Chapter 7

The Inverse and the Implicit Function
Theorems
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Theorem 7.1 (Inverse Function Theorem). Let D < R™ be open, xo € D, [ : D — R" be
of class €1, and (D f)(xo) be invertible. Then there exist an open neighborhood U of x¢ and
an open neighborhood V of f(xq) such that

1. f:U — YV is one-to-one and onto;
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258 CuAPTER 7. Inverse and Implicit Function Theorems

2. The inverse function f=1:V — U is of class €*;
3. If v = f~\(y), then (Df)(y) = (D)) ;
4. If f is of class € for some r > 1, so is f1.

Proof. Assume that A = (Df)(zo). Then |A™!|g@nrn # 0. Choose A > 0 such that
2A| A 5@n gy = 1. Since f € €, there exists § > 0 such that

[(DF)@) = Al g gy = (D)) — (D) (a0)

By choosing § even smaller if necessary, we can assume that D(zg,0) € D. Let U = D(xq,9).

sn gy <A Whenever z € D(zo,6) nD.

Claim: f:U — R"™ is one-to-one (hence f : U — f(U) is one-to-one and onto).
Proof of claim: For each y € R™, define ¢,(z) = x + A7 (y — f(x)) (and we note that every
fixed-point of ¢, corresponds to a solution to f(z) = y). Then

(D) (z) =1d = A™H(Df)(z) = A1 (A~ (Df)()),

where Id is the identity map on R™. Therefore,

- 1
H(Dgoy)(I)H@(Ran) < HA IH%’(R",R")HA . (Df)(l’) B(Rn R™) < 5 Vxe D(Io, 5) :
By the mean value theorem (Theorem 6.49),
1
loy(z1) — ()Dy(l'g)HRn < EHxl —Zy|re Vi, x9 € D(xg,0), 1 # Tg; (7.1.1)

thus at most one x satisfies ¢,(z) = z; that is, ¢, has at most one fixed-point. As a
consequence, f : D(xg,d) = R" is one-to-one.

Claim: The set V = f(U) is open.

Proof of claim: Let-b-€ V. Then there is a € U with f(a) = b. Choose r > 0 such that
D(a,r) < U. We observe that if y € D(b, \r), then

I

N3

ley(a) — alrn < A7 (y — f(@))]rr < |A7 | @@n gy — blre < AJA™ | p@nre)r =

thus if y € D(b, A\r) and = € D(a,r),

1 T
loy(z) — alrn < |@y(x) — @y(a)|g. + loy(a) — afrn < Sl —algn +5 <.

Therefore, if y € D(b, Ar), then ¢, : D(a,r) — D(a,r). By the continuity of ¢,,

@, : D(a,r) = D(a,r).
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On the other hand, (7.1.1) implies that ¢, is a contraction mapping if y € D(b, Ar); thus by
the contraction mapping principle 5.89 ¢, has a unique fixed-point € D(a,r). As a result,
every y € D(b, Ar) corresponds to a unique z € D(a,r) such that ¢, (x) = = or equivalently,
f(z) = y. Therefore,
D(b,Ar) < f(D(a,r)) < f(U)=V.
Next we show that f=':V — U is differentiable. We note that if z € D(z,d),

1

[(Df) (o) = (Df) ()] p@n 2y |A™ | p@n mry < A|A™| @n mry = 5

thus Theorem 6.8 implies that (D f)(z) is invertible if x € D(xy, d).

Let b € V and k € R" such that b + k € V. Then there exists a unique a € U and
h = h(k) € R™ such that a + h € U, b = f(a) and b+ k = f(a+ h). By the mean value
theorem and (7.1.1),

1
HSOy(a +h) — QOy(Cl)HRn < §Hh”R“ )
thus the fact that f(a + h) — f(a) = k implies that

I~ Akl 25 e
which further shows that
Wl < A7 Rk & A o oy ol < o [l (712)
As a consequence, if k is such that b+ k€ V,
|17 b+ k) = 1748 5 ((DA)(@) kg Jath—a— (D)(@) kg,

S T
<[ (f) ()™ |k — (Df)(a)(h)|

2@ e

fla+h) = f(a) = (DF)(@) (D) |gn |h]en
< H((Df)(a) H%(R“,R") ” : <h|Rn< A H "kHR”
_ N @N@) g |0+ 1) = £(a) = (DA (@B
h A [l '

Using (7.1.2), h — 0 as k — 0; thus passing k — 0 on the left-hand side of the inequality
above, by the differentiability of f we conclude that

e R = 17 0) = (DH@) kg

kﬁO |1 k||gn

=0.
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This proves 3.
To see 4, we note that the map g : GL(n) — GL(n) given by ¢g(L) = L™! is infinitely

many time differentiable; thus using the identity

(DF () = (D))" = (g0 (Df) o f (),

by the chain rule we find that if f € ", then Df~! € ¥"~! which is the same as saying that
flteer. =

Remark 7.2. Since f~' : V — U is continuous, for any open subset W of U f(W) =
(f~H71(W) is open relative to V, or f(W) = O nV for some open set O < R". In other
words, if U is an open neighborhood of xy given by the inverse function theorem, then
f(W) is also open for all open subsets W of U. We call this property as f is a local open

mapping at x.

Remark 7.3. Since (Df)(zo) € B(R",R"), the-condition that (Df)(xg) is invertible can

be replaced by that the determinant of the Jacobian matrix of f at x( is not zero; that is,

det ([(Df)(0)]) # 0.

The determinant of the Jacobian matrix of f at z¢ is called the Jacobian of f at zy. The
a(fh“' ?fn)

Jacobian of f at x sometimes is denoted by J¢(z) or ———>""=.
a(xh T 7'%'%)

Example 7.4. Let f: R = R be given by

1
x+22%sin— ifx #0,

flx) = x
0 ifxr=20.

Let 0 € (a,b) for some (small) open interval (a,b). Since f'(z) =1 — 2608 — 44z sm1 for
x # 0, f has infinitely many critical points in (a, b), and (for whatever reasons) these crltlcal
points are local maximum points or local minimum points of f which implies that f is not
locally invertible even though we have f’(0) = 1 # 0. One cannot apply the inverse function

theorem in this case since f is not €.

Corollary 7.5. Let U < R™ be open, f: U — R™ be of class €, and (D f)(z) be invertible
forallx eU. Then f(W) is open for every open set W < U.
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Example 7.6. Let f : R? — R? be given by

f(z,y) = (e" cosy, e”siny) .

Then
e*cosy —e¥siny
[(Df)(z.y)] = [ . . ] :
e’siny e"cosy
It is easy to see that the Jacobian of f at any point is not zero (thus (D f)(z) is invertible for
all z € R?), and f is not globally one-to-one (thus the inverse of f does not exist globally)

since for example, f(z,y) = f(z,y + 27).

B R A AR R ?Eilﬁﬁﬁié_’if‘,a FAEBA R P - Benl
T Hied sign deﬁmtei*z\:r.ﬁﬁ }_-&gskgg:ﬁ Acho bR MR PR T L
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Theorem 7.7 (Global Existence of Inverse Function). Let D < R™ be open, f: D — R"™ be
of class €', and (Df)(x) be invertible for all x € D. Suppose that K is a connected compact
subset of D, and f : 0K — R" is one-to-one. Then f: K — R" is one-to-one.

Proof. Define E = {z € K ‘ Jye K,y # x5 f(z) = f(y)}. Our goal is to show that £ = (.
Claim 1: F is closed.

Proof of claim 1: Suppose the contrary that £ is not closed. Then there exists {zx}7"; € E,
xp — x as k — oo but x € K\E. Since z; € E, by the definition of F there exists y, € F
such that y, # z and f(xx) = f(yx). By the compactness of K, there exists a convergent
subsequence {y, } of {yx}{Z, with limit y € K. Since x ¢ E and f(xx,) = f(yr,) — f(v)

as j — 00, we must have r = y; thus yp, — z as j — .
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Since (D f)(x) is invertible, by the inverse function theorem there exists 6 > 0 such that
f: D(x,6) — R™ is one-to-one. By the convergence of sequences {:pkj};o:l and {ykj };il,
there exists N > 0 such that

xkj>ykjED(3375) VJZN

This implies that f : D(z,6) — R" cannot be one-to-one (since xj, # yi, but f(zy,) =
f (ykj)), a contradiction. Therefore, F is closed.

Claim 2: FE is open relative to K; that is, for every x € E, there exists an open set U such
that red andU " K € F.

Proof of claim 2:

1. x € 0K n E: By the injectivity of f on 0K, there exists 2’ € F n int(K), 2’ # «x,
such that f(z) = f(2'). Since (Df)(z) and (Df)(z') are invertible, by the inverse
function theorem there exist open neighborhoods U; of o and U, of x’, as well as open
neighborhoods Vy, Vs of f(x), such that f : Uy — Vi and f : Uy — Vs, are both
one-to-one and onto. Since z # ', W.L.O.G."we can assume that Uy < int(K) and
Uy nUy = . Since V) N Vs, is open, the continuity of f implies that f~1(V; n V) =
O N D for some open set O; thus

fUnOnK->VinVYyn f(K) is one-to-one,
f:Usn O K->V nVyn f(K) is one-to-one and onto .
Let Y = U; n O. Then every T € U n K corresponds to a unique £ € Uy n O n K

such that f(z) = f(Z).Since Uy nUy = &, we must have T # Z. Therefore, T € E, or
equivalently, U n K-S E.

2. z € int(K) n E: It suffices to show that there exists » > 0 such that B(z,r) < E.
Suppose

Now we show that £ = ¢J. Since K is connected, E is open relative to K and F is
closed, Remark 3.46 implies that £ = K or F = (J. Suppose the case that £ = K. Let
x € 0K € E. Then there exists y € F such that y # = and f(z) = f(y). Since f : 0K — R"
is one-to-one, y ¢ dK. Therefore, we have shown that if F = K, then f(0K) < f(int(K)).

By Theorem 4.21, the compactness of K implies that f(K) is compact; thus there is
b e R" such that b ¢ f(K). Consider the function ¢ : K — R defined by

l\D|+—~

pla) = 3£ (x) ~ bl =
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Then ¢ is a continuous function on K; thus ¢ attains its maximum at zy € K. Since
f(0K) < f(int(K)), we can assume that zo € int(K); thus Theorem 6.94 implies that
(Dg)(z9) = 0. As a consequence,

[(Df)(0)] " [f(xo) —b] =0.

By the choice of b, f(xzg) —b # 0; thus we must have that (Df)(xg) is not invertible, a

contradiction. o

Example 7.8. Let f : R* — R? be given as in Example 7.6, and D = {(z,y) |z € R,0 <
y < 27r}. Then f : D — R? is one-to-one. If K is a compact subset of D, then f : K — R?

is also one-to-one (thus f : 0K — R? must be one-to-one as well):

Corollary 7.9. Let D < R™ be a bounded open convex set, and f : D — R™ be of class €*
such that

1. f and Df are continuous on D;
2. the Jacobian det ([(Df)(z)]) # 0 for all z € D;
3. f:0D — R" is one-to-one.

Then f : D — R™ is one-to-one.” Moreover, f~* : f(D) — R" is continuous, and f~' :

f(D) — D is of class €*.

Proof. We first claim that there exists a small ¢ > 0 such that f : D. — R" is one-to-one,

where

D. ={zeD|d(z,0D) <¢e}.

Assume the contrary that for every k > 0, there exists zy, yx € D such that
1 1
(a) xp # yr;  (b) d(zg, 0Q) < Z and d(yx, 0Q2) < X (c) flxk) = f(yr).

Since {xx}y, and {yx},>,; are bounded (due to the boundedness of D), by the Bolzano-

Weierstrass Theorem (or Corollary 3.29) there exist {xkj}j.o:l and {ykj};ozl such that x;;, —
z € D and Yk, — Y € D. By (b), z,y € 0D; thus the fact that f : 6D — R" is one-to-one
implies that x = y. Therefore, 3, — = and y;, — x as j — o0.

ZC}CJ. - yk,-
|2k, — Yk, |Irn
Theorem again there is a convergent subsequence {ujé}z.;l with limit v # 0. Moreover, by

Let u; = Since {u;}72, is bounded in R", by the Bolzano-Weierstrass
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the convexity of D, the mean value theorem implies that for each i = 1,--- , n, there exists

cie on the line segment joining xy,; and y,, such that

0= filxx,) = filyr,,) = (Dfi)(cie) (Tr;, — Yk;,) = |5, — Yk, e (D fi)(cie) (uy,)

which by (a) further shows that (Df;)(cic)(uj,) = 0 for all i = 1,--- ,n and £ € N. Since
ciy — x as £ — oo, passing { — o we conclude that (D f;)(z)(u) = 0. This holds for each
i=1,---,n; thus (Df)(z)(u) = 0. Therefore, det ([(Df)(x)]) = 0, a contradiction.

Now suppose that there exists z,y € D such that f(z) = f(y). Choese a compact set
K < D such that z,y € K and 0K < D, (this can be done, for example, by choosing that
K = D\Djs for some small § > 0). Since f : D. — R" is one-to-one, f : dK — R" is
one-to-one. By Theorem 7.7, f : K — R" is one-to-one. Then 'z = y; thus f: D — R" is
one-to-one.

Next, we show that f : D — R™ is one-to-one. Assume the contrary that there exists
x € D and y € 0D such that f(z) = f(y). By theinverse function theorem there exists open
neighborhood U of x and V of f(x) such that f : & — V is one-to-one and onto. By choosing
U even smaller if necessary, we can assume that there exists {yx}io, € D\U and yp — y
as k — oo. By the continuity of f, f(yx) = f(y) as k — oo. However, since f : D — R”
is one-to-one, {f(yk)}lzozl ¢ V; thus {f(yk)}zozl cannot converge to f(y) as k — oo (since
f(y) € V), a contradiction.

Finally, the inverse function theorem implies that f=1 : f(D) — D is of class ¢, and
the continuity of £~ on f(D) follows from the fact that (f~!)"}(F) = f(F) is closed in D
for all closed subset /' of R™. o

Remark 7.10. Suppose that D < R" in Corollary 7.9 is open, bounded, connected but not
convex. The Whitney extension theorem (which is not covered in this text) implies that
there exists a function F' : R” — R" so that ' = f and DF = Df on D. Then Theorem

7.7 can be applied to guarantee that F is one-to-one on D.

7.2 The Implicit Function Theorem (‘£ & #7332 )

Theorem 7.11 (Implicit Function Theorem). Let D < R™ x R™ be open, and F : D — R™

be a function of class €*. Suppose that for some (xg,y0) € D, where xo € R™ and yo € R™,
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265
F(zo,90) =0 and
ayl aym
[(DnyxO?yo)} = . : (20, %0)
0Fn  0Fy
L 1 OYm

is invertible. Then there exists an open neighborhood U = R™ of xq, an open neighborhood
Y < R™ of yo, and f : U — V such that

1. F(z, f(x)) =0 for all x € U;

2. yo = f(z0);

3. (Df)(z) = —((DyF)(x,f(x)))_l(DwF)(x,f(x)) for all x'€ U, where the matriz rep-
resentation of D, F(x, f(x)) € ZR",R") is given by

or1 0Ty,
0Fy  0Fy
L 0z Oz, |
4. f is of class €*;
5. If F is of class €" for some r> 1, so is f.
Proof. Let z = (z,y) and w = (u,v), where z,u € R" and y,v € R™. Define G by

G(z,y) = (z,F(zy)), and write w = G(z). Then G : D — R"*™ and

L, 0
G)(x, =
(PO = b pye) (DF) )

where [, is the n x n identity matrix. We note that the Jacobian of G at (zg,yo) is

det ([(DyF) (o, yo)]) which does not vanish since (D, F)(zo,yo) is invertible, so the inverse

function theorem implies that there exists open neighborhoods O of (zg,y0) and W of
(20, F(z0,Y0)) = (x0,0) such that

(a) G : O — W is one-to-one and onto;

(b) the inverse function G=! : W — O is of class €7;
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(¢) (DG™Y)(z, F(z,y)) = ((DG)(z,y))”"

By Remark 7.2, W.L.O.G. we can assume that O =U x V, where Y < R" and V < R™ are
open, and xg € U, yo € V.
Write G~ (u,v) = (p(u, v),¥(u,v)), where ¢ : W — U and ¢ : W — V. Then

(u7v) = G(@(uav)v¢(u7v)) = (90(U>U)7F(U7¢(U7U)))

which implies that ¢(u,v) = u and v = F(u,¢(u,v)). Let f(z) = ¢(z,0). Then (u, f(u)) €
U x V is the unique point satisfying F(u, f(u)) =0 if u € U. Therefore, f: U — V, and

F(z, f(z)) =0 Veel.

Since G(zo,40) = (20,0) = G (o, f(0)), (%0, %), (z0, f(20)) € O, and G : O — W is
one-to-one, we must have yo = f ().
By (b) and (c), we have G~ is of class ¢!, and

(DG (u,v) = ((DG) ()~

As a consequence, 1) € ¢!, and

(Dup)(u,v) (Dyp)(u,v) _ L, 0
(D) (u,v) (D) (u,0)|  |(DaF)(z,y) (DyF)(z,y)
B i I, 0
(D, F) ) (D F) @ y) ((DyF)(,y)

Evaluating the equation above at v = 0, we conclude that
-1
(D))= (Dut)(u,0) = = ((DyF)(u, f(u))) (Do F)(u, f(u))
which implies 3. We also note that 4 follows from (b) and 5 follows from 3. o

Alternative proof of Theorem 7.11 without applying the inverse function theorem. Let z =
(2,v), 20 = (20, y0), A = (D F)(x0,y0) and B = (D, F')(xo,yo). Define

T(.]},y) = F(.’l;,y) —A(LC—I‘O) - B(Z/—yo) :
Our goal is to solve the equation

0= A(z — x9) + B(y — yo) + (2, y)
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for y. By the invertibility of B, this is equivalent of finding a fixed-point of the map
qu(Q) =Y — B_l [A(:E - :EO) + 7"(1’,?/)] :
Since r is of class €1 and (Dr)(zg,y0) = 0,

36 > 03 |[(Dr)(z,y)| #@n rm) < min {

! L} Vz € D(2,9).

Am| B~ z@m zm) 2m

Therefore, the mean value theorem (Theorem 6.49) implies that

m

[, y) = (@0, y0) | g < D, |ril@,y) = rilwo, yo)| = X |(Dra)(e)(z — 2)]

i=1 i=1
|z — 2ol||gn+m 5

= 4HBilH:@(R'm7R'm) 4‘|B_1“%(RmyRm)

for all z = (z,y) € D (o, 5) x D (yo, 5) < D(zp,0), and

_ 1
[@2(11) = @0(92)] g < 1B | sp@m omy |7(2, 91) = (0, y2) [mm < ZHZ/l —yolrm  (7.2.1)

ifre D(:z:o, 5) Y1, Y2 € D(yo, 5) and y,.# Yo As a consequence, for each (fixed) x satisfying

|z — zo|rn <rzm1n{ g - ,é}, if |y — yolrm < 0 we have
4(1+ | Al g Ry I B~ p@m mmy 2 2

[92(y) = Yoller < | B~ |p@mmmy |A(x = 20) + (2, 9) | g

N

< 1B~ g ) [ Al szl = Tl + (@, ) lem] < 5. (7.2.2)
Let M = {y € R™ ||y — yo|rm < g} Then for each © € U = D(xg,r), (7.2.1) and (7.2.2)
imply that &, : M — M is a contraction mapping; thus there is a unique fixed-point y € M.
Denote this unique fixed-point as f(z). Then f:U — V = D(yo, @

5 ) (the choice of this
V guarantees that U x V < D(zg,9)) and

F(z, f(z)) = Az — z0) + B(f(z) — w) + (=, f(z)) =0.

Moreover, since F(z,y) = 0 if and only if y is a fixed-point of ®,, and the contraction
mapping principle provides the uniqueness of the fixed-point if (z,y) € U x M. Since
(0, Y0), (o, f(20)) € U x M, we must have yo = f(xo).
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To see the differentiability of f, we first claim that f : U — V is continuous. Since f(z)
is the fixed-point of ®,,

f(@) =yo— B ' (A(z — mo) + r(x, f(2))) .
If 21,20 €U, then (zq, f(x1)), (2, f(22)) € D(20,0); thus (7.2.1) implies that

Hf($1) - f(x2>HRm = HBilA(SUl — x2) gm T HT(%, f(x1)) = (w2, f(22)) Rm

_ 1
< [B7 Al g@e zm 21 — w2l + 5\/\\@“1 — [ + 1 (1) — f(@2) [m

1 1
< | B Al g gy |71 — @2||Re + §H9€1 — Ta|rn + §||f($1) — f(z2)|rm .
Therefore,
Hf(xl) — f($2)HIRm < (2HBilAHg(Rn7Rm) + 1)“LL’1 - J}QHRn (723)

which implies that f : U — V is (Lipschitz) continuous.
Now let @ € U and € > 0 be given. Define b = (a, f(a)), and A = (D, F)(b), B =
(D, F)(b). We would like to show that there exists §; > 0 such that

|f(2) = f(a) + B Az <)}, <elz —algn Yz e D(a,d).
Since F' € €* and the map L — L~* is continuous, there exists d, > 0 such that

|(DyF)(2) M (Do F)(2) =Dy F)(20) " (D F) (2 Vze D(z,0).

€
O)H%(Rn,ﬂz{m) < 4

Moreover, since r € €, there exists d5 > 0 such that

€
r(z) —r(b) =(Dr)(b)(z —b < 2z — bl|gn+m VYV z e D(b,6
Ir(2) = r4) ~ADNO)= = W)l < g7yl ~ s .5)

and
£
D — (Dr)(b < — b|gasm Yz e D(b,ds).
Choose §; = min {527 @’ - & } Then if |z — a|gn < 01, using (7.2.3)
2727 2(2| B~ Al mgnrm) +1)
we find that

|z, f(2)) = (a. f(a)| gnim < |2 = allrn + [ f(2) = f(a)rn < min{dy, 5} ;
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thus if |z — a|gs < d1,
|f(@) = fla) + B~ A(x = a)| .,

= |(B'A-B7'A)(x —a) + B~ (r(x, f(x)) — r(a, f(a)))
<|BA-Ba

e

aHRn

-
B(Rn R™)
r(z, f(2)) ~ r(a. f(a) — (DP)O)(x — a, f(x) ~ F(@)) g
B s | (DP)B) (& — a. £ (@) — £(@) | < el — aleo

Therefore, f is differentiable on U, and

+ B |4 )

(D)) = =((DF)(x, f(2))) (DaF) (2, f(2)) ~ Vael. (7.2.4)

Since F is of class € and f is continuous on U, we find that Df is continuous; thus f is of

class €*. o
Example 7.12. Let F(z,y) = 2% +y*> — 1.

L. If (zo,y0) = (1,0), then F,(zo,y0) = 2 # 0; thus the implicit function theorem implies

that locally x can be expressed as a function of y.

2. If (zo,y0) = (0,—1), then F,(x¢,y9) = —2 # 0; thus the implicit function theorem

implies that locally y can be expressed as a function of x.

3. If (zo,90) = ( — %, \f), then F,(zo,y0) = —1 # 0 and F,(xo,90) = V3 # 0; thus the

implicit function theorem-implies that locally x can be expressed as a function of y

and locally y can be expressed as a function of x.

Example 7.13. Suppose that (z,y,u,v) satisfies the equation
ru+ yv? =0
2v® + y?ub =0

and (xg, %o, Uo,v0) = (1,—1,1,—1). Let F(z,y,u,v) = (zu + yv? zv* + y*ub). Then
F(x07y07u07,00) = 0.

oF, oI
O oy 1 1

1. Since (D, F)(xo, Yo, uo, vo) = ;;2 68;7/2 (20, Yo, uo, Vo) = {_1 _2} is invertible,
or Oy

locally (z,y) can be expressed in terms of u,v; that is, locally z = x(u,v) and y =

y(u,v).
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oF, O0F;
1 1
2. Since (Dy.F)(zo, Yo, uo,v0) = 5&1?2 (981% (o, Yo, Uo, Vo) = {_2 6] is invertible,
oy Ou

locally (y,u) can be expressed in terms of x,v.

Example 7.14. Let f : R? — R? be given by
f(l'7y, Z) = (:Eey + y6z7x6z + Zey) :
Then f is of class ¢, f(—1,1,1) = (0,0) and

[(Df)(x,y,z)] _ [ey reY 4 e* ye®

e? zeY xre® + e¥

Since (D, . f)(—1,1,1) = {2 8} is invertible, the implicit function theorem implies that the

system

re¥ +yer =10
xe® + ze¥ =0
can be solved for y and z as continuously differentiable function of = for x near —1 and (y, 2)

near (1,1). Furthermore, if we write (y,z) = g(z) for z near —1, then
-1
i faeY +eF ye* eY
9 = [ ze¥  xet 4 ey} {ez} ‘
7.3 The Lagrange Multipliers
In this section we are concerned with the optimization problem

“find the extreme value of function y = f(x) subject to the constraint g(z) = 0", (7.3.1)

where f : R" — R is a real-value differentiable function, and g : R” — R™ is a vector-valued
¢ -function for some m < n. We assume that the feasible set {z|g(z) = 0} is non-empty
and does not contain isolated points (or the extreme value of f is not attained at isolated
points of the feasible set), and all the local extreme points of f do not belong to the feasible
set (otherwise we can ignore the constraint and find the local extreme value of f directly).

Suppose that f attains its extreme value, subject to the constraint g = 0, at point a,
and the Jacobian matrix of g at a has rank m (that is, [(Dg)(a)] has full rank). Without
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loss of generality we can assume that the square matrix

091 091

671(&) @(Q)

0gim 0gim

67:1:1(&) m(a)
is invertible (thus has rank m). Then the implicit function theorem implies there exist an
open neighborhood V of (a1, ,a,) and a €*-function ¢ : ¥V — R™ such that in a

neighborhood of a, the feasible set can be expressed as
(X1, &) = @(Tmgt1, X)) (Timat1, e, xn) €V

Under these settings, the original optimization problem (7.3.1) is transformed as “the func-

tion y = f(go(xm+1, C LX), Tt ,xn) attains its extreme value at (ami1, - ,a,)";
thus
0
T (MH,M,In):(am+hm7an)j"(g0(xm+17 T )y Tt ,$n) =0,
0

f(gO(:L‘m+1,- . ,xn),l’erl, U ,Zlfn) = 07

axm-ﬁ-? (xm+ly”' :xn):(aerlv"' 7an)

0

0Ty (CU'm-Q-l:"'7xn):(am+1"",an)f((p( mb ’ n)’ b ’ n) ’

or using the chain rule,

é’—f(a) a—f(a) aaﬁp(a%l,---,an)—i—ﬁ(a):() form+1<j<n. (73.2)

ox1 OTm, 0x;j 0x;

Noting that the implicit function theorem implies that

091 091 (] [0 L. 9
01 (a) 0T, (a) OTm41 “ Oy (a)
(De)(amsr, - an)] == & - : : : :
0m 9m J9m Ogm
Txl(a) %(a) OTmen a oz, (a)
we find that for m +1 < j <n,
91 091 ~1rig
. 2@ @) |
%(am-‘rl?'” aan):_ : . : :
j
Txl(a) %(a) %j(a)
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Define

0
M Ao M) = aa}fl(“)
Then (7.3.2) implies that
of 91 092
QR DR ORS

On the other hand, by the fact that

g 091
P (a) P (a)
agm agm
67:1(&) R(“)
for 1 < j <m,

091

6;161( a)

OGm

&Tcl(a)

-1

o091 091
y 8:61( a) amm( a)
@] | .
9m Im
Tm(a) E(a)
A Im@) =0 form4lsj<n  (7.33)
8.75]-
L rog o091
67:1(&) m(a)
- Ime 9
agm agm
Txl(a) %(a)
6g1 agl
m(a) 8:5]( a)
Y - ej )
agm agm
m(a) 67]-(@)

where {e;}72, is the standard basis of R™. Therefore, left multiplying the equation above

1o of
by the row vector . (a) o
091 Jg2
)\16%()4—)\28]() 4 A

Combining (7.3.3) and (7.3.4), we conclude that

of 091 092
ax]( ) A== ]( )+ A== J(
or equivalently,
[(Df)(a)] + [)\1

We then establish the following

——(a)|, we obtain that

O9m ,  _ Of

695]( a) = — pry —(a) forl<j<m. (7.3.4)
O09m o .

a)+ -+ Ap 8xj()_0 forl<j<n

Ao Am] [(Dg)(a)] =0.
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Theorem 7.15 (Lagrange Multipliers). Let U < R™ be an open set, f:U — R be differen-
tiable, g : U — R™ be of class €* for somem < n, and S = {x eU ‘ g(z) = O}. Suppose that
S # & and f|s, the restriction of f on S, attains its extreme value at a € S. If [(Dg)(a)]
has full rank, then there exist A\, Ao, -+ , Ay, € R such that

[(Df)@)] + [\ X2 -+ A [(Dg)(a)] =0.

7.4 Exercises

§7.1 The Inverse Function Theorem

Problem 7.1. Prove Corollary 7.4; that is, show that if Y/ < R™ is epen, f : U4 — R" is
of class €', and (Df)(x) is invertible for all z € U, then f(W) is open for every open set
Wwecl.

§7.2 The Implicit Function Theorem

Problem 7.2. Assume that one proves the implicit function theorem without applying the

inverse theorem. Show the inverse function using the implicit function theorem.

Problem 7.3. Suppose that F(x,y,z) = 0-is such that the functions z = f(z,y), * =
9(y, 2), and y = h(z, =) all exist by the implicit function theorem. Show that f,-g,-h, = —1.

Problem 7.4. Suppose that the implicit function theorem applies to F'(z,y) = 0 so that
y = f(z). Find a formula for f” in terms of F' and its partial derivatives. Similarly, suppose
that the implicit function-theorem applies to F(x1,x2,y) = 0 so that y = f(x1,25). Find

formulas for fi ;1 friz. @and fi,., in terms of F' and its partial derivatives.

Problem 7.5. Given F : R* — R? and suppose that F(z,y) = 0, where x = (x;,x,) and

y = (y1,y2). State conditions which guarantees that the equation

Cyr Oz | Oy 02

FEN L e DA

holds. Prove or justify your answer.

§7.3 The Lagranege Multipliers

Problem 7.6 (True or False). Determine whether the following statements are true or

false. If it is true, prove it. Otherwise, give a counter-example.
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