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Chapter 8

Integration of Functions of Several
Variables

In this chapter, we focus on the integration of bounded functions on bounded subsets of Rn.

8.1 Integrable Functions
We start with a simpler case n = 2.

Definition 8.1. Let A Ď R2 be a bounded set. Define

a1 = inf
␣

x P R
ˇ

ˇ (x, y) P A for some y P R
(

,

b1 = sup
␣

x P R
ˇ

ˇ (x, y) P A for some y P R
(

,

a2 = inf
␣

y P R
ˇ

ˇ (x, y) P A for some x P R
(

,

b2 = sup
␣

y P R
ˇ

ˇ (x, y) P A for some x P R
(

.

A collection of rectangles P is called a partition of A if there exists a partition Px of [a1, b1]
and a partition Py of [a2, b2],

Px =
␣

a1 = x0 ă x1 ă ¨ ¨ ¨ ă xn = b1
(

and Py =
␣

a2 = y0 ă y1 ă ¨ ¨ ¨ ă ym = b2
(

,

such that

P =
␣

∆ij

ˇ

ˇ∆ij = [xi, xi+1] ˆ [yj, yj+1] for i = 0, 1, ¨ ¨ ¨ , n ´ 1 and j = 0, 1, ¨ ¨ ¨ ,m ´ 1
(

.

The mesh size of the partition P and also called the norm of P , denoted by }P}, is defined
by

}P} = max
!
b

(xi+1 ´ xi)2 + (yj+1 ´ yj)2
ˇ

ˇ

ˇ
i = 0, 1, ¨ ¨ ¨ , n ´ 1, j = 0, 1, ¨ ¨ ¨ ,m ´ 1

)

.
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The number
a

(xi+1 ´ xi)2 + (yj+1 ´ yj)2 is often denoted by diam(∆ij), and is called the
diameter of ∆ij.

Similar to the integrability of f on a bounded subset of R, we have the following

Definition 8.2. Let A Ď R2 be a bounded set, and f : A Ñ R be a bounded function. For
any partition P =

␣

∆ij

ˇ

ˇ∆ij = [xi, xi+1] ˆ [yj, yj+1], i = 0, ¨ ¨ ¨ , n´ 1, j = 0, ¨ ¨ ¨ ,m´ 1
(

, the
upper sum and the lower sum of f with respect to the partition P , denoted by U(f,P)

and L(f,P) respectively, are numbers defined by

U(f,P) =
ÿ

0ďiďn´1
0ďjďm´1

sup
(x,y)P∆ij

f
A

(x, y)A(∆ij) ,

L(f,P) =
ÿ

0ďiďn´1
0ďjďm´1

inf
(x,y)P∆ij

f
A

(x, y)A(∆ij) ,

where A(∆ij) = (xi+1 ´xi)(yj+1 ´yj) is the area of the rectangle ∆ij, and fA is an extension
of f , called the extension of f by zero outside A, given by

f
A

(x) =

"

f(x) x P A ,

0 x R A .

The two numbers
ż

A

f(x, y)dA ” inf
␣

U(f,P)
ˇ

ˇP is a partition of A
(

and
ż

A

f(x, y)dA ” sup
␣

L(f,P)
ˇ

ˇP is a partition of A
(

are called the upper integral and lower integral of f over A, respectively. The function

f is said to be Riemann (Darboux) integrable (over A) if
ż

A
f(x, y)dA =

ż

A
f(x, y)dA,

and in this case, we express the upper and lower integral as
ż

A
f(x, y)dA, called the integral

of f over A.

In general, we can consider the integrability of a bounded function f defined on a
bounded set A Ď Rn as follows
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Definition 8.3. Let A Ď Rn be a bounded set. Define the numbers a1, a2, ¨ ¨ ¨ , an and
b1, b2, ¨ ¨ ¨ , bn by

ak = inf
␣

xk P R
ˇ

ˇx = (x1, ¨ ¨ ¨ , xn) P A for some x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xn P R
(

,

bk = sup
␣

xk P R
ˇ

ˇx = (x1, ¨ ¨ ¨ , xn) P A for some x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xn P R
(

.

A collection of rectangles P is called a partition of A if there exists partitions P(k) of
[ak, bk], k = 1, ¨ ¨ ¨ , n, P(k) =

␣

ak = x
(k)
0 ă x

(k)
1 ă ¨ ¨ ¨ ă x

(k)
Nk

= bk
(

, such that

P =
!

∆i1i2¨¨¨in

ˇ

ˇ

ˇ
∆i1i2¨¨¨in = [x

(1)
i1
, x

(1)
i1+1] ˆ [x

(2)
i2
, x

(2)
i2+1] ˆ ¨ ¨ ¨ ˆ [x

(n)
in
, x

(n+1)
in+1

],

ik = 0, 1, ¨ ¨ ¨ , Nk ´ 1, k = 1, ¨ ¨ ¨ , n
)

.

The mesh size of the partition P , denoted by }P} and also called the norm of P , is defined
by

}P} = max
#

g

f

f

e

n
ÿ

k=1

(x
(k)
ik+1 ´ x

(k)
ik

)2
ˇ

ˇ

ˇ
ik = 0, 1, ¨ ¨ ¨ , Nk ´ 1, k = 1, ¨ ¨ ¨ , n

+

.

The number
d

n
ř

k=1

(x
(k)
ik+1 ´ x

(k)
ik
)2 is often denoted by diam(∆i1i2¨¨¨in), and is called the di-

ameter of the rectangle ∆i1i2¨¨¨in .

Definition 8.4. Let A Ď Rn be a bounded set, and f : A Ñ R be a bounded function. For
any partition

P =
!

∆i1i2¨¨¨in

ˇ

ˇ

ˇ
∆i1i2¨¨¨in = [x

(1)
i1
, x

(1)
i1+1] ˆ [x

(2)
i2
, x

(2)
i2+1] ˆ ¨ ¨ ¨ ˆ [x

(n)
in
, x

(n+1)
in+1

],

ik = 0, 1, ¨ ¨ ¨ , Nk ´ 1, k = 1, ¨ ¨ ¨ , n
)

,

the upper sum and the lower sum of f with respect to the partition P , denoted by
U(f,P) and L(f,P) respectively, are numbers defined by

U(f,P) =
ÿ

∆PP
sup

(x,y)P∆

f
A

(x, y)ν(∆) ,

L(f,P) =
ÿ

∆PP
inf

(x,y)P∆
f

A

(x, y)ν(∆) ,

where ν(∆) is the volume of the rectangle ∆ given by

ν(∆) = (x
(1)
i1+1 ´ x

(1)
i1
)(x

(2)
i2+1 ´ x

(2)
i2
) ¨ ¨ ¨ (x

(n)
in+1 ´ x

(n)
in

)
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if ∆ = [x
(1)
i1

´ x
(1)
i1+1] ˆ [x

(2)
i2

´ x
(2)
i2+1] ˆ ¨ ¨ ¨ ˆ [x

(n)
in

´ x
(n)
in+1], and f

A is the extension of f by
zero outside A given by

f
A

(x) =

"

f(x) x P A ,

0 x R A .
(8.1.1)

The two numbers
ż

A

f(x) dx ” inf
␣

U(f,P)
ˇ

ˇP is a partition of A
(

,

and
ż

A

f(x) dx ” sup
␣

L(f,P)
ˇ

ˇP is a partition of A
(

are called the upper integral and lower integral of f over A, respective. The function f

is said to be Riemann (Darboux) integrable (over A) if
ż

A
f(x) dx =

ż

A
f(x) dx, and

in this case, we express the upper and lower integral as
ż

A
f(x) dx, called the integral of f

over A.

Definition 8.5. A partition P 1 of a bounded set A Ď Rn is said to be a refinement of
another partition P of A if for any ∆1 P P 1, there is ∆ P P such that ∆1 Ď ∆. A partition
P of a bounded set A Ď Rn is said to be the common refinement of another partitions
P1,P2, ¨ ¨ ¨ ,Pk of A if

1. P is a refinement of Pj for all 1 ď j ď k.

2. If P 1 is a refinement of Pj for all 1 ď j ď k, then P 1 is also a refinement of P .

In other words, P is a common refinement of P1,P2, ¨ ¨ ¨ ,Pk if it is the coarsest refinement.

“+” “=”

Figure 8.1: The common refinement of two partitions

Qualitatively speaking, P is a common refinement of P1,P2, ¨ ¨ ¨ ,Pk if for each j =

1, ¨ ¨ ¨n, the j-th component cj of the vertex (c1, ¨ ¨ ¨ , cn) of each rectangle ∆ P P belongs to
P(j)
i for some i = 1, ¨ ¨ ¨ , k.

Similar to Proposition 4.78 and Corollary 4.79, we have



Copy
rig

ht
Prot

ect
ed

§8.2 Conditions for Integrability 279

Proposition 8.6. Let A Ď Rn be a bounded subset, and f : A Ñ R be a bounded function.
If P and P 1 are partitions of A and P 1 is a refinement of P, then

L(f,P) ď L(f,P 1) ď U(f,P 1) ď U(f,P) .

Corollary 8.7. Let A Ď Rn be a bounded subset, and f : A Ñ R be a bounded function. If
P1 and P2 are partitions of A, then

L(f,P1) ď

ż

A

f(x)dx ď

ż

A

f(x)dx ď U(f,P2) .

8.2 Conditions for Integrability
In the following two sections, we discuss some equivalent conditions for Riemann integra-
bility of bounded functions (over bounded sets). We recall that in Section 4.7 we have
talked about two equivalent conditions for Riemann integrability: the Riemann condition
(Proposition 4.80) and the Darboux theorem (Theorem 4.94). This section contributes to
the n-dimensional version of Riemann’s condition and Darboux theorem.

The proof of the following proposition is identical to the proof of Proposition 4.80.

Proposition 8.8 (Riemann’s condition). Let A Ď Rn be a bounded set, and f : A Ñ R be
a bounded function. Then f is Riemann integrable over A if and only if

@ ε ą 0, D a partition P of A Q U(f,P) ´ L(f,P) ă ε .

Definition 8.9. Let P = t∆1,∆2, ¨ ¨ ¨ ,∆Nu be a partition of a bounded set A Ď Rn. A
collection of N points tξ1, ¨ ¨ ¨ , ξNu is called a sample set for the partition P if ξk P ∆k for
all k = 1, ¨ ¨ ¨ , N . Points in a sample set are called sample points for the partition P .

Let A Ď Rn be a bounded set, and f : A Ñ R be a bounded function. A Riemann
sum of f for the the partition P = t∆1,∆2, ¨ ¨ ¨ ,∆Nu of A is a sum which takes the form

N
ÿ

k=1

f
A

(ξi)νn(∆k) ,

where the set Ξ = tξ1, ξ2, ¨ ¨ ¨ , ξNu is a sample set for the partition P .

Similar to Theorem 4.94, the following theorem establishes the equivalence between
the Riemann condition and the Darboux integrals. The idea of the proof of the following
theorem are essentially identical to the proof of Theorem 4.94; however, the detail proof
requires a slight modification due to the fact that the dimension is bigger than one.
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Theorem 8.10 (Darboux). Let A Ď Rn be a bounded set, and f : A Ñ R be a bounded
function with extension f

A given by (8.1.1). Then f is Riemann integrable over A if and
only if there exists I P R such that for every given ε ą 0, there exists δ ą 0 such that if P
is a partition of A satisfying }P} ă δ, then any Riemann sums for the partition P belongs
to the interval (I ´ ε, I + ε). In other words, f is Riemann integrable over A if and only if
there exists I P R such that for every given ε ą 0, there exists δ ą 0 such that

ˇ

ˇ

ˇ

N
ÿ

k=1

f
A

(ξk)ν(∆k) ´ I
ˇ

ˇ

ˇ
ă ε (8.2.1)

whenever P = t∆1, ¨ ¨ ¨ ,∆N

(

is a partition of A satisfying }P} ă δ and tξ1, ξ2, ¨ ¨ ¨ , ξNu is a
sample set for P.

Proof. The boundedness of A guarantees that A Ď
[

´
r

2
,
r

2

]n for some r ą 0. Let R =[
´
r

2
,
r

2

]n.

“ð” Suppose the right-hand side statement is true. Let ε ą 0 be given. Then there exists
δ ą 0 such that if P = t∆1, ¨ ¨ ¨ ,∆N

(

is a partition of A satisfying }P} ă δ, then for
all sets of sample points tξ1, ¨ ¨ ¨ , ξNu for P , we must have

ˇ

ˇ

ˇ

N
ÿ

k=1

f
A

(ξk)ν(∆k) ´ I
ˇ

ˇ

ˇ
ă
ε

4
.

Let P = t∆1, ¨ ¨ ¨ ,∆N

(

be a partition of A with }P} ă δ. Choose two sample sets
tξ1, ¨ ¨ ¨ , ξNu and tη1, ¨ ¨ ¨ , ηNu for P such that

(a) sup
xP∆k

f
A

(x) ´
ε

4ν(R)
ă f

A

(ξk) ď sup
xP∆k

f
A

(x);

(b) inf
xP∆k

f
A

(x) +
ε

4ν(R)
ą f

A

(ηk) ě inf
xP∆k

f
A

(x).

Then

U(f,P) =
N
ÿ

k=1

sup
xP∆k

f
A

(x)ν(∆k) ă

N
ÿ

k=1

[
f

A

(ξk) +
ε

4ν(R)

]
ν(∆k)

=
N
ÿ

k=1

f
A

(ξk)ν(∆k) +
ε

4ν(R)

N
ÿ

k=1

ν(∆k) ă I + ε

4
+
ε

4
= I + ε

2
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and

L(f,P) =
N
ÿ

k=1

inf
xP∆k

f
A

(x)ν(∆k) ą

N
ÿ

k=1

[
f

A

(ηk) ´
ε

4ν(R)

]
ν(∆k)

=
N
ÿ

k=1

f
A

(ηk)ν(∆k) ´
ε

4ν(R)

N
ÿ

k=1

ν(∆k) ą I ´
ε

4
´
ε

4
= I ´

ε

2
.

As a consequence, I ´
ε

2
ă L(f,P) ď U(f,P) ă I + ε

2
; thus U(f,P) ´ L(f,P) ă ε.

“ñ” Let I =
ż

A
f(x)dx, and ε ą 0 be given. Since f is Riemann integrable over A, there

exists a partition P1 of A such that U(f,P1) ´ L(f,P1) ă
ε

2
. Suppose that P(i)

1 =
␣

y
(i)
0 , y

(i)
1 , ¨ ¨ ¨ , y

(i)
mi

(

for 1 ď i ď n. With M denoting the number m1 +m2 + ¨ ¨ ¨ +mn,
we define

δ =
ε

4rn´1(M + n)
(

sup fA
(R) ´ inf fA

(R) + 1
) .

Then δ ą 0. Our goal is to show that if P is a partition of A with }P} ă δ and
tξ1, ¨ ¨ ¨ , ξNu is a set of sample points for P , then (8.2.1) holds.

Assume that P = t∆1,∆2, ¨ ¨ ¨ ,∆Nu is a given partition of A with }P} ă δ.
Let P 1 be the common refinement of P and P1. Write P 1 = t∆1

1,∆
1
2, ¨ ¨ ¨ ,∆1

N 1u and
∆k = ∆

(1)
k ˆ ∆

(2)
k ˆ ¨ ¨ ¨ ˆ ∆

(n)
k as well as ∆1

k = ∆
1(1)
k ˆ ∆

1(2)
k ˆ ¨ ¨ ¨ ˆ ∆

1(n)
k . By the

definition of the upper sum,

U(f,P) =
N
ÿ

k=1

sup
xP∆k

f
A

(x)ν(∆k)

=
ÿ

1ďkďN with
y
(i)
j

R∆
(i)
k

for all i, j

sup
xP∆k

f
A

(x)ν(∆k) +
ÿ

1ďkďN with
y
(i)
j

P∆
(i)
k

for some i, j

sup
xP∆k

f
A

(x)ν(∆k)

and similarly,

U(f,P 1) =
ÿ

1ďkďN 1 with
y
(i)
j

R∆
1(i)
k

for all i, j

sup
xP∆1

k

f
A

(x)ν(∆1
k) +

ÿ

1ďkďN 1 with
y
(i)
j

P∆
1(i)
k

for some i, j

sup
xP∆1

k

f
A

(x)ν(∆1
k) .

By the fact that ∆k P P 1 if y(i)j R ∆
1(i)
k for all i, j, we must have

ÿ

1ďkďN with
y
(i)
j

P∆
(i)
k

for some i, j

ν(∆k) =
ÿ

1ďkďN 1 with
y
(i)
j

P∆
1(i)
k

for some i, j

ν(∆1
k) .
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The equality above further implies that

U(f,P)´U(f,P 1) =
ÿ

1ďkďN with
y
(i)
j

P∆
(i)
k

for some i, j

sup
xP∆k

f
A

(x)ν(∆k)´
ÿ

1ďkďN 1 with
y
(i)
j

P∆
1(i)
k

for some i, j

sup
xP∆1

k

f
A

(x)ν(∆1
k)

ď
(

sup fA

(R) ´ inf fA

(R)
) ÿ

1ďkďN with
y
(i)
j

P∆
(i)
k

for some i, j

ν(∆k) .

Moreover, for each fixed i, j,
ď

1ďkďN with y
(i)
j P∆

(i)
k

∆k Ď
[
´
r

2
,
r

2

]i´1
ˆ
[
y
(i)
j ´ δ, y

(i)
j + δ

]
ˆ
[
´
r

2
,
r

2

]n´i
;

thus
ÿ

1ďkďN with y
(i)
j P∆

(i)
k

ν(∆k) ď 2δrn´1 @ 1 ď i ď n, 1 ď j ď mi .

Therefore,

U(f,P) ´ U(f,P 1) ď
(

sup fA

(R) ´ inf fA

(R)
) n
ÿ

i=1

mi
ÿ

j=0

ÿ

1ďkďN with y
(i)
j P∆

(i)
k

ν(∆k)

ď
(

sup fA

(R) ´ inf fA

(R)
) n
ÿ

i=1

mi
ÿ

j=0

2δrn´1

ď 2δrn´1(m1 +m2 + ¨ ¨ ¨ +mn + n)
(

sup fA

(R) ´ inf fR

(A)
)

ă
ε

2
,

and the fact that U(f,P1) ´ L(f,P1) ă
ε

2
shows that

U(f,P) ´ I ď U(f,P) ´ I + U(f,P1) ´ U(f,P1)

ď U(f,P) ´ L(f,P1) + U(f,P1) ´ U(f,P 1) ă ε .

Therefore, for any sample set tξ1, ¨ ¨ ¨ , ξNu for P ,
N
ÿ

k=1

f
A

(ξk)ν(∆k) ď U(f,P) ă I + ε .

Similar argument can be used to show that
N
ÿ

k=1

f
A

(ξk)ν(∆k) ě L(f,P) ą I ´ ε

which concludes the Theorem. ˝
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In Section 5.1, we show that if a sequence of Riemann integrable functions tfku8
k=1

converges to a function f uniformly on [a, b], then f is also Riemann integrable over [a, b] and
the integral of the limit function is the same as the limit of the integrals (of the sequences).
This theorem can also be established if the domain A under consideration is a bounded
subset of Rn. In fact, the same proof used to establish Theorem 5.16 can be applied to
conclude the following

Theorem 8.11. Let A Ď Rn be a bounded set, and fk : A Ñ R be a sequence of Riemann
integrable functions over A such that tfku8

k=1 converges uniformly to f on A. Then f is
Riemann integrable over A, and

lim
kÑ8

ż

A

fk(x) dx =

ż

A

f(x) dx . (8.2.2)

From now on, we will simply use sf to denote the zero extension of f when the
domain outside which the zero extension is made is clear.

8.3 The Lebesgue Theorem
In this section, we talk about another equivalent condition of Riemann integrability, named
the Lebesgue theorem. The Lebesque theorem provides a more practical way to check the
Riemann integrability in the development of theory. To understand the Lebesgue theorem,
we need to talk about a new concept, sets of measure zero.

8.3.1 Volume and Sets of Measure Zero

Definition 8.12. Let A Ď Rn be a bounded set, and 1A (or χA) be the characteristic
function of A defined by

1A(x) =
"

1 if x P A ,

0 otherwise .
A is said to have volume if 1A is Riemann integrable (over A), and the volume of A,
denoted by ν(A), is the number

ż

A
1A(x) dx. A is said to have volume zero or content

zero if ν(A) = 0.

Remark 8.13. Not all bounded set has volume.

Proposition 8.14. Let A Ď Rn be bounded. Then the following three statements are
equivalent.
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(a) A has volume zero;

(b) for every ε ą 0, there exists finite open rectangles S1, ¨ ¨ ¨ , SN whose sides are parallel
to the coordinate axes such that

A Ď

N
ď

k=1

Sk and
N
ÿ

k=1

ν(Sk) ă ε (8.3.1)

(c) for every ε ą 0, there exists finite rectangles S1, ¨ ¨ ¨ , SN such that (8.3.1) holds.

Proof. It suffices to show (a)ñ(b) and (c)ñ(a) since it is clear that (b)ñ(c).

“(a)ñ(b)” Since A has volume zero,
ż

A
1A(x) dx = 0; thus for any given ε ą 0, there exists

a partition P of A such that

U(1A,P) ă

ż

A
1A(x) dx+

ε

2
=
ε

2
.

Since sup
xP∆

1A(x) =
"

1 if ∆ X A ‰ H ,

0 otherwise ,
we must have

ř

∆PP
∆XA‰H

ν(∆) ă
ε

2
. Now if ∆ P P

and ∆XA ‰ H, we can find an open rectangle l such that ∆ Ď l and ν(l) ă 2ν(∆).

Let S1, ¨ ¨ ¨ , SN be those open rectangles l. Then A Ď
N
Ť

k=1

Sk and
N
ř

k=1

ν(Sk) ă ε.

“(c)ñ(a)” W.L.O.G. we can assume that the ratio of the maximum length and minimum
length of sides of Sk is less than 2 for all k = 1, ¨ ¨ ¨ , N (otherwise we can divide Sk into
smaller rectangles so that each smaller rectangle satisfies this requirement). Then each
Sk can be covered by a closed rectangle lk whose sides are parallel to the coordinate
axes with the property that ν(lk) ď 2n´1

?
n
n
ν(Sk). Let P be a partition of A such

that for each ∆ P P with ∆ X A ‰ H, ∆ Ď lk for some k = 1, ¨ ¨ ¨ , N . Then

U(1A,P) =
ÿ

∆PP
∆XA‰H

ν(∆) ď

N
ÿ

k=1

ν(lk) ď 2n´1
?
n
n

N
ÿ

k=1

ν(Sk) ă 2n´1
?
n
n
ε ;

thus the upper integral
ż

A
1A(x) dx = 0. Since the lower integral cannot be negative,

we must have
ż

A
1A(x) dx =

ż

A
1A(x) dx = 0 which shows that A has volume zero. ˝

Example 8.15. Each point in Rn has volume zero.
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Example 8.16. The Cantor set (defined in Exercise Problem 2.11) has volume zero.

Definition 8.17. A set A Ď Rn (not necessarily bounded) is said to have measure
zero（測度為零）or be a set of measure zero（零測度集）if for every ε ą 0, there exist
countable many rectangles S1, S2, ¨ ¨ ¨ such that tSku8

k=1 is a cover of A
(
that is, A Ď

8
Ť

k=1

Sk
)

and
8
ř

k=1

ν(Sk) ă ε.

Example 8.18. The real line R ˆ t0u on R2 has measure zero: for any given ε ą 0, let
Sk = [´k, k] ˆ

[ ´ε

2k+3k
,

ε

2k+3k

]
. Then

R ˆ t0u Ď

8
ď

k=1

Sk and
8
ÿ

k=1

ν(Sk) =
8
ÿ

k=1

2k ¨
2ε

2k+3k
=

8
ÿ

k=1

ε

2k+1
=
ε

2
ă ε .

Similarly, any hyperplane in Rn also has measure zero.

Proposition 8.19. Let A Ď Rn be a set of measure zero. If B Ď A, then B also has
measure zero.

Modifying the proof of Proposition 8.14, we can also conclude the following

Proposition 8.20. A set A Ď Rn has measure zero if and only if for every ε ą 0, there
exist countable many open rectangles S1, S2, ¨ ¨ ¨ whose sides are parallel to the coordinate
axes such that A Ď

8
Ť

k=1

Sk and
8
ř

k=1

ν(Sk) ă ε.

Remark 8.21. If a set A has volume zero, then it has measure zero.

Proposition 8.22. Let K Ď Rn be a compact set of measure zero. Then K has volume
zero.

Proof. Let ε ą 0 be given. Then there are countable open rectangles S1, S2, ¨ ¨ ¨ such that

K Ď

8
ď

k=1

Sk and
8
ÿ

k=1

ν(Sk) ă ε .

Since tSku8
k=1 is an open cover of K, by the compactness of K there exists N ą 0 such that

K Ď
N
Ť

k=1

Sk, while
N
ř

k=1

ν(Sk) ď
8
ř

k=1

ν(Sk) ă ε. As a consequence, K has volume zero. ˝

Since the boundary of a rectangle has measure zero, we also have the following
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Corollary 8.23. Let S Ď Rn be a bounded rectangle with positive volume. Then S is not a
set of measure zero.

Theorem 8.24. If A1, A2, ¨ ¨ ¨ are sets of measure zero in Rn, then
8
Ť

k=1

Ak has measure
zero.

Proof. Let ε ą 0 be given. Since A1
ks are sets of measure zero, there exist countable

rectangles
␣

S
(k)
j

(8

j=1
, such that

Ak Ď

8
ď

j=1

S
(k)
j and

8
ÿ

j=1

ν(S
(k)
j ) ă

ε

2k+1
@ k P N .

Consider the collection consisting of all S(k)
j ’s. Since there are countable many rectangles in

this collection, we can label them as S1, S2, ¨ ¨ ¨ , and we have
8
ď

k=1

Ak Ď

8
ď

k=1

8
ď

j=1

S
(k)
j =

8
ď

ℓ=1

Sℓ

and
8
ÿ

k=1

ν(Sℓ) =
8
ÿ

k=1

8
ÿ

j=1

ν(S
(k)
j ) ď

8
ÿ

k=1

ε

2k+1
=
ε

2
ă ε .

Therefore,
8
Ť

k=1

Ak has measure zero. ˝

Corollary 8.25. The set of rational numbers in R has measure zero.

Theorem 8.26. Let A Ď Rn be bounded and B Ď Rm be a set of measure zero. Then AˆB

has measure zero in Rn+m.

Proof. Let ε ą 0 be given. Since A is bounded, there exist a bounded rectangle R such that
A Ď R. Since B has measure zero, there exist countable rectangles tSku8

k=1 Ď Rm such that

B Ď

8
ď

k=1

Sk and
8
ÿ

k=1

νm(Sk) ă
ε

ν(R)
.

Then A ˆ B Ď
8
Ť

k=1

(R ˆ Sk), and

8
ÿ

k=1

νn+m(R ˆ Sk) =
8
ÿ

k=1

νn(R)νm(Sk) = νn(R)
8
ÿ

k=1

νm(Sk) ă ε .

Since R ˆ Sk is a rectangle for all k P N, we conclude that A ˆ B has measure zero. ˝
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8.3.2 The Lebesgue Theorem

在之前我們提到了函數 Riemann 可積的兩個等價條件：Riemann’s condition 和 Darboux
定理。在這一節中，我們將引進函數是 Riemman 可積的另一個等價條件。這個等價條件
說的是一個函數 f 在 A 上是 Riemann 可積的若且唯若 f 的延拓 f

A

（在函數可積分的定

義中有定義）的不連續點所構成的集合其測度為零。為了證明這個敘述，我們先對一個

函數的連續點做一個量化的刻劃。這個刻劃的方式，可以很容易用來檢驗一個函數在一

個點是否連續。

Definition 8.27. Let f : Rn Ñ R be a function. For any x P Rn, the oscillation of f at
x is the quantity

osc(f, x) ” inf
δą0

sup
x1,x2PD(x,δ)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ .

我們注意到在上述定義中被取 infimum 的這個量 h(δ;x) ” sup
x1,x2PD(x,δ)

ˇ

ˇf(x1)´ f(x2)
ˇ

ˇ 是

個 δ 的遞減函數（x 固定），而 osc(f, x) 則是 h(δ;x) 當 δ Ñ 0 時的極限。另外，我們也

注意到說 h(δ;x) 也可以寫成 sup
yPD(x,δ)

f(y) ´ inf
yPD(x,δ)

f(y).

以下的 Lemma 是關於如何檢驗一個函數在一個點是連續的。

Lemma 8.28. Let f : Rn Ñ R be a function, and x0 P Rn. Then f is continuous at x0 if
and only if osc(f, x0) = 0.

Proof. “ñ” Let ε ą 0 be given. Since f is continuous at x0,

D δ ą 0 Q
ˇ

ˇf(x) ´ f(x0)
ˇ

ˇ ă
ε

3
whenever x P D(x0, δ).

In particular, for any x1, x2 P D(x0, δ),
ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ ď
ˇ

ˇf(x1) ´ f(x0)
ˇ

ˇ+
ˇ

ˇf(x0) ´ f(x2)
ˇ

ˇ ă
2ε

3
;

thus sup
x1,x2PD(x0,δ)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ ď
2ε

3
which further implies that

0 ď osc(f, x0) ď
2ε

3
ă ε.

Since ε is given arbitrarily, osc(f, x0) = 0.

“ð” Let ε ą 0 be given. By the definition of infimum, there exists δ ą 0 such that

sup
x1,x2PD(x0,δ)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ ă ε .

In particular,
ˇ

ˇf(x) ´ f(x0)
ˇ

ˇ ď sup
x1,x2PD(x0,δ)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ ă ε for all x P D(x0, δ). ˝
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Lemma 8.29. Let f : Rn Ñ R be a function. Then for all ε ą 0, the set Dε =
␣

x P

Rn
ˇ

ˇ osc(f, x) ě ε
(

is closed.

Proof. Suppose that tyku8
k=1 Ď Dε and yk Ñ y. Then for any δ ą 0, there exists N ą 0 such

that yk P D(y, δ) for all k ě N . Since D(y, δ) is open, for each k ě N there exists δk ą 0

such that D(yk, δk) Ď D(y, δ); thus we find that

sup
x1,x2PD(yk,δk)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ ď sup
x1,x2PD(y,δ)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ @ k ě N .

The inequality above implies that osc(f, y) ě ε; thus y P Dε and Dε is closed. ˝

Theorem 8.30 (Lebesgue). Let A Ď Rn be bounded, f : A Ñ R be a bounded function, and
f

A be the extension of f by zero outside A; that is,

f
A

(x) =

"

f(x) if x P A ,

0 otherwise .

Then f is Riemann integrable over A if and only if the collection of discontinuity of fA is a
set of measure zero.

Proof. Let D =
␣

x P Rn
ˇ

ˇ osc(fA

, x) ą 0
(

and Dε =
␣

x P Rn
ˇ

ˇ osc(fA

, x) ě ε
(

. We remark

here that D =
8
Ť

k=1

D 1
k
.

“ñ” We show that D 1
k

has measure zero for all k P N (if so, then Theorem 8.24 implies
that D has measure zero).

Let k P N be fixed, and ε ą 0 be given. By Riemann’s condition there exists a partition
P of A such that

ÿ

∆PP

[
sup
xP∆

f
A

(x) ´ inf
xP∆

f
A

(x)
]
ν(∆) ă

ε

k
.

Define

D
(1)
1
k

”
␣

x P D 1
k

ˇ

ˇx P B∆ for some ∆ P P
(

,

D
(2)
1
k

”
␣

x P D 1
k

ˇ

ˇx P int(∆) for some ∆ P P
(

.

Then D 1
k
= D

(1)
1
k

Y D
(2)
1
k

. We note that D(1)
1
k

has measure zero since it is contained in
Ť

∆PP
B∆ while each B∆ has measure zero. Now we show that D(2)

1
k

also has measure
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zero. Let C =
␣

∆ P P
ˇ

ˇ int(∆) X D 1
k

‰ H
(

. Then D
(2)
1
k

Ď
Ť

∆PC

∆ . Moreover, we

also note that if ∆ P C, sup
xP∆

f
A

(x) ´ inf
xP∆

f
A

(x) ě
1

k
. In fact, if ∆ P C, there exists

y P int(∆) X D 1
k
; thus choosing δ ą 0 such that D(y, δ) Ď int(∆),

sup
xP∆

f
A

(x) ´ inf
xP∆

f
A

(x) = sup
x1,x2P∆

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ ě sup
x1,x2PD(y,δ)

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ

ě inf
δą0

sup
x1,x2PD(y,δ)

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ = osc(fA

, y) ě
1

k
.

As a consequence,

1

k

ÿ

∆PC

ν(∆) ď
ÿ

∆PP

[
sup
xP∆

f
A

(x) ´ inf
xP∆

f
A

(x)
]
ν(∆) = U(f,P) ´ L(f,P) ă

ε

k

which implies that
ř

∆PC

ν(∆) ă ε. In other words, we establish that D(2)
1
k

has measure

zero. Therefore, D 1
k

has measure zero for all k P N; thus D has measure zero.

“ð” Let R be a bounded closed rectangle with sides parallel to the coordinate axes and sA Ď

int(R), and ε ą 0 be given. Define ε1 =
ε

2}f}8 + ν(R) + 1
, where }f}8 = sup

xPA
|f(x)|.

1. Since Dε1 is a subset of D, Proposition 8.19 implies that Dε1 has measure zero;
thus Proposition 8.20 provides open rectangles S1, S2, ¨ ¨ ¨ whose sides are parallel

to the coordinate axes such that Dε1 Ď
8
Ť

k=1

Sk, and
8
ř

k=1

ν(Sk) ă ε1. In addition,

we can assume that Sk Ď R for all k P N since Dε1 Ď R.

2. Since Dε1 Ď R is bounded, Lemma 8.29 implies that Dε1 is compact; thus Dε1 Ď
N
Ť

k=1

Sk for some N P N.

Let lk = ĎSk, and P1 be a partition of R satisfying

(a) For each ∆ P P1 with ∆ X Dε1 ‰ H, ∆ Ď lk for some k = 1, ¨ ¨ ¨ , N .

(b) For each k = 1, ¨ ¨ ¨ , N , lk is the union of rectangles in P1.

(c) Some collection of ∆ P P1 forms a partition P2 of A.
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R SN

S1 A

Dε1

ñ

R SN

S1 A

Dε1

Figure 8.2: Constructing partitions P1 and P2 from finite rectangles S1, ¨ ¨ ¨ , SN

Rectangles in P1 fall into two families: C1 =
␣

∆ P P1

ˇ

ˇ∆ Ď lk for some k = 1, ¨ ¨ ¨ , N
(

,
and C2 =

␣

∆ P P1

ˇ

ˇ∆ Ę lk for all k = 1, ¨ ¨ ¨ , N
(

. By the definition of the oscillation
function, for x R Dε1 we let δx ą 0 be such that

sup
xPD(y,δy)

f
A

(y) ´ inf
xPD(y,δy)

f
A

(y) = sup
x1,x2PD(x,δx)

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ ă ε1 .

Since K =
Ť

∆PC2

∆ is compact, there exists r ą 0
(
the Lebesgue number associated

with K and open cover
Ť

xPK

D(x, δx)
)

such that for each a P K, D(a, r) Ď D(y, δy) for

some y P K. Let P 1 be a refinement of P1 such that }P 1} ă r. Then if ∆1 P P 1 satisfies
that ∆1 Ď ∆ for some ∆ P C2, we must have ∆1 Ď D(y, δy) for some y P K; thus

sup
xP∆1

f
A

(x) ´ inf
xP∆1

f
A

(x) ď sup
xPD(y,δy)

f
A

(y) ´ inf
xPD(y,δy)

f
A

(y)

= sup
x1,x2PD(y,δy)

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ ă ε1

if ∆1 Ď ∆ for some ∆ P C2. Let P =
␣

∆1 P P 1
ˇ

ˇ∆1 Ď ∆ for some ∆ P P2

(

. Then P is
a partition of A and

U(f,P) ´ L(f,P) =
(

ÿ

∆1PP1

∆1Ď∆PC1

+
ÿ

∆1PP1

∆1Ď∆PC2

)(
sup
xP∆1

f
A

(x) ´ inf
xP∆1

f
A

(x)
)
ν(∆1)

ď 2}f}8

ÿ

∆1PP1

∆1Ď∆PC1

ν(∆1) + ε1
ÿ

∆1PP1

∆1Ď∆PC2

ν(∆1)

ď 2}f}8

ÿ

∆PPXC1

ν(∆) + ε1ν(R)

ď 2}f}8

N
ÿ

k=1

ν(Sk) + ε1ν(R) ă
(
2}f}8 + ν(R)

)
ε1 ď ε ;

thus f is Riemann integrable over A by Riemann’s condition. ˝
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Example 8.31. Let A = Q X [0, 1], and f : A Ñ R be the constant function f ” 1. Then

sf(x) =

"

1 if x P Q X [0, 1] ,

0 otherwise .

The collection of points of discontinuity of sf is [0, 1] which, by Corollary 8.23, cannot be a
set of measure zero; thus f is not Riemann integrable.

Another way to see that f is not Riemann integrable is U(f,P) = 1 and L(f,P) = 0 for
all partitions P of A.

Corollary 8.32. A bounded set A Ď Rn has volume if and only if the boundary of A has
measure zero.

Proof. It suffices to show that the collection of discontinuities of the function 1A (which is
the same as Ď1AA) is indeed BA.

1. If x0 R BA, then there exists δ ą 0 such that either D(x0, δ) Ď A or D(x0, δ) Ď AA;
thus 1A is continuous at x0 R BA since 1A(x) is constant for all x P D(x0, δ).

2. On the other hand, if x0 P BA, then there exists xk P A, yk P AA such that xk Ñ x0 and
yk Ñ x0 as k Ñ 8. This implies that 1A cannot be continuous at x0 since 1A(xk) = 1

while 1A(yk) = 0 for all k P N.

As a consequence, the collection of discontinuity of 1A is exactly BA, and the corollary
follows from Lebesgue’s theorem. ˝

Corollary 8.33. Let A Ď Rn be a bounded set with volume. A bounded function f : A Ñ R
with a finite or countable number of points of discontinuity is Riemann integrable over A.

Proof. We note that
␣

x P Rn
ˇ

ˇ osc( sf, x) ą 0
(

Ď BA Y
␣

x P A
ˇ

ˇ f is discontinuous at x
(

. ˝

Remark 8.34. In addition to the set inclusion listed in the proof of Corollary 8.33, we also
have

␣

x P A
ˇ

ˇ f is discontinuous at x
(

Ď
␣

x P Rn
ˇ

ˇ osc( sf, x) ą 0
(

.

Therefore, if A Ď Rn is a bounded set with volume, then a bounded function f : A Ñ R is
Riemann integrable if and only if the collection of points of discontinuity of f has measure
zero.

Corollary 8.35. A bounded function is integrable over a compact set of measure zero.
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Proof. If f : K Ñ R is bounded, and K is a compact set of measure zero, then the collection
of discontinuities of sf is a subset of K. ˝

Corollary 8.36. Suppose that A,B Ď Rn are bounded sets with volume, and f : A Ñ R is
Riemann integrable over A. Then f is Riemann integrable over A X B.

Proof. By the inclusion
␣

x P int(A X B)
ˇ

ˇ osc(fAXB

, x) ą 0
(

Ď
␣

x P Rn
ˇ

ˇ osc(fA

, x) ą 0
(

,

we find that
␣

x P Rn
ˇ

ˇ osc(fAXB

, x) ą 0
(

Ď B(A X B) Y
␣

x P int(A X B)
ˇ

ˇ osc(fAXB

, x) ą 0
(

Ď BA Y BB Y
␣

x P Rn
ˇ

ˇ osc(fA

, x) ą 0
(

.

Since BA and BB both have measure zero, the integrability of f over A X B then follows
from the integrability of f over A and the Lebesgue Theorem. ˝

Remark 8.37. Suppose that A Ď Rn is a bounded set of measure zero. Even if f : A Ñ R
is continuous, f might not be Riemann integrable. For example, the function f given in
Example 8.31 is not Riemann integrable even though f is continuous on A.

Remark 8.38. When f : A Ñ R is Riemann integrable over A, it is not necessary that A
has volume. For example, the zero function is Riemann integrable over A = Q X [0, 1] even
though A does not has volume.

Corollary 8.39 (Lebesgue’s Differentiation Theorem, a simple version). Let A Ď Rn be a
bounded set with volume, and f : A Ñ R be bounded and Riemann integrable over A. Then

lim
rÑ0

1

ν(D(x0, r) X A)

ż

D(x0,r)XA

f(x) dx = f(x0) (8.3.2)

for almost every x0 P A; that is, the equality above does not hold only for x0 from a set of
measure zero.

Proof. Let ε ą 0 be given, and suppose that sf , the zero extension of f outside A, is
continuous at x0. Then there exists δ ą 0 such that

ˇ

ˇ sf(x) ´ sf(x0)
ˇ

ˇ ă
ε

2
@x P D(x0, δ) X A .
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Since BA has measure zero, by the fact that B(D(x0, r) XA) Ď BD(x0, r) Y BA we find that
B(D(x0, r)XA) also has measure zero for all r ą 0. In other words, D(x0, r)XA has volume.
Then if 0 ă r ă δ,

ˇ

ˇ

ˇ

1

ν(D(x0, r) X A)

ż

D(x0,r)XA

f(x) dx ´ f(x0)
ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

1

ν(D(x0, r) X A)

ż

D(x0,r)XA

(
sf(x) ´ sf(x0)

)
dx

ˇ

ˇ

ˇ

ď
1

ν(D(x0, r) X A)

ż

D(x0,r)XA

ˇ

ˇ sf(x) ´ sf(x0)
ˇ

ˇ dx

ď
ε

2

1

ν(D(x0, r) X A)

ż

D(x0,r)XA

1 dx =
ε

2
ă ε .

This implies that (8.3.2) holds for all x0 at which sf is continuous. The theorem then follows
from the Lebesgue theorem. ˝

8.4 Properties of the Integrals
Proposition 8.40. Let A Ď Rn be bounded, and f, g : A Ñ R be bounded. Then

(a) If B Ď A, then
ż

A
(f1B)(x) dx =

ż

B
f(x) dx and

ż

A
(f1B)(x) dx =

ż

B
f(x) dx.

(b)
ż

A
f(x) dx+

ż

A
g(x) dx ď

ż

A
(f+g)(x) dx ď

ż

A
(f+g)(x) dx ď

ż

A
f(x) dx+

ż

A
g(x) dx.

(c) If c ě 0, then
ż

A
(cf)(x) dx = c

ż

A
f(x) dx and

ż

A
(cf)(x) dx = c

ż

A
f(x) dx.

(d) If f ď g on A, then
ż

A
f(x) dx ď

ż

A
g(x) dx and

ż

A
f(x) dx ď

ż

A
g(x) dx.

(e) If A has volume zero, then f is Riemann integrable over A, and
ż

A
f(x) dx = 0.

Proof. We only prove (a), (b), (c) and (e) since (d) are trivial.

(a) Let ε ą 0 be given. By the definition of the lower integral, there exist partition PA of
A and PB of B such that

ż

A

(f1B)(x) dx ´ ε ă L(f1B,PA) =
ÿ

∆PPA

inf
xP∆

f1B
A

(x)ν(∆)



Copy
rig

ht
Prot

ect
ed

294 CHAPTER 8. Integration

and
ż

B

f(x) dx ´
ε

2
ă L(f,PB) =

ÿ

∆PPB

inf
xP∆

f
B

(x)ν(∆) .

Let P 1
A be a refinement of PA such that some collection of rectangles in P 1

A forms a
partition of B. Denote this partition of B by P 1

B. Since inf
xP∆

f
B

(x) ď 0 if ∆ P P 1
AzP 1

B,
Proposition 8.6 implies that

ż

A

(f1B)(x) dx ´ ε ă L(f1B,PA) ď L(f1B,P 1
A) =

ÿ

∆PP 1
A

inf
xP∆

f1B
A

(x)ν(∆)

=
(

ÿ

∆PP 1
AzP 1

B

+
ÿ

∆PP 1
B

)
inf
xP∆

f
B

(x)ν(∆)

ď
ÿ

∆PP 1
B

inf
xP∆

f
B

(x)ν(∆) = L(f,P 1
B) ď

ż

B

f(x) dx .

On the other hand, let rPA be a partition of A such that PB Ď rPA and
ÿ

∆P rPAzPB ,∆XB‰H

ν(∆) ď
ε

2(M + 1)
,

where M ą 0 is an upper bound of |f |. Then
ÿ

∆P rPAzPB ,∆XB‰H

inf
xP∆

f
B

(x)ν(∆) ě ´M
ÿ

∆P rPAzPB ,∆XB‰H

f
B

(x)ν(∆) ě ´
ε

2

which further implies that
ż

A

(f1B)(x) dx ě L(f1B, rPA) =
ÿ

∆P rPA

inf
xP∆

(f1B
A

(x)ν(∆)

=
(

ÿ

∆PPB

+
ÿ

∆P rPAzPB ,∆XB‰H

+
ÿ

∆P rPAzPB ,∆XB=H

)
inf
xP∆

f
B

(x)ν(∆)

= L(f,PB) +
ÿ

∆P rPAzPB ,∆XB‰H

inf
xP∆

f
B

(x)ν(∆) ą

ż

B

f(x) dx ´ ε .

Therefore, we establish that
ż

B

f(x) dx ´ ε ă

ż

A

(f1B)(x) dx ă

ż

B

f(x) dx+ ε .

Since ε ą 0 is given arbitrarily, we conclude that
ż

A
(f1B)(x) dx =

ż

B
f(x) dx. Similar

argument can be applied to conclude that
ż

A
(f1B)(x) dx =

ż

B
f(x) dx.
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(b) Let ε ą 0 be given. By the definition of the lower integral, there exist partitions P1

and P2 of A such that
ż

A

f(x) dx ´
ε

2
ă L(f,P1) and

ż

A

g(x) dx ´
ε

2
ă L(g,P2) .

Let P be a common refinement of P1 and P2. Then
ż

A

f(x) dx +

ż

A

g(x) dx ´ ε ă L(f,P1) + L(f,P2) ď L(f,P) + L(g,P)

=
ÿ

∆PP
inf
xP∆

sf(x)ν(∆) +
ÿ

∆PP
inf
xP∆

sg(x)ν(∆)

ď
ÿ

∆PP
inf
xP∆

( sf + sg)(x)ν(∆) = L(f + g,P) ď

ż

A

(f + g)(x) dx .

Since ε ą 0 is given arbitrarily, we conclude that
ż

A

f(x) dx+

ż

A

g(x) dx ď

ż

A

(f + g)(x) dx .

Similarly, we have
ż

A
(f + g)(x) dx ď

ż

A
f(x) dx +

ż

A
g(x) dx; thus (b) is established.

(c) It suffices to show the case c = ´1. For each k P N, there exist partitions Pk and Qk

of A such that
ż

A

´f(x) dx ´
1

k
ă L(´f,Pk) ď

ż

A

´f(x) dx

and
ż

A

f(x) dx ď U(f,Qk) ă

ż

A

f(x) dx+
1

k
.

Let Rk be the common refinement of Pk and Qk. Then
ż

A

´f(x) dx ´
1

k
ă L(´f,Pk) ď L(´f,Rk) ď

ż

A

´f(x) dx

and
ż

A

f(x) dx ď U(f,Rk) ď U(f,Qk) ă

ż

A

f(x) dx+
1

k
.

which implies that

lim
kÑ8

U(f,Rk) =

ż

A

f(x) dx and lim
kÑ8

L(´f,Rk) =

ż

A

´f(x) dx
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Since

L(´f,Rk) =
ÿ

∆PRk

inf
xP∆

(´f)
A

(x)ν(∆) = ´
ÿ

∆PRk

sup
xP∆

f
A

(x)ν(∆) = U(f,Rk) ,

we conclude that
ż

A
´f(x) dx = ´

ż

A
f(x) dx.

(e) Since f is bounded on A, there exist M ą 0 such that ´M ď f(x) ď M for all x P A.

Therefore, ´1A ď
f

M
ď 1A on A; thus (c) and (d) imply that

0 =

ż

A

1A(x) dx =

ż

A

1A(x) dx ě

ż

A

f(x)

M
dx =

1

M

ż

A

f(x) dx

which implies that
ż

A
f(x) dx ď 0. Similarly,

ż

A
´f(x) dx ď 0 which further implies

that
ż

A
f(x) dx ě 0. Therefore, by Corollary 8.7 we conclude that

0 ď

ż

A

f(x) dx ď

ż

A

f(x) dx ď 0

which implies that f is Riemann integrable over A and
ż

A
f(x) dx = 0. ˝

Remark 8.41. Let A Ď Rn be bounded and f, g : A Ñ R be bounded. Then (b) of
Proposition 8.40 also implies that
ż

A

(f´g)(x) dx ď

ż

A

f(x) dx´

ż

A

g(x) dx and
ż

A

f(x) dx´

ż

A

g(x) dx ď

ż

A

(f´g)(x) dx .

Corollary 8.42. Let A,B Ď Rn be bounded such that A X B has volume zero, and f :

A Y B Ñ R be bounded. Then
ż

A

f(x) dx+

ż

B

f(x) dx ď

ż

AYB

f(x) dx ď

ż

AYB

f(x) dx ď

ż

A

f(x) dx+

ż

B

f(x) dx .

Proof. Note that f1A+f1B = f1AYB+f1AXB on AYB. Therefore, (a), (b) of Proposition
8.40 and Remark 8.41 implies that
ż

A

f(x) dx+

ż

B

f(x) dx =

ż

AYB

(f1A)(x) dx+
ż

AYB

(f1B)(x) dxď

ż

AYB

(f1A+f1B)(x) dx

=

ż

AYB

(
f1AYB ´ (´f1AXB)

)
(x) dx

ď

ż

AYB

f1AYB(x) dx ´

ż

AYB

(´f1AXB)(x) dx

=

ż

AYB

f(x) dx ´

ż

AXB

(´f)(x) dx
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which, with the help of Proposition 8.40 (e), further implies that
ż

A

f(x) dx+

ż

B

f(x) dx ď

ż

AYB

f(x) dx .

The case of the upper integral can be proved in a similar fashion. ˝

Having established Proposition 8.40, it is easy to see the following theorem (except (c)).
The proof is left as an exercise.

Theorem 8.43. Let A Ď Rn be bounded, c P R, and f, g : A Ñ R be Riemann integrable.
Then

(a) f ˘ g is Riemann integrable, and
ż

A
(f ˘ g)(x) dx =

ż

A
f(x) dx ˘

ż

A
g(x) dx.

(b) cf is Riemann integrable, and
ż

A
(cf)(x) dx = c

ż

A
f(x) dx.

(c) |f | is Riemann integrable, and
ˇ

ˇ

ˇ

ż

A
f(x) dx

ˇ

ˇ

ˇ
ď

ż

A
|f(x)|dx.

(d) If f ď g, then
ż

A
f(x) dx ď

ż

A
g(x) dx.

(e) If A has volume and |f | ď M , then
ˇ

ˇ

ˇ

ż

A
f(x) dx

ˇ

ˇ

ˇ
ď Mν(A).

Theorem 8.44. Let A Ď Rn be bounded, and f : A Ñ R be a bounded integrable function.

1. If A has measure zero, then
ż

A
f(x) dx = 0.

2. If f(x) ě 0 for all x P A, and
ż

A
f(x) dx = 0, then the set

␣

x P A
ˇ

ˇ f(x) ‰ 0
(

has
measure zero.

Proof. 1. We show that L(f,P) ď 0 ď U(f,P) for all partitions P of A. Let P =
␣

∆1, ¨ ¨ ¨ ,∆N

(

be a partition of A. By Corollary 8.23, ∆k XAA ‰ H for k = 1, ¨ ¨ ¨ , N ;
thus we must have inf

xP∆k

sf(x) ď 0 and sup
xP∆k

sf(x) ě 0. As a consequence, if P is a

partition of A,

L(f,P) =
N
ÿ

k=1

inf
xP∆k

sf(x)ν(∆k) ď 0 and U(f,P) =
N
ÿ

k=1

sup
xP∆k

sf(x)ν(∆k) ě 0 ;

thus
ż

A
f(x) dx ď 0 ď

ż

A
f(x)dx. Since f is integrable over A,

ż

A
f(x) dx = 0.
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2. Let Ak =
␣

x P A
ˇ

ˇ f(x) ě
1

k

(

. We claim that Ak has measure zero for all k P N.

Let ε ą 0 be given. Since
ż

A
f(x)dx = 0, there exists a partition P of A such that

U(f,P) ă
ε

k
. Let C =

␣

∆ P P
ˇ

ˇ∆ X Ak ‰ H
(

. Then Ak Ď
Ť

∆PC

∆, and

1

k

ÿ

∆PC

ν(C) ď
ÿ

∆PC

sup
xP∆

sf(x)ν(∆) ď
ÿ

∆PP
sup
xP∆

sf(x)ν(∆) = U(f,P) ă
ε

k

which implies that
ř

∆PC

ν(∆) ă ε. Therefore, Ak has measure zero; thus Theorem 8.24

implies that A =
8
Ť

k=1

Ak also has measure zero. ˝

Remark 8.45. Combining Corollary 8.35 and Theorem 8.44, we conclude that the integral
of a bounded function over a compact set of measure zero is zero.

Remark 8.46. Let A = QX [0, 1] and f : A Ñ R be the constant function f ” 1. We have
shown in Example 8.31 that f is not Riemann integrable. We note that A has no volume
since BA = [0, 1] which is not a set of measure zero. However, A has measure zero since it
consists of countable number of points.

1. Since f is continuous on A, the condition that A has volume in Corollary 8.33 cannot
be removed.

2. Since A has measure zero, the condition that f is Riemann integrable in Theorem 8.44
cannot be removed.

Theorem 8.47 (Mean Value Theorem for Integrals). Let A be a subset of Rn such that A
has volume and is compact and connected. Suppose that f : A Ñ R is continuous, then there
exists x0 P A such that

ż

A

f(x) dx = f(x0)ν(A) .

The quantity 1

ν(A)

ż

A
f(x) dx is called the average of f over A.

Proof. Because of Theorem 8.44, it suffices to show the case that ν(A) ‰ 0. Let m =

min
xPA

f(x) and M = max
xPA

f(x). Then

m1A(x) ď f(x) ď M1A(x) ;
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thus (b) and (d) of Theorem 8.43 imply that

mν(A) =

ż

A

m1A(x) dx ď

ż

A

f(x) dx ď

ż

A

M1A(x) dx =Mν(A) .

By the connectedness of A and continuity of f , Theorem 4.21 and Theorem 3.38 implies
that f(A) = [m,M ]; thus by the fact that the quantity 1

ν(A)

ż

A
f(x) dx P [m,M ], there

must be x0 P A such that

f(x0) =
1

ν(A)

ż

A

f(x) dx . ˝

Definition 8.48. Let A Ď Rn be a set and f : A Ñ R be a function. For B Ď A, the
restriction of f to B is the function f

ˇ

ˇ

B
: A Ñ R given by f |B = f1B. In other words,

f
ˇ

ˇ

B
(x) =

"

f(x) if x P B ,

0 if x P AzB .

The following lemma is a direct consequence of Proposition 8.40 (a).

Lemma 8.49. Let A Ď Rn be bounded, and f : A Ñ R be a bounded function. Suppose that
B Ď A, and f

ˇ

ˇ

B
is Riemann integrable over A. Then f is Riemann integrable over B, and

ż

A

f
ˇ

ˇ

B
(x) dx =

ż

B

f(x) dx .

Theorem 8.50. Let A,B be bounded subsets of Rn be such that A X B has measure zero,
and f : AYB Ñ R be such that f

ˇ

ˇ

AXB
, f

ˇ

ˇ

A
and f

ˇ

ˇ

B
are all Riemann integrable over AYB.

Then f is integrable over A Y B, and
ż

AYB

f(x) dx =

ż

A

f(x) dx+

ż

B

f(x) dx .

Proof. Since 1AYB = 1A + 1B ´ 1AXB, we have

f = f1AYB = f
ˇ

ˇ

A
+ f

ˇ

ˇ

B
´ f

ˇ

ˇ

AXB
;

thus Theorem 8.43, Theorem 8.44 and Lemma 8.49 imply that
ż

AYB

f(x) dx =

ż

AYB

f
ˇ

ˇ

A
(x) dx+

ż

AYB

f
ˇ

ˇ

B
(x) dx =

ż

A

f(x) dx+

ż

B

f(x) dx . ˝
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8.5 The Fubini Theorem
If f : [a, b] Ñ R is continuous, the fundamental theorem of Calculus (Theorem 4.90) can be
applied to computed the integral of f over [a, b]. In the following two sections, we focus on
how the integral of f over A Ď Rn, where n ě 2, can be computed if the integral exists. We
start with the special case n = 2.

Definition 8.51. Let S = [a, b] ˆ [c, d] be a rectangle in R2, and f : S Ñ R be bounded.
For each fixed x P [a, b], the lower integral of the function f(x, ¨) : [c, d] Ñ R is denoted

by
ż d

c
f(x, y) dy, and the upper integral of f(x, ¨) : [c, d] Ñ R is denoted by

ż d

c
f(x, y) dy.

If for each x P [a, b] the upper integral and the lower integral of f(x, ¨) : [c, d] Ñ R are

the same, we simply write
ż d

c
f(x, y) dy for the integrals of f(x, ¨) over [c, d]. The integrals

ż b

a
f(x, y) dx,

ż b

a
f(x, y) dx and

ż b

a
f(x, y) dx are defined in a similar way.

Lemma 8.52. Let A = [a, b]ˆ [c, d] be a rectangle in R2, and f : A Ñ R be bounded. Then
ż

A

f(x, y) dA ď

ż b

a

( ż d

c

f(x, y) dy
)
dx ď

ż b

a

( ż d

c

f(x, y) dy
)
dx ď

ż

A

f(x, y) dA (8.5.1)

and
ż

A

f(x, y) dA ď

ż d

c

( ż b

a

f(x, y) dx
)
dy ď

ż d

c

( ż b

a

f(x, y) dx
)
dy ď

ż

A

f(x, y) dA . (8.5.2)

Proof. It suffices to prove (8.5.1). Let ε ą 0 be given. Choose a partition

P =
␣

∆ij

ˇ

ˇ∆ij = [xi, xi+1] ˆ [yj, yj+1] for i = 0, 1, ¨ ¨ ¨ , n ´ 1 and j = 0, 1, ¨ ¨ ¨ ,m ´ 1
(

of A such that L(f,P) ą

ż

A
f(x, y) dA ´ ε. Using (4.7.3) and Remark 4.82, we find that

ż b

a

( ż d

c

f(x, y) dy
)
dx =

n´1
ÿ

i=0

ż xi+1

xi

(m´1
ÿ

j=0

ż yj+1

yj

f(x, y) dy
)
dx

ě

n´1
ÿ

i=0

m´1
ÿ

j=0

ż xi+1

xi

( ż yj+1

yj

f(x, y) dy
)
dx

ě

n´1
ÿ

i=0

m´1
ÿ

j=0

inf
(x,y)P∆ij

f(x, y)ν(∆ij) = L(f,P) ą

ż

A
f(x, y) dA ´ ε .



Copy
rig

ht
Prot

ect
ed

§8.5 Fubini’s Theorem 301

Since ε ą 0 is given arbitrarily, we must have
ż b

a

( ż d

c

f(x, y) dy
)
dx ě

ż

A

f(x, y) dA .

Similarly,
ż b

a

( ż d

c
f(x, y) dy

)
dx ď

ż

A
f(x, y) dA, so (8.5.1) is concluded. ˝

Theorem 8.53 (Fubini’s Theorem, the case n = 2). Let A = [a, b] ˆ [c, d] be a rectangle in
R2, and f : A Ñ R be Riemann integrable. Then

1. the functions
ż d

c
f(¨, y) dy and

ż d

c
f(¨, y) dy are Riemann integrable over [a, b];

2. the functions
ż b

a
f(x, ¨)dx and

ż b

a
f(x, ¨)dx are Riemann integrable over [c, d], and

3. The integral of f over A is the same as the iterated integrals; that is,
ż

A

f(x, y) dA =

ż b

a

( ż d

c

f(x, y) dy
)
dx =

ż b

a

( ż d

c

f(x, y) dy
)
dx

=

ż d

c

( ż b

a

f(x, y) dx
)
dy =

ż d

c

( ż b

a

f(x, y) dx
)
dy .

Proof. It suffices to prove that
ż d

c
f(x, y) dy is Riemann integrable over [a, b] and

ż b

a

( ż d

c

f(x, y) dy
)
dx =

ż

A

f(x, y) dA . (8.5.3)

Since
ż b

a

( ż d

c
f(x, y) dy

)
dx ď

ż b

a

( ż d

c
f(x, y) dy

)
dx , Lemma 8.52 implies that

ż

A

f(x, y) dA ď

ż b

a

( ż d

c

f(x, y) dy
)
dx ď

ż b

a

( ż d

c

f(x, y) dy
)
dx

ď

ż b

a

( ż d

c

f(x, y) dy
)
dx ď

ż

A

f(x, y) dA .

The integrability of
ż d

c
f(x, y) dy and the validity of (8.5.3) are then concluded by the

integrability of f over A. ˝
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Remark 8.54. To simplify the notation, sometimes we use
ż b

a

ż d

c
f(x, y) dydx to denote

the iterated integral the iterated integral
ż b

a

( ż d

c
f(x, y) dy

)
dx. Similar notation applies

to the upper and the lower integrals. For example, we also have
ż b

a

ż d

c
f(x, y) dydx =

ż b

a

( ż d

c
f(x, y) dy

)
dx.

Remark 8.55. For each x P [a, b], define φ(x) =
ż d

c
f(x, y) dy and ψ(x) =

ż d

c
f(x, y) dy.

Then φ(x) ď ψ(x) for all x P [a, b], and the Fubini Theorem implies that
ż b

a

[
ψ(x) ´ φ(x)

]
dx = 0 .

By Theorem 8.44, the set
␣

x P [a, b]
ˇ

ˇψ(x) ´ φ(x) ‰ 0
(

has measure zero. In other words,
except on a set of measure zero, f(x, ¨) is Riemann integrable over [c, d] if f is Riemann
integrable over [a, b] ˆ [c, d]. This property can be rephrased as that “f(x, ¨) is Riemann
integrable over [c, d] for almost every x P [a, b] if f is Riemann integrable over the rectangle
[a, b] ˆ [c, d]”. Similarly, f(¨, y) is Riemann integrable for almost every y P [c, d] if f is
Riemann integrable over [a, b] ˆ [c, d].

Remark 8.56. The integrability of f does not guarantee that f(x, ¨) or f(¨, y) is Riemann
integrable. In fact, there exists a function f : [0, 1] ˆ [0, 1] Ñ R such that f is Riemann
integrable, f(¨, y) is Riemann integrable for each y P [0, 1], but f(x, ¨) is not Riemann
integrable for infinitely many x P [0, 1]. For example, let

f(x, y) =

$

&

%

0 if x = 0 or if x or y is irrational ,
1

p
if x, y P Q and x =

q

p
with (p, q) = 1 .

Then

1. For each y P [0, 1], f(¨, y) is continuous at all irrational numbers. Therefore, f(¨, y) is
Riemann integrable, and

ż 1

0
f(x, y) dx =

ż 1

0
f(x, y) dx = 0.

2. For x = 0 or x R Q, f(x, ¨) is Riemann integrable, and
ż 1

0
f(x, y) dy = 0.
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3. If x =
q

p
with (p, q) = 1, f(x, ¨) is nowhere continuous in [0, 1]. In fact, for each

y0 P [0, 1],
lim
yÑy0
yPQ

f(x, y) =
1

p
while lim

yÑy0
yRQ

f(x, y) = 0 ;

thus the limit of f(x, y) as y Ñ y0 does not exist. Therefore, the Lebesgue theorem
implies that f(x, ¨) is not Riemann integrable if x P QX (0, 1]. On the other hand, for
x =

q

p
with (p, q) = 1 we have

ż 1

0

f(x, y) dy = 0 and
ż 1

0

f(x, y) dy =
1

p
.

4. Define φ(x) =
ż 1

0
f(x, y) dy and ψ(x) =

ż 1

0
f(x, y) dy. Then 2 and 3 imply that φ

and ψ are Riemann integrable over [0, 1], and
ż 1

0
φ(x)dx =

ż 1

0
ψ(x)dx = 0.

5. For each a R Q X [0, 1] and b P [0, 1], f is continuous at (a, b). In fact, for any given
ε ą 0, there exists a prime number p such that 1

p
ă ε. Let

δ = min
!

ˇ

ˇa ´
ℓ

k

ˇ

ˇ

ˇ

ˇ

ˇ
0 ď ℓ ď k ď p, k P N, ℓ P N Y t0u

)

.

Then δ ą 0, and if (x, y) P D
(
(a, b), δ

)
X ([0, 1] ˆ [0, 1]), we have

ˇ

ˇf(x, y) ´ f(a, b)
ˇ

ˇ =
ˇ

ˇf(x, y)
ˇ

ˇ ă
1

p
ă ε ,

where we use the fact that if (x, y) P D
(
(a, b), δ

)
and x P Q, then x =

ℓ

k
(in reduced

form) for some k ą p.

As a consequence,
␣

(a, b) P R2
ˇ

ˇ sf is discontinuous at (a, b)
(

Ď Q ˆ [0, 1]. Since
Q ˆ [0, 1] is a countable union of measure zero sets, it has measure zero; thus f is
Riemann integrable by the Lebesgue theorem. The Fubini theorem then implies that

ż

[0,1]ˆ[0,1]

f(x, y) dA =

ż 1

0

ż 1

0

f(x, y) dxdy = 0 .

Remark 8.57. The integrability of f(x, ¨) and f(¨, y) does not guarantee the integrability of
f . In fact, there exists a bounded function f : [0, 1]ˆ [0, 1] Ñ R such that f(x, ¨) and f(¨, y)
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are both Riemann integrable over [0, 1], but f is not Riemann integrable over [0, 1] ˆ [0, 1].
For example, let

f(x, y) =

$

&

%

1 if (x, y) =
( k
2n
,
ℓ

2n

)
, 0 ă k, ℓ ă 2n odd numbers, n P N ,

0 otherwise .

Then for each x P [0, 1], f(x, ¨) only has finite number of discontinuities; thus f(x, ¨) is
Riemann integrable, and

ż 1

0

f(x, y) dy = 0 .

Similarly, f(¨, y) is Riemann integrable, and
ż 1

0
f(x, y) dx = 0. As a consequence,

ż 1

0

ż 1

0

f(x, y) dydx =

ż 1

0

ż 1

0

f(x, y) dxdy = 0 .

However, note that f is nowhere continuous on [0, 1] ˆ [0, 1]; thus the Lebesgue theorem
implies that f is not Riemann integrable. One can also see this by the fact that U(f,P) = 1

and L(f,P) = 0 for all partition of [0, 1] ˆ [0, 1].

Corollary 8.58. 1. Let φ1, φ2 : [a, b] Ñ R be continuous maps such that φ1(x) ď φ2(x)

for all x P [a, b], A =
␣

(x, y)
ˇ

ˇ a ď x ď b, φ1(x) ď y ď φ2(x)
(

, and f : A Ñ R be
continuous. Then f is Riemann integrable over A, and

ż

A

f(x, y) dA =

ż b

a

( ż φ2(x)

φ1(x)

f(x, y) dy
)
dx .

2. Let ψ1, ψ2 : [c, d] Ñ R be continuous maps such that ψ1(y) ď ψ2(y) for all y P [c, d],
A =

␣

(x, y)
ˇ

ˇ c ď y ď d, ψ1(y) ď x ď ψ2(y)
(

, and f : A Ñ R be continuous. Then f is
Riemann integrable over A, and

ż

A

f(x, y) dA =

ż d

c

( ż ψ2(y)

ψ1(y)

f(x, y) dx
)
dy .

Proof. It suffices to prove 1. First we show that f is Riemann integrable over A. By
Lebesgue’s theorem, it suffices to show that the set

␣

(x, y) P R2
ˇ

ˇ osc
(
sf, (x, y)

)
ą 0

(

has
measure zero, where sf is the extension of f by zero outside A. Nevertheless, we note that

␣

(x, y) P R2
ˇ

ˇ osc
(
sf, (x, y)

)
ą 0

(

Ď tau ˆ
[
φ1(a), φ2(a)

]
Y tbu ˆ

[
φ1(b), φ2(b)

]
Y

Y
␣(
x, φ1(x)

) ˇ
ˇx P [a, b]

(

Y
␣(
x, φ2(x)

) ˇ
ˇx P [a, b]

(

.
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It is clear that tauˆ
[
φ1(a), φ2(a)

]
and tbuˆ

[
φ1(b), φ2(b)

]
have measure zero since they have

volume zero. Now we claim that the sets
␣(
x, φ1(x)

) ˇ
ˇx P [a, b]

(

and
␣(
x, φ2(x)

) ˇ
ˇx P [a, b]

(

also have measure zero.
Let ε ą 0 be given. Since φ1 is continuous on a compact set [a, b], φ1 is uniformly

continuous on [a, b]; thus there exists δ ą 0 such that
ˇ

ˇφ1(x1) ´ φ1(x2)
ˇ

ˇ ă
ε

b ´ a
whenever |x1 ´ x2| ă δ .

Let P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn´1 ă xn = bu be a partition of [a, b] such that |xi+1´xi| ă δ

for all i = 0, ¨ ¨ ¨ , n ´ 1, and let ∆i =
[
xi, xi+1

]
ˆ
[

min
xP[xi,xi+1]

φ1(x), max
xP[xi,xi+1]

φ1(x)
]
. Then

␣(
x, φ1(x)

) ˇ
ˇx P [a, b]

(

Ď

n´1
ď

i=0

∆i

and
n´1
ÿ

i=0

ν(∆i) ă

n´1
ÿ

i=0

ε

b ´ a
(xi+1 ´ xi) =

ε

b ´ a

n´1
ÿ

i=0

(xi+1 ´ xi) = ε .

Therefore,
␣(
x, φ1(x)

) ˇ
ˇx P [a, b]

(

has volume zero; thus
␣(
x, φ1(x)

) ˇ
ˇx P [a, b]

(

has measure
zero. Similarly,

␣(
x, φ2(x)

) ˇ
ˇx P [a, b]

(

also has measure zero. By Theorem 8.24,
␣

(x, y) P

R2
ˇ

ˇ osc
(
sf, (x, y)

)
ą 0

(

has measure zero; thus f is Riemann integrable over A.
Let m = min

xP[a,b]
φ1(x), M = max

xP[a,b]
φ2(x), and S = [a, b]ˆ [m,M ]. Then A Ď S. By Lemma

8.49 and the Fubini Theorem,
ż

A

f(x, y) dA =

ż

S

sf(x, y) dA =

ż b

a

( ż M

m

sf(x, y) dy
)
dx =

ż b

a

( ż φ2(x)

φ1(x)

f(x, y) dy
)
dx

which concludes 1. ˝

Example 8.59. Let A =
␣

(x, y) P R2
ˇ

ˇ 0 ď x ď 1, x ď y ď 1
(

, and f : A Ñ R be given by
f(x, y) = xy. Then Corollary 8.58 implies that

ż

A

f(x, y) dA =

ż 1

0

( ż 1

x

xy dy
)
dx =

ż 1

0

xy2

2

ˇ

ˇ

ˇ

y=1

y=x
dx =

ż 1

0

(x
2

´
x3

2

)
dx =

1

4
´

1

8
=

1

8
.

On the other hand, since A =
␣

(x, y) P R2
ˇ

ˇ 0 ď y ď 1, 0 ď x ď y
(

, we can also evaluate the
integral of f over A by

ż

A

xy dA =

ż 1

0

( ż y

0

xy dx
)
dy =

ż 1

0

x2y

2

ˇ

ˇ

ˇ

x=y

x=0
dy =

ż 1

0

y3

2
dy =

1

8
.
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Example 8.60. Let A =
␣

(x, y) P R2
ˇ

ˇ 0 ď x ď 1,
?
x ď y ď 1

(

, and f : A Ñ R be given by
f(x, y) = ey

3 . Then Corollary 8.58 implies that

ż

A

f(x, y) dA =

ż 1

0

( ż 1

?
x

ey
3

dy
)
dx .

Since we do not know how to compute the inner integral, we look for another way of finding
the integral. Observing that A =

␣

(x, y) P R2
ˇ

ˇ 0 ď y ď 1, 0 ď x ď y2
(

, we have

ż

A

f(x, y) dA =

ż 1

0

( ż y2

0

ey
3

dx
)
dy =

ż 1

0

y2ey
3

dy =
1

3
ey

3
ˇ

ˇ

ˇ

y=1

y=0
=
e ´ 1

3
.

Now we prove the general Fubini Theorem.

Theorem 8.61 (Fubini’s Theorem). Let A Ď Rn and B Ď Rm be rectangles, and f :

A ˆ B Ñ R be bounded. For x P Rn and y P Rm, write z = (x, y). Then

ż

AˆB

f(z) dz ď

ż

A

( ż
B

f(x, y)dy
)
dx ď

ż

A

( ż
B

f(x, y)dy
)
dx ď

ż

AˆB

f(z) dz (8.5.4)

and

ż

AˆB

f(z) dz ď

ż

B

( ż
A

f(x, y)dx
)
dy ď

ż

B

( ż
A

f(x, y)dx
)
dy ď

ż

AˆB

f(z) dz . (8.5.5)

In particular, if f : A ˆ B Ñ R is Riemann integrable, then

ż

AˆB

f(z) dz =

ż

A

( ż
B

f(x, y)dy
)
dx =

ż

A

( ż
B

f(x, y)dy
)
dx

=

ż

B

( ż
A

f(x, y)dx
)
dy =

ż

B

( ż
A

f(x, y)dx
)
dy .

Proof. It suffices to prove (8.5.4). Let ε ą 0 be given. Choose a partition P of A ˆ B such
that L(f,P) ą

ż

AˆB
f(z) dz ´ ε. Since P is a partition of A ˆ B, there exist partition Px

of A and partition Py of B such that P =
␣

∆ = R ˆ S
ˇ

ˇR P Px, S P Py
(

. By Proposition



Copy
rig

ht
Prot

ect
ed

§8.5 Fubini’s Theorem 307

8.40 and Corollary 8.42, we find that
ż

A

( ż
B

f(x, y) dy
)
dx =

ż

Ť

RPPx
R

1A(x)
( ż

Ť

SPPy
S

f(x, y)1B(y) dy
)
dx

ě
ÿ

R PPx

ż

R

(
ÿ

S PPy

ż

S

f
AˆB

(x, y) dy
)
dx

ě
ÿ

R PPx

ÿ

S PPy

ż

R

( ż
S

f
AˆB

(x, y) dy
)
dx

ě
ÿ

R PPx,S PPy

inf
(x,y)PRˆS

f
AˆB

(x, y)νm(S)νn(R)

=
ÿ

∆PP
inf

(x,y)P∆
f

AˆB

(x, y)νn+m(∆) = L(f,P) ą

ż

AˆB

f(z)dz ´ ε .

Since ε ą 0 is given arbitrarily, we conclude that
ż

AˆB

f(z) dz ď

ż

B

( ż
A

f(x, y)dx
)
dy .

Similarly,
ż

A

( ż

B
f(x, y)dy

)
dx ď

ż

AˆB
f(z) dz; thus (8.5.4) is concluded. ˝

Corollary 8.62. Let S Ď Rn be a bounded set with volume, φ1, φ2 : S Ñ R be continuous
maps such that φ1(x) ď φ2(x) for all x P S, A =

␣

(x, y) P RnˆR
ˇ

ˇx P S, φ1(x) ď y ď φ2(x)
(

,
and f : A Ñ R be continuous. Then f is Riemann integrable over A, and

ż

A

f(x, y) d(x, y) =

ż

S

( ż φ2(x)

φ1(x)

f(x, y) dy
)
dx . (8.5.6)

Proof. Since BA has measure zero, and f is continuous on A, Corollary 8.33 implies that f is
Riemann integrable over A. Let m = min

xPS
φ1(x) and M = max

xPS
φ2(x). Then A Ď Sˆ [m,M ];

thus Theorem 8.50 and the Fubini Theorem imply that
ż

A

f(x, y) d(x, y) =

ż

Sˆ[m,M ]

f
A

(x, y) d(x, y) =

ż

S

( ż M

m

f
A

(x, y) dy
)
dx

=

ż

S

( ż M

m

f
A

(x, y) dy
)
dx .

Noting that [m,M ] has a boundary of volume zero in R, and for each x P S, fA

(x, ¨) is
continuous except perhaps at y = φ1(x) and y = φ2(x), Corollary 8.33 implies that fA

(x, ¨) is
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Riemann integrable over [m,M ] for each x P S. Therefore,
ż M

m
f

A

(x, y) dy =
ż M

m
f

A

(x, y) dy

which further implies that
ż

A

f(x, y) d(x, y) =

ż

S

( ż M

m

f
A

(x, y) dy
)
dx . (8.5.7)

For each fixed x P S, let Ax =
␣

y P R
ˇ

ˇφ1(x) ď y ď φ2(x)
(

. Then f
A

(x, y) = f(x, y)1Ax(y)

for all (x, y) P Sˆ [m,M ] or equivalently, fA

(x, ¨) = f(x, ¨)|Ax for all x P S; thus Proposition
8.40 (a) implies that

ż M

m

f
A

(x, y) dy =

ż

Ax

f(x, y) dy =

ż φ2(x)

φ1(x)

f(x, y) dy @x P S . (8.5.8)

Combining (8.5.7) and (8.5.8), we conclude (8.5.6). ˝

Example 8.63. Let A Ď R3 be the set
␣

(x1, x2, x3) P R3
ˇ

ˇx1 ě 0, x2 ě 0, x3 ě 0, and x1 +

x2 + x3 ď 1
(

, and f : A Ñ R be given by f(x1, x2, x3) = (x1 + x2 + x3)
2. Let S =

[0, 1] ˆ [0, 1] ˆ [0, 1], and sf : R3 Ñ R be the extension of f by zero outside A. Then
Corollary 8.33 implies that f is Riemann integrable (since BA has measure zero). Write
px1 = (x2, x3), px2 = (x1, x3) and px3 = (x1, x2). Lemma 8.49 implies that

ż

A

f(x)dx =

ż

S

sf(x)dx ,

and Theorem 8.61 implies that
ż

S

sf(x)dx =

ż

[0,1]

( ż
[0,1]ˆ[0,1]

sf(px3, x3)dpx3

)
dx3 .

Let Ax3 =
␣

(x1, x2) P R2
ˇ

ˇx1 ě 0, x2 ě 0, x1 + x2 ď 1 ´ x3
(

. Then for each x3 P [0, 1],
ż

[0,1]ˆ[0,1]

sf(px3, x3)dpx3 =

ż

Ax3

f(px3, x3)dpx3 =

ż 1´x3

0

( ż 1´x3´x2

0

f(x1, x2, x3)dx1

)
dx2 .

Computing the iterated integral, we find that
ż

A

f(x)dx =

ż 1

0

[ ż 1´x3

0

( ż 1´x3´x2

0

(x1 + x2 + x3)
2dx1

)
dx2

]
dx3

=

ż 1

0

[ ż 1´x3

0

(x1 + x2 + x3)
3

3

ˇ

ˇ

ˇ

x1=1´x3´x2

x1=0
dx2

]
dx3

=

ż 1

0

[ ż 1´x3

0

(1
3

´
(x2 + x3)

3

3

)
dx2

]
dx3

=

ż 1

0

(1
4

´
x3
3

+
x43
12

)
dx3 =

1

4
´

1

6
+

1

60
=

15 ´ 10 + 1

60
=

1

10
.
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Example 8.64. In this example we compute the volume of the n-dimensional unit ball ωn.
By the Fubini theorem,

ωn =

ż 1

´1

ż

?
1´x21

´
?

1´x21

¨ ¨ ¨

ż

?
1´x21´¨¨¨´x2n´1

´
?

1´x21´¨¨¨´x2n´1

dxn ¨ ¨ ¨ dx1 .

Note that the integral
ż

?
1´x21

´
?

1´x21

¨ ¨ ¨

ż

?
1´x21´¨¨¨´x2n´1

´
?

1´x21´¨¨¨´x2n´1

dxn ¨ ¨ ¨ dx2 is in fact ωn´1(1´x21)
n´1
2 ; thus

ωn =

ż 1

´1

ωn´1(1 ´ x2)
n´1
2 dx = 2ωn´1

ż π
2

0

cosn θdθ . (8.5.9)

Integrating by parts,
ż π

2

0

cosn θ dθ =
ż π

2

0

cosn´1 θ d(sin θ) = cosn´1 θ sin θ
ˇ

ˇ

ˇ

θ=π
2

θ=0
+ (n ´ 1)

ż π
2

0

cosn´2 θ sin2 θ dθ

= (n ´ 1)

ż π
2

0

cosn´2 θ(1 ´ cos2 θ) dθ

which implies that
ż π

2

0

cosn θ dθ = n ´ 1

n

ż π
2

0

cosn´2 θ dθ .

As a consequence,

ż π
2

0

cosn θ dθ =

$

’

’

&

’

’

%

(n´ 1)(n´ 3) ¨ ¨ ¨ 2

n(n´ 2) ¨ ¨ ¨ 3

ż π
2

0
cos θ dθ if n is odd ,

(n´ 1)(n´ 3) ¨ ¨ ¨ 1

n(n´ 2) ¨ ¨ ¨ 2

ż π
2

0
dθ if n is even ;

thus the recursive formula (8.5.9) implies that ωn =
2ωn´2

n
π . Further computations shows

that

ωn =

$

’

’

’

&

’

’

’

%

(2π)
n´1
2

n(n´ 2) ¨ ¨ ¨ 3
ω1 if n is odd ,

(2π)
n´2
2

n(n´ 2) ¨ ¨ ¨ 4
ω2 if n is even .

Let Γ be the Gamma function defined by Γ(t) =
ż 8

0
xt´1e´x dx for t ą 0. Then Γ(x+ 1) =

xΓ(x) for all x ą 0, Γ(1) = 1 and Γ
(1
2

)
=

?
π. By the fact that ω1 = 2 and ω2 = π, we can

express ωn as

ωn =
π

n
2

Γ
(
n+2
2

) .
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8.6 Change of Variables Formula
Fubini theorem can be used to find the integral of a (Riemann integrable) function over a
rectangular domain if the iterated integrals can be evaluated. However, like the integral of
a function of one variable, in many cases we need to make use of several change of variables
in order to transform the integral to another integral that can be easily evaluated. In this
section, we establish the change of variables formula for the integral of functions of several
variables.

Theorem 8.65 (Change of Variables Formula). Let U Ď Rn be an open bounded set, and
g : U Ñ Rn be an one-to-one C 1 mapping with C 1 inverse; that is, g´1 : g(U) Ñ U is
also continuously differentiable. Assume that the Jacobian of g, Jg = det([Dg]), does not
vanish in U , and EĂĂU has volume. Then g(E) has volume. Moreover, if f : g(E) Ñ R is
bounded and integrable, then (f ˝ g)Jg is integrable over E, and

ż

g(E)

f(y) dy =

ż

E

(f ˝ g)(x)
ˇ

ˇJg(x)
ˇ

ˇ dx =

ż

E

(f ˝ g)(x)
ˇ

ˇ

ˇ

B(g1, ¨ ¨ ¨ , gn)

B(x1, ¨ ¨ ¨ , xn)

ˇ

ˇ

ˇ
dx .

Remark 8.66. The condition that g has to be defined on a larger open set U can be
removed. In other words, E Ď U has volume is enough for the change of variable formula
to hold; however, we will not prove this more generalized version here.

The proof of the change of variables formula is separated into several steps, and we list
each step as a lemma.

First, we show that the map g in Theorem 8.65 has the property that g´1(Z) has measure
zero (or volume zero) if Z itself has measure zero (or volume zero). This establishes that if
A and B are not overlapping; that is, ν(A X B) = 0, then ν(g´1(A X B)) = 0.

Lemma 8.67. Let U Ď Rn be an open set, and ϕ : U Ñ Rn be Lipschitz continuous; that
is, there exists L ą 0 such that }ϕ(x) ´ ϕ(y)}Rn ď L}x ´ y}Rn for all x, y P U . Suppose
that Z Ď U is a set of measure zero (or a set of volume zero) and sZ Ď U . Then ϕ(A) has
measure zero (or volume zero).

Proof. We prove the case that Z has measure zero, and the proof for the case that Z has
volume zero is obtained by changing the countable sum/union to finite sum/union.

First we note that if S Ď U is a rectangle on which the ratio of the maximum length and
minimum length of sides is less than 2, then ϕ(S) Ď R for some n-cube R with side of length
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L
?
nδ, where δ is the maximum length of sides of S. Therefore, ν(ϕ(S)) ď (2

?
nL)nν(S).

Let ε ą 0 be given. Since Z has measure zero, there exists countable rectangles S1, S2, ¨ ¨ ¨

such that Z Ď
8
Ť

k=1

Sk and
8
ř

k=1

ν(Sk) ă
ε

(2
?
nL)n

. Moreover, as in the proof of Proposition

8.14 we can also assume that the ratio of the maximum length and minimum length of sides

of Sk is less than 2 for all k P N; thus ϕ(Z) Ď
8
Ť

k=1

Rk and
8
ř

k=1

ν(Rk) ă ε for some rectangles
Rk’s. ˝

Next, we prove that it suffices to show the change of variables formula for the case that
f is a constant and E is the pre-image of closed rectangle under g in order to establish the
full result.

Lemma 8.68. Let U Ď Rn be an open bounded set, and g : U Ñ Rn be an one-to-one C 1

mapping that has a C 1 inverse. Assume that the Jacobian of g, Jg = det([Dg]), does not
vanish in U , and

ν(R) =

ż

g´1(R)

|Jg(x)|dx for all closed rectangle R Ď g(U) . (8.6.1)

Then if EĂĂU has volume and f : g(E) Ñ R is bounded and integrable, then (f ˝ g)|Jg| is
Riemann integrable over E, and

ż

g(E)

f(y) dy =

ż

E

(f ˝ g)(x)|Jg(x)|dx .

Proof. Consider the extensions of f and (f ˝ g)|Jg| given by

f
g(E)

(x) =

"

f(x) if x P g(E) ,

0 if x P g(E)A,
and (f ˝ g)|Jg|

E

(x) =

"

(f ˝ g)(x)|Jg|(x) if x P E ,

0 if x P EA.

By the integrability of f over g(E), the set
␣

y P Rn
ˇ

ˇ f
g(E) is discontinuous at y

(

has measure
zero. Since

␣

x P Rn
ˇ

ˇ (f ˝ g)|Jg|
E is discontinuous at x

(

Ď BE Y
␣

x P int(E)
ˇ

ˇ f is discontinuous at g(x)
(

= BE Y
␣

y P g(int(E))
ˇ

ˇ f is discontinuous at y
(

Ď BE Y
␣

y P Rn
ˇ

ˇ f
g(E) is discontinuous at y

(

,
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we conclude that
␣

x P Rn
ˇ

ˇ (f ˝ g)|Jg|
E is discontinuous at x

(

has measure zero. Therefore,
(f ˝ g)|Jg| is Riemann integrable over E. On the other hand, by the fact that

(f
g(E)

˝ g)|Jg| = (f ˝ g)
E

|Jg| = (f ˝ g)|Jg|
E on U ,

the Lebesgue theorem also implies that (f
g(E)

˝ g)|Jg| is Riemann integrable over F if E Ď

F Ď U since

(f ˝ g)|Jg|
E

F

= (f ˝ g)|Jg|
E

@F Ě E .

Moreover, it follows from Lemma 8.49 that

ż

F

(f
g(E)

˝ g)(x)|Jg(x)|dx =

ż

E

(f ˝ g)(x)|Jg(x)|dx @E Ď F Ď U . (8.6.2)

Since the Jacobian of g does not vanish in U , Remark 7.2 implies that g is an open
mapping; thus g(U) is open. By the fact that g( sE) is compact, there exists an open set V
in Rn such that g( sE) Ď VĂĂg(U). It then follows from g´1 P C 1(g(U)) and sV Ď U that
there exists L ą 0 such that

›

›g´1(y1)´ g´1(y2)
›

›

Rn ď L}y1 ´ y2}Rn for all y1, y2 P V . In other
words, g´1 is Lipschitz on V , and Lemma 8.67 implies that g´1(Z) has volume zero if Z Ď V
has volume zero.

Note that there exists δ ą 0 such that d(x, y) ą δ for all x P g(E) and y P VA. Let P be
a partition of g(E) such that }P} ă δ; that is, diam(∆) ă δ for all ∆ P P . Then ∆ Ď V if
∆ P P and ∆ X g(E) ‰ H. Since inf

yP∆
f

g(E)

(y) = inf
xPg´1(∆)

(f
g(E)

˝ g)(x) if ∆ Ď U , using (8.6.1)
we find that

L(f,P) =
ÿ

∆PP
∆Xg(E)‰H

inf
yP∆

f
g(E)

(y)ν(∆) =
ÿ

∆PP
∆Xg(E)‰H

inf
xPg´1(∆)

(f
g(E)

˝ g)(x)ν(∆)

=
ÿ

∆PP
∆Xg(E)‰H

inf
xPg´1(∆)

(f
g(E)

˝g)(x)

ż

g´1(∆)

|Jg(x)|dx

ď
ÿ

∆PP
∆Xg(E)‰H

ż

g´1(∆)

(f
g(E)

˝g)(x)|Jg(x)|dx .

Since each “face” of the rectangle ∆ P P has volume zero, Lemma 8.67 implies that g´1(∆)X
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g´1(∆1) has volume zero if ∆ X ∆1 has volume zero. Therefore, Corollary 8.42 shows that

L(f,P) ď

ż

Ť

∆PP,∆Xg(E)‰H g´1(∆)

(f
g(E)

˝g)(x)|Jg(x)|dx

=

ż

g´1(
Ť

∆PP,∆Xg(E)‰H ∆)

(f
g(E)

˝g)(x)|Jg(x)|dx

=

ż

g´1(
Ť

∆PP,∆Xg(E)‰H ∆)

(f
g(E)

˝g)(x)|Jg(x)|dx

=

ż

E

(f ˝ g)(x)|Jg(x)| dx ,

where we have used the integrability of (f
g(E)

˝ g)|Jg| over the set g´1(
Ť

∆PP,∆Xg(E)‰H ∆)

(since this set is a super set of E) and (8.6.2) to conclude the last two equalities.
Similarly, by the fact that sup

yP∆
f

g(E)

(y) = sup
xPg´1(∆)

(f
g(E)

˝ g)(x) if ∆ Ď U , we obtain that

U(f,P) =
ÿ

∆PP
∆Xg(E)‰H

sup
xPg´1(∆)

(f
g(E)

˝g)(x)

ż

g´1(∆)

|Jg(x)|dx

ě
ÿ

∆PP
∆Xg(E)‰H

ż

g´1(∆)

(f
g(E)

˝g)(x)|Jg(x)|dx =

ż

g´1(
Ť

∆PP,∆Xg(E)‰H ∆)

(f
g(E)

˝g)(x)|Jg(x)|dx

=

ż

E

(f ˝ g)(x)|Jg(x)| dx .

The integrability of f over g(E) then implies that
ż

g(E)
f(y) dy =

ż

E
(f ˝ g)(x)|Jg(x)|dx. ˝

Since the differentiability of g implies that locally g is very closed to an affine map; that
is, g(x) « Lx+c for some L P B(Rn,Rn) and c P Rn (in fact, g(x) « g(x0)+(Dg)(x0)(x´x0)

in a neighborhood of x0), our next step is to establish (8.6.1) first for the case that g is an
affine map. Since the volume of a set remains unchanged under translation, W.L.O.G. we
can assume that g is linear.

Lemma 8.69. Let g P B(Rn,Rn), and A Ď Rn be a set that has volume. Then g(A) has
volume, and

ν
(
g(A)

)
=

ż

g(A)

1dy =

ż

A

|Jg(x)|dx . (8.6.3)

Remark 8.70. If g P B(Rn,Rn), then g(x) = Lx for some n ˆ n matrix. In this case
Jg(x) = det(L) for all x P A; thus (8.6.3) is the same as that

ν
(
L(A)

)
=

ż

L(A)
1dy =

ż

A

| det(L)|dx = | det(L)|ν(A) . (8.6.4)
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Therefore, in the following we prove (8.6.4) instead of (8.6.3).

Proof of Lemma 8.69. Since any n ˆ n matrices can be expressed as the product of ele-
mentary matrices, it suffices to prove the validity of the lemma for the case that L is an
elementary matrix.

Suppose first that A = [a1, b1] ˆ ¨ ¨ ¨ ˆ [an, bn] is a rectangle.

1. If L is an elementary matrix of the type

L =



1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

0
. . . 0

...
... . . . 1

. . . ...
... 0 0 0 1

...
... . . . 1

. . . ...
... 0

. . . 0
...

... . . . 1
. . . ...

... 1 0 0 0
...

0
. . . 1

. . . ...
0 0

. . . 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1



Ð the i0-th row

Ð the j0-th row

Ò Ò

the i0-th column the j0-th column
then

L(A) = [a1, b1] ˆ ¨ ¨ ¨ ˆ [ai0´1, bi0´1] ˆ [aj0 , bj0 ] ˆ [ai0+1, bi0+1] ˆ ¨ ¨ ¨ ˆ

ˆ[aj0´1, bj0´1] ˆ [ai0 , bi0 ] ˆ [aj0+1, bj0 + 1] ˆ ¨ ¨ ¨ ˆ [an, bn] ;

thus ν
(
L(A)

)
= ν(A) = | det(L)|ν(A).

2. If L is an elementary matrix of the type

L =



1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

0 1 0
...

... . . . . . . . . . ...

... 0 1 0
...

... 0 c 0
...

... 0 1 0
...

... . . . . . . . . . ...

... 0 1 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1



Ð the k0-th row
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then

L(A) = [a1, b1] ˆ ¨ ¨ ¨ ˆ [ak0´1, bk0´1] ˆ [cak0 , cbk0 ] ˆ [ak0+1, bk0+1] ˆ ¨ ¨ ¨ ˆ [an, bn]

if c ě 0 or

L(A) = [a1, b1] ˆ ¨ ¨ ¨ ˆ [ak0´1, bk0´1] ˆ [cbk0 , cak0 ] ˆ [ak0+1, bk0+1] ˆ ¨ ¨ ¨ ˆ [an, bn]

if c ă 0. In either case, ν
(
L(A)

)
= |c|ν(A) = | det(L)|ν(A).

3. If L is an elementary matrix of the type

L =



1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
0 1 0 0
... . . . . . . . . . c 0
... . . . . . . . . . 0
... 0 1 0

...
... . . . . . . . . . ...
... . . . . . . . . . ...
... 0 1 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 1



Ð the i0-th row

Ò

the j0-th column
then L(A) is a parallelepiped

L(A) =
␣

(x1, ¨ ¨ ¨ , xi0´1, xi0 + cxj0 , xi0+1, ¨ ¨ ¨ , xn) P Rn
ˇ

ˇxi P [ai, bi] @ 1 ď i ď n
(

=
␣

(x1, ¨ ¨ ¨ , xi0´1, yi0 , xi0+1, ¨ ¨ ¨ , xn) P Rn
ˇ

ˇ ai0 + cxj0 ď yi0 ď bi0 + cxj0 ,

xi P [ai, bi] @ i ‰ i0
(

;

(x1, ¨ ¨ ¨ , xi0´1, xi0+1, ¨ ¨ ¨ , xn) hyper-space

xi0 axis

xj0 axis

L

(x1, ¨ ¨ ¨ , xi0´1, xi0+1, ¨ ¨ ¨ , xn) hyper-space

xi0 axis

xj0 axis

Figure 8.3: The image of a rectangle under a linear map induced by the elementary matrix
of the third type
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thus the Fubini theorem (or Corollary 8.62) implies that

ν(L(A)) =

ż

[a1,b1]ˆ¨¨¨ˆ[ai0´1,bi0´1]ˆ[ai0+1,bi0+1]ˆ¨¨¨ˆ[an,bn]

( ż bi0+cxj0

ai0+cxj0

1dyi0

)
dpxi0 = ν(A) .

On the other hand, | det(L)| = 1, so ν
(
L(A)

)
= | det(L)|ν(A) is validated.

Therefore, (8.6.4) holds if A is a rectangle and L is an elementary matrix. An immediate
consequence of this observation is that if Z is a set of measure zero, so is L(Z).

Now suppose that A is an arbitrary set with volume, and L is an elementary matrix.

1. If det(L) = 0, L must be an elementary matrix of the second type (with c = 0), and
in this case,

L(A) Ď [´r, r] ˆ ¨ ¨ ¨ ˆ [´r, r] ˆ [´ε, ε]
loomoon

the k0-th slot

ˆ ¨ ¨ ¨ ˆ [´r, r]

for some r ą 0 sufficiently large and arbitrary ε ą 0. Therefore, L(A) has volume
zero; thus L(A) has volume and ν

(
L(A)

)
= | det(L)|ν(A).

2. Suppose that det(L) ‰ 0. Let ε ą 0 be given. Since A has volume, by Riemann’s
condition there exists a partition of A such that

U(1A,P) ´ L(1A,P) ă
ε

| det(L)| .

Note that the inequality above also implies that

U(1A,P) ´ ν(A) ă
ε

| det(L)| and ν(A) ´ L(1A,P) ă
ε

| det(L)| .

Let C1 =
␣

∆ P P
ˇ

ˇ∆ X A ‰ H
(

and C2 =
␣

∆ P P
ˇ

ˇ∆ Ď A
(

, and define R1 =
Ť

∆PC1

∆

and R2 =
Ť

∆PC2

∆. Then R2 Ď A Ď R1. Moreover,

ν
(
L(R1)

)
=

ÿ

∆PC1

ν(L(∆)) =
ÿ

∆PC1

| det(L)|ν(∆) = | det(L)|U(1A,P)

ă | det(L)|ν(A) + ε

and

ν
(
L(R2)

)
=

ÿ

∆PC2

ν(L(∆)) =
ÿ

∆PC2

| det(L)|ν(∆) = | det(L)|L(1A,P)

ą | det(L)|ν(A) ´ ε .
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As a consequence, by the fact that L(R2) Ď L(A) Ď L(R1) we conclude that
ˇ

ˇ

ˇ

ż

L(A)
1dx ´

ż

L(A)
1dx

ˇ

ˇ

ˇ
ď ν

(
L(R1)

)
´ν

(
L(R2)

)
= | det(L)|

(
U(1A,P) ´ L(1A,P)

)
ă ε .

Since ε ą 0 is arbitrary, we find that
ż

L(A)
1dx =

ż

L(A)
1dx which implies that 1L(A) is

Riemann integrable, or equivalently, L(A) has volume.

On the other hand, observing that

| det(L)|ν(A) ´ ε ă ν
(
L(R2)

)
ď ν

(
L(A)

)
ď ν

(
L(R1)

)
ă | det(L)|ν(A) + ε ,

we conclude that ν
(
L(A)

)
= | det(L)|ν(A) again because ε ą 0 is arbitrary. ˝

Lemma 8.71. Let U Ď Rn be an open bounded set, and g : U Ñ Rn be an one-to-one C 1

mapping that has a C 1 inverse. Assume that the Jacobian of g, Jg = det([Dg]), does not
vanish in U . Then

ν(R) =

ż

g´1(R)

|Jg(x)|dx for all closed rectangle R Ď g(U) . (8.6.1)

Proof. First, we note that by the the compactness of R, there exist m ą 0 and Λ ą 0 such
that

|Jg(x)| ě m and
›

›(Dg)(x)
›

›

B(Rn.Rn)
ď Λ @x P g´1(R) .

Let 0 ă ε ă 1 be given. By the compactness of g´1(R), (Theorem 4.52 implies that)
Jg : g´1(R) Ñ R is uniformly continuous; thus there exists δ1 ą 0 such that

ˇ

ˇJg(x1) ´ Jg(x2)
ˇ

ˇ ă mε if }x1 ´ x2}Rn ă δ1 and x1, x2 P g´1(R) .

Since g´1 is of class C 1, the continuity of g´1 and Corollary 6.36 guarantee that there exists
δ ą 0 such that if }y1 ´ y2}Rn ă δ and y1, y2 P R, we have

›

›g´1(y1) ´ g´1(y2)
›

›

Rn ă δ1

and
›

›g´1(y2) ´ g´1(y1) ´ (Dg´1)(y1)(y2 ´ y1)
›

›

Rn ď
ε

2
?
nΛ

}y1 ´ y2}Rn .

Let P be a partition of R with mesh size }P} ă δ and the ratio of the maximum length
and minimum length of sides of each ∆ is less than 2. For ∆ P P , let c∆ denote the center
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of ∆ for ∆ P P , and define A∆ = (Dg)(g´1(c∆)) as well as h∆(x) = A∆

(
x ´ g´1(c∆)

)
+ c∆.

Then
ˇ

ˇJg(g´1(y)) ´ Jg(g´1(c∆))
ˇ

ˇ ă mε @ y P ∆ .

Moreover, the inverse function theorem (Theorem 7.1) implies that A´1
∆ = (Dg´1)(c∆); thus

for y P ∆,
›

›(h ˝ g´1)(y) ´ y
›

›

Rn =
›

›A∆

(
g´1(y) ´ g´1(c∆) ´ (Dg´1)(c∆)(y ´ c∆)

)›
›

Rn

ď }A∆}B(Rn,Rn)

›

›g´1(y) ´ g´1(c∆) ´ (Dg´1)(c∆)(y ´ c∆)
›

›

Rn

ď
ε}(Dg)(g´1(c∆))}B(Rn,Rn)

2
?
nΛ

}y ´ c∆}Rn ď
ε

4
?
n

diam(∆) .

The inequality above implies that for all ∆ P P ,

(1 ´ ε)nν(∆) ď ν
(
(h∆ ˝ g´1)(∆)

)
ď (1 + ε)nν(∆) .

Since Jh∆ = det(A∆) = Jg(g´1(c∆)), Lemma 8.69 or (8.6.4) provides that
ż

g´1(∆)

ˇ

ˇJg(x)
ˇ

ˇ dx ď

ż

g´1(∆)

(
|Jg(g´1(c∆))| +mε

)
dx =

(
|Jg(g´1(c∆))| +mε

)
ν
(
g´1(∆)

)
=

(
|Jg(g´1(c∆))| +mε

)ν((h∆ ˝ g)´1(∆)
)

|Jg(g´1(c∆))|
ď (1 + ε)n+1ν(∆) .

A similar argument provides a lower bounded of the left-hand side, and we conclude that

(1 ´ ε)n+1ν(∆) ď

ż

g´1(∆)

|Jg(x)|dx ď (1 + ε)n+1ν(∆) @∆ P P .

Summing over all ∆ P P , we find that

(1 ´ ε)n+1ν(R) ď
ÿ

∆PP

ż

g´1(∆)

|Jg(x)|dx ď (1 + ε)n+1ν(R) .

Identity (8.6.1) is then concluded since
ř

∆PP

ż

g´1(∆)
|Jg(x)|dx =

ż

g´1(R)
|Jg(x)|dx and ε P (0, 1)

is arbitrary. ˝

Example 8.72. Let A be the triangular region with vertices (0, 0), (4, 0), (4, 2), and f :

A Ñ R be given by
f(x, y) = y

a

x ´ 2y .
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Let (u, v) = (x, x ´ 2y). Then (x, y) = g(u, v) =
(
u,
u´ v

2

)
; thus

Jg(u, v) =
ˇ

ˇ

ˇ

ˇ

ˇ

1 0
1

2
´
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

= ´
1

2
.

Define E as the triangle with vertices (0, 0), (4, 0), (4, 4). Then A = g(E).

E

u

v

g

A
x

y

Figure 8.4: The image of E under g

Therefore,
ż

A

f(x, y)d(x, y) =

ż

g(E)

f(x, y)d(x, y) =
1

2

ż

E

f
(
g(u, v)

)
d(u, v)

=
1

4

ż 4

0

ż u

0

(u ´ v)
?
vdvdu =

1

4

ż 4

0

[2
3
uv

3
2 ´

2

5
v

5
2

]ˇ
ˇ

ˇ

v=u

v=0
du

=
1

4

ż 4

0

(2
3

´
2

5

)
u

5
2du =

1

15
ˆ

2

7
u

7
2

ˇ

ˇ

ˇ

u=4

u=0
=

256

105
.

Example 8.73. Suppose that f : [0, 1] Ñ R is Riemann integrable and
ż 1

0
(1´x)f(x) dx = 5

(note that the function g(x) = (1 ´ x)f(x) is Riemann integrable over [0, 1] because of the

Lebesgue theorem). We would like to evaluate the iterated integral
ż 1

0

ż x

0
f(x ´ y) dydx.

It is nature to consider the change of variables (u, v) = (x ´ y, x) or (u, v) = (x ´ y, y).
Suppose the later case. Then (x, y) = g(u, v) = (u+ v, v); thus

Jg(u, v) =
ˇ

ˇ

ˇ

ˇ

1 1
1 0

ˇ

ˇ

ˇ

ˇ

= ´1 .

Moreover, the region of integration is the triangle A with vertices (0, 0), (1, 0), (1, 1), and
three sides y = 0, x = 1, x = y correspond to u = 0, u + v = 1 and v = 0. Therefore, if
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E denotes the triangle enclosed by u = 0, v = 0 and u + v = 1 on the (u, v)-plane, then
g(E) = A, and

ż 1

0

ż x

0

f(x ´ y) dydx =

ż

A

f(x ´ y)d(x, y) =

ż

g(E)

f(x ´ y)d(x, y)

=

ż

E

f
(
g1(u, v) ´ g2(u, v)

)
|Jg(u, v)|d(u, v) =

ż 1

0

ż 1´u

0

f(u) dvdu

=

ż 1

0

(1 ´ u)f(u) du = 5 .

Example 8.74 (Polar coordinates). In R2, when the domain over which the integral is taken
is a disk D, a particular type of change of variables is sometimes very useful for the purpose
of evaluating the integral. Let (x, y) = (x0 + r cos θ, y0 + r sin θ) ” ψ(r, θ), where (x0, y0) is
the center of D under consideration. If the radius of D is R, then D, up to removing a line
segment with length R, is the image of (0, R) ˆ (0, 2π) under ψ. Note that the Jacobian of
ψ is

Jψ(r, θ) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bψ1

Br

Bψ1

Bθ
Bψ2

Br

Bψ2

Bθ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ ´r sin θ
sin θ r cos θ

ˇ

ˇ

ˇ

ˇ

ˇ

= r .

Therefore, if f : D Ñ R is Riemann integrable, then
ż

D
f(x, y) d(x, y) =

ż

ψ((0,R)ˆ(0,2π))

f(x, y) d(x, y) =

ż

(0,R)ˆ(0,2π)

(f ˝ ψ)(r, θ)
ˇ

ˇJψ(r, θ)
ˇ

ˇ d(r, θ)

=

ż

(0,R)ˆ(0,2π)

f(x0 + r cos θ, y0 + r sin θ) r d(r, θ) .

Example 8.75 (Cylindrical coordinates). In R3, when the domain over which the integral
is taken is a cylinder C; that is, C = D ˆ [a, b] for some disk D and ´8 ă a ă b ă R, then
the change of variables

ψ(r, θ, z) = (x0 + r cos θ, y0 + r sin θ, z) 0 ă r ă R , 0 ă θ ă 2π , a ď z ď b ,

where (x0, y0) is the center of D and R is the radisu of D, is sometimes very useful for
evaluating the integral. Since the Jacobian of ψ is

Jψ(r, θ, z) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bψ1

Br

Bψ1

Bθ

Bψ1

Bz
Bψ2

Br

Bψ2

Bθ

Bψ2

Bz
Bψ3

Br

Bψ3

Bθ

Bψ3

Bz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ ´r sin θ 0

sin θ r cos θ 0

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= r ,
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we must have
ż

C
f(x, y, z) d(x, y, z) =

ż

ψ((0,R)ˆ(0,2π)ˆ[a,b])

f(x, y, z) d(x, y, z)

=

ż

(0,R)ˆ(0,2π)ˆ[a,b]

(f ˝ ψ)(r, θ, z)
ˇ

ˇJψ(r, θ, z)
ˇ

ˇ d(r, θ, z)

=

ż

(0,R)ˆ(0,2π)ˆ[a,b]

f(x0 + r cos θ, y0 + r sin θ, z) r d(r, θ, z) .

Example 8.76 (Spherical coordinates). In R3, when the domain over which the integral is
taken is a ball B, the change of variables

ψ(ρ, θ, ϕ) = (x0+ρ cos θ sinϕ, y0+ρ sin θ sinϕ, z0+ρ cosϕ) 0 ă ρăR, 0 ă θ ă 2π, 0 ă ϕă π,

where (x0, y0, z0) is the center of B and R is the radius of B, is often used to evaluate the
integral a function over B. Since the Jacobian of ψ is

Jψ(ρ, θ, ϕ) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bψ1

Bρ

Bψ1

Bθ

Bψ1

Bϕ

Bψ2

Bρ

Bψ2

Bθ

Bψ2

Bϕ

Bψ3

Bρ

Bψ3

Bθ

Bψ3

Bϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ sinϕ ´ρ sin θ sinϕ ρ cos θ cosϕ
sin θ sinϕ ρ cos θ sinϕ ρ sin θ cosϕ

cosϕ 0 ´ρ sinϕ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´ρ2 cos2 θ sin3 ϕ ´ ρ2 sin2 θ sinϕ cos2 ϕ ´ ρ2 cos2 θ sinϕ cos2 ϕ ´ ρ2 sin2 θ sin3 ϕ

= ´ρ2 sin3 ϕ ´ ρ2 sinϕ cos2 ϕ = ´ρ2 sinϕ ,

if the radius of B is R, we must have
ż

B
f(x, y, z) d(x, y, z) =

ż

ψ((0,R)ˆ(0,2π)ˆ(0,π))

f(x, y, z) d(x, y, z)

=

ż

(0,R)ˆ(0,2π)ˆ(0,π)

(f ˝ ψ)(ρ, θ, ϕ)
ˇ

ˇJψ(ρ, θ, ϕ)
ˇ

ˇ d(ρ, θ, ϕ)

=

ż

(0,R)ˆ(0,2π)ˆ(0,π)

f(x0 + ρ cos θ sinϕ, y0 + ρ sin θ sinϕ, z0 + ρ cosϕ) ρ2 sinϕ d(r, θ, z) .

8.7 Exercises

§8.2 Conditions for Integrability
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Problem 8.1. Let f : [0, 1] ˆ [0, 1] Ñ R be a bounded function such that f(x, y) ď

f(x, z) if y ă z and f(x, y) ď f(t, z) if x ă t. In other words, f(x, ¨) and f(¨, y) are both
non-decreasing functions for fixed x, y P [0, 1]. Show that f is Riemann integrable over
[0, 1] ˆ [0, 1].

Problem 8.2. Let A Ď Rn be a bounded set, and fk : A Ñ R be a sequence of Riemann
integrable functions which converges uniformly to f on A. Show that f is Riemann integrable
over A, and

lim
kÑ8

ż

A

fk(x) dx =

ż

A

lim
kÑ8

fk(x) dx =

ż

A

f(x) dx .

§8.3 Lebesgue’s Theorem

Problem 8.3. Complete the following.

1. Show that if A is a set of volume zero, then A has measure zero. Is it true that if A
has measure zero, then A also has volume zero?

2. Let a, b P R and a ă b. Show that the interval [a, b] does not have measure zero (in
R).

3. Let A Ď [a, b] be a set of measure zero (in R). Show that [a, b]zA does not have
measure zero (in R).

4. Show that the Cantor set (defined in Exercise Problem 2.11) has volume zero.

Problem 8.4. Let A =
8
Ť

k=1

D
(1
k
,
1

2k

)
=

8
Ť

k=1

(1
k

´
1

2k
,
1

k
+

1

2k

)
be a subset of R. Does A have

volume?

Problem 8.5. Let f : [a, b] Ñ R be bounded and Riemann integrable. Show that the graph
of f has volume zero by considering the difference of the upper and lower sums of f .

Problem 8.6. Let A Ď Rn be an open bounded set with volume, and f : A Ñ R be
continuous. Show that if

ż

B
f(x) dx = 0 for all subsets B Ď A with volume, then f = 0.

Problem 8.7. Prove the following statements.

1. The function f(x) = sin 1

x
is Riemann integrable over (0, 1).
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2. Let f : [0, 1] Ñ R be given by

f(x) =

$

&

%

1

p
if x =

q

p
P Q, (p, q) = 1 ,

0 if x is irrational.

Then f is Riemann integrable over [0, 1]. Find
ż 1

0
f(x)dx as well.

3. Let A Ď Rn be a bounded set, and f : A Ñ R is Riemann integrable. Then fk（f 的

k 次方）is integrable for all k P N.

Problem 8.8. Suppose that f : [a, b] Ñ R is Riemann integrable, and the set
␣

x P

[a, b]
ˇ

ˇ f(x) ‰ 0
(

has measure zero. Show that
ż b

a
f(x) dx = 0.

§8.5 Fubini’s Theorem

Problem 8.9. Evaluate the iterated integral
ż 1

0

ż x

0
(2y ´ y2)

2
3dydx.

Problem 8.10. Let A = [a, b] ˆ [c, d] be a rectangle in R2, and f : A Ñ R be Riemann
integrable. Show that the sets

!

x P [a, b]
ˇ

ˇ

ˇ

ż d

c

f(x, y)dy ‰
s

ż d

c

f(x, y)dy
)

and
!

y P [c, d]
ˇ

ˇ

ˇ

ż b

a

f(x, y)dx ‰
s

ż b

a

f(x, y)dx
)

have measure zero (in R1).

Problem 8.11. Define a set S Ď [0, 1] ˆ [0, 1] by

S =
!( p
m
,
k

m

)
P [0, 1] ˆ [0, 1]

ˇ

ˇ

ˇ
m, p, k P N , gcd(m, p) = 1 and 1 ď k ď m ´ 1

)

.

Show that
ż 1

0

( ż 1

0

1S(x, y) dy
)
dx =

ż 1

0

( ż 1

0

1S(x, y) dx
)
dy = 0

but 1S is not Riemann integrable over [0, 1] ˆ [0, 1].

Problem 8.12. Let f : [0, 1] ˆ [0, 1] Ñ R be given by

f(x, y) =

$

’

&

’

%

22n if (x, y) P [2´n, 2´n+1) ˆ [2´n, 2´n+1), n P N ,

´22n+1 if (x, y) P [2´n, 2´n+1) ˆ [2´n´1, 2´n), n P N ,

0 otherwise .
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1. Show that
ż 1

0
f(x, y) dx = 0 for all y P [0, 1).

2. Show that
ż 1

0
f(x, y) dy = 0 for all x P

[
0,

1

2

)
.

3. Justify if the iterated (improper) integrals
ż 1

0

ż 1

0
f(x, y)dxdy and

ż 1

0

ż 1

0
f(x, y) dydx

are identical.

Problem 8.13.

1. Draw the region corresponding to the integral
ż 1

0

( ż ex

1
(x+ y) dy

)
dx and evaluate.

2. Change the order of integration of the integral in 1 and check if the answer is unaltered.

§8.6 Change of Variables Formula

Problem 8.14. Prove Theorem 4.95 using Theorem 8.65.

Problem 8.15. Find the volume of the set
␣

(x, y, z) P R3
ˇ

ˇ 0 ď x2 + y2 + xy ď z2 ď 4
(

.

Problem 8.16. Suppose that U Ď Rn is an nonempty open set, and f : U Ñ R is of class
C 1 such that Jf (x) ‰ 0 for all x P U . Show that

lim
rÑ0+

ν
(
f(D(x0, r))

)
ν
(
D(x0, r)

) = Jf (x0) @x0 P U .

Problem 8.17. 1. Let A be the parallelogram with vertices (0, 0),
(2
3
,´

1

3

)
, (1, 0) and(1

3
,
1

3

)
. Evaluate the integral

ż

A

?
x ´ y

a

x+ 2y dA .

2. Let A be the parallelogram bounded by lines x = 3y, x = 1 + 3y, y = ´2x and
y = 1 ´ 2x. Evaluate the integral

ż

A

3
a

2x2 ´ 5xy ´ 3y2 dA .

3. Let A be the trapezoid with vertices (1, 1), (2, 2), (2, 0) and (4, 0). Evaluate the
integral

ż

A

e(y´x)/(y+x) dA .
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Problem 8.18 (True or False). Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.

1. Let A Ď Rn be bounded, and f : A Ñ R be Riemann integrable. If P be a partition
of A, and m ď f(x) ď M for all x P A. Then mν(A) ď L(f,P) ď U(f,P) ď Mν(A).

2. Let A Ď Rn be a set of measure zero. If sAzA is countable, then A has volume zero.

3. Let A Ď Rn be a closed rectangle and f, g : B Ñ R be Riemann integrable functions.
If there exists a set Z Ď A such that Z has measure zero and g(x) = f(x) for all
x P AzZ, then

ż

A
f(x) dx =

ż

A
g(x) dx.

4. Let A Ď Rn be a closed rectangle. Suppose that f and g are two bounded real-valued
functions defined on A such that f is continuous and g = f except on a set of measure
zero, then f and g are both Riemann integrable over A.

5. Let A,B Ď R be bounded, and f : A Ñ R and g : f(A) Ñ R be Riemann integrable.
Then g ˝ f is Riemann integrable over A.

6.
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