Chapter 8

Integration of Functions of Several
Variables

In this chapter, we focus on the integration of bounded functions on bounded subsets of R™.

8.1 Integrable Functions

We start with a simpler case n = 2.
Definition 8.1. Let A < R? be a bounded set. Define

a; = inf {z e R|(z,y) € A for some y € R},
by = sup {z.€ R|(z,y) € A for some y € R},
as = inf {y € R| (z,y) € A for some z € R},
by = sup {y € R|(z,y) € A for some z € R}.

A collection of rectangles P is called a partition of A if there exists a partition P, of [aq, b1]

and a partition P, of [ag, bs],

Px:{a1:x0<x1<--~<mn:b1} and Py:{a2:y0<y1<---<ym:b2},
such that

P = {Ai]"Aij = [z, xit1] X [yj,yj41] for i =0,1,--- ;n—1land j=0,1,--- ,m—l}.

The mesh size of the partition P and also called the norm of P, denoted by ||P||, is defined
by

Pl = max {y/(wis1 — )2 + (g1 —y)? [ = 0.1, ,n = 1,5 = 0,1, ,m — 1},
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The number \/(xi+]_ — 2;)% + (yj41 — y;)? is often denoted by diam(A;;), and is called the

diameter of A;;.
Similar to the integrability of f on a bounded subset of R, we have the following

Definition 8.2. Let A € R? be a bounded set, and f : A — R be a bounded function. For
any partition P = {Aij ‘ N = [z, xip1] X [Y5,Yj41],0 =0, ,n—1,7=0,--- ,m— 1}, the
upper sum and the lower sum of f with respect to the partition P, denoted by U(f,P)
and L(f,P) respectively, are numbers defined by

ULP) = Y swp Flay)Ady),

o<isn—1 (T,Y)€A;

o<jsm—1
L ,P = inf —A z) A Al |
(f ) OSisan (w,y)eAijf ( y) ( ])
ogjsm—1

where A(A;;) = (zi41 — i) (yj41 —y;) is the area of the rectangle A;;, and 7" is an extension

of f, called the extension of f by zero outside A, given by

—A f(z) zeA,
f<x>:{ 0 x¢A.

The two numbers

and

J z,y)dA = inf {U(f,P)|P is a partition of A}
f z,y)dA = sup{L f,P) ’77 is a partition of A}

are called the upper integral and lower integral of f over A, respectively. The function
f is said to be Riemann (Darboux) integrable (over A) if f flz,y)dA = J f(z,y)dA,
A A

and in this case, we express the upper and lower integral as f f(z,y)dA, called the integral
A
of f over A.

In general, we can consider the integrability of a bounded function f defined on a

bounded set A < R" as follows
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Definition 8.3. Let A < R" be a bounded set. Define the numbers aq, as,--- ,a, and
b17b27"' 7bn by

ak:inf{xkeR‘x:(xl,--- ,Tp) € A for some xq, -+, Tp_1, Tpy1, - ,xneR},

bk:sup{xkeR‘x:(x1,~-- ,T,) € A for some xq, -+, Tp_1, Tpy1, - ,xneR}.

A collection of rectangles P is called a partition of A if there exists partitions P®*) of

[ar, br], k=1,--- ,n, P® = {ak = xék) < xgk) << xg\]fz = bk}, such that
1 1 2 2 n n+1
P = {Amz--'in Ajyigein = [331(1)79551)“] X [$§2)7$§2)+1] Ko X [957(;”)7551(”“ )]>

ik:O,l,-~-,Nk—1,k:1,--~,n}.

The mesh size of the partition P, denoted by ||P|| and also called the norm of P, is defined
by

HPH max{d Z(I’Efl_l—xl(f))Z Zk:O,]_, ,Nk_l,k:17--- ,n}‘
k=1

n

The number , [ >’ (xl(fzrl - :Eif) )2 is often denoted by diam(A,;,;,..;,), and is called the di-

ameter of the rectangle A; ;,...i,,

Definition 8.4. Let A < R" be a-bounded set, and f : A — R be a bounded function. For

any partition

1 .1 ] x [ 2 .2

) (n) _(n+1)
Aijigi, = [% y Lig a1 is 3 Ligt1 r ]7

in ? 7:n+1

P ={ A,

]X"'X[
/I:k:O7]-""’Nk_ljkzlj..‘7n}’

the upper sum and the lower sum of f with respect to the partition P, denoted by
U(f,P) and L(f,P) respectively, are numbers defined by

U(f.P)= )] sup f'(z,yv(d),
Aep (@Y)EA

L(f,P)= ), inf [(z,y)w(d),

Aep (z,y)eA

where v(A) is the volume of the rectangle A given by

1 1 2 2 n n
v(A) = (@i = o )iy = a) i - al?)

i1 io+1 — Lig in+1 in
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if A = [xgll) — | [x@) — 2? | x e x [1;(”) - x("ll], and f" is the extension of f by

i1+1 i2 ig+1 in in

zero outside A given by

7 { f@) zed, (8.1.1)

)= 0 x¢A.

The two numbers

[ f(z)dz =inf{U(f,P)|P is a partition of A},
A

and
.

JA f(z)dr = sup {L(f, P) "P is a partition of A}

are called the upper integral and lower integral of f over A, respective. The function f
is said to be Riemann (Darboux) integrable (over A) if j f(z)dx = J f(z)dz, and
A A

in this case, we express the upper and lower integral as | f(z)dz, called the integral of f
A

over A.

Definition 8.5. A partition P’ of a bounded set A < R" is said to be a refinement of
another partition P of A if for any A’ € P/, there is A € P such that A" < A. A partition
P of a bounded set A < R" is said tobe the common refinement of another partitions
P1,Pay -+ Py of Aif

1. P is a refinement of P; forall 1 <j < k.
2. If P’ is a refinement of P; for all 1 < j < k, then P’ is also a refinement of P.

In other words, P is a common refinement of Py, Py, - - - , Py if it is the coarsest refinement.

13 7
_l’_

Figure 8.1: The common refinement of two partitions

Qualitatively speaking, P is a common refinement of Py, Py, -, Py if for each j =
L,---n, the j-th component ¢; of the vertex (cq,--- ,¢,) of each rectangle A € P belongs to

Pi(j) for some i =1, - , k.

Similar to Proposition 4.78 and Corollary 4.79, we have
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Proposition 8.6. Let A € R" be a bounded subset, and f : A — R be a bounded function.
If P and P’ are partitions of A and P’ is a refinement of P, then

L(f,P) < L(f,P') <U(f,P") <U(f,P).

Corollary 8.7. Let A < R" be a bounded subset, and f : A — R be a bounded function. If
P1 and Py are partitions of A, then

L(f,P1) < L flz)dz < L flz)de < U(f,P2).

8.2 Conditions for Integrability

In the following two sections, we discuss some equivalent conditions for Riemann integra-
bility of bounded functions (over bounded sets). We recall that in Section 4.7 we have
talked about two equivalent conditions for Riemann integrability: the Riemann condition
(Proposition 4.80) and the Darboux theorem (Theorem 4.94). This section contributes to
the n-dimensional version of Riemann’s condition and Darboux theorem.

The proof of the following proposition is identical to the proof of Proposition 4.80.

Proposition 8.8 (Riemann’s condition). Let A < R" be a bounded set, and f : A — R be

a bounded function. Then f is Riemann integrable over A if and only if
Ve > 0,3 a partition P of A sU(f,P)— L(f,P) <e.

Definition 8.9. Let P = {Ay, Ay, -+, Ay} be a partition of a bounded set A < R". A
collection of N points {&1,+- -, &n} is called a sample set for the partition P if & € Ay for
all k =1,---,N. Points in a sample set are called sample points for the partition P.

Let A < R” be a-bounded set, and f : A — R be a bounded function. A Riemann
sum of f for the the partition P = {Ay, Ay, -+, Ax} of A is a sum which takes the form

ST ().,

where the set = = {£1,&, -+, &y} is a sample set for the partition P.

Similar to Theorem 4.94, the following theorem establishes the equivalence between
the Riemann condition and the Darboux integrals. The idea of the proof of the following
theorem are essentially identical to the proof of Theorem 4.94; however, the detail proof

requires a slight modification due to the fact that the dimension is bigger than one.
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Theorem 8.10 (Darboux). Let A < R" be a bounded set, and f : A — R be a bounded
function with extension 7A given by (8.1.1). Then f is Riemann integrable over A if and
only if there exists 1 € R such that for every given € > 0, there exists 6 > 0 such that if P
is a partition of A satisfying |P| < 0, then any Riemann sums for the partition P belongs
to the interval (I — e, 1+ ¢€). In other words, f is Riemann integrable over A if and only if

there exists I € R such that for every given € > 0, there exists 6 > 0 such that
N
—A
D P G —1] <= (8.2.1)
k=1

whenever P = {Ay,--- ,AN} is a partition of A satisfying |P|| <9 and {&1,&, -+ ,én} is a
sample set for P.

Proof. The boundedness of A guarantees that A < [—g 5] for some r > 0. Let R =
T Trin
=2l

<" Suppose the right-hand side statement is true. Let € > 0 be given. Then there exists
6 > 0 such that if P = {Ay,---, Ay} is a partition of A satisfying |P| < 4, then for

all sets of sample points {1, -+ &y} for P, we must have

gk Ak —I’<—

I gz

Let P = {Ay,---, Ay} be a partition of A with [P| < §. Choose two sample sets
{517 T 7£N} and {7]17 ) " 777N} for P such that

3

< 7(&) < sup ' (2);

v R) xEAk

> Flm) = inf ()

(a) sup f'(z)— 1

$€Ak

(b) wlerifkf @)+ L®

Then
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and

k_laceAk ~
N . X . ;
_l;lf () v(Ak) — (R ;V(Ak) >1— i . .

As a consequence, I—% < L(f,P)<U(f,P) <I—|—§; thus U(f,P) — L(f,P) <e.

“=7 Let I = J f(z)dz, and € > 0 be given. Since f is Riemann integrable over A, there
A

exists a partition Py of A such that U(f,P1) — L(f,P1) < % Suppose that Pl(i) =
{y(()i), ygi), e ,y,(fl)} for 1 <i < n. With M denoting the number m{ + ms + -+ - + m,,,

we define
13

J= — -~ :
4r"=Y(M + n)(sup FU(R) =inf [Y(R) + 1)
Then § > 0. Our goal is to show that if P is a partition of A with |P| < ¢ and
{&, -, &N} is a set of sample points for Py then (8.2.1) holds.

Assume that P = {Ay, Ag,--- JAx} is a given partition of A with |[P| < 6.
Let P’ be the common refinement of P and P;. Write P’ = {A], A},--- ,Aly,} and
Ap = A,(Cl) X A,(f) X e X A,(fn) as well as A} = Agl) X A;{(z) X oee X A;("). By the

definition of the upper sum,

N
—A
U(f,P) =), sup [ (2)v(Ay)
k=1 mEAk
—A —A
= D s A+ )] sup [ (z)v(Ay)
1<k<N with  TEAL 1<k<N with zeA)
yy)éAl(Ci)for all 4, j yy)EAl(j)for some 1, j
and similarly,
—A —A
Uf,PY= > supf (a)v(A})+ > sup [ (z)v(A}).
1<k<N' with ~ TEAY 1<k< N’ with TEA]
y§.i)¢A;c(i>for all 4, j yj(.i)eA;C(i)for some i, j

By the fact that Ay € P if y](-i) ¢ A;C(i) for all 7, j, we must have

> v(A) = > v(A}).

_1<k<N with 1<k<N'’ with
y§.l)EA}(€Z) for some %, j y;l)eAgZ)for some i, j
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The equality above further implies that

U(f,P)=U(f,P)= >, supf(@wd)— >, sup [ (z)r(A})
1<k<N with  TEAL 1<k<N' with ~ TEAY
y(.i)EAl(j)for some 1, j y(i)eA/(i)for some i, j
J J k
< (supfU(R)—inff'(R)) Y w(A).
1<k<N with

y] EA(l)for some i, j

Moreover, for each fixed i, j,

U s 507 b -8+ o] x (2531

1<k<N with yVeAl?

thus
> v(Ag) 200" VI<i<nl<j<m;.
1<k<N with y{VeAl)
Therefore,
n.om;

U(f.P) - U(f.P") < (sup f(R) —inff (R)) D) > V(Ay)

=17=0 1<k<N with y{Veal?

n m;

< (Sup?A( mff Z Z 267"

i=175=0
< 267" N (my 4+ mp e my, + n)(sup?A(R) — inf?R(A)) <

DO ™

and the fact that U(f,Py).— L(f,P1) < g shows that

U, P)<=E<U(f,P) =T+ U(f,P1) = U(f, P1)
U(f,P) = L(f,P) + U(f,P) —U(f,P) < ¢

Therefore, for any sample set {&;,--- , &y} for P,

Z U(f,P)<I+e.

Similar argument can be used to show that

Z L(f,P)>1—¢

which concludes the Theorem. o
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In Section 5.1, we show that if a sequence of Riemann integrable functions {fi}r;
converges to a function f uniformly on [a, b], then f is also Riemann integrable over [a, b] and
the integral of the limit function is the same as the limit of the integrals (of the sequences).
This theorem can also be established if the domain A under consideration is a bounded
subset of R™. In fact, the same proof used to establish Theorem 5.16 can be applied to

conclude the following

Theorem 8.11. Let A € R" be a bounded set, and fi : A — R be a sequence of Riemann
integrable functions over A such that {fy}72, converges uniformly to f on A. Then [ is

Riemann integrable over A, and

lim JA Fola) de = L f(w) de. (8.2.2)

k—o0

From now on, we will simply use f to denote the zero extension of f when the

domain outside which the zero extension is made is clear.

8.3 The Lebesgue Theorem

In this section, we talk about another equivalent condition of Riemann integrability, named
the Lebesgue theorem. The Lebesque theorem provides a more practical way to check the
Riemann integrability in the development-of theory. To understand the Lebesgue theorem,

we need to talk about a new concept, sets of measure zero.

8.3.1 Volume and Sets of Measure Zero

Definition 8.12. Let A< R"™ be a bounded set, and 14 (or x4) be the characteristic
function of A defined by

1 ifzeA,
1A<x>={

0 otherwise.

A is said to have volume if 1, is Riemann integrable (over A), and the volume of A,

denoted by v(A), is the number J 14(z)dx. A is said to have volume zero or content
A

zero if v(A) = 0.
Remark 8.13. Not all bounded set has volume.

Proposition 8.14. Let A < R" be bounded. Then the following three statements are

equivalent.
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(a) A has volume zero;

(b) for every e > 0, there exists finite open rectangles Sy, -+, Sy whose sides are parallel

to the coordinate axes such that

N N
Ac U Sk and Z v(Sk) <e (8.3.1)
k=1 k=1
(c) for every e > 0, there exists finite rectangles Sy, - -+, Sy such that (8.3.1) holds.

Proof. 1t suffices to show (a)=(b) and (c)=(a) since it is clear that (b)= (c).

“(a)=>(b)” Since A has volume zero, J 14(x) dz = 0; thus for any given € > 0, there exists

a partition P of A such that

U(La, P) < J 1a(x) do A+ €
s 2~ 2

1 fAnA#d,
Since sup 14(x) = { 0 :)ther(:ivise 2 we must have AZ;: v(A) < g Now if A e P

TEA
ANA£Y

and An A # &, we can find an open rectangle [ such that A € [Jand v([J) < 2v(A).
N N

Let Sy, ---, Sy be those open rectangles (1. Then A < ) Si and > v(Sk) < e.
k=1 k=1

“(¢)=(a)” W.L.O.G. we can agsume that the ratio of the maximum length and minimum
length of sides of Sy is less.than 2 for all k = 1,--- | N (otherwise we can divide S}, into
smaller rectangles so that each smaller rectangle satisfies this requirement). Then each
Sk can be covered by a closed rectangle [, whose sides are parallel to the coordinate
axes with the property that v((J) < 2" '/n"v(Sk). Let P be a partition of A such
that for each A e P with An A # &, A <[, for some k=1,---, N. Then

N

U(1la,P) = Z v(A) < Z v(e) < 2" '/n" Z v(Sy) < 2" ty/n"e;
k=1

A€eP k=1
AnNA#J

thus the upper integral J 14(x)dz = 0. Since the lower integral cannot be negative,
A

14(z)dx = J 14(x)dz = 0 which shows that A has volume zero. o

we must have f
Ja

A

Example 8.15. Each point in R" has volume zero.
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Example 8.16. The Cantor set (defined in Exercise Problem 2.11) has volume zero.

Definition 8.17. A set A € R"™ (not necessarily bounded) is said to have measure
zero (Pl 5 % ) or be a set of measure zero (% PR & ) if for every € > 0, there exist

0¢]
countable many rectangles Sy, Ss, - - - such that {S;};2, is a cover of A (that is, A = |J S)
k=1

and > v(Sk) <e.
k=1

Example 8.18. The real line R x {0} on R? has measure zero: for any given ¢ > 0, let

—& g

” = C 2e V- €
Rx{O}QkUSk and ;V(Sk):;%.2k+3k:;2kﬂ:§<5.
=1 =1 —1 1

Similarly, any hyperplane in R™ also has measure zero.

Proposition 8.19. Let A < R" be a set of measure zero. If B < A, then B also has

measure zero.
Modifying the proof of Proposition 8.14; we can also conclude the following

Proposition 8.20. A set A < R" has measure zero if and only if for every € > 0, there

exist countable many open rectangles Sy, Sa, --- whose sides are parallel to the coordinate
0 0]

azes such that A < |J Sy and Y] v(Si) <e.
k=1 k=1

Remark 8.21. If a set A has volume zero, then it has measure zero.

Proposition 8.22. Let K < R" be a compact set of measure zero. Then K has volume

ZETO0.

Proof. Let € > 0 be given. Then there are countable open rectangles Sy, .55, --- such that
0 o0
Kc|J8 and Y w(Sy)<e.
k=1 k=1

Since {Sk}72, is an open cover of K, by the compactness of K there exists N > 0 such that
N N 0

K < |J Sk, while Y] v(Sk) < X v(Sk) < e. As a consequence, K has volume zero. o
k=1 k=1 k=1

Since the boundary of a rectangle has measure zero, we also have the following
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Corollary 8.23. Let S < R™ be a bounded rectangle with positive volume. Then S is not a
set of measure zero.

Q0
Theorem 8.24. If Ay, Ay, --- are sets of measure zero in R™, then | ) Ar has measure

k=1
ZET0.

Proof. Let ¢ > 0 be given. Since Ajs are sets of measure zero, there exist countable
rectangles {Sj(.k) };O:I, such that

og]
(k) k
c | s and Z (s 2k+1 VkeN.
j=1

Consider the collection consisting of all S J(-k)’s. Since there are countable many rectangles in

this collection, we can label them as Sy, Ss, - -+, and we have

Uae YUs" -Us:

=1j5=1

and
Z ngZZV(Sj)<ZQk+1:§<5
k=1 k=1 j=1 k=1
ee]
Therefore, | ) Aj has measure zero. o
k=1

Corollary 8.25. The set of rational numbers in R has measure zero.

Theorem 8.26. Let A < R"™ be bounded and B < R™ be a set of measure zero. Then Ax B

has measure zero in R"T™.

Proof. Let € > 0 be given. Since A is bounded, there exist a bounded rectangle R such that

A < R. Since B has measure zero, there exist countable rectangles {S;}7_; € R™ such that

0 [ee}
€
c S, and U (Sk) < )
Y 2% < Ry

k=1
0
Then A x B < | J(R x Sg), and
k=1
0 0 0
Z Vner(R X Sk Z I/m Sk = I/n Z
— k:i :

Since R x S}, is a rectangle for all k£ € N, we conclude that A x B has measure zero. =
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Qo

.3.2 The Lebesgue Theorem

Bz m AP T 7 Sfic Riemann ¥ ff 05 B E i % # : Riemann’s condition fr Darboux
FIP o fin— & ¢ > AP S Hcd Riemman ¥ 0¥ - B E x% E o BB R Y A
Wi - Bafc f &£ A Y E Riemann ¥ 05 f vy f chatdr f (S #c™ ff A P
KO F k) H3RAB SR EARREE - 20 mP BB AL B

En@:mj.&éﬁmbxpk— BEt g o TBRFDFI N T URFEF KRB B SBh-

BEE TR -
Definition 8.27. Let f : R® — R be a function. For any x € R", the oscillation of f at

x is the quantity
osc(f,x) =inf sup |f(z1) — flx2)]:

6>0 z1,x2€D(x,0)

AL R P At i 2 E Y AP infimum g B E A(Sz) = sup [ f(a1) — f(z)] A

z1,22€D(z,0)

B o e Stk (x B2 ) @ osc(f,z) FIE_h(0;z) $ 00— 0 PFerf®m*T o ¥ ¢b » Aoy

AR IR A(05x) » TR S sup f(y) - inf  f(y).
yeD(z,d) yeD(z,0)
M e Lemma Rt dcim k- B ShBich— BREE G F oo
Lemma 8.28. Let f : R" — R be a function, and xo € R™. Then f is continuous at xq if
and only if osc(f,xo) = 0.

Proof. “=" Let € > 0 be given. Since f is continuous at xg,

36> 03 |f(z)— flzo)| <

whenever x € D(xg,d).

W m

In particular, for any x1,x9 € D(x,0),
2e

’f(xl) 7 f(@)‘ < |f(951) - f(l’o)’ + ’f(ﬂfo) - f(l’z)‘ <3

thus  sup  [f(z1) — fz2)] < % which further implies that

xl,azgeD(xo,é)

2
0 < osc(f,xg) < ?8 <e.
Since € is given arbitrarily, osc(f, zg) = 0.

<" Let € > 0 be given. By the definition of infimum, there exists > 0 such that

sup | f(z1) — f(z2)] <e.
z1,22€D(x0,0)

In particular, |f(a:) — f(.ro)‘ < sup ‘f(a:l) — f(.ng)‘ < e for all x € D(xg,9). ©

xl,ngD(.’EQ,5)
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Lemma 8.29. Let f : R® — R be a function. Then for all ¢ > 0, the set D, = {a: €
R" | osc(f,z) = e} is closed.

Proof. Suppose that {yx}2; € D. and yx — y. Then for any § > 0, there exists N > 0 such
that yx € D(y,0) for all kK > N. Since D(y,d) is open, for each k > N there exists d; > 0
such that D(yg, ) € D(y,0); thus we find that

sup  |f(z1) = flaz)] < sup |f(21) = f(a)] VE=N.

xlvaGD(ylmék) xlnyGD(yvé)

The inequality above implies that osc(f,y) = ¢; thus y € D, and D, is closed. o

Theorem 8.30 (Lebesgue). Let A < R™ be bounded, f : A — R be a bounded function, and
TA be the extension of f by zero outside A, that is,

A, flz) ifzeA,
)= { 0  otherwise.

Then f is Riemann integrable over A if and only if the collection of discontinuity of TA s a

set of measure zero.

Proof. Let D = {x € R"| osc(f',z) > 0} and D, = {z € R"| osc(f', x) = e}. We remark
0

here that D = | J D:.
k=1 "

“=" We show that D 1 has measure zero for all k € N (if so, then Theorem 8.24 implies

that D has measure zero).

Let k € N be fixed, and ¢ > 0 be given. By Riemann’s condition there exists a partition
P of A such that

Z [supfA(x) — infTA(a:)}u(A) <<,

Aep TEA TeA k
Define

D(f)E{xeD%‘xeaAforsomeAeP},

k

DY = {z € D1 |z e int(A) for some A € P}.
L k

Then D 1= D(;) U D(f) . We note that D(f) has measure zero since it is contained in
g k k k

J 0A while each dA has measure zero. Now we show that D(f) also has measure

AeP k
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zero. Let C = {A € P|int(A) n D, # @}, Then D(f) < (J A. Moreover, we
k AeC

also note that if A € C, SUp?A($) - inng(:c) > % In fact, if A € C, there exists
rEA z€
y € int(A) n D%; thus choosing 6 > 0 such that D(y,d) < int(A),

sup f (z) — igﬁ?(ﬂﬁ) = sup [f(x)—Fl(w)| = sup [f (1) = F (22)]

TEA T1,T26A z1,22€D(y,0)

| =

> inf sup |7A(:U1) - TA(M)\ = OSC(7A,3/) >
6>0 x1,x2€D(y,0)

As a consequence,

EYu(a) < X [sup T @) — inf 7 (@) w(A) = UL PY - L(.P) <

AeC Aep €A

which implies that 3 v(A) < e. In other words, we establish that D{? has measure
AeC k
zero. Therefore, D% has measure zero for-all k¥ € N; thus D has measure zero.

“<" Let R be a bounded closed rectangle with sides parallel to the coordinate axes and A <

£
, where = su 2.
2 flloo + v(R) + 1 [ fleo xeg!f( )|

int(R), and € > 0 be given. Define ¢’ =

1. Since D,/ is a subset of D, Proposition 8.19 implies that D.. has measure zero;

thus Proposition 8.20 provides open rectangles Si, Ss, - - - whose sides are parallel
o0 0

to the coordinate axes such that D. < |J Sk, and Y] v(S;) < €. In addition,
k=1 k=1

we can assume that S, < R for all £ € N since D, € R.

2. Since D. < R is bounded, Lemma 8.29 implies that D. is compact; thus D. <
N
S for some N € N.
k=1

Let [, = Sk, and P; be a partition of R satisfying
(a) For each A € P, with A n D # &, A < [ for some k =1,---, N.

(b) For each k =1,--- N, [ is the union of rectangles in P;.

(c) Some collection of A € Py forms a partition Py of A.
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AL L S e S e I

Figure 8.2: Constructing partitions P; and P, from finite rectangles Sy, --- , Sy

Rectangles in P; fall into two families: C} = {A e Py ‘ A C [ forsome k=1, -, N},
and Cy = {A e P ‘ Adcforallk=1,--- N } By the definition of the oscillation
function, for x ¢ D, we let 6, > 0 be such that

TA . —A
sup f (y)— inf [ (y) = sup ]f (xq) = f (xg)‘ <€
z€D(y,0y) zeD(y,6y) z1,x2€D(x,0z)

Since K = |J A is compact, there exists r > 0 (the Lebesgue number associated
AeCoy

with K and open cover |J D(z,d,)) such that for each a € K, D(a,r) = D(y,d,) for
zeK
some y € K. Let P’ be a refinement of P; such that |P’| < r. Then if A’ € P’ satisfies

that A’ < A for some A € Cy, we must have A’ < D(y, d,) for some y € K; thus
—A —A . —A
sup f'(z) — inf f(2) < sup fl(y)— inf F(y)
zeA! zeA zeD(y,0y) z€D(y,0y)
—A —A

= sup }f (z1) = f (132)‘ <é
x1,22€D(y,0y)

if A’ < A for some Ae (5. Let P = {A’ e P’ ‘ A’ < A for some A € 772}. Then P is

a partition of A and

ULP =P = (2 + X )(sup F'@) — inf T (@))u(a)

Alep! Alep! zeA/
AlSAeCy A'CAeCy
<Afle Y, Q)+ D p(A)
Alep’ AleP!
AlcAeC AlCAeCy
<2fle >, v(A)+eV(R)
AEPﬁCl
N
<2 floo 3, v(Sk) +EV(R) < (2 f] + v(R))e < e
k=1

thus f is Riemann integrable over A by Riemann’s condition. =
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Example 8.31. Let A=Qn [0,1], and f: A — R be the constant function f = 1. Then

o) = 1 ifzeQn](0,1],
v = 0 otherwise.

The collection of points of discontinuity of f is [0, 1] which, by Corollary 8.23, cannot be a
set of measure zero; thus f is not Riemann integrable.

Another way to see that f is not Riemann integrable is U(f,P) = 1 and L(f,P) = 0 for
all partitions P of A.

Corollary 8.32. A bounded set A < R™ has volume if and only if the boundary of A has

measure zZero.

Proof. Tt suffices to show that the collection of discontinuities of the function 14 (which is

the same as 1,4") is indeed 0A.

1. If zp ¢ 0A, then there exists § > 0 such that either D(xq,d) S A or D(zg,d) < A%

thus 14 is continuous at zg ¢ 0A since 14(x) is constant for all x € D(xg, ).

2. On the other hand, if 5 € 0A, then there exists x;, € A, y; € A® such that z;, — z, and
yr — xo as k — oo. This implies that. 1 4 cannot be continuous at g since 14(xy) = 1
while 14(yx) = 0 for all ke N.

As a consequence, the collection of discontinuity of 1, is exactly JdA, and the corollary

follows from Lebesgue’s theorem. =

Corollary 8.33. Let A =€ R" be a bounded set with volume. A bounded function f: A — R

with a finite or countable-number of points of discontinuity is Riemann integrable over A.
Proof. We note that {x e R"” | osc(f,x) > O} c 0A U {x €A ‘ f is discontinuous at x } o

Remark 8.34. In addition to the set inclusion listed in the proof of Corollary 8.33, we also
have
{z e A|f is discontinuous at = } = {z € R"|osc(f,z) > 0} .

Therefore, if A € R" is a bounded set with volume, then a bounded function f: A — R is
Riemann integrable if and only if the collection of points of discontinuity of f has measure

Zero.

Corollary 8.35. A bounded function is integrable over a compact set of measure zero.
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Proof. 1f f : K — R is bounded, and K is a compact set of measure zero, then the collection

of discontinuities of f is a subset of K. =

Corollary 8.36. Suppose that A, B < R™ are bounded sets with volume, and f : A — R is

Riemann integrable over A. Then f is Riemann integrable over A n B.

Proof. By the inclusion

N

{a: € int(A n B) ! osc(?A °, x) > 0} c {x e R"” ‘ osc(TA,x) > O} ,

we find that

la)

{reR"| osc(f'"",z) > 0} € 0(An B)u {zeint(An B) |osc(7AmB, z) > 0}

C JAudBuU {xeR”‘osc(?A,m) > 0}.

Since dA and 0B both have measure zero, the integrability of f over A n B then follows
from the integrability of f over A and the Lebesgue Theorem. =

Remark 8.37. Suppose that A < R" is a bounded set of measure zero. Even if f: A - R
is continuous, f might not be Riemann integrable. For example, the function f given in

Example 8.31 is not Riemann integrable even though f is continuous on A.

Remark 8.38. When f : A — Ris Riemann integrable over A, it is not necessary that A
has volume. For example, the zero function is Riemann integrable over A = Q n [0, 1] even

though A does not has volume.

Corollary 8.39 (Lebesgue’s Differentiation Theorem, a simple version). Let A € R™ be a

bounded set with volume, and f : A — R be bounded and Riemann integrable over A. Then

. 1
71"1‘{% V(D(x(b r) M A) fD(xo,r)mA f<x) = f(xO) (832)

for almost every xo € A; that is, the equality above does not hold only for xo from a set of

measure zZero.

Proof. Let ¢ > 0 be given, and suppose that f, the zero extension of f outside A, is

continuous at xg. Then there exists 6 > 0 such that

|f(35)—f($o)‘< Vae D(xg,0)nA.

DO | ™
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Since 0A has measure zero, by the fact that 0(D(xzg,7) N A) S 0D (xg,r) U 0A we find that

0(D(zg,7) N A) also has measure zero for all > 0. In other words, D(z,7) N A has volume.
Then if 0 < r < 4,

’V(D(xo,l ) A) JD(W)M () dr — f(xo)

1
N ‘V<D(x07 7') M A) JD(IO,T)OA ( (‘T) - (5170)) d;g‘
1 ry —
) V<D($O’ T) a A) JD(ﬂco,r)r\A ‘f(:l;) B (x0)| dx
g 1 .
< §IJ(D(J}0,T) N A) fD(xO7T)mA ldx = 5 < €.

This implies that (8.3.2) holds for all z;y at which f is continuous. The theorem then follows
from the Lebesgue theorem. =

8.4 Properties of the Integrals

Proposition 8.40. Let A < R" be bounded, and f,g: A — R be bounded. Then

(a) If B< A, then JA (f1p)(z)dx = JB f(z)dz and L (f1p)(x)dx = JB f(z)dx

o) [ oo [ gta)do < (o)) ds L<f+g><x>d < [ @y | gt

(c) Ifc=0, thenf (cf)(x x—cf f(z)dx andf (cf)(x CJ f(z)dz.

(d) If f < g on A, then L f(z)dx < Lg(x) dx and L f(z)d J g(x

(e) If A has volume zero, then f is Riemann integrable over A, and J f(z)dx = 0.
A

Proof. We only prove (a), (b), (c¢) and (e) since (d) are trivial.

(a) Let € > 0 be given. By the definition of the lower integral, there exist partition P4 of
A and Ppg of B such that

L(le)(:r) dr—c < L(f1s,Pa) = Y. inf Fi5 (@)u(A)

AEP 4
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and

TEA
4 AEPB

| s@ae=5 <1rPe = ¥ 7 @),

Let P!, be a refinement of P4 such that some collection of rectangles in P/, forms a
partition of B. Denote this partition of B by Pj. Since ing 75 (x) <0if A ePy\Pjg,
TE
Proposition 8.6 implies that
| FLa)@)de = < L7118, P0) < L1 PY) = 3 int FLa" (0)u(2)
JA v

AeP!y

PIEEDIB LT FREIEN

AeP,\P) APl

< 3 inf P (2)r(A) = L(f, Pp) < L F(x) de.

AePp =
On the other hand, let 75A be a partition of A such-that Pp < 75A and
€
A ———,
) VB S qar 1)
AE’PA\'PB,AﬁBig

where M > 0 is an upper bound of |f| Then

IR WA CO1¢: e VA SO (O E

N TEA N
AePA\PB, AnB# AePA\PB, AnB#

which further implies that

JA(le)(x) do = L5, Pa) = 3, (7L (0)v(A)

AEP 4

=(Z+ X+ 3 )T

AEPB  AePA\Pp,AnB£Z AePA\Pp, AnB=(
SLP Y T Jf Yz —e.
AeﬁA\PB,AmB;é@

Therefore, we establish that

JB f(z)dr —¢ < _JA(le)(x) dr < JB f(z)de +e.

Since ¢ > 0 is given arbitrarily, we conclude that J (f1p)(x)dx = f f(z) dz. Similar
A JB

argument can be applied to conclude that J (f1p)(z)dx = f f(x)dx.
A B
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(b) Let € > 0 be given. By the definition of the lower integral, there exist partitions P;
and P,y of A such that

_J;l f(z)dx — g < L(f,P1) and f g(x)dx — g < L(g,Ps).

Ja
Let P be a common refinement of P; and Py. Then
J f(z)dz +f g(x)dx —e < L(f,P1) + L(f,P2) < L(f,P) + L(g, P)
Ja
= > inf fz)v(A)+ )] inf ga)(A)

TEA

AeP AeP
<A§D§g§(f+§)(:r)V(A) Uf+9P) 2] (o

Since € > 0 is given arbitrarily, we conclude that
IREEE f oo o | (4 9))

Similarly, we have f (f+9)( J flz)ydx + f x) dx; thus (b) is established.

(c) Tt suffices to show the case ¢ = —1. For each k € N, there exist partitions P, and Qy
of A such that

JA —f(z)dx — % < L(=f,Pk) < _JA —f(x) dz
and

[ [ 1
J flx)de <U(f, Q) < J f(x)dx—i—g.
A A
Let R be the common refinement of P, and Q. Then

L ()~ < L(~,Py) < L(~f, Ra) < L -

and

ff U R < U700 < [ fla)d+ .

which implies that

klg][olo U(f,Ry) = L f(z)dz and %L%L(_f’ Ry) = f —f(z)dx

A
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Since

LR = Y it () @(d) = = 3 supF()w(d) = U(f.Ry)

AGRk AERk zeA

we conclude that L—f(x) dr = — L f(z)dx

(e) Since f is bounded on A, there exist M > 0 such that —M < f(z) < M for all z € A.
Therefore, —14 < % < 14 on A; thus (¢) and (d) imply that

o_f f >L%m:%£ﬂx)m

which implies that J f(z)dx < 0. Similarly, J — f(x) dz <0 which further implies
A A

that J f(z)dx = 0. Therefore, by Corollary 8.7 we conclude that
JA

0< f flz)dx < f flz)dx <0
JA A

which implies that f is Riemann integrable over A and | f(x)dz =0. -
Remark 8.41. Let A < R™ be bounded and f,g : A — “be bounded. Then (b) of
Proposition 8.40 also implies that

JA(f—g)(x) dr < JA f(z)dz— JA g(x) dz-and J_A f(z)de— J_Ag(q;) dr < L(f_g>(x) do

Corollary 8.42. Let A, B < R" be bounded such that A n B has volume zero, and f :
AU B — R be bounded. Then

Jf(x)dx+ff(x)dx< LUBf(x)dxé LUB ff dx+f fla

Proof. Note that f1x+ flp = flaup+ fla~rp on AU B. Therefore, (a), (b) of Proposition
8.40 and Remark 8.41 implies that

fﬂ@m+fﬂmm="anmww+f ummmm<j (flat f1g)(x) da
JA JB JAUB JAUB JAUB

= (flavs — (—flanp))(z) dz
AuB

< flaop(x)dr — f (—fLlanp)(z) dz

AuB JAUB

le

e

r

- | t@ar- | N

AuB JANB

le
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which, with the help of Proposition 8.40 (e), further implies that

JAf(:v) dx + JB flz)dx < JAUB f(z)dx.

The case of the upper integral can be proved in a similar fashion. =

Having established Proposition 8.40, it is easy to see the following theorem (except (c)).

The proof is left as an exercise.

Theorem 8.43. Let A < R"™ be bounded, c € R, and f,g : A — R be Riemann integrable.
Then

(a) f + g is Riemann integrable, and J (f+9)(z)dx = j f(z)dx =+ J g(x) dx.
A A A
(b) cf is Riemann integrable, and J (cf)(x)dx = CJ f(z) dz.
A A
(¢c) |f| is Riemann integrable, and ‘f f(z) dx‘ < J |f(z)|dx.
A A

(d) If f < g, then L f(x) de < L o(2) da.

(e) If A has volume and |f| < M, then }J f(x) dx‘ < Mv(A).
A
Theorem 8.44. Let A < R" be bounded, and f : A — R be a bounded integrable function.

1. If A has measure zero, then f f(z)dz =0.
A

2. If f(x) = 0 forall x € A, and f f(z)dx = 0, then the set {:1; € A‘f(x) # 0} has
A

measure zZero.

Proof. 1. We show that L(f,P) < 0 < U(f,P) for all partitions P of A. Let P =
{Al, e ,AN} be a partition of A. By Corollary 8.23, A, n A" # @ fork=1,--- | N;

thus we must have inf f(z) < 0 and sup f(x) = 0. As a consequence, if P is a

TEA €A,
partition of A,
N B N _
L(f,P)= Z xt_nAfk f(x)v(Ay) <0 and U(f,P) = Z sup f(x)v(Ag) = 0;

k=1 xEAk

thus j f(z)der <0< | f(x)dx. Since f is integrable over A, J f(x)dx =0.
A A
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2. Let Ay = {ze Al f(z) > %} We claim that Ay has measure zero for all k£ € N.

Let ¢ > 0 be given. Since J f(z)dz = 0, there exists a partition P of A such that
A
U(f,P) < 7. Let C = {Ae P|An A # @}. Then A | A, and
AeC

=3 u(0) < Y sup Fla)n(d) < ) sup fa)r(A) = U(f, P) <

AeC AeC €A Aep €A

T~ ™

which implies that )] v(A) < e. Therefore, Ay has measure zero; thus Theorem 8.24

AeC
0

implies that A = | J Ay also has measure zero. =
k=1

Remark 8.45. Combining Corollary 8.35 and Theorem 8.44, we conclude that the integral

of a bounded function over a compact set of measure zero is zero.

Remark 8.46. Let A=Qn[0,1] and f : A — R be the constant function f = 1. We have
shown in Example 8.31 that f is not Riemann integrable. We note that A has no volume
since 0A = [0, 1] which is not a set of measure zero. However, A has measure zero since it

consists of countable number of points.

1. Since f is continuous on A, the condition that A has volume in Corollary 8.33 cannot

be removed.

2. Since A has measure zero, the condition that f is Riemann integrable in Theorem 8.44

cannot be removed.

Theorem 8.47 (Mean Value Theorem for Integrals). Let A be a subset of R™ such that A
has volume and is compact and connected. Suppose that f : A — R is continuous, then there

exists xg € A such that

J f(x)dx = f(xo)v(A).
A

The quantity 1 f(x)dz is called the average of f over A.
v(4)
A

Proof. Because of Theorem 8.44, it suffices to show the case that v(A) # 0. Let m =

min f(x) and M = max f(x). Then
r€A zeA

mla(z) < f(z) < M1a(x);
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thus (b) and (d) of Theorem 8.43 imply that

mu(A) = fA mla(z)de < JA f(z)dr < JA M1,(z)dx = Mv(A).

By the connectedness of A and continuity of f, Theorem 4.21 and Theorem 3.38 implies
that f(A) = [m, M]; thus by the fact that the quantity y(IA)J f(z)dx € [m, M], there
A

must be zg € A such that

1
fla) = 505 j f(z)da. 5

Definition 8.48. Let A < R" be a set and f : A — R be a function.- For B < A, the
restriction of f to B is the function f‘B : A — R given by f|g'= f1p. In other words,

_( f(z) ifzeB,
f‘B($)_{ 0 ifzeA\B.

The following lemma is a direct consequence of Proposition 8.40 (a).

Lemma 8.49. Let A < R" be bounded, and f : A — R be a bounded function. Suppose that

B < A, and f’B is Riemann integrable over-A. Then f is Riemann integrable over B, and

L fl (@) de = JB flz)dx .

Theorem 8.50. Let A, B be bounded subsets of R" be such that A n B has measure zero,
and f: Au B — R be such that f‘AmB, f’A and f‘B are all Riemann integrable over A u B.
Then f is integrable over A U B, and

LUB f(x)dx = L f(z)dx + fB flz)dx.
Proof. Since 14,8 =14+ 1 — 145, We have
f=Facs=fl,+fls—flap;

thus Theorem 8.43, Theorem 8.44 and Lemma 8.49 imply that

LUB f(x)dr = LUB [l () dx + LUB fl () de = L fla)de + JB f(z)dx. .
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8.5 The Fubini Theorem

If f:]a,b] — R is continuous, the fundamental theorem of Calculus (Theorem 4.90) can be
applied to computed the integral of f over [a,b]. In the following two sections, we focus on
how the integral of f over A < R", where n > 2, can be computed if the integral exists. We

start with the special case n = 2.

Definition 8.51. Let S = [a,b] x [c,d] be a rectangle in R?, and f : S — R be bounded.
For each fixed = € [a,b], the lower integral of the function f(x,-) : [c,d] — R is denoted

d d
by J f(z,y) dy, and the upper integral of f(x,-) : [c,d] — R is denoted by J f(z,y) dy.
If for each = € [a,b] the upper integral and the lower integral of f(z,:) : [c,d] — R are

d
the same, we simply write f f(z,y) dy for the integrals of f(z,-) over [c,d]. The integrals

7b b b
j f(z,y)dx, J f(z,y) dx and J f(z,y) dx are defined in.a similar way.

Lemma 8.52. Let A = [a,b] x [c,d] be a rectangle in R?, and f : A — R be bounded. Then

_L f(x,y)dA < _Lb (_ff(x,y) dy)dx < f: <ff(m,y) dy)dx < L F(z,y)dA  (8.5.1)
and
_L f(z,y)dA < f <£’f(m,y) dx>dy < J_cd (fﬂx’y) dx)dy < L f(z,y)dA. (85.2)

Proof. 1t suffices to prove (8.5.1). Let £ > 0 be given. Choose a partition
P = {Aij’Aij = [z, Zi41] X [y;,yj4] for i=0,1,--- ,n—T1and j=0,1,--- ,m— 1}
of A such that L(f,P) > f f(z,y) dA — e. Using (4.7.3) and Remark 4.82, we find that
Ja

f J flz,y dy) ZnZ_:l JM (mi Jyﬁl f(z,y) dy>d:v

j=0 2Y;

mz: J%H Jyﬁl x,y) dy) dx

= YYj

.
Il
o

<.
o

3
—
3

—

\Y

inff(xy)v(dy) = LEP) > [ fley)dh—c.

(z,y)eA;

~
I
o
.
I
o
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Since € > 0 is given arbitrarily, we must have

Lb (ff(:c,y) dy)dx > _L Fla,y) dA

R _
Similarly, f (J f(z,y) dy) dr < f f(z,y) dA, so (8.5.1) is concluded. o
a c A

Theorem 8.53 (Fubini’s Theorem, the case n = 2). Let A = [a,b] x [c,d] be a rectangle in
R2, and f : A — R be Riemann integrable. Then

1. the functions J f(,y)dy and J f(-,y) dy are Riemann integrable over [a,b];

2. the functions J f(z,)dx and j f(z,-)dx are Riemann-integrable over [c,d], and

3. The integral of f over A is the same as the iterated integrals; that is,

Lf(w)dA f ffa:ydydx—f Jfa:y
f ffwydxdy—f foy

d
Proof. Tt suffices to prove that J f(z,y) dy is Riemann integrable over [a, b] and

Lb (_ff(:c,y) dy)dx: L flz,y) dA . (8.5.3)

b, rd
Since J (j f(z,y) dy J J (x,y)d da: Lemma 8.52 implies that

| fepans f(f e, f f (2.v) dy)d
< ffw o< ], gt

d
The integrability of f f(z,y)dy and the validity of (8.5.3) are then concluded by the
integrability of f over A. =
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b rd

Remark 8.54. To simplify the notation, sometimes we usef f(z,y) dydz to denote
b d a (&

the iterated integral the iterated integral f (J f(z,y) dy) dx. Similar notation applies

b rd
to the upper and the lower integrals. For example, we also have J f f(z,y) dyde =

Lb (Ldﬂx?y) d?/>dx.

d 7d
Remark 8.55. For each = € [a,b], define ¢(x) = J f(z,y)dy and (x) = J f(z,y) dy.

Then ¢(x) < 9(z) for all x € [a,b], and the Fubini Theorem implies that

b
f [¢(m) — go(m)]dm =0.

By Theorem 8.44, the set {x € [a, D] ‘w(x) — ¢(x) # 0} has measure zero. In other words,
except on a set of measure zero, f(z,-) is Riemann integrable over [c,d] if f is Riemann
integrable over [a,b] x [¢,d]. This property can be rephrased as that “f(x,-) is Riemann
integrable over [c, d] for almost every x € [a,b] if f'is Riemann integrable over the rectangle
la,b] x [c,d]”. Similarly, f(-,y) is Riemann integrable for almost every y € [c,d] if f is

Riemann integrable over [a,b] x [, d].

Remark 8.56. The integrability of f does not guarantee that f(x,-) or f(-,y) is Riemann
integrable. In fact, there exists.a function f : [0,1] x [0,1] — R such that f is Riemann
integrable, f(-,y) is Riemann integrable for each y € [0,1], but f(x,-) is not Riemann

integrable for infinitely many « € [0, 1]. For example, let

if x =0 or if x or y is irrational ,

[, y) =

"I O

ifx,ye@andx:%with (p,q) =1.
Then

1. For each y € [0,1], f(-,y) is continuous at all irrational numbers. Therefore, f(-,y) is

1 1
Riemann integrable, and f flz,y)dx = J f(z,y)dx = 0.
0 Jo

1
2. Forx =0or x¢Q, f(z,-) is Riemann integrable, and J flx,y)dy = 0.
0
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with (p,q) = 1, f(z,-) is nowhere continuous in [0,1]. In fact, for each

lim f(z,y) = 1 while lim f(z,y) =0;
yyeéo p ywéo

thus the limit of f(z,y) as y — yo does not exist. Therefore, the Lebesgue theorem
implies that f(z,-) is not Riemann integrable if x € Q n (0, 1]. On the other hand, for
z =4 with (p,q) = 1 we have

p

1 1 1
Lfmw@ZOam Lﬂ%w@:;

1

4. Define ¢(x) = f

0

a 1 1
and 1) are Riemann integrable over [0, 1], and J e(x)dx = J Y(z)dx = 0.
0 0

71
f(z,y)dy and ¢(z) = f f(z,y)dy. Then 2 and 3 imply that ¢
0

5. For each a ¢ Q n [0,1] and b € [0,1], f is continuous at (a,b). In fact, for any given

e > 0, there exists a prime number p such that ) < e. Let
(5:min{|a—Ii“()éﬁékép,keN,ﬁeNu{O}}.
Then § > 0, and if (z,y) € D((a,b),6) n ([0,1] x [0,1]), we have
@9 = @ b)] = || < - <=,

where we use the fact that if (z,y) € D((a, b), 5) and z € Q, then z =

form) for some k > p.

(in reduced

T~

As a consequence, { (a,b) € R? ‘ f is discontinuous at (a,b)} < Q x [0,1]. Since
Q x [0,1] is a countable union of measure zero sets, it has measure zero; thus f is

Riemann integrable by the Lebesgue theorem. The Fubini theorem then implies that

1 1
f f@wm:fffmwmw=o
[0,1]x[0,1] 0 Jo

Remark 8.57. The integrability of f(z,-) and f(-,y) does not guarantee the integrability of
f. In fact, there exists a bounded function f : [0,1] x [0, 1] — R such that f(z,-) and f(-,y)



304 CHAPTER 8. Integration

are both Riemann integrable over [0, 1], but f is not Riemann integrable over [0, 1] x [0, 1].

For example, let

k /7
1 if (z,y) = (55,55), 0 <k, < 2" odd numbers, n € N,
flz,y) = (5 27)

0 otherwise.

Then for each x € [0,1], f(z,-) only has finite number of discontinuities; thus f(z,-) is

Riemann integrable, and

fﬂx,y)dy:o.

Similarly, f(-,y) is Riemann integrable, and J f(z,y)dr = 0. As a consequence,

Jffﬂﬂydydx—fffxydwdy_o

However, note that f is nowhere continuous on [0, 1] x [0, 1]; thus the Lebesgue theorem
implies that f is not Riemann integrable. One can also see this by the fact that U(f,P) =1
and L(f,P) = 0 for all partition of [0, 1] x [0, 1].

Corollary 8.58. 1. Let 1,9 : [a,b] — R be continuous maps such that p1(x) < a(x)
for all x € [a,b], A = {(z,y)]|a <2 < bpi(z) <y < pa(2)}, and f : A > R be

continuous. Then f is Riemann-integrable over A, and

[demas={ ([ (()) (o) dy)da

a ©1

2. Let 1,1 : [¢;d] = R be continuous maps such that 1 (y) < 1o(y) for all y € e, d],
A= {(:E,y) ‘ c<y<d,(y) <z < ¢2(y)}, and f: A — R be continuous. Then f is

Riemann integrable over A, and

[ semas=[([ w(()) Fla,y) ) dy.

Proof. 1t suffices to prove 1. First we show that f is Riemann integrable over A. By
Lebesgue’s theorem, it suffices to show that the set { z,y) € R? } osc(f (x,y ) > O} has

measure zero, where f is the extension of f by zero outside A. Nevertheless, we note that

{(z,y) e R*|osc(f, (z.y)) > 0} < {a} x [01(a), p2(a)] L {D} x [p1(D), 2(D)] L
u{(x,golm)\xe [a,b]} U {(z, 2 )|$e [a,b]} .
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It is clear that {a} x [¢1(a), p2(a)] and {b} x [p1(b), ¢2(b)] have measure zero since they have
volume zero. Now we claim that the sets {( x, 1 x)) ’x € [a,b] } and {( x, pa(T ) ‘x €la b]}
also have measure zero.

Let ¢ > 0 be given. Since (; is continuous on a compact set [a,b], ¢ is uniformly
continuous on [a, b]; thus there exists 6 > 0 such that

lp1(z1) — p1(z2)| < bL whenever |z; — z5] <.
—a

Let P={a=x0 <z < <xy_1 <z, = b} bea partition of [a, b] such that |z, —z;| <9

foralli=0,---,n—1, and let A; = [wi,xiﬂ} X [ min (), max gol(x)}. Then

TE[T4,Xi+41] TE[T;,Xi41]

{(,gpl )’xe ab} UA

and . , X
n— n— c e n—
Z V(Ai) < iz(:) b_a(lﬂl —931') ~ b—a ;)(ifiﬂ —ifi) =¢c.

Therefore, {(x o1 ( ) ‘:c € [a,b] } has volume zero; thus {(a: o1(x ) ‘x € [a,b] } has measure
zero. Similarly, {( x, pa(x ) ‘x € la b]} also has measure zero. By Theorem 8.24, { x,y)
R? ‘ 0sC (jT, (, y)) > O} has measure zero; thus f is Riemann integrable over A.
Let m = xrél[(llrll)] o1(x), M = ;16&[2);] wo(x)yand S = [a,b] x [m, M]. Then A < S. By Lemma
8.49 and the Fubini Theorem,
b, oM b, ()
| van= | fagus= | (| Fepan)ar= [ (] s
a ~Jm a NJoi(@

which concludes 1. o

Example 8.59. Let A = {(z,y) e R*|0 <z <1,z <y <1}, and f: A — R be given by
f(z,y) = zy. Then Corollary 8.58 implies that
y=1 Yz ad 1 1 1
dz = <———>d — =
yr L 2 2)" T4 T878

Lf(x,y)dAle (Ll.fcydy>dx:£1%y2

On the other hand, since A = {(a:, y) € R? ‘ 0<y<1,0<z< y}, we can also evaluate the

integral of f over A by

1 y 1.2 = 1.3 1
nydA:J (f xydx)dyzj Y ydy: y—dy:—.
A 0 0 0 2 le=0 0 2 8
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Example 8.60. Let A = {(x,y) € R2 | 0<z<l,yr<y< 1}, and f: A — R be given by
flz,y) = ¢¥’. Then Corollary 8.58 implies that

L fa,y) dA = Ll (ff eygdy>dx.

Since we do not know how to compute the inner integral, we look for another way of finding
the integral. Observing that A = {(:c, y) € R? ’ 0<y<1l,0<z< y2}, we have

2

e ! 1 sp=t [ e=1
dA = v da ) dy = 20y = —e¥’'| = .
J;f(w7y) J; (J; e w) Yy \L yetdy =ge”| 3

Now we prove the general Fubini Theorem.

Theorem 8.61 (Fubini’s Theorem). Let A € R" and B < R™ be rectangles, and f :
A x B — R be bounded. For x € R" and y € R™, write.z = (z,y). Then

_LxB f(z)dz < _L (JB f(x,y)dy>da: < L (L f(x,y)dy)da: < LXBf(z) dz  (8.5.4)

and

_LxBf(Z) dz < L (Lf(x y)dr)dy f f f(@,y)da ) dy LXBf(z) dz. (8.5.5)

In particular, if f+ A x B — R is Riemann integrable, then

RS ff:cy Jaa = | ff:cy
f foy cw—f foy

Proof. It suffices to prove (8.5.4). Let € > 0 be given. Choose a partition P of A x B such
that L(f,P) > J f(2)dz — . Since P is a partition of A x B, there exist partition P,
AxB

of A and partitian P, of B such that P = {A =RxS ‘ ReP,,Se Py}. By Proposition
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8.40 and Corollary 8.42, we find that
L@ ([ feots)dy)ds

JiJy =],

> REZP L (S;) f 7 %(@,y) dy) da

D ZJ JfAXBxydy dx

RePy SePy

2 inf ?AXB(IL‘,y)I/m(S)Vn(R)

ReP,,SePy (@y)eRxS

RePgx R

WV

\%

= inf 7@ (D) = L(f,P) > j Sz

Acp (@Y)EA

Since € > 0 is given arbitrarily, we conclude that

JAXB f(z)d= < JB (_L f(x,y)dx> dy

Similarly, f J flz,y dy) dr < f f(2)dz; thus (8.5.4) is concluded. o
AxB

Corollary 8.62. Let S < R" be a bounded set with volume, ¢1,po : S — R be continuous
maps such that p1(z) < @o(x) for allw €8, A= {(z,y) e R"xR |z € S, ¢1(z) <y < pa(2)},

and f : A — R be continuous. Then f is Riemann integrable over A, and
w2(w)
[evden = | ([ rww ). (8.5.6)
A S N Jp1(x)

Proof. Since 0 A has measure zero, and f is continuous on A, Corollary 8.33 implies that f is
Riemann integrable over A. Let m = mln e1(z) and M = max @a(x). Then A < S x [m, M];
thus Theorem 8.50 and the Fubini Theorem imply that

[ fevien={  Fepien= [ ([ Fena)n
- [([ Penw)a.

Noting that [m, M] has a boundary of volume zero in R, and for each z € S, f (z,) is
continuous except perhaps at y = @1 () and y = @a(x), Corollary 8.33 implies that [ (z, - is
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M_ M
Riemann integrable over [m, M| for each z € S. Therefore, J fA(x, y)dy = f fA(x, y) dy
which further implies that "

ff:cy (x,y) f J 7 xydy)dx (8.5.7)

For cach fixed z € S, let A, = {y € R|¢1(z) < y < ¢2(2)}. Then i y) = fla,y)1a(y)

for all (x,y) € S x [m, M] or equivalently, fA(x, ) = f(z,-)|a, for all z € S; thus Proposition
8.40 (a) implies that

M w2(z)
| Pava- L fla)dy = | @yl vees, 859
m z o1 (x
Combining (8.5.7) and (8.5.8), we conclude (8.5.6). D

Example 8.63. Let A = R* be the set {(z1,22,23) € R* |2y = 0,20 > 0,23 = 0,and z; +
To + 23 < 1}, and f : A — R be given by f(z1, 72, 23) = (21 + 22 + 23)%. Let S =
[0,1] x [0,1] x [0,1], and f : R® — R be the extension of f by zero outside A. Then
Corollary 8.33 implies that f is Riemann integrable (since A has measure zero). Write

71 = (x9,23), Ty = (71,23) and T3 = (21, 22). Lemma 8.49 implies that

| styin =] Faas
A 5
and Theorem 8.61 implies that

L Ry J[0,1] (J[O,ﬂx[o 1] f(@ xg)d@) drs.

Let A,, = {(xl,xQ) € R2|x1 0,20 20,01 +22 < 1— xg} Then for each z3 € [0, 1],

_ 1—x3 l—xz3—x9o
J f(fg, 1‘3)d§3 = J f(fg, 903)6@3 = f (J f(901, T2, $3)d$1>d$2 .
[0,1]x[0,1] Ay

0 0

Computing the iterated integral, we find that

rl - rl—x3 l—z3—x9
J f(x)dx = ( (J (x1 + 22 + $3)2d$1>d$2:| dxs
A JOo -JO 0

rl - rl-zs 3\ z1=1—a3—2

= [‘ (xl + 33?2) + xg) 1 T 5172] de
JO -JO x1=0
rl 1—x3 1 3

= (— — (:EQ + 1’3) )dl’g] dl’g
Jo tJo 3 3
2 T 1 1 1 15—-10+1 1

oy, ot L ol0el L
Jo\4 312 4 6 60 60 10
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Example 8.64. In this example we compute the volume of the n-dimensional unit ball w,,.
By the Fubini theorem,

2

1 «\/1—1}% 1—w%—~--—zn71
-1 f«/lfm% — 17%%7"'79”%—

1

1 x? 17I27“'7Ii_
Note that the integral J L J 1 " dy, - do is in fact w,_ 1(1—22)"7 ; thus
VA
1 2 n—1 %
Wy, = J Wp1(1 —2%) 7 dox = anlf cos™ 0do . (8.5.9)
-1 0

Integrating by parts,

3 3 o=2 2
J cos" 0 df = f cos" ' 0 d(sin ) = cos" ! fsin 9‘0 S+ (ns1) J cos" 2@ sin? 0 df
0 0 =0 0

Jus

=(n-1) J2 cos" 2 6(1 — cos? 6) df)

0

3 —1 (2
J cos" 0df = n J cos"20db .
0 n 0

which implies that

As a consequence,

x (n ;(711)(_ 2 3) 3 2 jQ cos 6 df if n is odd,
f cos" 0df =
0 (n_l J do if n is even;
n(n —2)
thus the recursive formula (8.5.9) implies that w,, = 2Wn=2 Purther computations shows
n
that B
(27) "2 e
—n(n—2)~--3w1 if n is odd,
(.Un = n—2
(2m) "2 o
—n(n_2)m4w2 if n is even.

0
Let I be the Gamma function defined by I'(t) = f ' te ™ dx for t > 0. Then I'(z +1) =
0

xl(x) for all z > 0, I'(1) = 1 and F(%) = /7. By the fact that w; = 2 and wy = 7, we can

express wy, as
™

M=)
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8.6 Change of Variables Formula

Fubini theorem can be used to find the integral of a (Riemann integrable) function over a
rectangular domain if the iterated integrals can be evaluated. However, like the integral of
a function of one variable, in many cases we need to make use of several change of variables
in order to transform the integral to another integral that can be easily evaluated. In this
section, we establish the change of variables formula for the integral of functions of several

variables.

Theorem 8.65 (Change of Variables Formula). Let U < R™ be an open bounded set, and
g : U — R be an one-to-one €' mapping with €* inverse; that is, g=* : gU) — U s
also continuously differentiable. Assume that the Jacobian of g, J, = det([Dyg]), does not
vanish in U, and EccU has volume. Then g(E) has volume.-Maoreover, if f : g(E) — R is
bounded and integrable, then (f o g)J, is integrable over E; and

flo)dy = |

E

(7o (o] de =] (£ 9) ) L .

g(E) a(xb'" 7xn)

Remark 8.66. The condition that g has to be defined on a larger open set U can be
removed. In other words, £ < U has volume is enough for the change of variable formula

to hold; however, we will not prove this more generalized version here.

The proof of the change of variables formula is separated into several steps, and we list
each step as a lemma.

First, we show that the map gin Theorem 8.65 has the property that ¢~!(Z) has measure
zero (or volume zero) if Z itself has measure zero (or volume zero). This establishes that if
A and B are not overlapping; that is, v(A n B) = 0, then v(¢7'(A n B)) = 0.

Lemma 8.67. Let U < R™ be an open set, and ¢ : U — R™ be Lipschitz continuous; that
is, there exists L > 0 such that |p(x) — ¢(y)|re < Lz — y|ge for all x,y € U. Suppose
that Z € U is a set of measure zero (or a set of volume zero) and Z < U. Then ¢(A) has

measure zero (or volume zero).

Proof. We prove the case that Z has measure zero, and the proof for the case that Z has
volume zero is obtained by changing the countable sum/union to finite sum/union.
First we note that if S' € U is a rectangle on which the ratio of the maximum length and

minimum length of sides is less than 2, then ¢(S) € R for some n-cube R with side of length
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L\/nd, where § is the maximum length of sides of S. Therefore, v(¢(S)) < (24/nL)"v(S).

Let € > 0 be given. Since Z has measure zero, there exists countable rectangles Sy, Ss, - - -

0 0
such that Z < (J S, and >, v(Sk) <
k=1 k=1

9

@ynL)"

8.14 we can also assume that the ratio of the maximum length and minimum length of sides

Moreover, as in the proof of Proposition

0¢] o0

of Sy is less than 2 for all k € N; thus ¢(Z) < |J Ry and Y] v(Ry) < € for some rectangles
k=1 k=1

Rk7S. O

Next, we prove that it suffices to show the change of variables formula for the case that
f is a constant and E is the pre-image of closed rectangle under ¢ in order to establish the
full result.

Lemma 8.68. Let U < R" be an open bounded set, and g : U~ R™ be an one-to-one €*
mapping that has a €' inverse. Assume that the Jacobian of g, J, = det([Dg]), does not

vanish in U, and
v(R) = J |Jg(z)|dz  for all closed rectangle R < g(U) . (8.6.1)
g '(R)

Then if EccU has volume and f : g(E). — R is bounded and integrable, then (f o g)|J,4| is

Riemann integrable over E, and

F)dy = | (0 9@, (0)lds.

9(E) E

Proof. Consider the extensions of f and (f o g)|J,| given by

(f e g)(@)Jgl(x) ifzek,

7O (1) = { f(z) ifxeg(E),
B 0 if x € E-.

! 0 ifreg(E), and (fog)lJ,l (x) :{

By the integrability of f over g(E), the set {y e R ’?gw) is discontinuous at y} has measure

zero. Since

{a: e R" ‘mE is discontinuous at a:}
< 0E u {z € int(E)| f is discontinuous at g(z)}
=0F v {y € g(int(F£)) | f is discontinuous at y}
C J0F v {y e R" ’?9<E> is discontinuous at y} ,
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we conclude that {z € R™|(f o g)|J g|E is discontinuous at =} has measure zero. Therefore,
(f 0 g)|d,| is Riemann integrable over E. On the other hand, by the fact that

(F o)yl = (Fog) 13l = (Foglly on U,

the Lebesgue theorem also implies that (?g(mo 9)|J,| is Riemann integrable over F' if £ <

F < U since

Foglba =Fogl® VvFoE.

Moreover, it follows from Lemma 8.49 that
[ @ @@l = [ teg@iwlas  vEeFeu. (3.6.2)
F E

Since the Jacobian of g does not vanish in U, Remark 7.2 implies that ¢ is an open
mapping; thus g(U) is open. By the fact that g(Z) is compact, there exists an open set V
in R™ such that g(E) € Vacg(U). Tt then follows from g~' € €' (g(U)) and V < U that
there exists L > 0 such that |g7 (y1) =g (¥2)|g. < Lly1 —y2|rn for all g1,y € V. In other
words, ¢g~! is Lipschitz on V', and Lemma 8.67 implies that g~!(Z) has volume zero if Z = V

has volume zero.

Note that there exists § > 0 such that d(z,y) > 6 for all z € g(F) and y € V'. Let P be
a partition of g(F) such that|P| < §; that is, diam(A) < 6 for all A € P. Then A < V if
A e P and A n g(E) # & Since ;g?gw)(y) = i_nlf(A)(fg(E)o g)(z) if A €U, using (8.6.1)
we find that ’

L(LP) = Y wf @)=Y inf (F7og) (@A)

Aep yeA Ao zeg~1(A)
Ang(E)£D Ang(E)£D
= Y i (PTeg@ | @i
rop %E97HA) g-1(A)
Ang(E)#Q
—9(E)
< ¥ f F o g) (2|3, (x)dz.
AP Jg=1(A)
Amg(E);&Q

Since each “face” of the rectangle A € P has volume zero, Lemma 8.67 implies that g7'(A)n
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g~ (A') has volume zero if A n A’ has volume zero. Therefore, Corollary 8.42 shows that
f‘

L(f,P) < (F"" o g)(@)|J4(x)|dx

Uner,ang(B) 2o g~ H(A)
~

—9(E)
= (f" og)(@)|Iy(x)|dz
o7 (Uner,ang(B)zo D)

= | (F"" o 9)(@)|3(x)|da

97 Uner,angm)2o D)
.

le

(f o g)(x)Jg(2)] dr,

—__
&

where we have used the integrability of (TQ(E)og)Ug] over the set g’l(UAep’Ang(E#@ A)

(since this set is a super set of E) and (8.6.2) to conclude the last two-equalities.

Similarly, by the fact that sup 79<E)(y) = sup (79(E)o g)(x).if A €U, we obtain that
yeA zeg~1(A)

vEPI= X sp FUoa | |l

rep  TEGTL(A)
Ang(E)#J

> 3 [ e (F'0 ) (@)1, ()]s

9 Uner,angm)2z D)
Ang(B)#J

- [ ron@l @)l dr.
The integrability of f over g(E) then implies that f f(y)dy :f (fog)(z)|dy(z)|dx. o
9(E) E

Since the differentiability of g implies that locally g is very closed to an affine map; that
is, g(x) ~ Lax+c for some L e B(R",R"™) and ¢ € R™ (in fact, g(z) ~ g(xo)+(Dg)(xo)(z—1x0)
in a neighborhood of xy), our next step is to establish (8.6.1) first for the case that g is an
affine map. Since the volume of a set remains unchanged under translation, W.L.O.G. we

can assume that g is linear.

Lemma 8.69. Let g € Z(R",R"), and A < R" be a set that has volume. Then g(A) has

volume, and

v(g(A)) = L(A) Ly — L 19, () de (8.6.3)

Remark 8.70. If g € Z(R",R"), then g(x) = Lz for some n x n matrix. In this case
Jg(z) = det(L) for all x € A; thus (8.6.3) is the same as that

v(L(A)) = JL(A) ldy = JA | det(L)|dz = | det(L)|v(A). (8.6.4)
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Therefore, in the following we prove (8.6.4) instead of (8.6.3).

Proof of Lemma 8.69. Since any n x n matrices can be expressed as the product of ele-
mentary matrices, it suffices to prove the validity of the lemma for the case that L is an
elementary matrix.

Suppose first that A = [a1,b1] x -+ X [a,, b,] is a rectangle.

1. If L is an elementary matrix of the type

1 0 cvr e e e e e e 0T
0O . 0 :
. .
0 0 0 1 : < the ig-th row
1
L= 0 0
1
1 000 - | < the jo-th row
0 1
0 0o .0
0 - - 2NN 0 1|

the 79-th column the jo-th column

then
L(A) = [a1,b1] x - X [ai,—1, big—1] X [ajy,bj,] X [@ig11, bigpa] x -+ %

X [a“jo—lv bjo—l] X [aim bio] X [ajo+1> bjo + 1] X X [anv bn] )
thus v(L(A)) = v(A) = |det(L)|v(A).

2. If L is an elementary matrix of the type

I R )
0 1 0 :
0 1 0
L=1: 0 c 0 : | <« the ko-th row
0 1 0
0 1 0
| 0 0 1]




§8.6 Change of Variables Formula 315

then

L(A) = [a1,b1] X« X [agg—1, bkg—1] X [COky, Cry] X [Qhgs1s brgr1] X -+ X [@n, by
if c=0or

L(A) = [a1,b1] x -+ X [agg—1, bkg—1] X [cbry, Car,] X [Qrgt15 brg1] X -+ X [, by
if ¢ < 0. In either case, v(L(A)) = |c|[v(A) = | det(L)|v(A).

3. If L is an elementary matrix of the type

1 0 0
0 1 0 0
c 0 | < the ip-th row
0
L= 0 1 0 :
0 1 0
|0 01|
1
the jo-th column
then L(A) is a parallelepiped
L(A) = {(z1, , Big—1, Tig+ CTjo, Tigg1,*+  Tn) € R |2 € [a;,b] V1 < i < n}
= {($1> oy Lig=15 Yigs Lig4+1y " 77571) e R" ’ Qj + CT 4, < Yio < b’io + CT 3y,

xT; € [ai,bi] Vi # ’lo},

T, axis T, axis ! !
1
1
L 1
! I
| 1 | 1
1
: /—\ ! I
| -
‘ -
! -
=
77 1 1
% 1
/ 1
. iz .
xj, axis . : xj, axis
1 1
(X1, /" Tig—1, T4 -++, &) hyper-space (X1, /" Tig—1224 -+ -1, &) hyper-space
15 y Lig—1s Lig+1, y Ln ) LLYDP % 15 y Lig—13Lig+1, " "1y Tn) YD P

Figure 8.3: The image of a rectangle under a linear map induced by the elementary matrix
of the third type
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thus the Fubini theorem (or Corollary 8.62) implies that

bi -‘rCIj
f C Ly, ) di, = v(A).

@ +cxj

vz = |
[al,bﬂ X X [aio—lubio—l] X [ai0+1’bi0+1} X X [an,bn}

On the other hand, |det(L)| = 1, so v(L(A)) = | det(L)|v(A) is validated.

Therefore, (8.6.4) holds if A is a rectangle and L is an elementary matrix. An immediate
consequence of this observation is that if Z is a set of measure zero, so is L(Z).

Now suppose that A is an arbitrary set with volume, and L is an elementary matrix.

1. If det(L) = 0, L must be an elementary matrix of the second type (with ¢ = 0), and
in this case,
L(A) < [-rr] x - x[-rr] x [—ee] x---X[=r7]

——
the ko-th slot

for some r > 0 sufficiently large and arbitrary & >0. Therefore, L(A) has volume
zero; thus L(A) has volume and v(L(A4)) ={det(L)[v(A).

2. Suppose that det(L) # 0. Let ¢ > 0 be given. Since A has volume, by Riemann’s

condition there exists a partition of A such that

€
1 —L(1 :
Ula®) L0 P) < 1aarmy
Note that the inequality above also implies that
€ €
1 —v(A) < —— A)—L(1 .
U(la,P)—-v(A) < det(D)] and v(A) (14,P) < et ()]
Let Oy ={AeP|AnA# &} and C, = {AeP|Ac A}, and define Ry = |J A
AeC
and Ry = |J A. Then Ry € A < R;. Moreover,
AECQ
v(L(Ry)) = D) v(L(A) = D) [det(L)[p(A) = [ det(L)|U(La, P)

AECl AECl
< |det(L)|v(A) + ¢

and

v(L(R2)) = >, v(L(A)) = > |det(L)[(A) = |det(L)[L(1a, P)

AECZ AGCQ
> | det(L)|v(A) — €.
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As a consequence, by the fact that L(Rs) < L(A) < L(R;) we conclude that

‘ f_ 1dx — J 1da:‘ < V(L(Rl)) —I/(L(Rz)) = |det(L)|(U(1A,P) - L(1A>P)) <e.
L(4) JL(A)

Since € > 0 is arbitrary, we find that J
L

Riemann integrable, or equivalently, L(A) has volume.

ldx = J ldz which implies that 1y,4) is
(4) L(A)

On the other hand, observing that

| det(L)|v(4) — e < v(L(R2)) < v(L(A4)) < v(L(Ry)) < | det(L)|v(A) + ¢,

we conclude that v(L(A)) = |det(L)|v(A) again because e >0 is arbitrary. o

Lemma 8.71. Let U < R™ be an open bounded set, and g : U4 — R™ be an one-to-one €*

mapping that has a € inverse. Assume that the Jacobian of g, J, = det([Dg]), does not
vanish in U. Then

v(R) = J |Jg(z)|dz  for all closed rectangle R < g(U) . (8.6.1)
g~ (R)

Proof. First, we note that by the the compactness of R, there exist m > 0 and A > 0 such
that

[Jg(z)] =m and | (Dg)(z) <A Vzeg ' (R).

AR Rn)

Let 0 < € < 1 be given. By the compactness of g7'(R), (Theorem 4.52 implies that)

J, 1 g7 (R) — R is uniformly continuous; thus there exists d; > 0 such that
|Jg(x1) — Jg(xQ)} <me if |z; — @ollre < 8 and z1, 20 € g7H(R).

Since g~ ! is of class ¢!, the continuity of g~! and Corollary 6.36 guarantee that there exists

d > 0 such that if |y; — y2|re < d and y1,y2 € R, we have

lg ™ ) — 97 (w2) | < 6

and

lo™ ) = 97 0) = (D9 ™)) e = )l < 5 b — vl

Let P be a partition of R with mesh size |P|| < § and the ratio of the maximum length

and minimum length of sides of each A is less than 2. For A € P, let ¢, denote the center
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of A for A € P, and define Ax = (Dg)(g*(ca)) as well as ha(z) = Ax(z — g7 (ca)) + Ca.
Then

‘Jg(g_l(y)) - Jg(g_l(cA))‘ <me VyeA.

Moreover, the inverse function theorem (Theorem 7.1) implies that A" = (Dg~1)(ca); thus

for y € A,

[(hog™ ™) (W) —ylp. = [Aa(g™ () — g7 (ca) = (Dg™")(ea)(y — ca)) | zn
< [Aalz@nrm] g (W) — g7 ea) — (Dg™H)(ea)(y — ca) | gn

e[(Dg)(g~" (ea)) | m(rn rn) e .
B |
SN ly = eallwr < =mdiam(A)

The inequality above implies that for all A € P,

N

(1—-¢)"v(A) < V((hA o g’l)(A)) < (T4e)"v(A).

Since J, = det(Aa) = J,(¢7(ca)), Lemma 8.69 or (8.6.4) provides that

f [Jy(2)] dz < f (Mg(g™ (ca))| A me)dz = (|J4(g7" (ca))| +me)v(971(A))
g~ 1(A) g=1(A)

v((haog)'(A))
(g7 (ca))l

A similar argument provides a lower bounded of the left-hand side, and we conclude that

= (Mg~ (ca))| +me) < (14 ¢)"Mu(A).

(1—e)"My(A) < J [Jy(2)]dr < (1+¢)"tu(A) VAeP.
g7 1(4)

Summing over all A € P, we find that

(-erthum) < 3 f B)ldz < (1+ )" w(R).

Identity (8.6.1) is then concluded since )| |Jg(2)|dx = f |Jg(z)|dz and € € (0, 1)
AeP Jg=1(A) 9 (R)
is arbitrary. =

Example 8.72. Let A be the triangular region with vertices (0,0), (4,0), (4,2), and f :
A — R be given by

flz,y) =yv/o—2y.



§8.6 Change of Variables Formula 319

Let (u,v) = (z,z — 2y). Then (z,y) = g(u,v) = (u, ?), thus

A

u xT

Figure 8.4: The image of F under g

Therefore,

J fevian = | s ; f g, 0))dus, v)
A

Example 8.73. Suppose that f : [0, 1] — R is Riemann integrable and Jl (1—z)f(x)dz =5

(note that the function g(x) = (1 — z) f(x) is Riemann integrable over [OO, 1] because of the

Lebesgue theorem). We would like to evaluate the iterated integral fl r flx —y)dydz.
It is nature to consider the change of variables (u,v) = (z — y, ) Oor O(u, v) = (z —y,vy).

Suppose the later case. Then (z,y) = g(u,v) = (u + v,v); thus

11

Jg(u,v) = ‘1 0

Bt

Moreover, the region of integration is the triangle A with vertices (0,0), (1,0), (1,1), and

three sides y = 0, z = 1, x = y correspond to u = 0, u +v = 1 and v = 0. Therefore, if
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E denotes the triangle enclosed by u = 0, v = 0 and v + v = 1 on the (u,v)-plane, then
g(E) = A, and

fff:v— dydx—ffx— (x,y) f flx—y)d(x,y)

=Lﬂm@@—m%@%%wﬂﬂw@=££wﬂw®m
:fu—u)f(u)du:a

0

Example 8.74 (Polar coordinates). In R when the domain over which the integral is taken
is a disk D, a particular type of change of variables is sometimes very useful for the purpose
=4)(r,0), where (xq, 1) is
the center of D under consideration. If the radius of D is R, then D, up to removing a line

of evaluating the integral. Let (x,y) = (xo + rcos @, yo + rsinf)

segment with length R, is the image of (0, R) x

(0,27) under v Note that the Jacobian of

Y is
oY1 Oy .
1,(r.0) FEr cosf —rsinf
r,0) = = =r.
v 0Py Oy sinf)  rcosf
or 00

Therefore, if f : D — R is Riemann integrable, then

ff@wﬂ%w=f f@wﬂmm:f (f ) (1, 0)[1y(r,0)| d(r, 0)
D ¥ ((0,R) % (0,27)) (0,R)x(0,27)

:J f(xo+1rcosb,yo+rsind)rd(r,6).
(0,R) x(0,2r)

Example 8.75 (Cylindrical coordinates). In R?, when the domain over which the integral
is taken is a cylinder C; that is, C = D x [a, b] for some disk D and —o0 < a < b < R, then

the change of variables

W(r,0,z) =

where (x,70) is the center of D and R is the radisu of D, is sometimes very useful for

(2o 4+ rcosh,yo + rsind, 2) 0<r<R,0<0<2r,a<z<b,

evaluating the integral. Since the Jacobian of v is

o o
or 00 0z cos) —rsinf 0
Jy(r,0,2) = 9{;?2 8522 (3(;/12 =|sinf rcosf 0| =r,
T z
o5 s ol L0 0
or 00 0z
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we must have

r

f F@92) d(w9.2) = f(,y,2) d(x,y, 2)
C

Y ((0,R) % (0,27) x [a,b])

(f o 9)(r,0,2)[Jy(r,0,2)] d(r,0, 2)
(0,R) x(0,27) x [a,b]
.J flzo+rcosb,yo+rsinb, z)rd(r,0,z).
(0,R) % (0,2m) x[a,b]

I
[ S—

Example 8.76 (Spherical coordinates). In R?, when the domain over which the integral is

taken is a ball B, the change of variables
V(p, 0, 0) = (xo+ pcoshsing,yo+ psinfsing, zg+pcosp) 0<p<R,0<0<2m,0< <,

where (zo, Yo, 20) is the center of B and R is the radius of B, is often used to evaluate the

integral a function over B. Since the Jacobian of 1 is

dp 20 09 cosfsing —psinfsing pcosbcosp

Ju(p,0,¢) = 5;22 8;#@2 a(;if = |sinfsing - pcosfsing psinfcos
oy Oy O cos ¢ 0 —psin ¢
op 00 09

= —p? cos? fsin® ¢ — p®sin® O sin ¢ cos? ¢ — p® cos® Osin ¢ cos® ¢ — p? sin? fsin® ¢

= —p?sin® ¢ — p*sin pcos® p = —p*sin ¢,

if the radius of B is R, we must have

fB f(x,y,2)d(z,y,2) = f(x,y,2)d(z,y,2)

Jw((O,R) x (0,27)x (0,7))

- f (f 5 9)(p, 6, 0)| (0, 0, 0)| d(p, 6, 0)
(0,R)x (0,27) x (0,)

J f(zo + pcosfsin g, yo + psinfsin @, zy + pcos @) p*sin g d(r, 0, 2) .
(0,R) x (0,27) x (0,7)

8.7 Exercises

§8.2 Conditions for Integrability
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Problem 8.1. Let f : [0,1] x [0,1] — R be a bounded function such that f(z,y) <
flx,2)if y < z and f(z,y) < f(t,2) if x < t. In other words, f(z,-) and f(-,y) are both
non-decreasing functions for fixed x,y € [0,1]. Show that f is Riemann integrable over
[0, 1] < [0, 1].

Problem 8.2. Let A € R” be a bounded set, and f; : A — R be a sequence of Riemann

integrable functions which converges uniformly to f on A. Show that f is Riemann integrable

kh_r& JA fr(x)de = L kh_I)Iolo fr(x)de = JA f(z)dx

§8.3 Lebesgue’s Theorem

over A, and

Problem 8.3. Complete the following.

1. Show that if A is a set of volume zero, then A has measure zero. Is it true that if A

has measure zero, then A also has volume zero?

2. Let a,b € R and a < b. Show that the interval [a,b] does not have measure zero (in
R).

3. Let A < [a,b] be a set of measure zero (in R). Show that [a,b]\A does not have

measure zero (in R).

4. Show that the Cantor set (defined in Exercise Problem 2.11) has volume zero.

Problem 8.4. Let A = UD(k 2,C) LO_OJ( 1

y T + 2%) be a subset of R. Does A have

volume?

Problem 8.5. Let f : [a,b] — R be bounded and Riemann integrable. Show that the graph

of f has volume zero by considering the difference of the upper and lower sums of f.

Problem 8.6. Let A < R" be an open bounded set with volume, and f : A — R be
continuous. Show that if f f(z)dxz = 0 for all subsets B < A with volume, then f = 0.
B

Problem 8.7. Prove the following statements.

1
1. The function f(z) = sin - is Riemann integrable over (0, 1).
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2. Let f:[0,1] — R be given by

if‘%:%EQ, (P,Q)Zl,

if x is irrational.

1
fle)=q P
0

1
Then f is Riemann integrable over [0, 1]. Find f f(z)dx as well.
0

3. Let A < R” be a bounded set, and f : A — R is Riemann integrable. Then f* ( f ¢
k = = ) is integrable for all k£ € N.

Problem 8.8. Suppose that f : [a,b] — R is Riemann integrable; and the set {x €
b
[a,b]| f(z) # 0} has measure zero. Show that J f(z)dz =0.

§8.5 Fubini’s Theorem
1 prz

Problem 8.9. Evaluate the iterated integral J J (2y = yz)gdydx.
o Jo

Problem 8.10. Let A = [a,b] x [c,d] be a rectangle in R? and f : A — R be Riemann
integrable. Show that the sets

{x € [a, b] ‘ ff(:c,y)dy # f:l

have measure zero (in R').

b —b

flag)de # [ f(r.p)do}

a

f(:c,y)dy} and {ye[c,d]’f

a

Problem 8.11. Define a.set S <[0, 1] x [0, 1] by

S={(2,5)e0.1]x[0,1][m.pkeN ged(m,p) = Tand 1<k <m—1}.

Ll (Ll 1s(x,y) dy)dx = fol (Ll 1s(z,y) d$>dy —0

but 1g is not Riemann integrable over [0, 1] x [0, 1].

Show that

Problem 8.12. Let f:[0,1] x [0,1] — R be given by

22 if (z,y) e 27", 27 x [27, 27 ne N,
Flog) = § —20 it () € 21, 27) x 271, 277), e N,

0 otherwise .
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1

1. Show that f f(z,y)dx =0 for all y € [0,1).
0
1

2. Show that f f(z,y)dy =0 for all z € [0, %)
0

11 1,1
3. Justify if the iterated (improper) integrals f f f(z,y)dxdy and f f f(z,y) dydx
0 Jo 0 Jo

are identical.

Problem 8.13.

1 e’
1. Draw the region corresponding to the integral f (J (x +y) dy) dx and evaluate.
0o \J1

2. Change the order of integration of the integral in 1 and check if the answer is unaltered.
§8.6 Change of Variables Formula
Problem 8.14. Prove Theorem 4.95 using Theorem 8.65.
Problem 8.15. Find the volume of the set {(:L’,y, 2)eR3 | O0< 2?4y’ +ay<2?< 4}.

Problem 8.16. Suppose that &/ < R"™ is an nonempty open set, and f : & — R is of class
%" such that Jy(x) # 0 for all € Y. Show that

(D)
r—0+ y(D(yco, 7’))

= J (o) Vagel.

Problem 8.17. 1. Let A be the parallelogram with vertices (0,0), (%,—%), (1,0) and

(1, 1) Evaluate the integral
33

f VT —y\/x + 2y dA.
A

2. Let A be the parallelogram bounded by lines x = 3y, © = 1 4+ 3y, y = —2z and
y = 1 — 2z. Evaluate the integral

J \3/2x2—5xy—3y2dA.
A

3. Let A be the trapezoid with vertices (1,1), (2,2), (2,0) and (4,0). Evaluate the
integral
f =)/ (+a) gp
A
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Problem 8.18 (True or False). Determine whether the following statements are true or

false. If it is true, prove it. Otherwise, give a counter-example.

1.

Let A € R” be bounded, and f : A — R be Riemann integrable. If P be a partition
of A, and m < f(x) < M for all x € A. Then mv(A) < L(f,P) < U(f,P) < Mv(A).

Let A < R™ be a set of measure zero. If A\A is countable, then A has volume zero.

Let A < R"™ be a closed rectangle and f,g: B — R be Riemann integrable functions.

If there exists a set Z < A such that Z has measure zero and g(x) = f(z) for all
x € A\Z, then J f(z)dx = J g(x)dx.
A A

Let A € R” be a closed rectangle. Suppose that f and g are two bounded real-valued
functions defined on A such that f is continuous and g = f except on a set of measure

zero, then f and g are both Riemann integrable over A.

Let A, B < R be bounded, and f: A — Rand g : f(A) - R be Riemann integrable.

Then g o f is Riemann integrable over A.






