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Chapter 1. Logic and Proofs
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§1.6 Proofs Involving Quantifiers

§1.7 Strategies for Constructing Proofs

§1.8 Proofs from Number Theory
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Chapter 1. Logic and Proofs

§1.1 Propositions and Connectives
Definition
A proposition is a sentence that has exactly one truth value. It is
either true, which we denote by T, or false, which we denote by F.

Example
72 ą 60 (F), π ą 3 (T), Earth is the closest planet to the sun (F).

Example
The statement “the north Pacific right whale（露脊鯨）will be ex-
tinct species before the year 2525” has one truth value but it takes
time to determine the truth value.

Example
That “Euclid was left-handed” is a statement that has one truth
value but may never be known.
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Chapter 1. Logic and Proofs

§1.1 Propositions and Connectives
Definition
A negation of a proposition P, denoted by „ P, is the proposition

“not P”. The proposition „P is true
false exactly when P is false

true .

Definition

Given propositions P and Q, the
conjunction
disjunction

of P and Q, denoted

by
P ^ Q
P _ Q

, is the proposition “P
and
or

Q”.
P ^ Q
P _ Q

is true exactly

when
both P and Q are true

at least one of P or Q is true
.
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Chapter 1. Logic and Proofs

§1.1 Propositions and Connectives
Example
Now we analyze the sentence “either 7 is prime and 9 is even, or
else 11 is not less than 3”. Let P denote the sentence “7 is a prime”,
Q denote the sentence “9 is even”, and R denote the sentence “11
is less than 3”. Then the original sentence can be symbolized by
(P ^ Q) _ („R), and the table of truth value for this sentence is

P Q R P ^ Q „R (P ^ Q) _ („R)

T T T T F T
T T F T T T
T F T F F F
F T T F F F
T F F F T T
F T F F T T
F F T F F F
F F F F T T

Since P is true and Q, R are false, (P ^ Q) _ („R) is true.
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Chapter 1. Logic and Proofs

§1.1 Propositions and Connectives
Definition

A
tautology

contradiction
is a propositional form that is

true
false

for every

assignment of truth values to its component.

Example
The logic symbol (P _ Q) _ („P^„Q) is a tautology.

Example
The logic symbol „(P_„P) _ (Q^„Q) is a contradiction.

Definition
Two propositional forms are said to be equivalent if they have the
same truth value.
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Chapter 1. Logic and Proofs

§1.1 Propositions and Connectives
Theorem
For propositions P, Q, R, we have the following:
(a) P ô„(„P). (Double Negation Law)
(b) P _ Q ô Q _ P
(c) P ^ Q ô Q ^ P

+

(Commutative Laws)

(d) P _ (Q _ R) ô (P _ Q) _ R
(e) P ^ (Q ^ R) ô (P ^ Q) ^ R

+

(Associative Laws)

(f) P ^ (Q _ R) ô (P ^ Q) _ (P ^ R)

(g) P _ (Q ^ R) ô (P _ Q) ^ (P _ R)

+

(Distributive Laws)

(h) „(P ^ Q) ô („P) _(„Q)

(i) „(P _ Q) ô („P) ^(„Q)

+

(De Morgan’s Laws)
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Chapter 1. Logic and Proofs

§1.1 Propositions and Connectives
Proof.
We prove (g) for example, and the other cases can be shown in a
similar fashion. Using the truth table,

P Q R Q^R P_(Q^R) P_Q P_R (P_Q)^(P_R)
T T T T T T T T
T T F F T T T T
T F T F T T T T
F T T T T T T T
T F F F T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

we find that “P _ (Q ^ R)” is equivalent to “(P _ Q)^ (P _ R)”. ˝
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Chapter 1. Logic and Proofs

§1.1 Propositions and Connectives
Definition
A denial of a proposition is any proposition equivalent to „P.

‚ Rules for „, ^ and _:
1 „ is always applied to the smallest proposition following it.
2 ^ connects the smallest propositions surrounding it.
3 _ connects the smallest propositions surrounding it.

Example
Under the convention above, we have

1 „P_„Q ô („P) _ („Q).
2 P _ Q _ R ô (P _ Q) _ R ô P _ (Q _ R).
3 P^„Q_„R ô

[
P ^ („Q)

]
_ („R).

4 R ^ P ^ S ^ Q ô
[
(R ^ P) ^ S

]
^ Q.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals
Definition
For propositions P and Q, the conditional sentence P ñ Q is the
proposition “if P, then Q”. Proposition P is called the antecedent
and Q is the consequence. The sentence P ñ Q is true if and only
if P is false or Q is true.

Remark:
In a conditional sentence, P and Q might not have connections. The
truth value of the sentence “P ñ Q” only depends on the truth value
of P and Q.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals
Example
We would like to determine the truth value of the sentence “if x ą 8,
then x ą 5”. Let P denote the sentence “x ą 8” and Q the sentence
“x ą 5”.

1 If P, Q are both true statements, then x ą 8 which is (exactly
the same as P thus) true.

2 If P is false while Q is true, then 5 ă x ď 8 which is (exactly
the same as „P ^ Q thus) true.

3 If P, Q are both false statements, then x ď 5 which is (exactly
the same as „Q thus) true.

4 It is not possible to have P true but Q false.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals
‚ How to read P ñ Q in English?

1. If P, then Q. 2. P is sufficient for Q. 3. P only if Q.

4. Q whenever P. 5. Q is necessary for P. 6. Q, if/when P.

Definition
Let P and Q be propositions.

1 The converse of P ñ Q is Q ñ P.
2 The contrapositive of P ñ Q is „Q ñ „P.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals
Example
We would like to determine the truth value, as well as the converse
and the contrapositive, of the sentence “if π is an integer, then 14

is even”.
1 Since that π is an integer is false, the implication “if π is an

integer, then 14 is even” is true.
2 The converse of the sentence is “if 14 is even, then π is an

integer” which is a false statement.
3 The contrapositive of the sentence is “if 14 is not even, then π is

not an integer” which is a true statement since the antecedent
“14 is not even” is false.

By this example, we know that a sentence and its converse cannot
be equivalent.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals
Theorem
For propositions P and Q, the sentence P ñ Q is equivalent to its
contrapositive „Q ñ„P.

Proof.
Using the truth table

P Q P ñ Q „Q „P „Q ñ„P
T T T F F T
T F F T F F
F T T F T T
F F T T T T

we conclude that the truth value of P ñ Q and „Q ñ„P are the
same; thus they are equivalent sentences. ˝
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals
Definition
For propositions P and Q, the bi-conditional sentence P ô Q is
the proposition “P if and only if Q”. The sentence P ô Q is true
exactly when P and Q have the same truth values. In other words,
P ô Q is true if and only if P is equivalent to Q.

Remark: The notation ô is a combination of ñ and its converse
ð, so the notation seems to suggest that (P ô Q) is equivalent to
(P ñ Q) ^ (Q ñ P). This is in fact true since

P Q P ô Q P ñ Q Q ñ P (P ñ Q) ^ (Q ñ P)
T T T T T T
T F F F T F
F T F T F F
F F T T T T
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals
Example

1 The proposition “23 = 8 if and only if 49 is a perfect square”
is true because both components are true.

2 The proposition “π =
22

7
if and only if

?
2 is a rational number”

is also true (since both components are false).
3 The proposition “6 + 1 = 7 if and only if Argentina is north

of the equator” is false because the truth values of the compo-
nents differ.

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals
Remark:
Definitions may be stated with the “if and only if” wording, but it
is also common practice to state a formal definition using the word
“if”. For example, we could say that “a function f is continuous at
a number c if ¨ ¨ ¨ ” leaving the “only if” part understood.
Example
A teacher says “If you score 74% or higher on the next test, you will
pass the exam”. Even though this is a conditional sentence, everyone
will interpret the meaning as a biconditional (since the teacher tries
to “define” how you can pass the exam).
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals
Theorem
For propositions P, Q and R, we have the following:
(a) (P ñ Q) ô („P _ Q).
(b) (P ô Q) ô (P ñ Q) ^ (Q ñ P).
(c) „(P ñ Q) ô (P^„Q).
(d) „(P ^ Q) ô (P ñ „Q).
(e) „(P ^ Q) ô (Q ñ „P).
(f) P ñ (Q ñ R) ô (P ^ Q) ñ R.
(g) P ñ (Q ^ R) ô (P ñ Q) ^ (P ñ R).
(h) (P _ Q) ñ R ô (P ñ R) ^ (Q ñ R).
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals
‚ How to read P ô Q in English?

1. P if and only if Q. 2. P if, but only if, Q.
3. P implies Q, and conversely. 4. P is equivalent to Q.
5. P is necessary and sufficient for Q.

‚ Rules for „, ^, _, ñ and ô: These connectives are always
applied in the order listed.
Example

1 P ñ„Q _ R ô S is an abbr. for
(
P ñ

[
(„Q) _ R

])
ô S.

2 P_ „Q ô R ñ S is an abbr. for
[
P _ („Q)

]
ô (R ñ S).

3 P ñ Q ñ R is an abbr. for (P ñ Q) ñ R.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Definition
An open sentence is a sentence that contains variables. When P
is an open sentence with a variable x (or variables x1, ¨ ¨ ¨ , xn), the
sentence is symbolized by P(x) (or P(x1, ¨ ¨ ¨ , xn)).
The truth set of an open sentence is the collection of variables
(from a certain universe) that may be substituted to make the open
sentence a true proposition. (使得 P(x) 為真的所有 x 形成 the
truth set of P(x))

Remark:
In general, an open sentence is not a proposition. It can be true
or false depending on the value of variables.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Example
Let P(x) be the open sentence “x is a prime number between 5060
and 5090”. In this open sentence, the universe is usually chosen
to be N, the natural number system, and the truth set of P(x) is
t5077, 5081, 5087u.

Remark:
The truth set of an open sentence P(x) depends on the universe
where x belongs to. For example, suppose that P(x) is the open
sentence “x 2 + 1 = 0”. If the universe is R, then P(x) is false for
all x (in the universe). On the other hand, if the universe is C, the
complex plane, then P(x) is true when x = ˘i (which also implies
that the truth set of P(x) is ti,´iu).
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Definition
With a universe X specified, two open sentences P(x) and Q(x) are
equivalent if they have the same truth set of all x P X.

Example
The two sentences “3x + 2 = 20” and “2x ´ 7 = 5” are equivalent
open sentences in any of the number system, such as N, Z, Q, R
and C.

Example
The two sentences “x 2 ´ 1 ą 0” and “(x ă ´1) _ (x ą 1)” are
equivalent open sentences in R.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Given an open sentence P(x), the first question that we should ask
ourself is “whether the truth set of P(x) is empty or not”.

Definition
The symbol D is called the existential quantifier. For an open
sentence P(x), the sentence (Dx)P(x) is read “there exists x such
that P(x)” or “for some x, P(x)”. The sentence (Dx)P(x) is true if
the truth set of P(x) is non-empty.

Remark:
An open sentence P(x) does not have a truth value, but the quan-
tified sentence (Dx)P(x) does.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Example
The quantified sentence (D x)(x7 ´ 12x3 + 16x ´ 3 = 0) is true in
the universe of real numbers.

Example (Fermat number)
The quantified sentence (D n)(22n

+ 1 is a prime number) is true in
the universe of natural numbers.

Example (Fermat’s last theorem)
The quantified sentence

(D x, y, z, n)(x n + y n = z n ^ n ě 3)

is true in the universe of integers, but is false in the universe of
natural numbers.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Definition
The symbol @ is called the universal quantifier. For an open sen-
tence P(x), the sentence (@ x)P(x) is read “for all x, P(x)”, ”for every
x, P(x)” or “for every given x (in the universe), P(x)”. The sentence
(@ x)P(x) is true if the truth set of P(x) is the entire universe.

Example
The quantified sentence (@ n)(22n

+1 is a prime number) is false in
the universe of natural numbers since

22
6
+ 1 = 641 ˆ 6700417 .
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
In general, statements of the form “every element of the set A has
the property P” and “some element of the set A has property P”
may be symbolized as (@ x P A)P(x) and (D x P A)P(x), respective.
Moreover,

1 “All P(x) are Q(x)”（所有滿足 P 的 x 都滿足 Q or 只要滿
足 P 的 x 就滿足 Q）should be symbolized as

“(@ x)
(
P(x) ñ Q(x)

)
”.

(See the next slide for the explanation!)
2 “Some P(x) are Q(x)”（有些滿足 P 的 x 也滿足 Q or 有些

x 同時滿足 P 和 Q）should be symbolized as

“(D x)
(
P(x) ^ Q(x)

)
”.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
‚ Explanation of 1: Suppose that the truth set of P(x) is A and
the truth set of Q(x) is B. Then “All P(x) are Q(x)” implies that
A Ď B; that is, if x in A, then x in B. Therefore, by reading the
truth table

x P A x P B P(x) Q(x) P(x) ñ Q(x)
T T T T T
T F T F F
F T F T T
F F F F T

we find that the truth set of the open sentence P(x) ñ Q(x) is the
whole universe since the second case (x P A)^ „ (x P B) cannot
happen.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Example

1 The sentence “for every odd prime x less than 10, x 2 + 4 is
prime” can be symbolized as

(@ x)
[
(x is odd)^(x is prime)^(x ă 10) ñ (x 2+4 is prime)

]
.

2 The sentence “for every rational number there is a larger inte-
ger” can be symbolized as

(@ x P Q)
[
(D z P Z)(z ą x)

]
.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Example

1 The sentence “some functions defined at 0 are not continuous
at 0” can be symbolized as

(D f )
[
(f is defined at 0) ^ (f is not continuous at 0)

]
.

2 The sentence “some integers are even and some integers are
odd” can be symbolized as

(D x)(x is even) ^ (D y)(y is odd) .
3 The sentence “some real numbers have a multiplicative inverse”

(有些實數有乘法反元素) can be symbolized as

(D x P R)
[
(D y P R)(xy = 1)

]
.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
To symbolized the sentence “any real numbers have an additive
inverse” (任何實數都有加法反元素), it is required that we combine
the use of the universal quantifier and the existential quantifier:

(@ x P R)
[
(D y P R)(x + y = 0)

]
.

This is in fact quite common in mathematical statement. Another
example is the sentence “some real number does not have a multi-
plicative inverse” (有些實數沒有乘法反元素) which can be sym-
bolized by

(D x P R) „
[
(D y P R)(xy = 1)

]
or simply

(D x P R)
[
(@ y P R)(xy ‰ 1)

]
.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
‚ Continuity of functions: By the definition of continuity and using
the logic symbol, f is continuous at a number c if

(@ ε) (D δ) (@ x)
[
(|x ´ c| ă δ) ñ (|f (x) ´ f (c)| ă ε)

]
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Q(ε,δ)
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

P(ε)”(D δ)Q(ε,δ)

.

1 The universe for the variables ε and δ is the collection of positive
real numbers. Therefore, sometimes we write

(@ ε ą 0)(D δ ą 0)(@ x)
[
(|x ´ c| ă δ) ñ (|f (x) ´ f (c)| ă ε)

]
.

2 The sentence P(ε) is always true for any ε ą 0.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
‚ Continuity of functions: By the definition of continuity and using
the logic symbol, f is continuous at a number c if

(@ ε) (D δ) (@ x)
[
(|x ´ c| ă δ) ñ (|f (x) ´ f (c)| ă ε)

]
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Q(ε,δ)
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

P(ε)”(D δ)Q(ε,δ)

.

1 The universe for the variables ε and δ is the collection of positive
real numbers. Therefore, sometimes we write

(@ ε ą 0)(D δ ą 0)(@ x)
[
(|x ´ c| ă δ) ñ (|f (x) ´ f (c)| ă ε)

]
.

2 The sentence (D δ)Q(ε, δ) is always true for any ε ą 0.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
‚ Continuity of functions: By the definition of continuity and using
the logic symbol, f is continuous at a number c if

(@ ε) (D δ) (@ x)
[
(|x ´ c| ă δ) ñ (|f (x) ´ f (c)| ă ε)

]
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Q(ε,δ)
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

P(ε)”(D δ)Q(ε,δ)

.

2 The sentence (D δ)Q(ε, δ) is always true for any ε ą 0.

3 Suppose ε is a given positive number. Then the truth set of
Q(ε, δ) is non-empty which implies that “there is at least one
positive number δ making the sentence Q(ε, δ) true”.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Definition
Two quantified statement are equivalent in a given universe if they
have the same truth value in that universe. Two quantified sentences
are equivalent if they are equivalent in every universe.

Example
Consider quantified sentences “(@ x)(x ą 3)” and “(@ x)(x ě 4)”.

1 They are equivalent in the universe of integers because both
are false.

2 They are equivalent in the universe of natural numbers greater
than 10 because both are true.

3 They are not equivalent in the universe X = [3.7,8) of the real
line.

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Theorem
If P(x) is an open sentence with variable x, then

1 „(@ x)P(x) is equivalent to (D x) „P(x).
2 „(D x)P(x) is equivalent to (@ x) „P(x).

Proof.
Let X be the universe, and A be the truth set of P(x).

1 The sentence (@ x)P(x) is true if and only if A = X; hence
„ (@ x)P(x) is true if and only if A ‰ X. The sentence (D x) „

P(x) is true if and only if the truth set of „P(x) is non-empty;
thus (D x) „P(x) is true if and only if A ‰ X.

2 Using (a) and the double negation law,
„(D x)P(x) ô „

[
„
(
(@ x) „P(x)

)]
ô (@ x) „P(x) . ˝
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Corollary

1 If P(x, y, z) and Q(x, y, z) are open sentences with variables x,
y, z, then „

[
(@ x)(D y)(@ z)

(
P(x, y, z) ñ Q(x, y, z)

)]
is equi-

valent to (D x)(@ y)(D z)
(
P(x, y, z)^ „Q(x, y, z)

)
.

2 If P(x1, ¨ ¨ ¨ , x4) and Q(x1, ¨ ¨ ¨ , x4) are open sentences with vari-
ables x1, x2, x3, x4, then
„
[
(D x1)(@ x2)(D x3)(@ x4)

(
P(x1, ¨ ¨ ¨ , x4) ñ Q(x1, ¨ ¨ ¨ , x4)

)]
is equivalent to

(@ x1)(D x2)(@ x3)(D x4)
(
P(x1, ¨ ¨ ¨ , x4)^ „Q(x1, ¨ ¨ ¨ , x4)

)
.

Proof.
The corollary can be proved using the theorem in the previous page
and the fact that „(P ñ Q) ô (P^„Q). ˝
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
‚ Discontinuity of functions:
A function f is continuous at c if and only if

(@ ε ą 0)(D δ ą 0)(@ x)
[
(|x ´ c| ă δ) ñ

(ˇ
ˇf (x) ´ f (c)

ˇ

ˇ ă ε
)]

.

Therefore, f is not continuous at c if and only if

(D ε ą 0)(@ δ ą 0)(D x)
[
(|x ´ c| ă δ) ^

(ˇ
ˇf (x) ´ f (c)

ˇ

ˇ ě ε
)]

.

解讀：f 在 c 不連續，則存在一個正數 ε 使得任意正數 δ 所定義

的開區間 (c ´ δ, c + δ) 中有 x 會滿足
ˇ

ˇf (x) ´ f (c)
ˇ

ˇ ě ε。
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
‚ Non-existence of limits:
A function f defined on an interval containing c, except possibly at
c, is said to have a limit at c

(
or lim

xÑc
f (x) exists

)
if and only if

(D L P R)(@ ε ą 0)(D δ ą 0)(@ x)
(
(0 ă |x ´ c| ă δ) ñ (|f (x) ´ L| ă ε)

)
.

Therefore, f does not have a limit at c if

(@ L P R)(D ε ą 0)(@ δ ą 0)(D x)
(
(0 ă |x ´ c| ă δ) ^ (|f (x) ´ L| ě ε)

)
.

解讀：若 f 在 c 極限不存在，則不管對哪個（可能的極限）實數
L 都可以找到一個正數 ε，使得任意正數 δ 所定義的去中心區域

(c ´ δ, c) Y (c, c + δ) 中都有 x 會滿足 |f (x) ´ L| ě ε。
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Theorem
Let P(x, y) be an open sentence with two variables x and y. Then

(@ x, y)P(x, y) ô (@ x)
[
(@ y)P(x, y)

]
.

Proof.
Suppose that the universe of x and y are X and Y, respectively. We
note that

(@ x, y)P(x, y) is true ô the truth set of P(x, y) is X ˆ Y
ô For every given x P X, the truth set of

P(x, y) is Y
ô (@ x)

[
(@ y)P(x, y)

]
˝
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements
Definition
The symbol D! is called the unique existential quantifier. For
an open sentence P(x), then sentence (D!x)P(x) is read “there is a
unique x such that P(x)”. The sentence (D!x)P(x) is true if the truth
set of P(x) has exactly one element.

Theorem
If P(x) is an open sentence with variable x, then

1 (D!x)P(x) ñ (Dx)P(x).
2 (D!x)P(x) ô

[(
(Dx)P(x)

)
^
(
(@ y)(@ z)(P(y)^P(z) ñ y = z)

)]
.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Mathematical Theorem: A statement that describes a pattern
or relationship among quantities or structures, usually of the form
P ñ Q.

Proofs of a Theorem: Justifications of the truth of the theorem
that follows the principle of logic.

Lemma: A result that serves as a preliminary step to prove the main
theorem.

Axiom (公設): Some facts that are used to develop certain theory
and cannot be proved.

Undefined terms: Not everything can/have to be defined, and we
have to treat them as known.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Remark:

1 To validate a conditional sentence P ñ Q, by definition you
only need to show that there is no chance that P is true but at
the same time Q is false. Therefore, you often show that if P
is true then Q is true, if Q is false then P is false or that P is
true and Q is false leads to a contradiction (always false).

2 Sometimes it is difficult to identify the antecedent of a math-
ematical theorem. Usually it is because the antecedent is too
trivial to be stated. For example, “

?
2 is an irrational number”

is a mathematical theorem and it can be understood as “if you
know what an irrational number is, then

?
2 is an irrational

number”.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
‚ General format of proving P ñ Q directly:

Direct proof of P ñ Q
Proof.
Assume P. (可用很多方式取代，主要是看 P 的內容)

...
Therefore, Q.
Thus, P ñ Q. ˝
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Basic Rules: In any proof at any time you may

1 state an axiom (by the axiom of ¨ ¨ ¨ ¨ ¨ ¨ ), an assumption (as-
sume that ¨ ¨ ¨ ¨ ¨ ¨ ), or a previously proved result (by the fact
that ¨ ¨ ¨ ¨ ¨ ¨ ).

2 state a sentence whose symbolic translation is a tautology (such
as classification 分類).

3 state a sentence (or use a definition) equivalent to any state-
ment earlier in the proof.

4 use the modus ponens rule: after statements P and P ñ Q
appear in a proof, state Q.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Example
Prove that if x is odd, then x + 1 is even.

Proof.
Assume that x is an odd number.
Then x = 2k + 1 for some integer k ;
thus x + 1 = 2k + 1 + 1 = 2(k + 1) which shows that x + 1 is a
multiple of 2.
Therefore, x + 1 is even. ˝
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Example
Let a, b, c be integers. If a divides b and b divides c, then a divides
c.

Proof.
Let a, b, c be integers.
Assume that a divides b and b divides c.
Then b = am for some integer m, and c = bn for some integer n ;
thus c = (am)n = a(mn) which shows that c is an multiple of a.
Therefore, a divides c. ˝
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Example
Let a, b, c be integers. If a divides b and b divides c, then a divides
c.

Proof.
Let a, b, c be integers.
Assume that a divides b. Then b = am for some integer m.
Assume that b divides c. Then c = bn for some integer n.
Thus, c = (am)n = a(mn) which shows that c is an multiple of a.
Therefore, a divides c. ˝
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Example
Show that (@ x P R)(x 2 + 1 ą 0).

翻譯成 P ñ Q 的句型：Show that if x P R, then x 2 + 1 ą 0.
Proof.
Assume that x is a real number.
Then either x ą 0, x = 0 or x ă 0.

1 If x ą 0, then x 2 = x ¨ x ą 0.
2 If x = 0, then x 2 = 0.
3 If x ă 0, then (´x) ą 0; thus x 2 = (´x) ¨ (´x) ą 0.

In either cases, x 2 ě 0; thus x 2 + 1 ą 0.
Therefore, x 2 + 1 ą 0. ˝
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Example

Show that (@ ε ą 0)
(

#
!

n P N
ˇ

ˇ

ˇ

1

n ą ε
)

ă 8

)
.

翻譯成 P ñ Q 的句型：Show that if ε ą 0, then the collection
!

n P N
ˇ

ˇ

ˇ

1

n ą ε
)

has only finitely many elements.

Proof.
Assume that ε ą 0. Then 1

ε
ă 8.

Note that
!

n P N
ˇ

ˇ

ˇ

1

n ą ε
)

=
!

n P N
ˇ

ˇ

ˇ
n ă

1

ε

)

which is the collection

of natural numbers less than 1

ε
. Therefore,

#
!

n P N
ˇ

ˇ

ˇ

1

n ą ε
)

ď
1

ε
ă 8 . ˝
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Example
Show that (@ x P R)(D y P R)(x + y = 0).

翻譯成 P ñ Q 的句型：Show that “if x P R, then the truth set
of the open sentence P(y) ” (x + y = 0) is non-empty” or “if
x P R, then there exists y P R such that x + y = 0”.
Proof.
Assume that x is a real number.
Then y = ´x is a real number and x + y = 0.
Thus, there exists y P R such that x + y = 0.
Therefore, for each x P R, there exists y P R such that x+ y = 0. ˝
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Example
Show that (@ x P R)(D y P R)(x + y = 0).

翻譯成 P ñ Q 的句型：Show that “if x P R, then the truth set
of the open sentence P(y) ” (x + y = 0) is non-empty” or “if
x P R, then there exists y P R such that x + y = 0”.
Proof.
Let x be a real number.
Then y = ´x is a real number and x + y = 0.
Thus, there exists y P R such that x + y = 0.
Therefore, for each x P R, there exists y P R such that x+ y = 0. ˝
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods I (Direct Proof)
Example
Show that (@ x P R)(D y P R)(x + y = 0).

翻譯成 P ñ Q 的句型：Show that “if x P R, then the truth set
of the open sentence P(y) ” (x + y = 0) is non-empty” or “if
x P R, then there exists y P R such that x + y = 0”.
Proof.
Let x P R be given.
Then y = ´x is a real number and x + y = 0.
Thus, there exists y P R such that x + y = 0.
Therefore, for each x P R, there exists y P R such that x+ y = 0. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Recall that a conditional sentence is equivalent to its contrapositive;
that is, (P ñ Q) ô („Q ñ„P).

‚ General format of proving P ñ Q by contraposition:

Proof of P ñ Q by Contraposition
Proof.
Assume „Q. (可用很多方式取代，主要是看 „Q 的內容)

...
Therefore, „P.
Thus, „Q ñ„P.
Therefore, P ñ Q. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Example
Let m be an integer. Show that if m2 is even, then m is even.

Proof.
Assume (the contrary) that m is odd.
Then m = 2k + 1 for some integer k.
Therefore, m2 = (2k+1)2 = 4k 2+4k+1 = 2(2k 2+2k)+1 which
is an odd number.
Thus, if m is odd, then m2 is odd.
Therefore, if m2 is even, then m is even. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Example
Let x and y be real numbers such that x ă 2y. Show that if 7xy ď

3x 2 + 2y 2, then 3x ď y.

Proof.
Let x and y be real numbers such that x ă 2y.
Assume the contrary that 3x ą y.
Then 2y ´ x ą 0 and 3x ´ y ą 0.
Therefore, (2y ´ x)(3x ´ y) ą 0.
Expanding the expression, we find that 7xy ´ 3x 2 ´ 2y 2 ą 0.
Therefore, 7xy ą 3x 2 + 2y 2.
Thus, if 3x ą y, then 7xy ą 3x 2 + 2y 2.
Therefore, if 7xy ď 3x 2 + 2y 2, then 3x ď y. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
‚ General format of proving P ñ Q by contradiction:

Proof of P ñ Q by Contradiction
Proof.
Assume P and „Q. (可用很多方式取代，主要是看 P 與 „Q

的內容)
...

Therefore, „P.
Thus, P^„P, a contradiction.
Therefore, P ñ Q. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
‚ General format of proving P ñ Q by contradiction:

Proof of P ñ Q by Contradiction
Proof.
Assume P and „Q. (可用很多方式取代，主要是看 P 與 „Q

的內容)
...

Therefore, „P, a contradition.
Thus, P^„P, a contradiction.
Therefore, P ñ Q. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
As mentioned before, there are cases that the antecedent of a the-
orem is unclear. This kind of theorems are of the form Q.
‚ General format of proving Q by contradiction:

Proof of Q by Contradiction
Proof.
Assume „Q. (可用很多方式取代，主要是看 „Q 的內容)

... (通常是敘述公設或是定義的過程)
Therefore, P.

... (由 P^„Q 進行邏輯推演)
Therefore, „P.
Thus, P^„P, a contradiction.
Therefore, P ñ Q. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Example
Show that

?
2 is an irrational number.

Proof.
Assume the contrary that

?
2 is a rational number.

Then
?
2 =

q
p for some positive integers p, q satisfying (p, q) = 1.

Thus, q2 is an even number since q2 = 2p2.
By previous example, q is even; thus q = 2k for some integer k.
Then p2 is an even number since p2 =

q2

2
= 2k 2.

The previous example again implies that p is an even number.
Therefore, (p, q) ‰ 1, a contradiction.
Therefore,

?
2 is an irrational number. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Example
Show that the collection of primes is infinite.

Proof.
Assume the contrary that there are only finitely many primes.
Suppose that p1 ă p2 ă ¨ ¨ ¨ ă pk are all the prime numbers.
Let n = p1p2 ¨ ¨ ¨ pk + 1. Then n ą pk and n is not a prime.
Therefore, n has a prime divisor（質因數）q; that is, q is a prime
and q|n.
Since q is a prime, q = pj for some 1 ď j ď k.
However, q = pj does not divide n, a contradiction.
Therefore, the collection of primes is infinite. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Example
There are n people (n ě 2) at a party, some of whom are friends.
Prove that there exists someone at the party who is friends with the
same number of party-goers as another person.

中文：證明在一個宴會中，有兩人在該宴會中的朋友數一樣多。

Proof.
Assume the contrary that no two party-goers have the same number
of friends. Note that the number of friends should range from 0

to n ´ 1; thus by the assumption that no two party-goers have the
same number of friends, there must be one party-goer who has no
friend, while there must be one party-goer who has n ´ 1 friends.
This is impossible because the one who has n ´ 1 friends is a friend
of the one who has no friend. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Some mathematical theorems are of the form P ô Q. As explained
before, this means P ñ Q and Q ñ P; thus one should establish
these two implication separately.
‚ General format of proving P ô Q:

Proof of P ô Q
Proof.
(i) Show that P ñ Q using the methods mentioned above.
(ii) Show that Q ñ P using the methods mentioned above.
Therefore, P ô Q. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Example
Let m, n be integers. Show that m and n have the same parity (同
奇同偶) if and only if m2 + n2 is even.

Proof.
(ñ) If m and n are both even, then m = 2k and n = 2ℓ for some

integers k and ℓ. Therefore, m2 + n2 = 2(2k 2 + 2ℓ2) which
is even. If m and n are both odd, then m = 2k + 1 and
n = 2ℓ + 1 for some integers k and ℓ. Therefore, m2 + n2 =

2(2k 2 + 2ℓ2 + 2k + 2ℓ+ 1) which is even. Therefore, if m and
n have the same parity, m2 + n2 is even. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Example
Let m, n be integers. Show that m and n have the same parity (同
奇同偶) if and only if m2 + n2 is even.

Proof.
(ð) Assume the contrary that there are m and n having opposite

parity. W.L.O.G. we can assume that m is even and n is odd.
Then m = 2k and n = 2ℓ + 1 for some integers k and ℓ.
Therefore, m2 + n2 = 2(2k 2 + 2ℓ2 + 2ℓ) + 1 which is odd.
Thus, if m and n have opposite parity, then m2 + n2 is odd.
Therefore, if m2 + n2 is even, then m and n have the same
parity. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Remark:

1 Sometimes it requires intermediate equivalent propositions to
show P ô Q; that is, one might establish
(P ô R1) ^ (R1 ô R2) ^ ¨ ¨ ¨ ^ (Rn´1 ô Rn) ^ (Rn ô Q)

to prove P ô Q.
2 Often times it is more efficient to show a theorem of the form

“P1, P2, ¨ ¨ ¨ , Pn are equivalent” (which means P1, P2, ¨ ¨ ¨ ,
Pn have the same truth value) by showing that P1 ñ P2,
P2 ñ P3, ¨ ¨ ¨ , and Pn ñ P1. In other words, one uses the
following relation[

(P1 ô P2) ^ (P2 ô P3) ^ ¨ ¨ ¨ ^ (Pn´1 ô Pn)
]

ô
[
(P1 ñ P2) ^ (P2 ñ P3) ^ ¨ ¨ ¨ ^ (Pn ñ P1)

]
to prove this kind of theorems.
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Example
Let x, y be non-negative real numbers such that x ´ 4y ă y ´ 3x.
Prove that if 3x ą 2y, then 12x 2 + 10y 2 ă 24xy.

Proof.
(Direct Proof): Let x, y be non-negative real numbers such that
x ´ 4y ă y ´ 3x. Suppose that 3x ą 2y. Then 4x ´ 5y ă 0 and
3x ´ 2y ą 0. Therefore,

0 ą (4x ´ 5y)(3x ´ 2y) = 12x 2 + 10y 2 ´ 23xy

or equivalently, 12x 2 + 10y 2 ă 23xy. Since x, y are non-negative
real numbers, 23xy ď 24xy; thus 12x 2 + 10y 2 ă 24xy. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Example
Let x, y be non-negative real numbers such that x ´ 4y ă y ´ 3x.
Prove that if 3x ą 2y, then 12x 2 + 10y 2 ă 24xy.

Proof.
(Proof by Contraposition): Let x, y be non-negative real numbers
such that x´4y ă y´3x. Assume the contrary that 12x 2+10y 2 ě

24xy. Since x, y are non-negative real numbers,

12x 2 + 10y 2 ě 24xy ě 23xy ;

thus (4x ´ 5y)(3x ´ 2y) = 12x 2 +10y 2 ´ 23xy ě 0. Since x ´ 4y ă

y ´ 3x, we find that 4x ´ 5y ă 0; thus 3x ´ 2y ď 0. ˝
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods II (Indirect Proof)
Example
Let x, y be non-negative real numbers such that x ´ 4y ă y ´ 3x.
Prove that if 3x ą 2y, then 12x 2 + 10y 2 ă 24xy.

Proof.
(Proof by Contradiction): Let x, y be non-negative real numbers
such that x´4y ă y´3x. Assume that 3x ą 2y and 12x 2+10y 2 ě

24xy. Then 4x ´ 5y ă 0 and 3x ´ 2y ą 0; thus

0 ą (4x´5y)(3x´2y) = 12x 2+8y 2´23xy ě 24xy´23xy = xy ě 0 ,

where the last inequality follows from the fact that x, y are non-
negative real numbers. Thus, we reach a contradiction 0 ą 0. ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
‚ General format of proving (@ x)P(x) directly:
Note that to establish (@ x)P(x) is the same as proving that

“if x is in the universe, then P(x) is true”.

Direct Proof of (@ x)P(x)
Proof.
Let x be given in the universe. (可用很多方式取代，主要是看

宇集是什麼)
...

Hence P(x) is true.
Therefore, (@ x)P(x) is true. ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
‚ General format of proving (@ x)P(x) by contradiction:
To prove “if x is in the universe, then P(x) is true” by contradiction
is to show that “an x in the universe so that P(x) is false leads to a
contradiction”.

Proof of (@ x)P(x) by contradiction
Proof.
Assume (the contrary) that „(@ x)P(x).
Then (D x) „P(x).
Let x be an element in the universe such that „P(x).

...
Therefore, Q^ „Q, a contradiction.
Thus (D x) „P(x) is false, so (@ x)P(x) is true. ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
‚ General format of proving (@ x)P(x) by contradiction:
To prove “if x is in the universe, then P(x) is true” by contradiction
is to show that “an x in the universe so that P(x) is false leads to a
contradiction”.

Proof of (@ x)P(x) by contradiction
Proof.
Assume (the contrary) that „(@ x)P(x).
Then (D x) „P(x).
Let x be an element in the universe such that „P(x).

...
Therefore, Q^ „Q, a contradiction.
Thus (D x) „P(x) is false, so (@ x)P(x) is true. ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
Example
Show that for all x P

(
0,

π

2

)
, sin x + cos x ą 1.

Proof.
Assume that there exists x P (0, π/2) such that sin x + cos x ď 1.
Then 0 ă sin x + cos x ď 1; thus

0 ă (sin x + cos x)2 ď 1 .

Expanding the square and using the identity sin2 x+ cos2 x = 1, we
find that

0 ă 1 + 2 sin x cos x ď 1

which shows sin x cos x ď 0. On the other hand, since x P (0, π/2),
we have sin x ą 0 and cos x ą 0 so that sin x cos x ą 0, a contra-
diction. Therefore, sin x + cos x ą 1 for all x P (0, π/2). ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
‚ General format of proving (D x)P(x) directly: Method 1.
The most straight forward way to show that (D x)P(x) is to give a
precise x in the universe and show that P(x) is true; however, this
usually requires that you make some effort to find out which x suits
this requirement.

Constructive Proof of (D x)P(x)
Proof.
Specify one particular element a.
If necessary, verify that a is in the universe.

...
Therefore, P(a) is true.
Thus (D x)P(x) is true. ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
Example
Show that between two different rational numbers there is a rational
number.

Proof.

Let a, b be rational numbers and a ă b. Let c =
a + b
2

. Then c P Q
and a ă c ă b. ˝

Example
Show that there exists a natural number whose fourth power is the
sum of other three fourth power.

Proof.
20615693 is one such number because it is a natural number and

206156734 = 26824404 + 15365394 + 187967604 . ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
‚ General format of proving (D x)P(x) directly: Method 2.
To show (D x)P(x), often times it is almost impossible to provide a
precise x so that P(x) is true. Proving (D x)P(x) directly (not proving
by contradiction) then usually requires a lot of abstract steps.

Non-Constructive Proof of (D x)P(x)
Proof.

...
Therefore, P(a) is true.
Thus (D x)P(x) is true. ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
Example
Let f : [0, 1] Ñ [0, 1] be continuous. Show that

(D x P [0, 1])
(
x = f (x)

)
.

Proof.
1 If f (0) = 0 or f (1) = 1, then (D x P [0, 1])

(
x = f (x)

)
.

2 If f (0) ‰ 0 and f (1) ‰ 1, then 0 ă f (0), f (1) ă 1.
Define g : [0, 1] Ñ R by g(x) = x ´ f (x). Then g is continuous
on [0, 1]. Moreover, g(0) ă 0 and g(1) ą 0. Thus, the Inter-
mediate Value Theorem implies that there exists x such that
0 ă x ă 1 and g(x) = 0 (which is the same as x = f (x)).

In either cases, there exists x P [0, 1] such that x = f (x). ˝

Ching-hsiao Arthur Cheng 鄭經斅 基礎數學 MA-1015A



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
‚ General format of proving (D x)P(x) by contradiction:

Proof of (D x)P(x) by contradiction
Proof.
Suppose the contrary that „(D x)P(x).
Then (@ x) „P(x).

...
Therefore, Q^ „Q, a contradiction.
Thus (D x)P(x) is true. ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
Example
Let S be a set of 6 positive integers, each less than or equal to 10.
Prove that there exists a pair of integers in S whose sum is 11.

Proof.
Suppose the contrary that every pair of integers in S has a sum
different from 11. Then S contains at most one element from each
of the sets t1, 10u, t2, 9u, t3, 8u, t4, 7u and t5, 6u. Thus, S contains
at most 5 elements, a contradiction. We conclude that S contains
a pair of numbers whose sum in 11. ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
‚ General format of proving (D !x)P(x):

Proof of (D !x)P(x)
Proof.
(i) Prove that (D x)P(x) is true using the methods mentioned

above.
(ii) Prove that (@ y)(@ z)

[(
P(y) ^ P(z)

)
ñ (y = z)

]
:

Assume that y and z are elements in the universe such that
P(y) and P(z) are true.

...
Therefore, y = z.

From (i) and (ii) we conclude that (D !x)P(x) is true. ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
Example
Prove that every non-zero real number has a unique multiplicative
inverse.

Proof.
Let x be a non-zero real number.

1 Let y =
1

x . Since x ‰ 0, y is a real number. Moreover, xy = 1;
thus (D y P R)(xy = 1).

2 Suppose that y and z are real numbers such that xy = xz = 1.
Then x(y ´ z) = xy ´ xz = 0. By the fact that x ‰ 0, we must
have y = z.

Therefore, (@ x ‰ 0)(D !y)(xy = 1). ˝
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
Some manipulations of quantifiers that permit valid deduc-
tions:

(@ x)(@ y)P(x, y) ô (@ y)(@ x)P(x, y) , (1a)

(D x)(D y)P(x, y) ô (D y)(D x)P(x, y) , (1b)

(@ x)P(x) _ (@ x)Q(x) ñ (@ x)
[
P(x) _ Q(x)

]
, (1c)

(@ x)
[
P(x) ñ Q(x)

]
ñ

[
(@ x)P(x) ñ (@ x)Q(x)

]
, (1d)

(@ x)
[
P(x) ^ Q(x)

]
ô

[
(@ x)P(x) ^ (@ x)Q(x)

]
, (1e)

(D x)(@ y)P(x, y) ñ (@ y)(D x)P(x, y) . (1f)
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers
Counter-examples for the non-equivalence in (1c), (1d), (1f):

1 the “if” direction in (1c): Let the universe be all the integers,
P(x) be the statement “x is an even number” and Q(x) be the
statement “x is an odd number”. Then clearly (@ x)

[
P(x) _

Q(x)
]

but we do not have (@ x)P(x) _ (@ x)Q(x).
2 the “if” direction in (1d): Let the universe be all the animals,

P(x) be the statement “x has wings” and Q(x) be the state-
ment “x is a bird”. Then clearly the implication

[
(@ x)P(x) ñ

(@ x)Q(x)
]

is true (since the antecedent is false) while the state-
ment (@ x)

[
P(x) ñ Q(x)

]
is false.

3 the “if” direction in (1f): Let the universe be all the non-
negative real numbers, and P(x, y) be the statement “y = x 2”.
Clearly (@ y)(D x)P(x, y) but we do not have (D x)(@ y)P(x, y).
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Chapter 1. Logic and Proofs

§1.7 Strategies for Constructing Proofs
Summary of strategies you should try when you begin to write a
proof:

1 Understand the statement to be proved: make sure you
know the definitions of all terms that appear in the statement.

2 Identify the assumption(s) and the conclusion, and deter-
mine the logical form of the statement.

3 Look for the key ideas: Ask yourself what is needed to reach
the conclusion. Find relationships among the terms, the equa-
tions, and formulas involved. Recall known facts and previous
results about the antecedent and consequence.
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Chapter 1. Logic and Proofs

§1.7 Strategies for Constructing Proofs
Proof of (P ñ Q1 _ Q2): Note that

(P ñ Q1 _ Q2) ô
[
(P^ „Q1) ñ Q2

]
.

Example
If (x, y) is inside the circle (x ´ 6)2 + (y ´ 3)3 = 8, then x ą 4 or
y ą 1.

Proof.
Suppose that (x, y) is inside the circle (x ´ 6)2 + (y ´ 3)2 = 8 and
x ď 4. Then (x ´ 6)2 + (y ´ 3)2 ă 8 and 6 ´ x ě 2. Therefore,

(y ´ 3)2 ă 8 ´ (6 ´ x)2 ď 8 ´ 4 = 4

which implies that |y ´ 3| ă 2; thus ´2 ă y ´ 3 ă 2 which further
shows 1 ă y ă 5. ˝
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Theorem (The Division Algorithm)
For all integers a and b, with a ‰ 0, there exist unique integer q and
r such that b = aq + r and 0 ď r ă |a|.

1 The integer a is the divisor (除數), b is the divident (被除數),
q is the quotient (商), and r is the remainder (餘數).

2 a is said to divide b if b = aq for some integer q.
3 A common divisor (公因數) of nonzero integers a and b is an

integer that divides both a and b.
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Definition
Let a and b be non-zero integers. We say the integer d is the great-
est common divisor (gcd) of a and b, and write d = gcd(a, b), if

1 d is a common divisor of a and b.
2 every common divisor c of a and b is not greater than d.

Theorem
Let a and b be non-zero integers. The gcd of a and b is the smallest
positive linear combination of a and b; that is,

gcd(a, b) = min
␣

am + bn
ˇ

ˇ am + bn ą 0 ,m, n P Z
(

.

Proof.
Let d = am + bn be the smallest positive linear combination of a
and b. We show that d satisfies (1) and (2) in the definition of the
greatest common divisor. ˝
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Proof (Cont’d).

1 First we show that d divides a. By the Division Algorithm,
there exist integers q and r such that a = dq + r, where 0 ď

r ă d. Then
r = a ´ dq = a ´ (am + bn)q = a(1 ´ m) + b(´nq) ;

thus r is a linear combination of a and b. Since 0 ď r ă d
and d is the smallest positive linear combination, we must have
r = 0. Therefore, a = dq; thus d divides a. Similarly, d divides
b (replacing a by b in the argument above); thus d is a common
divisor of a and b.

2 Next we show that all common divisors of a and b is not
greater than d. Let c be a common divisor of a and b. Then
c divides d since d = am + bn. Therefore, c ď d.

By (1) and (2), we find that d = gcd(a, b). ˝
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Theorem (Euclid’s Algorithm - 輾轉相除法)
Let a and b be positive integers with a ď b. Then there are two
lists of positive integers q1, q2, ¨ ¨ ¨ , qk´1, qk, qk+1 and r1, r2, ¨ ¨ ¨ ,
rk´1, rk, rk+1 such that

1 a ą r1 ą r2 ą ¨ ¨ ¨ ą rk´1 ą rk ą rk+1 = 0.
2 b = aq1 + r1, a = r1q2 + r2, r1 = r2q3 + r3, ¨ ¨ ¨ ¨ ¨ ¨ ,

rk´3 = rk´2qk´1 + rk´1, rk´2 = rk´1qk + rk,
rk´1 = rkqk+1 (that is, rk+1 = 0).

Furthermore, gcd(a, b) = rk, the last non-zero remainder in the list.
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Proof of Euclid’s Algorithm.
Let a and b be positive integers with a ď b. By the Division Al-
gorithm, there exists positive integer q1 and non-negative integer r1
such that b = aq1+r1 and 0 ď r1 ă a. If r1 = 0, the lists terminate;
otherwise, for 0 ă r1 ă a, there exists positive integer q2 and non-
negative integer r2 such that a = r1q2+r2 and 0 ď r2 ă r1. If r2 = 0,
the lists terminate; otherwise, for 0 ă r2 ă r1, there exists positive
integer q3 and non-negative integer r3 such that r1 = r2q3 + r3 and
0 ď r3 ă r2. ˝
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Proof of Euclid’s Algorithm (Cont’d).
Continuing in this fashion, we obtain a strictly decreasing sequence
of non-negative integers r1, r2, r3, ¨ ¨ ¨ . This lists must end, so there
is an integer k such that rk+1 = 0. Thus we have

r0 ” a ą r1 ą r2 ą ¨ ¨ ¨ ą rk ą rk+1 = 0 ,

rj´1 = rjqj+1 + rj+1 for all 1 ď j ď k ,
b = r0q1 + r1 .

We now show that rk = d ” gcd(a, b).
1 The remainder rk divides rk´1 since rk´1 = rkqk+1. Also, rk

divides rk´2 since
rk´2 = rk´1qk + rk = rkqk+1qk + rk = rk(qkqk+1 + 1) .

Therefore, by the fact that rj´1 = rjqj+1+rj+1 for all 1 ď j ď k,
we find that rk divides rj for all 0 ď j ď k ´ 1. ˝
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Proof of Euclid’s Algorithm (Cont’d).
Continuing in this fashion, we obtain a strictly decreasing sequence
of non-negative integers r1, r2, r3, ¨ ¨ ¨ . This lists must end, so there
is an integer k such that rk+1 = 0. Thus we have

r0 ” a ą r1 ą r2 ą ¨ ¨ ¨ ą rk ą rk+1 = 0 ,

rj´1 = rjqj+1 + rj+1 for all 1 ď j ď k ,
b = r0q1 + r1 .

We now show that rk = d ” gcd(a, b).
1 The remainder rk divides rk´1 since rk´1 = rkqk+1. Also, rk

divides rk´2 since
rk´2 = rk´1qk + rk = rkqk+1qk + rk = rk(qkqk+1 + 1) .

Therefore, rk divides linear combinations of rj ; thus rk divides
a (which is r0) and b (which is r0q1 + r1). ˝
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Proof of Euclid’s Algorithm (Cont’d).
Continuing in this fashion, we obtain a strictly decreasing sequence
of non-negative integers r1, r2, r3, ¨ ¨ ¨ . This lists must end, so there
is an integer k such that rk+1 = 0. Thus we have

r0 ” a ą r1 ą r2 ą ¨ ¨ ¨ ą rk ą rk+1 = 0 ,

rj´1 = rjqj+1 + rj+1 for all 1 ď j ď k ,
b = r0q1 + r1 .

We now show that rk = d ” gcd(a, b).
2 On the other hand, d divides r1 since r1 = b ´aq1. Also, d also

divides r2 since
r2 = r1 ´ aq2 = b ´ aq1 ´ aq2 = b ´ a(q1 + q2) .

Therefore, by the fact that rj+1 = rj´1´rjqj+1 for all 1 ď j ď k,
we find that d divides rk for all 0 ď j ď k. ˝
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Proof of Euclid’s Algorithm (Cont’d).
By (1), rk is a common divisor of a and b. By (2), the greatest
common divisor of a and b must divide rk; thus we conclude that
rk = gcd(a, b). ˝

Example
Using Euclid’s algorithm to compute the greatest common divisor
of 12 and 32:

32 = 12 ˆ 2 + 8 ,

12 = 8 ˆ 1 + 4 ,

8 = 4 ˆ 2 + 0 .

Therefore, 4 = gcd(12, 32). Moreover, by working backward,
4 = 12 ´ 8 ˆ 1 = 12 ´ (32 ´ 12 ˆ 2) ˆ 1 = 12 ˆ 3 + 32 ˆ (´1) .
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Definition
We say that non-zero integers a and b are relatively prime (互質)
or coprime if gcd(a, b) = 1.

Lemma (Euclid’s Lemma)
Let a, b and p be integers. If p is a prime and p divides ab, then p
divides a or p divides b.

Proof.
Let a, b be integers, and p be a prime. Suppose that p divides
ab, and p does not divides a. Then gcd(p, a) = 1; thus there exist
integers m and n such that 1 = am+pn. Therefore, b = abm+apn.
Since p divides ab, we conclude that p divides b (since b is a linear
combination of ab and p). ˝
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory
Remark: The same argument of showing Euclid’s Lemma can be
applied to shown a more general case:

Let a, b, p be integers such that p divides ab.
If gcd(a, p) = 1, then p divides b.
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