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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
Definition
A set is a collection of objects called elements or members of the
set. To denote a set, we make a complete list tx1, x2, ¨ ¨ ¨ , xNu or
use the notation

␣

x : P(x)
(

or
␣

x
ˇ

ˇP(x)
(

,

where the sentence P(x) describes the property that defines the set
(the set

␣

x | P(x)
(

is in fact the truth set of the open sentence P(x)).
A set A is said to be a subset of S if every member of A is also a
member of S. We write x P A (or A contains x) if x is a member
of A, write x R A if x is not a member of A, and write A Ď S (or S
includes A) if A is a subset of S. The empty set, denoted H, is the
set with no member.
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
Example
The set A = t1, 3, 5, 7, 9, 11, 13u may also be written as
␣

x
ˇ

ˇ x P N, x is odd, and x ă 14
(

or
␣

x P N
ˇ

ˇ x is odd, and x ă 14
(

.

Remark:
1 Beware of the distinction between “is an element of” and ”is

a subset of”. For example, let A =
␣

1, t2, 4u, t5u, 8
(

. Then
4 R A, t5u P A,

␣

1, t5u
(

Ď A and
␣

t5u
(

Ď A, but t5u Ę A.
2 Not all open sentences P(x) can be used to defined sets. For

example, P(x) ” “x is a set” is not a valid open sentence to
define sets for otherwise it will lead to the construction of a set
which violates the axiom of regularity.
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
‚ Direct proof of A Ď B: (@ x)

[
(x P A) ñ (x P B)

]
.

Direct proof of A Ď B
Proof.
Let x be an element in A.

...
Thus, x P B.
Therefore, A Ď B. ˝
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
‚ Proof of A Ď B by contraposition: „(x P B) ñ „(x P A).

Proof of A Ď B by contraposition
Proof.
Let x be an element.
Suppose that x R B; that is, x is not an element of B.

...
Thus, x R A.
Therefore, A Ď B. ˝
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
‚ Proof of A Ď B by contraposition: „(x P B) ñ „(x P A).

Proof of A Ď B by contraposiction
Proof.
Let x be an element which does not belong to B.
Suppose that x R B; that is, x is not an element of B.

...
Thus, x R A.
Therefore, A Ď B. ˝
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
‚ Proof of A Ď B by contradiction: „(D x)

[
(x P A)^„(x P B)

]
.

Proof of A Ď B by contradiction
Proof.
Assume that there exists x P A but x R B.

...
Thus, P^„P, a contradiction.
Therefore, A Ď B. ˝
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
Theorem

1 For every set A, H Ď A.
2 For every set A, A Ď A.
3 For all sets A,B and C, if A Ď B and B Ď C, then A Ď C.

Proof.
1 Note that since there is no element in H, the open sentence

P(x) ”
[
(x P H) ñ (x P A)

]
is always true (since the an-

tecedent (x P H) is always false) for all x.
2 This follows from that the conditional sentence P ñ P is a

tautology (always true).
3 This follows from that[

(P ñ Q) ^ (Q ñ R)
]

ñ (P ñ R) . ˝
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
Definition
Two sets A and B are said to be equal, denoted by A = B, if
(@ x)(x P A ô x P B); that is (A Ď B) ^ (B Ď A). A set B is said
to be a proper subset of a set A, denoted by B Ĺ A, if B Ď A but
A ‰ B.

‚ Proof of A = B :

Two-part proof of A = B
Proof.
(i) Prove that A Ď B (by any method.)
(ii) Prove that B Ď A (by any method).
Therefore, A = B. ˝
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
Theorem
If A and B are sets with no elements, then A = B.

Proof.
Let A, B be set. If A has no element, then A = H; thus by the fact
that empty set is a subset of any set, A Ď B. Similarly, if B has no
element, then B Ď A. ˝

Theorem
For any sets A and B, if A Ď B and A ‰ H, then B ‰ H.

Proof.
Let A, B be sets, A Ď B, and A ‰ H. Then there is an element
x such that x P A. By the assumption that A Ď B, we must have
x P B. Therefore, B ‰ H. ˝
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
‚ Venn diagrams:
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
Definition
Let A be a set. The power set of A, denoted by P(A) or 2A, is the
colloection of all subsets of A. In other words, P(A) ”

␣

B
ˇ

ˇB Ď A
(

.

Example
If A = ta, b, c, du, then

P(A) =
!

H, tau, tbu, tcu, tdu, ta, bu, ta, cu, ta, du, tb, cu, tb, du,

tc, du, ta, b, cu, ta, b, du, ta, c, du, tb, c, du, ta, b, c, du

)

.

We note that #(A) = 4 and #(P(A)) = 16 = 2#(A).
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
Theorem
If A is a set with n elements, then P(A) is a set with 2n elements.

Proof.
Suppose that A is a set with n elements.

1 If n = 0, then A = H; thus P(A) = tHu which shows that
P(A) has 20 = 1 element.

2 If n ě 1, we write A as tx1, x2, ¨ ¨ ¨ , xnu. To describe a subset
B of A, we need to know for each 1 ď i ď n whether xi is in B.
For each xi, there are two possibilities (either xi P B or xi R B).
Thus, there are exactly 2n different ways of making a subset of
A. Therefore, P(A) has 2n elements. ˝
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Chapter 2. Sets and Induction

§2.1 Basic Concepts of Set Theory
Theorem
Let A,B be sets. Then A Ď B if and only if P(A) Ď P(B).

Proof.
Let A,B be sets.
(ñ) Suppose that A Ď B and C P P(A). Then C is a subset of

A; thus the fact that A Ď B implies that C Ď B. Therefore,
C P P(B).

(ð) Suppose that A Ę B. Then there exists x P A but x R B. Then
txu Ď A but txu Ę B which shows that P(A) Ę P(B). ˝
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Chapter 2. Sets and Induction

§2.2 Set Operations
Definition
Let A and B be sets.

1 The union of A and B, denoted by A Y B, is the set
␣

x
ˇ

ˇ (x P A) _ (x P B)
(

.

2 The intersection of A and B, denoted by A X B, is the set
␣

x
ˇ

ˇ (x P A) ^ (x P B)
(

.

3 The difference of A and B, denoted by A ´ B, is the set
␣

x
ˇ

ˇ (x P A) ^ (x R B)
(

.

Definition
Two sets A and B are said to be disjoint if A X B = H.
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Chapter 2. Sets and Induction

§2.2 Set Operations
‚ Venn diagrams:
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Chapter 2. Sets and Induction

§2.2 Set Operations
Theorem
Let A,B and C be sets. Then
(a) A Ď AYB; (b) AXB Ď A; (c) AXH = H; (d) AYH = A;
(e) AXA = A; (f) AYA = A; (g) AzH = A; (h) HzA = H;
(i) A Y B = B Y A;
(j) A X B = B X A;

*

(commutative laws)

(k) A Y (B Y C) = (A Y B) Y C;
(ℓ) A X (B X C) = (A X B) X C;

*

(associative laws)

(m) A X (B Y C) = (A X B) Y (A X C);
(n) A Y (B X C) = (A Y B) X (A Y C);

*

(distributive laws)

(o) A Ď B ô A Y B = B; (p) A Ď B ô A X B = A;
(q) A Ď B ñ A Y C Ď B Y C; (r) A Ď B ñ A X C Ď B X C.

Note: (A Y B) X C ‰ A Y (B X C) in general!
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Chapter 2. Sets and Induction

§2.2 Set Operations
Proof of (m) A X (B Y C) = (A X B) Y (A X C).
Let x be an element in the universe, and P, Q and R denote the
propositions x P A, x P B and x P C, respectively. Note that from
the truth table, we conclude that

P ^ (Q _ R) ô
[
(P ^ Q) _ (P ^ R)

]
,

1 Let x P A X (B Y C). Then x P A and x P B Y C; thus the
proposition P ^ (Q _ R) is true. Therefore, the proposition[
(P ^ Q) _ (P ^ R)

]
is also true which implies that x P A X B

or x P A X C; thus
A X (B Y C) Ď (A X B) Y (A X C) .

2 Working conversely, we find that if x P A X B or x P A X C,
then x P A X (B Y C). Therefore,

(A X B) Y (A X C) Ď A X (B Y C) . ˝
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Chapter 2. Sets and Induction

§2.2 Set Operations
Alternative proof of (m) A X (B Y C) = (A X B) Y (A X C).
Let x P A X (B Y C). Then x P A and x P B Y C. Thus,

1 if x P B, then x P A X B.
2 if x P C, then x P A X C.

Therefore, x P AXB or x P AXC which shows x P (AXB)Y(AXC);
thus we establish that

A X (B Y C) Ď (A X B) Y (A X C) .

On the other hand, suppose that x P (A X B) Y (A X C).
1 if x P A X B, then x P A and x P B.
2 if x P A X C, then x P A and x P C.

In either cases, x P A; thus if x P (A X B)Y (A X C), then x P A but
at the same time x P B or x P C. Thus, x P A and x P B Y C which
shows that x P A X (B Y C). Therefore,

(A X B) Y (A X C) Ď A X (B Y C) . ˝
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Chapter 2. Sets and Induction

§2.2 Set Operations
Proof of (p) A Ď B ô A X B = A.

(ñ) Suppose that A Ď B. Let x be an element in A. Then x P B
since A Ď B; thus x P A X B which implies that A Ď A X B.
On the other hand, it is clear that A X B Ď A, so we conclude
that A X B = A.

(ð) Suppose that A X B = A. Let x be an element in A. Then
x P A X B which shows that x P B. Therefore, A Ď B. ˝
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Chapter 2. Sets and Induction

§2.2 Set Operations
Definition
Let U be the universe and A Ď U. The complement (補集) of A,
denoted by AA, is the set U ´ A.

Theorem
Let U be the universe, and A,B Ď U. Then
(a) (AA)A = A. (b) A Y AA = U.
(c) A X AA = H. (d) A ´ B = A X BA.
(e) A Ď B if and only if BA Ď AA.
(f) A X B = H if and only if A Ď BA

(g) (A Y B)A = AA X BA.

(h) (A X B)A = AA Y BA.

+

(De Morgan’s Law)
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Chapter 2. Sets and Induction

§2.2 Set Operations
Proof of (a) (AA)A = A.
By the definition of the complement, x P (AA)A if and only if x R AA

if and only if x P A. ˝

Proof of (e) A Ď B ô BA Ď AA.
By the equivalence of P ñ Q and „Q ñ„P, we conclude that

(@ x)
[
(x P A) ñ (x P B)

]
ô (@ x)

[
(x R B) ñ (x R A)

]
and the bi-directional statement is identical to that

A Ď B ô BA Ď AA . ˝

Alternative proof of (e) A Ď B ô BA Ď AA.
Using (a), it suffices to show that A Ď B ñ BA Ď AA. Suppose that
A Ď B, but BA Ę AA. Then there exists x P BA and x P A; however,
by the fact that A Ď B, x has to belong to B, a contradiction. ˝
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Chapter 2. Sets and Induction

§2.2 Set Operations
Proof of (g) (A Y B)A = AA X BA.
By the equivalence of „(P _ Q) and („P) ^ („Q), we find that

(@ x) „
[
(x P A) _ (x P B)

]
ô (@ x)

[
(x R A) ^ (x R B)

]
and the bi-directional statement is identical to that

(A Y B)A = AA X BA . ˝

Alternative proof of (g) (A Y B)A = AA X BA.
Let x be an element in the universe.

x P (A Y B)A if and only if x R A Y B
if and only if it is not the case that x P A or x P B
if and only if x R A and x R B
if and only if x P AA and x P BA

if and only if x P AA X BA . ˝
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Chapter 2. Sets and Induction

§2.2 Set Operations
Definition
An ordered pair (a, b) is an object formed from two objects a and
b, where a is called the first coordinate and b the second coor-
dinate. Two ordered pairs are equal whenever their corresponding
coordinates are the same.
An ordered n-tuples (a1, a2, ¨ ¨ ¨ , an) is an object formed from n
objects a1, a2, ¨ ¨ ¨ , an, where aj is called the j-th coordinate. Two
n-tuples (a1, a2, ¨ ¨ ¨ , an), (c1, c2, ¨ ¨ ¨ , cn) are equal if ai = ci for
i P t1, 2, ¨ ¨ ¨ , nu.

Definition
Let A and B be sets. The product of A and B, denoted by A ˆ B, is

A ˆ B =
␣

(a, b)
ˇ

ˇ a P A, b P B
(

.

The product of three or more sets are defined similarly.
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Chapter 2. Sets and Induction

§2.2 Set Operations
Example
Let A = t1, 3, 5u and B = t‹, ˛u. Then

A ˆ B =
␣

(1, ‹), (3, ‹), (5, ‹), (1, ˛), (3, ˛), (5, ˛)
(

.

Theorem
If A,B,C and D are sets, then
(a) A ˆ (B Y C) = (A ˆ B) Y (A ˆ C).
(b) A ˆ (B X C) = (A ˆ B) X (A ˆ C).
(c) A ˆ H = H.
(d) (A ˆ B) X (C ˆ D) = (A X C) ˆ (B X D).
(e) (A ˆ B) Y (C ˆ D) Ď (A Y C) ˆ (B Y D).
(f) (A ˆ B) X (B ˆ A) = (A X B) ˆ (A X B).
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Chapter 2. Sets and Induction

§2.3 Indexed Family of Sets
Definition
Let F be a family of sets.

1 The union of the family F or the union over F, denoted by
Ť

APF

A, is the set
␣

x
ˇ

ˇ x P A for some A P F
(

. Therefore,

x P
ď

APF

A if and only if (D A P F)(x P A).

2 The intersection of the family F or the intersection over F,
denoted by

Ş

APF

A, is the set
␣

x
ˇ

ˇ x P A for all A P F
(

. There-
fore,

x P
č

APF

A if and only if (@ A P F)(x P A).
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Chapter 2. Sets and Induction

§2.3 Indexed Family of Sets
Example
Let F be the collection of sets given by

F =
![

1

n , 2 ´
1

n

] ˇ
ˇ

ˇ
n P N

)

.

Then
Ť

APF

A = (0, 2) and
Ş

APF

A = t1u. We also write
Ť

APF

A and
Ş

APF

A as
8
Ť

n=1

[
1

n , 2 ´
1

n

]
and

8
Ş

n=1

[
1

n , 2 ´
1

n

]
, respectively.

Example
Let F be the collection of sets given by

F =
!(

´
1

n , 2 +
1

n

) ˇ
ˇ

ˇ
n P N

)

.

Then
Ť

APF

A = (´1, 3) and
Ş

APF

A = [0, 2]. We also write
Ť

APF

A and
Ş

APF

A as
8
Ť

n=1

(
´

1

n , 2 +
1

n

)
and

8
Ş

n=1

(
´

1

n , 2 +
1

n

)
, respectively.
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Chapter 2. Sets and Induction

§2.3 Indexed Family of Sets
Theorem
Let F be a family of sets.
(a) For every set B in the family F,

Ş

APF

A Ď B.

(b) For every set B in the family F, B Ď
Ť

APF

A.

(c) If the family F is non-empty, then
Ş

APF

A Ď
Ť

APF

A.

(d)
(
Ş

APF

A
)A

=
Ť

APF

AA.

(e)
(
Ť

APF

A
)A

=
Ş

APF

AA.

,

/

/

.

/

/

-

(De Morgan’s Law)
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Chapter 2. Sets and Induction

§2.3 Indexed Family of Sets
Proof of (d)

(
Ş

APF

A
)A

=
Ť

APF

AA.

Let x be an element in the universe. Then

x P
(

Ş

APF

A
)A

if and only if x R
Ş

APF

A

if and only if „
(
x P

Ş

APF

A
)

if and only if „(@ A P F)(x P A)
if and only if (D A P F) „(x P A)
if and only if (D A P F)(x R A)
if and only if (D A P F)(x P AA)

if and only if x P
Ť

APF

AA .
˝
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Chapter 2. Sets and Induction

§2.3 Indexed Family of Sets
Theorem
Let F be a non-empty family of sets and B a set.

1 If B Ď A for all A P F, then B Ď
Ş

APF

A.

2 If A Ď B for all A P F, then
Ť

APF

A Ď B.

Proof.
1 Suppose that B Ď A for all A P F, and x P B. Then x P A for all

A P F. Therefore, (@ A P F)(x P A) or equivalently, x P
Ş

APF

A.

2 Supposethat A Ď B for all A P F, and x P
Ť

APF

A.Then x P A

for some A P F. By the fact that A Ď B, we find that x P B. ˝
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Chapter 2. Sets and Induction

§2.3 Indexed Family of Sets
Example
Let F =

␣

[´r, r 2 + 1)
ˇ

ˇ r P R and r ě 0
(

. Then
Ť

APF

A = R and
Ş

APF

= [0, 1).
(

We also write
Ť

APF

A and
Ş

APF

A as
Ť

rě0
[´r, r 2+1) and

Ş

rě0
[´r, r 2 + 1), respectively.

)
Proof.

1 If x P R, then x P [´r, r 2 + 1) with r = |x| since´|x| ď x ď

x 2 + 1. Therefore, R Ď
Ť

APF

A.
2 If x P [0, 1), then x P [´r, r 2 + 1) for all r ě 0; thus [0, 1) Ď

Ş

APF

A. If x P
Ş

APF

A, then x P [´r, r 2 + 1) for all r ě 0; thus

x ě ´r and x ă r 2 + 1 for all r ě 0. In particular, x ě 0 and
x ă 1. ˝
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Chapter 2. Sets and Induction

§2.3 Indexed Family of Sets
Definition
Let ∆ be a non-empty set such that for each α P ∆ there is a
corresponding set Aα. The family

␣

Aα

ˇ

ˇα P ∆
(

is an indexed
family of sets, and ∆ is called the indexing set of this family and
each α P ∆ is called an index.

Remark:
1 The indexing set of an indexed family of sets may be finite or

infinite, the member sets need not have the same number of
elements, and different indices need not correspond to different
sets in the family.

2 If F = tAα |α P ∆u is an indexed family of sets, we also write
Ť

APF

A as
Ť

αP∆

Aα and write
Ş

APF

A as
Ş

αP∆

Aα.
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Chapter 2. Sets and Induction

§2.3 Indexed Family of Sets
3 Another way for the union and intersection of indexed family

of sets whose indexing set is N is
ď

nPN
An =

8
ď

n=1

An and
č

nPN
An =

8
č

n=1

An .

Also, the union and intersection of sets A4, A5, A6, ¨ ¨ ¨ , A100

can be written as
ď

4ďnď100

An =
100
ď

n=4

An and
č

4ďnď100

An =
100
č

n=4

An

and etc.

Definition
The indexed family F =

␣

Aα

ˇ

ˇα P ∆
(

of sets is said to be pairwise
disjoint if for all α, β P ∆, either Aα = Aβ or Aα X Aβ = H.
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Chapter 2. Sets and Induction

§2.4 Mathematical Induction
‚ Peano’s Axiom for natural numbers:

1 1 is a natural number.
2 Every natural number has a unique successor which is a natural

number (+1 is defined on natural numbers).
3 No two natural numbers have the same successor (n+1 = m+1

implies n = m).
4 1 is not a successor for any natural number (1 is the “smallest”

natural number).
5 If a property is possessed by 1 and is possessed by the successor

of every natural number that possesses it, then the property is
possessed by all natural numbers.（如果某個被自然數 1 所擁

有的性質，也被其它擁有這個性質的自然數的下一個自然數

所擁有，那麼所有的自然數都會擁有這個性質）
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Chapter 2. Sets and Induction

§2.4 Mathematical Induction
‚ Principle of Mathematical Induction (PMI):
If S Ď N has the property that

1 1 P S, and
2 n + 1 P S whenever n P S ,

then S = N.

Definition
A set S of natural numbers is called inductive if it has the property
that whenever n P S, then n + 1 P S.

PMI can be rephrased as “if S is an inductive set and 1 P S, then
S = N”.
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Chapter 2. Sets and Induction

§2.4 Mathematical Induction
‚ Inductive definition: Inductive definition is a way to define some
“functions” f (n) for all natural numbers n. It is done by describe the
first object f (1), and then the (n + 1)-th object f (n + 1) is defined
in terms of the n-th object f (n). We remark that in this way of
defining f, PMI ensures that the collection of all n for which the
corresponding object f (n) is defined is N.

Example
The factorial n! can be defined by

1 1! = 1;
2 For all n P N, (n + 1)! = n! ˆ (n + 1).

Note: one can extend the definition of the factorial function by
defining 0! = 1.
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Chapter 2. Sets and Induction

§2.4 Mathematical Induction
Example

The notation
n
ř

k=1

xk can be defined by

1
1
ř

k=1

xk = x1;

2 For all n P N,
n+1
ř

k=1

xk =
n
ř

k=1

xk + xn+1 .

Example

The notation
n
ś

k=1

xk can be defined by

1
1
ś

k=1

xk = x1;

2 For all n P N,
n+1
ś

k=1

xk =
( n
ś

k=1

xk
)

¨ xn+1 .
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Chapter 2. Sets and Induction

§2.4 Mathematical Induction
PMI can provide a powerful method for proving statements that are
true for all natural numbers.

Suppose that P(n) is an open sentence concerning the
natural numbers.
Proof of (@ n P N)P(n) by mathematical induction
Proof.
Let S denote the truth of P.
(i) Basis Step. Show that 1 P S.
(ii) Inductive Step. Show that S is inductive by showing

that if n P S, then n + 1 P S.
Therefore, PMI ensures that the truth set of P is N. ˝
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Chapter 2. Sets and Induction

§2.4 Mathematical Induction
PMI can provide a powerful method for proving statements that are
true for all natural numbers.

Suppose that P(n) is an open sentence concerning the
natural numbers.
Proof of (@ n P N)P(n) by mathematical induction
Proof.
(i) Basis Step. Show that P(1) is true.
(ii) Inductive Step. Suppose that P(n) is true.

...
Therefore, P(n + 1) is true.

Therefore, PMI ensures that (@ n P N)P(n) is true. ˝
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Chapter 2. Sets and Induction

§2.4 Mathematical Induction
Example
Prove that for every natural number n,

1 + 3 + 5 + ¨ ¨ ¨ + (2n ´ 1) = n2 .

Proof.
Let P(n) be the open sentence 1 + 3 + 5 + ¨ ¨ ¨ + (2n ´ 1) = n2.

1 P(1) is true since 1 = 12.
2 Suppose that P(n) is true. Then

1+3+5+ ¨ ¨ ¨+(2n ´1)+(2n+1) = n2+(2n+1) = (n+1)2

which shows that P(n + 1) is true.
Therefore, PMI ensures that (@ n P N)P(n) is true. ˝
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Chapter 2. Sets and Induction

§2.4 Mathematical Induction
Example (De Moivre’s formula)
Let θ be a real number. Prove that for every n P N,

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ) .

Proof.
Let P(n) be the open sentence (cos θ+i sin θ)n = cos(nθ)+i sin(nθ).

1 Obviously P(1) is true.
2 Suppose that P(n) is true. Then

(cos θ + i sin θ)n+1 =
[

cos(nθ) + i sin(nθ)
]

¨ (cos θ + i sin θ)

=
[

cos(nθ) cos θ ´ sin(nθ) sin θ
]

+i
[

cos(nθ) sin θ + sin(nθ) cos θ
]

= cos(n + 1)θ + i sin(n + 1)θ

which shows that P(n + 1) is true.
Therefore, PMI ensures that (@ n P N)P(n) is true. ˝
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Chapter 2. Sets and Induction

§2.4 Mathematical Induction
Example (Archimedean Principle for N)
For any natural numbers a and b, there exists a natural number s
such that sb ą a.

Proof.
Let b be a fixed natural number, and P(a) be the open sentence

(D s P N)(sb ą a) .
1 If a = 1, then 2b ą 1; thus P(1) is true.
2 Suppose that P(n) is true. Then there exists t P N such that

tb ą n. Then (t+1)b = tb+ b ą n+1; thus P(n+1) is true.
Therefore, PMI ensures that (@ n P N)P(n) is true. ˝
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Chapter 2. Sets and Induction

§2.4 Mathematical Induction
‚ Generalized Principle of Mathematical Induction (GPMI):
If S Ď Z has the property that

1 k P S, and
2 n + 1 P S whenever n P S ,

then S contains all integers greater than or equal to k.

Reason: Let T =
␣

n P N
ˇ

ˇ k + n ´ 1 P S
(

. Then T Ď N. Moreover,
1 1 P T since k P S if and only if 1 P T.
2 If n P T, then k + n ´ 1 P S; thus k + n P S which implies that

n + 1 P T.
Therefore, PMI ensures that T = N which shows that

S =
␣

n P Z
ˇ

ˇ n ě k
(

.

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



Chapter 2. Sets and Induction

§2.4 Mathematical Induction
Example
Prove by induction that n2 ´ n ´ 20 ą 0 for all natural number
n ą 5.

Proof.
Let S =

␣

n P N
ˇ

ˇ n2 ´ n ´ 20 ą 0
(

.
1 6 P S since 62 ´ 6 ´ 20 = 10 ą 0.
2 Suppose that n P S. Then

(n + 1)2 ´ (n + 1) ´ 20 = n2 + 2n + 1 ´ n ´ 1 ´ 20
ą 2n ą 0 .

Therefore, GPMI ensures that S =
␣

n P N | n ě 6
(

. ˝
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Chapter 2. Sets and Induction

§2.5 Equivalent Forms of Induction
There are two other versions of mathematical induction.

1 Well-Ordering Principle (WOP):

Every nonempty subset of N has a smallest element.

2 Principle of Complete Induction (PCI):

Suppose S is a subset of N with the property:
for all natural number n, if t1, 2, ¨ ¨ ¨ , n ´ 1u Ď S,
then n P S.

Then S = N.

We remark here that in the statement of PCI we treat t1, 2, ¨ ¨ ¨ , 0u

as H.
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Chapter 2. Sets and Induction

§2.5 Equivalent Forms of Induction
Remark:
Similar to GPMI, PCI can be extended to a more general case stated
as follows:

Suppose S is a subset of N with the property:
there exists k P Z such that for all natural number n,
if tk, k + 1, ¨ ¨ ¨ , k + n ´ 2u Ď S, then k + n ´ 1 P S.

Then S =
␣

n P Z
ˇ

ˇ n ě k
(

.

The same as the case of PCI, here we treat tk, k+1, ¨ ¨ ¨ , k ´ 1u as
the empty set.
In the following, we prove that PMI ñ WOP ñ PCI ñ PMI.
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Chapter 2. Sets and Induction

§2.5 Equivalent Forms of Induction
Proof of PMI ñ WOP.
Assume the contrary that there exists a non-empty set S Ď N such
that S does not have the smallest element. Define T = NzS, and
T0 =

␣

n P N
ˇ

ˇ t1, 2, ¨ ¨ ¨ , nu Ď T
(

(T 中從 1 開始數起不需跳號就

可以數到的數字). Then we have T0 Ď T. Also note that 1 R S for
otherwise 1 is the smallest element in S, so 1 P T (thus 1 P T0).
Assume k P T0. Since t1, 2, ¨ ¨ ¨ , ku Ď T, 1, 2, ¨ ¨ ¨ k R S. If k+1 P S,
then k + 1 is the smallest element in S. Since we assume that S
does not have the smallest element, k + 1 R S; thus k + 1 P T ñ

k + 1 P T0.
Therefore, by PMI we conclude that T0 = N; thus T = N which
further implies that S = H, a contradiction. ˝
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Chapter 2. Sets and Induction

§2.5 Equivalent Forms of Induction
Proof of WOP ñ PCI.
Assume the contrary that for some S ‰ N, S has the property

for all natural number n, if t1, 2, ¨ ¨ ¨ , n ´ 1u Ď S, then n P S.

Define T = NzS. Then T is a non-empty subset of N; thus WOP
implies that T has a smallest element k. Then 1, 2, ¨ ¨ ¨ , k ´ 1 R T
which is the same as saying that t1, 2, ¨ ¨ ¨ , k ´ 1u Ď S. By the
property above, k P S which implies that k R T, a contradiction. ˝
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Chapter 2. Sets and Induction

§2.5 Equivalent Forms of Induction
Proof of PCI ñ PMI.
Let S Ď N has the property

(a) 1 P S, and (b) n + 1 P S whenever n P S .

We show that S = N by verifying that

for all natural number n, if t1, 2, ¨ ¨ ¨ , n ´ 1u Ď S, then n P S.
1 (a) implies 1 P S; thus the statement “t1, 2, ¨ ¨ ¨ , k´1u = H Ď

S ñ 1 P S” is true.
2 Suppose that t1, 2, ¨ ¨ ¨ , k ´ 1u Ď S. Then k ´ 1 P S. Using

(b) we find that k P S; thus the statement “t1, 2, ¨ ¨ ¨ , k ´ 1u Ď

S ñ k P S” is also true.
Therefore, S has property (‹) and PCI implies that S = N. ˝
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Chapter 2. Sets and Induction

§2.5 Equivalent Forms of Induction
Theorem (Fundamental Theorem of Arithmetic)
Every natural number greater than 1 is prime or can be expressed
uniquely as a product of primes.

The meaning of the unique way to express a composite number
as a product of primes:
Let m be a composite number. Then there is a unique way of writing
m in the form

m = pα1
1 pα2

2 ¨ ¨ ¨ pαn
n ,

where p1 ă p2 ă ¨ ¨ ¨ ă pn are primes and α1, α2, ¨ ¨ ¨ , αn are natural
numbers.
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Chapter 2. Sets and Induction

§2.5 Equivalent Forms of Induction
Proof based on WOP.
We first show that every natural number greater than 1 is either
a prime or a products of primes, then show that the prime factor
decomposition, when it is not prime, is unique.

1 Suppose that there is at least one natural number that is greater
than 1, not a prime, and cannot be written as a product of
primes. Then the set S of such numbers is non-empty, so WOP
implies that S has a smallest element m. Since m is not a prime,
m = st for some natural numbers s and t that are greater than
1 and less than m. Both s and t are less than the smallest
element of S, so they are not in S. Therefore, each of s and t is
a prime or is the product of primes, which makes m a product
of primes, a contradiction. ˝
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§2.5 Equivalent Forms of Induction
Proof based on WOP (Cont’d).

2 Suppose that there exist natural numbers that can be expressed
in two or more different ways as the product of primes, and let
n be the smallest such number (the existence of such a number
is guaranteed by WOP). Then

n = p1p2 ¨ ¨ ¨ pk = q1q2 ¨ ¨ ¨ qm

for some k,m P N, where each pi, qj is prime. Then p1 divides
q1q2 ¨ ¨ ¨ qm which, with the help of Euclid’s Lemma, implies
that p1 = qj for some j P t1, ¨ ¨ ¨ ,mu. Then n

p1
=

n
qj

is a
natural number smaller than n that has two different prime
factorizations, a contradiction. ˝

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



Chapter 2. Sets and Induction

§2.5 Equivalent Forms of Induction
Alternative Proof of Fundamental Theorem of Arithmetic.
Let m be a natural number greater than 1. We note that 2 is a
prime, so the statement is true when m is 2. Now assume that k is
a prime or is a product of primes for all k such that 1 ă k ă m. If m
has no factors other than 1 and itself, then m is prime. Otherwise,
m = st for some natural numbers s and t that are greater than 1

and less than m. By the complete induction hypothesis, each of s
and t either is prime or is a product of primes. Thus, m = st is a
product of primes, so the statement is true for m. Therefore, we
conclude that every natural number greater than 1 is prime or is a
product of primes by PCI. ˝
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§2.5 Equivalent Forms of Induction
Theorem
Let a and b be nonzero integers. Then there is a smallest positive
linear combination of a and b.

Proof.
Let a and b be nonzero integers, and S be the set of all positive
linear combinations of a and b; that is,

S =
␣

am + bn
ˇ

ˇm, n P Z, am + bn ą 0
(

.

Then S ‰ H since a ¨ 1 + b ¨ 0 ą 0 or a ¨ (´1) + b ¨ 0 ą 0. By
WOP, S has a smallest element, which is the smallest positive linear
combination of a and b. ˝
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§2.5 Equivalent Forms of Induction
Theorem (Division Algorithm)
For all integers a and b, where a ‰ 0, there exist a unique pair of
integers (q, r) such that b = aq + r and 0 ď r ă |a|. In notation,
(@ (a, b) P (Zzt0u) ˆ Z)(D!(q, r) P Z ˆ Z)

[
(b = aq + r) ^ (0 ď r ă |a|)

]
.

Proof.
W.L.O.G., we assume that a ą 0 and a does not divide b. Define

S =
␣

b ´ ak
ˇ

ˇ k P Z and b ´ ak ě 0
(

.

Then 0 R S (so that b ‰ 0). It is clear that if b ą 0, then S ‰ H.
If b ă 0, then ´b ą 0; thus the Archimedean property implies that
there exists k P N such that ak ą ´b. Therefore, b ´ a(´k) ą 0

which also implies that S ‰ H. In either case, S is a non-empty
subset of N; thus WOP implies that S has a smallest element r.
Then b ´ aq = r for some q P Z; thus b = aq + r and r ą 0. ˝
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§2.5 Equivalent Forms of Induction
Proof (Cont’d).
Next, we show that r ă |a| = a. Assume the contrary that r ě |a| =

a. Then b ´ a(q + 1) = b ´ aq ´ a = r ´ a ě 0. Since we assume
that 0 R S, we must have b ´ a(q + 1) ą 0. Therefore,

0 ă b ´ a(q + 1) = r ´ a ă r = b ´ aq
which shows that r is not the smallest element of S, a contradiction.

To complete the proof, we need to show that the pair (q, r) is
unique. Suppose that there exist (q1, r1) and (q2, r2), where 0 ď

r1, r2 ă |a|, such that
b = aq1 + r1 = aq2 + r2 .

W.L.O.G., we can assume that r1 ě r2; thus a(q2´q1) = r1´r2 ě 0.
Therefore, a divides r1 ´ r2 which is impossible if 0 ă r1 ´ r2 ă a.
Therefore, r1 = r2 and then q1 = q2. ˝
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