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Chapter 7

The Inverse and the Implicit Function
Theorems

7.1 The Inverse Function Theorem（反函數定理）

反函數定理是用來探討一個函數的反函數是否存在的問題。只要一個函數不是一對一的，

一般來說都不能定義其反函數，例如三角函數中，正弦、餘弦及正切函數都是周期函

數，所以全域的反函數不存在。但是我們也知道有所謂的反三角函數 sin´1 （或 arcsin）,
cos´1 （或 arctan）及 tan´1（或 arctan），這是因為我們限制了原三角函數的定義域使其
在新的定義域上是一對一的（因此反函數存在）。因此，要討論一個定在某一個（大範圍

的）定義域的函數的反函數，常常我們最多只能說反函數只在某一小塊區域上存在。

如何知道一個函數在一小塊區域上的反函數存在，我們首先該問的是在定義域是一維

（或是指單變數函數）的情況下發生什麼事？由一維的反函數定理 (Theorem 4.72) 我們知
道首先應該要保留的條件是類似於微分不為零的這個條件。但是在多變數函數之下，微

分不為零的條件該怎麼呈現，這是第一個問題。而當我們觀察 (4.6.1)，應該可以猜出在
多變數版本裡面所該對應到的條件，即是 (Df)(x) 這個 bounded linear map 的可逆性。
另外，假設 f P C 1，那麼由 Theorem 6.8 我們知道在一個點 x0 如果 (Df)(x0) 可逆的

話，那麼在一個鄰域裡 (Df)(x)都可逆。所以下面這個反函數定理的條件中只有 (Df)在

一個點可逆這個條件，因為我們目前想先知道小區域的反函數存不存在。

Theorem 7.1 (Inverse Function Theorem). Let D Ď Rn be open, x0 P D, f : D Ñ Rn be
of class C 1, and (Df)(x0) be invertible. Then there exist an open neighborhood U of x0 and
an open neighborhood V of f(x0) such that

1. f : U Ñ V is one-to-one and onto;
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2. The inverse function f´1 : V Ñ U is of class C 1;

3. If x = f´1(y), then (Df´1)(y) =
(
(Df)(x)

)´1;

4. If f is of class C r for some r ą 1, so is f´1.

Proof. Assume that A = (Df)(x0). Then }A´1}B(Rn,Rn) ‰ 0. Choose λ ą 0 such that
2λ}A´1}B(Rn,Rn) = 1. Since f P C 1, there exists δ ą 0 such that
›

›(Df)(x) ´ A
›

›

B(Rn,Rn)
=
›

›(Df)(x) ´ (Df)(x0)
›

›

B(Rn,Rn)
ă λ whenever x P D(x0, δ) X D .

By choosing δ even smaller if necessary, we can assume that D(x0, δ) Ď D. Let U = D(x0, δ).
Claim: f : U Ñ Rn is one-to-one (hence f : U Ñ f(U) is one-to-one and onto).
Proof of claim: For each y P Rn, define φy(x) = x+A´1

(
y ´ f(x)

)
(and we note that every

fixed-point of φy corresponds to a solution to f(x) = y). Then

(Dφy)(x) = Id ´ A´1(Df)(x) = A´1
(
A ´ (Df)(x)

)
,

where Id is the identity map on Rn. Therefore,
›

›(Dφy)(x)
›

›

B(Rn,Rn)
ď }A´1}B(Rn,Rn)

›

›A ´ (Df)(x)
›

›

B(Rn,Rn)
ă

1

2
@x P D(x0, δ) .

By the mean value theorem (Theorem 6.49),
›

›φy(x1) ´ φy(x2)
›

›

Rn ď
1

2
}x1 ´ x2}Rn @x1, x2 P D(x0, δ), x1 ‰ x2 ; (7.1.1)

thus at most one x satisfies φy(x) = x; that is, φy has at most one fixed-point. As a
consequence, f : D(x0, δ) Ñ Rn is one-to-one.
Claim: The set V = f(U) is open.
Proof of claim: Let b P V . Then there is a P U with f(a) = b. Choose r ą 0 such that
D(a, r) Ď U . We observe that if y P D(b, λr), then

}φy(a) ´ a}Rn ď }A´1
(
y ´ f(a)

)
}Rn ď }A´1}B(Rn,Rn)}y ´ b}Rn ă λ}A´1}B(Rn,Rn)r =

r

2
;

thus if y P D(b, λr) and x P D(a, r),

}φy(x) ´ a}Rn ď
›

›φy(x) ´ φy(a)
›

›

Rn + }φy(a) ´ a}Rn ă
1

2
}x ´ a}Rn +

r

2
ă r .

Therefore, if y P D(b, λr), then φy : D(a, r) Ñ D(a, r). By the continuity of φy,

φy : D(a, r) Ñ D(a, r) .



Copy
rig

ht
Prot

ect
ed

§7.1 The Inverse Function Theorem 259

On the other hand, (7.1.1) implies that φy is a contraction mapping if y P D(b, λr); thus by
the contraction mapping principle 5.89 φy has a unique fixed-point x P D(a, r). As a result,
every y P D(b, λr) corresponds to a unique x P D(a, r) such that φy(x) = x or equivalently,
f(x) = y. Therefore,

D(b, λr) Ď f
(
D(a, r)

)
Ď f(U) = V .

Next we show that f´1 : V Ñ U is differentiable. We note that if x P D(x0, δ),

}(Df)(x0) ´ (Df)(x)}B(Rn,Rn)}A
´1}B(Rn,Rn) ă λ}A´1}B(Rn,Rn) =

1

2
;

thus Theorem 6.8 implies that (Df)(x) is invertible if x P D(x0, δ).
Let b P V and k P Rn such that b + k P V . Then there exists a unique a P U and

h = h(k) P Rn such that a + h P U , b = f(a) and b + k = f(a + h). By the mean value
theorem and (7.1.1),

›

›φy(a+ h) ´ φy(a)
›

›

Rn ă
1

2
}h}Rn ;

thus the fact that f(a+ h) ´ f(a) = k implies that

}h ´ A´1k}Rn ă
1

2
}h}Rn

which further shows that
1

2
}h}Rn ď }A´1k}Rn ď }A´1}B(Rn,Rn)}k}Rn ď

1

2λ
}k}Rn . (7.1.2)

As a consequence, if k is such that b+ k P V ,
›

›f´1(b+ k) ´ f´1(b) ´
(
(Df)(a)

)´1
k
›

›

Rn

}k}Rn

=

›

›a+ h ´ a ´
(
(Df)(a)

)´1
k
›

›

Rn

}k}Rn

ď
›

›

(
(Df)(a)

)´1›
›

B(Rn,Rn)

›

›k ´ (Df)(a)(h)
›

›

Rn

}k}Rn

ď
›

›

(
(Df)(a)

)´1›
›

B(Rn,Rn)

›

›f(a+ h) ´ f(a) ´ (Df)(a)(h)
›

›

Rn

}h}Rn

}h}Rn

}k}Rn

ď

›

›

(
(Df)(a)

)´1›
›

B(Rn,Rn)

λ

›

›f(a+ h) ´ f(a) ´ (Df)(a)(h)
›

›

Rn

}h}Rn

.

Using (7.1.2), h Ñ 0 as k Ñ 0; thus passing k Ñ 0 on the left-hand side of the inequality
above, by the differentiability of f we conclude that

lim
kÑ0

›

›f´1(b+ k) ´ f´1(b) ´
(
(Df)(a)

)´1
k
›

›

Rn

}k}Rn

= 0 .
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This proves 3.
To see 4, we note that the map g : GL(n) Ñ GL(n) given by g(L) = L´1 is infinitely

many time differentiable; thus using the identity

(Df´1)(y) =
(
(Df)(x)

)´1
=

(
g ˝ (Df) ˝ f´1

)
(y) ,

by the chain rule we find that if f P C r, then Df´1 P C r´1 which is the same as saying that
f´1 P C r. ˝

Remark 7.2. Since f´1 : V Ñ U is continuous, for any open subset W of U f(W) =

(f´1)´1(W) is open relative to V , or f(W) = O X V for some open set O Ď Rn. In other
words, if U is an open neighborhood of x0 given by the inverse function theorem, then
f(W) is also open for all open subsets W of U . We call this property as f is a local open
mapping at x0.

Remark 7.3. Since (Df)(x0) P B(Rn,Rn), the condition that (Df)(x0) is invertible can
be replaced by that the determinant of the Jacobian matrix of f at x0 is not zero; that is,

det
([
(Df)(x0)

])
‰ 0 .

The determinant of the Jacobian matrix of f at x0 is called the Jacobian of f at x0. The
Jacobian of f at x sometimes is denoted by Jf (x) or B(f1, ¨ ¨ ¨ , fn)

B(x1, ¨ ¨ ¨ , xn)
.

Example 7.4. Let f : R Ñ R be given by

f(x) =

#

x+ 2x2 sin 1

x
if x ‰ 0 ,

0 if x = 0 .

Let 0 P (a, b) for some (small) open interval (a, b). Since f 1(x) = 1 ´ 2 cos 1

x
+ 4x sin 1

x
for

x ‰ 0, f has infinitely many critical points in (a, b), and (for whatever reasons) these critical
points are local maximum points or local minimum points of f which implies that f is not
locally invertible even though we have f 1(0) = 1 ‰ 0. One cannot apply the inverse function
theorem in this case since f is not C 1.

Corollary 7.5. Let U Ď Rn be open, f : U Ñ Rn be of class C 1, and (Df)(x) be invertible
for all x P U . Then f(W) is open for every open set W Ď U .
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在證明了小區域的（local）反函數定理 (Theorem 7.1) 之後，我們接下來要問的是全
域的（global）反函數在什麼條件之下會存在。如果照一維的反函數定理，我們會猜測是
不是只要 (Df)(x) 在整個區域都可逆就能得到在全域的反函數都存在。以下給個反例說

單單在這個條件之下，函數不一定會有一對一的性質。

Example 7.6. Let f : R2 Ñ R2 be given by

f(x, y) = (ex cos y, ex sin y) .

Then [
(Df)(x, y)

]
=

[
ex cos y ´ex sin y
ex sin y ex cos y

]
.

It is easy to see that the Jacobian of f at any point is not zero (thus (Df)(x) is invertible for
all x P R2), and f is not globally one-to-one (thus the inverse of f does not exist globally)
since for example, f(x, y) = f(x, y + 2π).

要再加什麼條件進來才能得到反函數在全域都存在是個不容易的問題。在一維的情

況下，導數是 sign definite 就表示函數在全域是嚴格單調的。在高維度的情況，即使是
(Df)(x) 到處都可逆，仍然有很多情況可能發生（如上例）。下面這個定理（全域的反函

數存在定理），從某種角度來說並沒有真的加了什麼條件以確保全域的反函數存在，只是

多要求了在所考慮的區域邊界上函數是一對一的。這個條件在一維的情況之下是自動成

立的：因為如果一單變數函數的導數是 sign definite，那麼函數在邊界上必定是一對一的
（因為嚴格單調的關係）。

Theorem 7.7 (Global Existence of Inverse Function). Let D Ď Rn be open, f : D Ñ Rn be
of class C 1, and (Df)(x) be invertible for all x P D. Suppose that K is a connected compact
subset of D, and f : BK Ñ Rn is one-to-one. Then f : K Ñ Rn is one-to-one.

Proof. Define E =
␣

x P K
ˇ

ˇ D y P K, y ‰ x Q f(x) = f(y)
(

. Our goal is to show that E = H.
Claim 1: E is closed.
Proof of claim 1: Suppose the contrary that E is not closed. Then there exists txku8

k=1 Ď E,
xk Ñ x as k Ñ 8 but x P KzE. Since xk P E, by the definition of E there exists yk P E

such that yk ‰ xk and f(xk) = f(yk). By the compactness of K, there exists a convergent
subsequence

␣

ykj
(8

j=1
of tyku8

k=1 with limit y P K. Since x R E and f(xkj) = f(ykj) Ñ f(y)

as j Ñ 8, we must have x = y; thus ykj Ñ x as j Ñ 8.
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Since (Df)(x) is invertible, by the inverse function theorem there exists δ ą 0 such that
f : D(x, δ) Ñ Rn is one-to-one. By the convergence of sequences

␣

xkj
(8

j=1
and

␣

ykj
(8

j=1
,

there exists N ą 0 such that

xkj , ykj P D(x, δ) @ j ě N .

This implies that f : D(x, δ) Ñ Rn cannot be one-to-one
(
since xkj ‰ ykj but f

(
xkj

)
=

f
(
ykj

))
, a contradiction. Therefore, E is closed.

Claim 2: E is open relative to K; that is, for every x P E, there exists an open set U such
that x P U and U X K Ď E.
Proof of claim 2:

1. x P BK X E: By the injectivity of f on BK, there exists x1 P E X int(K), x1 ‰ x,
such that f(x) = f(x1). Since (Df)(x) and (Df)(x1) are invertible, by the inverse
function theorem there exist open neighborhoods U1 of x and U2 of x1, as well as open
neighborhoods V1, V2 of f(x), such that f : U1 Ñ V1 and f : U2 Ñ V2 are both
one-to-one and onto. Since x ‰ x1, W.L.O.G. we can assume that U2 Ď int(K) and
U1 X U2 = H. Since V1 X V2 is open, the continuity of f implies that f´1(V1 X V2) =

O X D for some open set O; thus

f : U1 X O X K Ñ V1 X V2 X f(K) is one-to-one ,
f : U2 X O X K Ñ V1 X V2 X f(K) is one-to-one and onto .

Let U = U1 X O. Then every sx P U X K corresponds to a unique rx P U2 X O X K

such that f(sx) = f(rx). Since U1 XU2 = H, we must have sx ‰ rx. Therefore, sx P E, or
equivalently, U X K Ď E.

2. x P int(K) X E: It suffices to show that there exists r ą 0 such that B(x, r) Ď E.
Suppose

Now we show that E = H. Since K is connected, E is open relative to K and E is
closed, Remark 3.46 implies that E = K or E = H. Suppose the case that E = K. Let
x P BK Ď E. Then there exists y P E such that y ‰ x and f(x) = f(y). Since f : BK Ñ Rn

is one-to-one, y R BK. Therefore, we have shown that if E = K, then f(BK) Ď f
(
int(K)

)
.

By Theorem 4.21, the compactness of K implies that f(K) is compact; thus there is
b P Rn such that b R f(K). Consider the function φ : K Ñ R defined by

φ(x) =
1

2
}f(x) ´ b}2Rn =

1

2

n
ÿ

j=1

|fi(x) ´ bi|
2 .
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Then φ is a continuous function on K; thus φ attains its maximum at x0 P K. Since
f(BK) Ď f

(
int(K)

)
, we can assume that x0 P int(K); thus Theorem 6.94 implies that

(Dφ)(x0) = 0. As a consequence,[
(Df)(x0)

]T[
f(x0) ´ b

]
= 0 .

By the choice of b, f(x0) ´ b ‰ 0; thus we must have that (Df)(x0) is not invertible, a
contradiction. ˝

Example 7.8. Let f : R2 Ñ R2 be given as in Example 7.6, and D =
␣

(x, y)
ˇ

ˇx P R, 0 ă

y ă 2π
(

. Then f : D Ñ R2 is one-to-one. If K is a compact subset of D, then f : K Ñ R2

is also one-to-one (thus f : BK Ñ R2 must be one-to-one as well).

Corollary 7.9. Let D Ď Rn be a bounded open convex set, and f : D Ñ Rn be of class C 1

such that

1. f and Df are continuous on sD;

2. the Jacobian det
([
(Df)(x)

])
‰ 0 for all x P sD;

3. f : BD Ñ Rn is one-to-one.

Then f : sD Ñ Rn is one-to-one. Moreover, f´1 : f( sD) Ñ Rn is continuous, and f´1 :

f(D) Ñ D is of class C 1.

Proof. We first claim that there exists a small ε ą 0 such that f : Dε Ñ Rn is one-to-one,
where

Dε ”
␣

x P D
ˇ

ˇ d(x, BD) ă ε
(

.

Assume the contrary that for every k ą 0, there exists xk, yk P D such that

(a) xk ‰ yk; (b) d(xk, BΩ) ă
1

k
and d(yk, BΩ) ă

1

k
; (c) f(xk) = f(yk).

Since txku8
k=1 and tyku8

k=1 are bounded (due to the boundedness of D), by the Bolzano-
Weierstrass Theorem (or Corollary 3.29) there exist

␣

xkj
(8

j=1
and

␣

ykj
(8

j=1
such that xkj Ñ

x P sD and ykj Ñ y P sD. By (b), x, y P BD; thus the fact that f : BD Ñ Rn is one-to-one
implies that x = y. Therefore, xkj Ñ x and ykj Ñ x as j Ñ 8.

Let uj =
xkj

´ ykj

}xkj
´ ykj

}Rn

. Since tuju
8
j=1 is bounded in Rn, by the Bolzano-Weierstrass

Theorem again there is a convergent subsequence
␣

ujℓ
(8

ℓ=1
with limit u ‰ 0. Moreover, by
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the convexity of D, the mean value theorem implies that for each i = 1, ¨ ¨ ¨ , n, there exists
ciℓ on the line segment joining xkjℓ and ykjℓ such that

0 = fi(xkjℓ ) ´ fi(ykjℓ ) = (Dfi)(ciℓ)(xkjℓ ´ ykjℓ ) = }xkjℓ ´ ykjℓ }Rn(Dfi)(ciℓ)
(
ujℓ

)
which by (a) further shows that (Dfi)(ciℓ)

(
ujℓ

)
= 0 for all i = 1, ¨ ¨ ¨ , n and ℓ P N. Since

ciℓ Ñ x as ℓ Ñ 8, passing ℓ Ñ 8 we conclude that (Dfi)(x)(u) = 0. This holds for each
i = 1, ¨ ¨ ¨ , n; thus (Df)(x)(u) = 0. Therefore, det

(
[(Df)(x)]

)
= 0, a contradiction.

Now suppose that there exists x, y P D such that f(x) = f(y). Choose a compact set
K Ď D such that x, y P K and BK Ď Dε (this can be done, for example, by choosing that
K = sDzDδ for some small δ ą 0). Since f : Dε Ñ Rn is one-to-one, f : BK Ñ Rn is
one-to-one. By Theorem 7.7, f : K Ñ Rn is one-to-one. Then x = y; thus f : D Ñ Rn is
one-to-one.

Next, we show that f : sD Ñ Rn is one-to-one. Assume the contrary that there exists
x P D and y P BD such that f(x) = f(y). By the inverse function theorem there exists open
neighborhood U of x and V of f(x) such that f : U Ñ V is one-to-one and onto. By choosing
U even smaller if necessary, we can assume that there exists tyku8

k=1 Ď DzU and yk Ñ y

as k Ñ 8. By the continuity of f , f(yk) Ñ f(y) as k Ñ 8. However, since f : D Ñ Rn

is one-to-one,
␣

f(yk)
(8

k=1
R V ; thus

␣

f(yk)
(8

k=1
cannot converge to f(y) as k Ñ 8 (since

f(y) P V), a contradiction.
Finally, the inverse function theorem implies that f´1 : f(D) Ñ D is of class C 1, and

the continuity of f´1 on f( sD) follows from the fact that (f´1)´1(F ) = f(F ) is closed in sD
for all closed subset F of Rn. ˝

Remark 7.10. Suppose that D Ď Rn in Corollary 7.9 is open, bounded, connected but not
convex. The Whitney extension theorem (which is not covered in this text) implies that
there exists a function F : Rn Ñ Rn so that F = f and DF = Df on sD. Then Theorem
7.7 can be applied to guarantee that F is one-to-one on sD.

7.2 The Implicit Function Theorem（隱函數定理）

Theorem 7.11 (Implicit Function Theorem). Let D Ď Rn ˆRm be open, and F : D Ñ Rm

be a function of class C 1. Suppose that for some (x0, y0) P D, where x0 P Rn and y0 P Rm,
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F (x0, y0) = 0 and

[
(DyF )(x0, y0)

]
=


BF1

By1
¨ ¨ ¨

BF1

Bym
... . . . ...

BFm
By1

¨ ¨ ¨
BFm
Bym

 (x0, y0)

is invertible. Then there exists an open neighborhood U Ď Rn of x0, an open neighborhood
V Ď Rm of y0, and f : U Ñ V such that

1. F
(
x, f(x)

)
= 0 for all x P U ;

2. y0 = f(x0);

3. (Df)(x) = ´
(
(DyF )(x, f(x))

)´1
(DxF )

(
x, f(x)

)
for all x P U , where the matrix rep-

resentation of DxF (x, f(x)) P B(Rn,Rn) is given by

[
(DxF )(x, y)

]
=


BF1

Bx1
¨ ¨ ¨

BF1

Bxn
... . . . ...

BFm
Bx1

¨ ¨ ¨
BFm
Bxn

 (x, y) .

4. f is of class C 1;

5. If F is of class C r for some r ą 1, so is f .

Proof. Let z = (x, y) and w = (u, v), where x, u P Rn and y, v P Rm. Define G by
G(x, y) =

(
x, F (x, y)

)
, and write w = G(z). Then G : D Ñ Rn+m, and

[
(DG)(x, y)

]
=

[
In 0

(DxF )(x, y) (DyF )(x, y)

]
,

where In is the n ˆ n identity matrix. We note that the Jacobian of G at (x0, y0) is
det

(
[(DyF )(x0, y0)]

)
which does not vanish since (DyF )(x0, y0) is invertible, so the inverse

function theorem implies that there exists open neighborhoods O of (x0, y0) and W of(
x0, F (x0, y0)

)
= (x0, 0) such that

(a) G : O Ñ W is one-to-one and onto;

(b) the inverse function G´1 : W Ñ O is of class C r;
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(c) (DG´1)
(
x, F (x, y)

)
=

(
(DG)(x, y)

)´1.

By Remark 7.2, W.L.O.G. we can assume that O = U ˆ V , where U Ď Rn and V Ď Rm are
open, and x0 P U , y0 P V .

Write G´1(u, v) =
(
φ(u, v), ψ(u, v)

)
, where φ : W Ñ U and ψ : W Ñ V . Then

(u, v) = G
(
φ(u, v), ψ(u, v)

)
=

(
φ(u, v), F (u, ψ(u, v))

)
which implies that φ(u, v) = u and v = F (u, ψ(u, v)). Let f(x) = ψ(x, 0). Then

(
u, f(u)

)
P

U ˆ V is the unique point satisfying F
(
u, f(u)

)
= 0 if u P U . Therefore, f : U Ñ V , and

F
(
x, f(x)

)
= 0 @x P U .

Since G(x0, y0) = (x0, 0) = G
(
x0, f(x0)

)
, (x0, y0),

(
x0, f(x0)

)
P O, and G : O Ñ W is

one-to-one, we must have y0 = f(x0).
By (b) and (c), we have G´1 is of class C 1, and

(DG´1)(u, v) =
(
(DG)(x, y)

)´1
.

As a consequence, ψ P C 1, and[
(Duφ)(u, v) (Dvφ)(u, v)

(Duψ)(u, v) (Dvψ)(u, v)

]
=

[
In 0

(DxF )(x, y) (DyF )(x, y)

]´1

=

[
In 0

´
(
(DyF )(x, y)

)´1
(DxF )(x, y)

(
(DyF )(x, y)

)´1

]
.

Evaluating the equation above at v = 0, we conclude that

(Df)(u) = (Duψ)(u, 0) = ´
(
(DyF )(u, f(u))

)´1
(DxF )

(
u, f(u)

)
which implies 3. We also note that 4 follows from (b) and 5 follows from 3. ˝

Alternative proof of Theorem 7.11 without applying the inverse function theorem. Let z =
(x, y), z0 = (x0, y0), A = (DxF )(x0, y0) and B = (DyF )(x0, y0). Define

r(x, y) = F (x, y) ´ A(x ´ x0) ´ B(y ´ y0) .

Our goal is to solve the equation

0 = A(x ´ x0) +B(y ´ y0) + r(x, y)
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for y. By the invertibility of B, this is equivalent of finding a fixed-point of the map

Φx(y) = y0 ´ B´1
[
A(x ´ x0) + r(x, y)

]
.

Since r is of class C 1 and (Dr)(x0, y0) = 0,

D δ ą 0 Q }(Dr)(x, y)}B(Rm,Rm) ă min
␣ 1

4m}B´1}B(Rm,Rm)
,

1

2m

(

@ z P D(z0, δ) .

Therefore, the mean value theorem (Theorem 6.49) implies that

›

›r(x, y) ´ r(x0, y0)
›

›

Rm ď

m
ÿ

i=1

ˇ

ˇri(x, y) ´ ri(x0, y0)
ˇ

ˇ =
m
ÿ

i=1

ˇ

ˇ(Dri)(ci)(z ´ z0)
ˇ

ˇ

ď
}z ´ z0}Rn+m

4}B´1}B(Rm,Rm)

ă
δ

4}B´1}B(Rm,Rm)

for all z = (x, y) P D
(
x0,

δ

2
) ˆ D

(
y0,

δ

2

)
Ď D(z0, δ), and

›

›Φx(y1) ´ Φx(y2)
›

›

Rm ď }B´1}B(Rm,Rm)}r(x, y1) ´ r(x, y2)}Rm ă
1

4
}y1 ´ y2}Rm (7.2.1)

if x P D
(
x0,

δ

2

)
, y1, y2 P D

(
y0,

δ

2

)
and y1 ‰ y2. As a consequence, for each (fixed) x satisfying

}x ´ x0}Rn ă r ” min
!

δ

4
(
1 + }A}B(Rn,Rm)

)
}B´1}B(Rm,Rm)

,
δ

2

)

, if }y ´ y0}Rm ă
δ

2
we have

}Φx(y) ´ y0}Rn ď }B´1}B(Rm,Rm)

›

›A(x ´ x0) + r(x, y)
›

›

Rm

ď }B´1}B(Rm,Rm)

[
}A}B(Rn,Rm)}x ´ x0}Rn + }r(x, y)}Rm)

]
ă
δ

2
. (7.2.2)

Let M =
␣

y P Rm
ˇ

ˇ }y ´ y0}Rm ď
δ

2

(

. Then for each x P U ” D(x0, r), (7.2.1) and (7.2.2)
imply that Φx :M Ñ M is a contraction mapping; thus there is a unique fixed-point y P M .
Denote this unique fixed-point as f(x). Then f : U Ñ V ” D

(
y0,

?
3δ

2

)
(the choice of this

V guarantees that U ˆ V Ď D(z0, δ)) and

F
(
x, f(x)

)
= A(x ´ x0) +B

(
f(x) ´ y0

)
+ r

(
x, f(x)

)
= 0 .

Moreover, since F (x, y) = 0 if and only if y is a fixed-point of Φx, and the contraction
mapping principle provides the uniqueness of the fixed-point if (x, y) P U ˆ M . Since
(x0, y0), (x0, f(x0)) P U ˆ M , we must have y0 = f(x0).
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To see the differentiability of f , we first claim that f : U Ñ V is continuous. Since f(x)
is the fixed-point of Φx,

f(x) = y0 ´ B´1
(
A(x ´ x0) + r(x, f(x))

)
.

If x1, x2 P U , then (x1, f(x1)), (x2, f(x2)) P D(z0, δ); thus (7.2.1) implies that
›

›f(x1) ´ f(x2)
›

›

Rm =
›

›B´1A(x1 ´ x2)
›

›

Rm +
›

›r(x1, f(x1)) ´ r(x2, f(x2))
›

›

Rm

ď }B´1A}B(Rn,Rm)}x1 ´ x2}Rn +
1

2

b

}x1 ´ x2}2Rn + }f(x1) ´ f(x2)}2Rm

ď }B´1A}B(Rn,Rm)}x1 ´ x2}Rn +
1

2
}x1 ´ x2}Rn +

1

2
}f(x1) ´ f(x2)}Rm .

Therefore,
›

›f(x1) ´ f(x2)
›

›

Rm ď
(
2}B´1A}B(Rn,Rm) + 1

)
}x1 ´ x2}Rn (7.2.3)

which implies that f : U Ñ V is (Lipschitz) continuous.
Now let a P U and ε ą 0 be given. Define b = (a, f(a)), and rA = (DxF )(b), rB =

(DyF )(b). We would like to show that there exists δ1 ą 0 such that
›

›f(x) ´ f(a) + rB´1
rA(x ´ a)

›

›

Rm ď ε}x ´ a}Rn @x P D(a, δ1) .

Since F P C 1 and the map L ÞÑ L´1 is continuous, there exists δ2 ą 0 such that
›

›(DyF )(z)
´1(DxF )(z) ´ (DyF )(z0)

´1(DxF )(z0)
›

›

B(Rn,Rm)
ď
ε

4
@ z P D(z0, δ2) .

Moreover, since r P C 1, there exists δ3 ą 0 such that
›

›r(z) ´ r(b) ´ (Dr)(b)(z ´ b)
›

›

Rm ď
ε

2}B´1}B(Rm,Rm)

}z ´ b}Rn+m @ z P D(b, δ3)

and
›

›(Dr)(z) ´ (Dr)(b)
›

›

B(Rn+m,Rm)
ď

ε

2}B´1}B(Rm,Rm)

}z ´ b}Rn+m @ z P D(b, δ3) .

Choose δ1 = min
!

δ2
2
,
δ3
2
,

δ3
2(2}B´1A}B(Rn,Rm) + 1)

)

. Then if }x´ a}Rn ă δ1, using (7.2.3)

we find that
›

›(x, f(x)) ´ (a, f(a))
›

›

Rn+m ď }x ´ a}Rn + }f(x) ´ f(a)}Rm ă mintδ2, δ3u ;
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thus if }x ´ a}Rn ă δ1,
›

›f(x) ´ f(a) + rB´1
rA(x ´ a)

›

›

Rm

=
›

›

(
rB´1

rA ´ B´1A
)
(x ´ a) +B´1

(
r(x, f(x)) ´ r(a, f(a))

)›
›

Rm

ď
›

› rB´1
rA ´ B´1A

›

›

B(Rn,Rm)
}x ´ a}Rn

+ }B´1}B(Rm,Rm)

›

›r(x, f(x)) ´ r(a, f(a)) ´ (Dr)(b)
(
x ´ a, f(x) ´ f(a)

)›
›

Rm

+ }B´1}B(Rm,Rm)

›

›(Dr)(b)
(
(x ´ a, f(x) ´ f(a)

)›
›

Rm ď ε}x ´ a}Rn .

Therefore, f is differentiable on U , and

(Df)(x) = ´
(
(DyF )(x, f(x))

)´1
(DxF )

(
x, f(x)

)
@x P U . (7.2.4)

Since F is of class C 1 and f is continuous on U , we find that Df is continuous; thus f is of
class C 1. ˝

Example 7.12. Let F (x, y) = x2 + y2 ´ 1.

1. If (x0, y0) = (1, 0), then Fx(x0, y0) = 2 ‰ 0; thus the implicit function theorem implies
that locally x can be expressed as a function of y.

2. If (x0, y0) = (0,´1), then Fy(x0, y0) = ´2 ‰ 0; thus the implicit function theorem
implies that locally y can be expressed as a function of x.

3. If (x0, y0) =
(

´
1

2
,

?
3

2

)
, then Fx(x0, y0) = ´1 ‰ 0 and Fy(x0, y0) =

?
3 ‰ 0; thus the

implicit function theorem implies that locally x can be expressed as a function of y
and locally y can be expressed as a function of x.

Example 7.13. Suppose that (x, y, u, v) satisfies the equation
"

xu+ yv2 = 0

xv3 + y2u6 = 0

and (x0, y0, u0, v0) = (1,´1, 1,´1). Let F (x, y, u, v) = (xu + yv2, xv3 + y2u6). Then
F (x0, y0, u0, v0) = 0.

1. Since (Dx,yF )(x0, y0, u0, v0) =


BF1

Bx

BF1

By
BF2

Bx

BF2

By

 (x0, y0, u0, v0) =

[
1 1

´1 ´2

]
is invertible,

locally (x, y) can be expressed in terms of u, v; that is, locally x = x(u, v) and y =

y(u, v).
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2. Since (Dy,uF )(x0, y0, u0, v0) =


BF1

By

BF1

Bu
BF2

By

BF2

Bu

 (x0, y0, u0, v0) =

[
1 1

´2 6

]
is invertible,

locally (y, u) can be expressed in terms of x, v.

Example 7.14. Let f : R3 Ñ R2 be given by

f(x, y, z) = (xey + yez, xez + zey) .

Then f is of class C 1, f(´1, 1, 1) = (0, 0) and

[
(Df)(x, y, z)

]
=

[
ey xey + ez yez

ez zey xez + ey

]
.

Since (Dy,zf)(´1, 1, 1) =

[
0 e
e 0

]
is invertible, the implicit function theorem implies that the

system
"

xey + yez = 0
xez + zey = 0

can be solved for y and z as continuously differentiable function of x for x near ´1 and (y, z)

near (1, 1). Furthermore, if we write (y, z) = g(x) for x near ´1, then

g1(x) =

[
xey + ez yez

zey xez + ey

]´1 [
ey

ez

]
.

7.3 The Lagrange Multipliers
In this section we are concerned with the optimization problem

“find the extreme value of function y = f(x) subject to the constraint g(x) = 0”, (7.3.1)

where f : Rn Ñ R is a real-value differentiable function, and g : Rn Ñ Rm is a vector-valued
C 1-function for some m ă n. We assume that the feasible set

␣

x
ˇ

ˇ g(x) = 0
(

is non-empty
and does not contain isolated points (or the extreme value of f is not attained at isolated
points of the feasible set), and all the local extreme points of f do not belong to the feasible
set (otherwise we can ignore the constraint and find the local extreme value of f directly).

Suppose that f attains its extreme value, subject to the constraint g = 0, at point a,
and the Jacobian matrix of g at a has rank m (that is, [(Dg)(a)] has full rank). Without
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loss of generality we can assume that the square matrix
Bg1
Bx1

(a) ¨ ¨ ¨
Bg1
Bxm

(a)

... . . . ...
Bgm
Bx1

(a) ¨ ¨ ¨
Bgm
Bxm

(a)


is invertible (thus has rank m). Then the implicit function theorem implies there exist an
open neighborhood V of (am+1, ¨ ¨ ¨ , an) and a C 1-function φ : V Ñ Rm such that in a
neighborhood of a, the feasible set can be expressed as

(x1, ¨ ¨ ¨ , xm) = φ(xm+1, ¨ ¨ ¨ , xn) (xm+1, ¨ ¨ ¨ , xn) P V .

Under these settings, the original optimization problem (7.3.1) is transformed as “the func-
tion y = f

(
φ(xm+1, ¨ ¨ ¨ , xn), xm+1, ¨ ¨ ¨ , xn

)
attains its extreme value at (am+1, ¨ ¨ ¨ , an)”;

thus
B

Bxm+1

ˇ

ˇ

ˇ

(xm+1,¨¨¨ ,xn)=(am+1,¨¨¨ ,an)
f
(
φ(xm+1, ¨ ¨ ¨ , xn), xm+1, ¨ ¨ ¨ , xn

)
= 0 ,

B

Bxm+2

ˇ

ˇ

ˇ

(xm+1,¨¨¨ ,xn)=(am+1,¨¨¨ ,an)
f
(
φ(xm+1, ¨ ¨ ¨ , xn), xm+1, ¨ ¨ ¨ , xn

)
= 0 ,

...
B

Bxn

ˇ

ˇ

ˇ

(xm+1,¨¨¨ ,xn)=(am+1,¨¨¨ ,an)
f
(
φ(xm+1, ¨ ¨ ¨ , xn), xm+1, ¨ ¨ ¨ , xn

)
= 0 ,

or using the chain rule,[
Bf

Bx1
(a) ¨ ¨ ¨

Bf

Bxm
(a)

]
Bφ

Bxj
(am+1, ¨ ¨ ¨ , an) +

Bf

Bxj
(a) = 0 for m+ 1 ď j ď n . (7.3.2)

Noting that the implicit function theorem implies that

[
(Dφ)(am+1, ¨ ¨ ¨ , an)

]
= ´


Bg1
Bx1

(a) ¨ ¨ ¨
Bg1
Bxm

(a)

... . . . ...
Bgm
Bx1

(a) ¨ ¨ ¨
Bgm
Bxm

(a)


´1 

Bg1
Bxm+1

(a) ¨ ¨ ¨
Bg1
Bxn

(a)

... ...
Bgm

Bxm+1
(a) ¨ ¨ ¨

Bgm
Bxn

(a)

 ,

we find that for m+ 1 ď j ď n,

Bφ

Bxj
(am+1, ¨ ¨ ¨ , an) = ´


Bg1
Bx1

(a) ¨ ¨ ¨
Bg1
Bxm

(a)

... . . . ...
Bgm
Bx1

(a) ¨ ¨ ¨
Bgm
Bxm

(a)


´1 

Bg1
Bxj

(a)

...
Bgm
Bxj

(a)

 .
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Define

[
λ1 λ2 ¨ ¨ ¨ λm

]
= ´

[
Bf

Bx1
(a) ¨ ¨ ¨

Bf

Bxm
(a)

]
Bg1
Bx1

(a) ¨ ¨ ¨
Bg1
Bxm

(a)

... . . . ...
Bgm
Bx1

(a) ¨ ¨ ¨
Bgm
Bxm

(a)


´1

.

Then (7.3.2) implies that

Bf

Bxj
(a) + λ1

Bg1
Bxj

(a) + λ2
Bg2
Bxj

(a) + ¨ ¨ ¨ + λm
Bgm
Bxj

(a) = 0 for m+ 1 ď j ď n. (7.3.3)

On the other hand, by the fact that
Bg1
Bx1

(a) ¨ ¨ ¨
Bg1
Bxm

(a)

... . . . ...
Bgm
Bx1

(a) ¨ ¨ ¨
Bgm
Bxm

(a)


´1 

Bg1
Bx1

(a) ¨ ¨ ¨
Bg1
Bxm

(a)

... . . . ...
Bgm
Bx1

(a) ¨ ¨ ¨
Bgm
Bxm

(a)

 = Imˆm ,

for 1 ď j ď m, 
Bg1
Bx1

(a) ¨ ¨ ¨
Bg1
Bxm

(a)

... . . . ...
Bgm
Bx1

(a) ¨ ¨ ¨
Bgm
Bxm

(a)


´1 

Bg1
Bxj

(a)

...
Bgm
Bxj

(a)

 = ej ,

where tejumj=1 is the standard basis of Rm. Therefore, left multiplying the equation above

by the row vector ´

[
Bf

Bx1
(a) ¨ ¨ ¨

Bf

Bxm
(a)

]
, we obtain that

λ1
Bg1
Bxj

(a) + λ2
Bg2
Bxj

(a) + ¨ ¨ ¨ + λm
Bgm
Bxj

(a) = ´
Bf

Bxj
(a) for 1 ď j ď m. (7.3.4)

Combining (7.3.3) and (7.3.4), we conclude that

Bf

Bxj
(a) + λ1

Bg1
Bxj

(a) + λ2
Bg2
Bxj

(a) + ¨ ¨ ¨ + λm
Bgm
Bxj

(a) = 0 for 1 ď j ď n

or equivalently, [
(Df)(a)

]
+
[
λ1 λ2 ¨ ¨ ¨ λm

] [
(Dg)(a)

]
= 0 .

We then establish the following
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Theorem 7.15 (Lagrange Multipliers). Let U Ď Rn be an open set, f : U Ñ R be differen-
tiable, g : U Ñ Rm be of class C 1 for some m ă n, and S =

␣

x P U
ˇ

ˇ g(x) = 0
(

. Suppose that
S ‰ H and f |S , the restriction of f on S, attains its extreme value at a P S. If

[
(Dg)(a)

]
has full rank, then there exist λ1, λ2, ¨ ¨ ¨ , λm P R such that[

(Df)(a)
]
+
[
λ1 λ2 ¨ ¨ ¨ λm

] [
(Dg)(a)

]
= 0 .

7.4 Exercises
§7.1 The Inverse Function Theorem

Problem 7.1. Prove Corollary 7.4; that is, show that if U Ď Rn is open, f : U Ñ Rn is
of class C 1, and (Df)(x) is invertible for all x P U , then f(W) is open for every open set
W Ď U .

§7.2 The Implicit Function Theorem

Problem 7.2. Assume that one proves the implicit function theorem without applying the
inverse theorem. Show the inverse function using the implicit function theorem.

Problem 7.3. Suppose that F (x, y, z) = 0 is such that the functions z = f(x, y), x =

g(y, z), and y = h(z, x) all exist by the implicit function theorem. Show that fx ¨gy ¨hz = ´1.

Problem 7.4. Suppose that the implicit function theorem applies to F (x, y) = 0 so that
y = f(x). Find a formula for f2 in terms of F and its partial derivatives. Similarly, suppose
that the implicit function theorem applies to F (x1, x2, y) = 0 so that y = f(x1, x2). Find
formulas for fx1x1 , fx1x2 and fx2x2 in terms of F and its partial derivatives.

Problem 7.5. Given F : R4 Ñ R2 and suppose that F (x, y) = 0, where x = (x1, x2) and
y = (y1, y2). State conditions which guarantees that the equation

By1
Bx1

Bx2
By1

+
By2
Bx1

Bx2
By2

= 0

holds. Prove or justify your answer.

§7.3 The Lagranege Multipliers

Problem 7.6 (True or False). Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.
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1.

2.

3.


