (Z\{0}) x Z)(3(q,r) e Z x Z)[(b=ag+r) n (0 < r < |a])] )

W.L.O.G., we assume that a > 0 and a does not divide b. Define
SE {b—ak’keZ and b—ak?O}.

Then 0 ¢ S (so that b # 0). It is clear that if b > 0, then S # .
If b <0, then —b > 0; thus the Archimedean property implies that
there exists k € N such that ak > —b. Therefore, b — a(—k) > 0
which also implies that S # J. In either case, S is a non-empty
subset of N; thus WOP implies that S has a smallest element r.
Then b— ag = r for some g € Z; thus b= ag+ r and r > 0. o
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Proof (Cont'd).

Next, we show that r < |a] = a. Assume the contrary that r > |a| =
a. Then b—a(g+1)=b—ag—a=r—a= 0. Since we assume
that 0 ¢ S, we must have b— a(q+ 1) > 0. Therefore,
O<b—alg+1l)=r—a<r=b—aq

which shows that ris not the smallest element of S, a contradiction.

To complete the proof, we need to show that the pair (g,r) is
unique. Suppose that there exist (g1, r1) and (g2, r2), where 0 <
ri, ra < |al, such that

b=agi+n=ag+nr.

W.L.O.G., we can assume that r; > ro; thus a(ga—q1) = rn—r2 = 0.
Therefore, a divides r; — ry which is impossible if 0 < B — rn < a.

Therefore, rp = r, and then g1 = gs. =
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