Chapter 6

Differentiation of Maps

6.1 Bounded Linear Maps

Definition 6.1. A map L from a vector space X into a vector space Y is said to be linear
if L(cxy + x9) = cL(x1) + L(x3) for all 21,25 € X and ¢ € R. We often write Lz instead of
L(x), and the collection of all linear maps from X to Y is denoted by Z(X,Y).

Suppose further that X and Y are normed spaces equipped with norms || - | x and | - [y,

respectively. A linear map L : X — Y is said to be bounded if

sup ||Lx|y < .
|l =1
The collection of all bounded linear maps from X to Y is denoted by #(X,Y), and the

number sup |Lxz|y is often denoted by |Lzx,y)-
|zl x=1

Example 6.2. Let L : R™ — R™ be given by Lx = Az, where A is an m x n matrix. Then
Example 1.138 shows that ||L||z®nrm) is the square root of the largest eigenvalue of ATA

which is certainly a finite number. Therefore, any linear transformation from R™ to R™ is
bounded.

Proposition 6.3. Let (X, |- |x) and (Y, |- |y) be normed spaces, and L € B(X,Y). Then

Lx .
1Ly = sup LY _ing {01 > 0] |Laly < Mije|x} .
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In particular, the first equality implies that
ILz|y < |L|axyy|z|x Vee X.
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Proposition 6.4. Let (X, || -||x) and (Y,]| - |y) be normed spaces, and L € L(X,Y). Then
L is continuous on X if and only if L€ B(X,Y).

Proof. “=" Since L is continuous at 0 € X, there exists ¢ > 0 such that
|Lx|ly = ||Lx — LO|y <1 if |z|x <.

Then HL( )HY 1if ngHX < d; thus by the properties of norm,

|La]y < it fafx <2.

SR

Therefore, sup |Lz|y < 2 which implies that L € Z(X,Y).

] x=1 0

‘e If Le B(X,Y), then M = |L|wixy) < 0, and
|Lxy — Lwslly = |L(w1 — 29) [y < M |71 — 22| x

which shows that L is uniformly continuous on X. =

Proposition 6.5. Let (X, ||-|x) and (Y, | -|ly ) be normed spaces. Then (B(X.Y), || #xy))
is a normed space. Moreover, if (Y, | - |y ) is'a Banach space, so is (B(X,Y),| - |zx.y))-

Proof. That (%’(X Y- X,y)) is'a mormed space is left as an exercise. Now suppose
that (Y, |- [ly) is a Banach space. Let {L;};2; < %(X,Y) be a Cauchy sequence. Then by

Proposition 6.3, for each x € X we have
| Lxx — Lexlly = Lk — Le)zlly < [Li — Le|axyzlx — 0 as k€ — 0.

Therefore, { Lz}, is a Cauchy sequence in Y; thus convergent. Suppose that hm Lix =vy.
We then establish a map x — y which we denoted by Lj; that is, Lz = y. Then L is linear

since if x1,25 € X and ce R,
L(cxy + x9) = lim Li(cxy + x9) = lim (Ckal + kag) =cLxy + Lxs.
k—o0 k—o0

Moreover, since {Lj}2, is a Cauchy sequence, 3M > 0 such that |Ly|zxy) < M for all
ke N. If e > 0 is given, for each x € X there exists N = N, > 0 such that

|Lyx — Lz|y < ¢ Vk=N,.
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Therefore, for k > N,,
|Lally < [Lrzly + e < [lLi|axylzlx +2 < Mz]x +¢

which implies that sup |Lz|y < M +¢; thus L € B(X,Y).
) x=1
Finally, we show that lim ILi, — L] zx,yy = 0. Let x € X and € > 0 be given Since

{L}i{_, is a Cauchy sequence, there exists N > 0 such that | L, — L¢| z(xv) < 1f k0> N.
Then if £ > N,

| Lz — Lally = lim [Lyz — Lex]y < IHZH sup | Ly — Lel zx )| 2] x < —||35||X
—0

which shows that Ly — L[ zxy) < e if k= N. o
Proposition 6.6. Let (X, |- |x), (Y| |y), (Z,]|z) be normed spaces, and L € B(X,Y),
KeRB(Y,Z). Then KoLe B(X,Z), and

| K o Llsx.z) < 1Kz Llzxy)
We often write K o L as KL if K and L are linear.

Proof. By the properties of the norm of a-bounded linear map,
| K o L(x)|z = |K(Lz)| 2z < (K| 2.2/ Lzly < |Klsy.z] L]z lzlx - o

From now on, when the domain X and the target Y of a linear map L is clear, we use

|L| instead of |L|z(x,y) to simplify the notation.

Theorem 6.7. Let (X, -|lx)and (Y, |- |y) be normed spaces, and X be finite dimensional.
Then every linear map from X to'Y is bounded; that is, Z(X,Y) = B(X,Y).

Proof. Suppose that dim(X) = n. Let {ex}}_; € X be a linearly independent set of vectors.
From Example 4.24, every two norms on X are equivalent; thus we only focus on the norm

| - |2 on X induced by the inner product
(ei,ej)X:(Lj szl,n

Since {eg}}_; is a linear independent set of vectors, every x € X can be expressed as a
unique linear combination of e;’s; that is, for all x € X, 3¢; = ¢1(x), -+ , ¢, = cp(x) € R
such that

xr=ce+---+cpen,-
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These coefficients ¢;’s in fact are determined by ¢, = (z,ex)x, and, by Example 4.24 and

the Cauchy-Schwarz inequality, satisfy
[ee(@)] < 22l < Clz)x .
As a consequence, if L is a linear map from X to Y, then

[Laly = [Lcr(@)er + - enl@)en) |y < ler(@)l| Letlly + -« [en(@)]| Lenlly

< nCllz|x max {| Lei [y, | Len|y } < M|zx
for some constant M > 0; thus |L|zx,y) < M < oo which shows that L € Z(X,Y). o
Theorem 6.8. Let GL(n) be the set of all invertible linear maps.on R™; that is,
GL(n) = {L € L(R",R")| L is one-to-one (and onto)} .
1. If L e GL(n) and K € B(R",R") satisfying |K — L||L7"| < 1, then K € GL(n).
2. GL(n) is an open set of B(R™, R").
3. The mapping L — L~ is continuous on GL(n).
Proof. 1. Let |L7!| = é and |K — L| = .. Then 8 < a; thus for every x € R",

alzlzr = o L7 Lol S| L7 |L2 R = | Laln < (L — K)z[re + | K2re
< Blalan + | Kol
As a consequence, (@.— f)||z||gn < ||[Kz|ge and this implies that K : R" — R" is
one-to-one hence invertible.

1

2. By 1, we find that if |K — L] < |L1_1| then K € GL(n). Then D(L, %) < GL(n)
if L € GL(n). Therefore, GL(n) is open.
3. Let L € GL(n) and € > 0 be given. Choose § = min{2|L1_1|, 2HL€_1H2 } If|K-L| <6,

then K € GL(n). Since L™! — K~' = K~Y(K — L)L™!, we find that if |K — L| < 4,
_ _ _ _ _ _ [
K =27 < 1K = L7 < IEHIK = L2 < 1K
which implies that |K ! < 2|L~!|. Therefore, if |K — L| < 4,

|27 = K7 < KM = LIILT < 2271 %0 < e o
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Remark 6.9. There is another way to see that GL(n) is open in Z(R",R"). Let M(n) be
the collection of n x n real matrices, and | - |2 be the matrix norm introduced in Example

1.138. Also define | - | : M(n) — R by
| Al = max{]am| ‘A aw] 1<,y < n}

Then || is also a norm on M(n). Since M (n) is finite dimensional (in fact, dim M(n) = n?),
by Example 4.24 | - || and || - |2 are equivalent norms on M(n); that is, there exists C, ¢ > 0
such that

Al < Al < ClA] VAeM(n).

Let {Ax}72, € M(n) be a sequence of n x n real matrices. The equivalence between |- | and
|-|l2 implies that Ay — A in M(n) if and only if each entry of Ay converges to corresponding
entry of A. Therefore, the determinant function is continuous on M (n). In other words,

lim det(Ak) det(A) VAeMn).

k—)

Since GL(n) can be viewed as the collection of m x n matrices with non-zero determinant;
that is,
GL(n) = {A e M(n)| det(A) # 0},

by the continuity of the determinant function and Theorem 4.11, we conclude that GL(n)
is open in M(n).

6.1.1 The matrix representation of linear maps between finite di-
mensional normed spaces

Let (X,| - |x) and (Y, |- |y) be two finite dimensional normed spaces. Suppose that B =
{ex}?_, and B = {€x}7, are basis of X and Y, respectively. Then every x € X, and y € Y,

there exists unique vectors (c1, -+ ,¢,) € R" and (dy,- - ,d,,) € R™ such that
T =ce|+- -+ cpey and y:d1€1—|—+dm6m

We write [z]g for the column vector [c1, - - - , ¢,]T and [y] 5 for the column vector [dy, - - -, dp) 7.
Then for each L € Z(X,Y), the matrix representation of L with respect to basis B and
B, denoted by (L] g, s the matrix |[Lei]z: [Leog: -+ [Len]g]. The matrix [L]z 5 has the
property that

L]z = [Llg gle]s -
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6.2 Definition of Derivatives and the Jacobian Matri-
ces

Definition 6.10. Let (X, ||-||x) and (Y, |-|y) be two normed spaces. Amap f: A< X - Y
is said to be differentiable at xy € A if there is a bounded linear map in A(X,Y), denoted
by (Df)(zo) and called the derivative of f at zg, such that

i |f () = f(x0) = (Df) (o) (x — x0)],

et |z — wol|x

:07

where (D f)(zo)(x — x) denotes the value of the linear map (D f)(zo) applied to the vector
x—x9€ X (80 (Df)(xo)(x —x9) €Y). In other words, f is differentiable at xy € A if there
exists L € A(X,Y) such that

Ve>0,30 >0 3| f(x) — f(zo) — L(x — z0)|y < e|x —ao|x whenever x € D(zg,) n A.
If f is differentiable at each point of A, we say that f is differentiable on A.

Remark 6.11. Suppose that f : A — Y is differentiable on A, then D f itself is a map from
Ato B(X,Y). For each z € A, Df(z) is a linear map, but D f in general is not linear in z.

Example 6.12. Let f: (0,00) — R be given by f(z) = % Then f is differentiable at any
xo € (0,00) since (Df)(zp) : R — R is the linear map given by

1
1‘02

(Df)(xo)(x) = —

X,

To see this, we observe that

| 1 )| |z02—x1'0+9:27xx0

. Tz oz :E Lo . TT02 . 1’02 — 2xx0 + z?
lim = lim = lim 5

z—x0 |x - x0] z—0 |z — x| z—z0  XTo?|T — T

= lim [z = ol =0.

T—T0 $$02

Remark 6.13. Let f : (a,b) — R be “differentiable” at xy € (a,b) in the sense of Definition
4.55. The “derivative” f’(x¢) and the derivative (Df)(x¢) is related by (Df)(xo)(h) =
f'(xo)h since

lim ‘f@) — f(zo) = f'(20)(x — xo)‘

) |z — 20

=0.
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Example 6.14. View (C,|-|) as a normed vector space (over field C). Then f: C — R
given by f(z) = |z|? is differentiable at zo = 0 and (D f)(0) = 0 since
e l0R 0.z~ 0)

= ]

=lim |z| =0.
z—0

However, f is not differentiable at any 2y # 0. In fact, in Exercise Problem 6.3 one is asked
to show that if f : C — R is differentiable at zy, then (Df)(z9) = 0. Therefore, if f is
differentiable at zg # 0, then

‘|Z’2—\2’0|2—0‘(3—2’0)‘ Z-Z— 20" 20

(z—zo)-zo—i-z-(z—zo)‘

|z — 2o Z— 20 zZ— 20
Z— 20 zZ— 20
20+ (2 — 2p)

and the limit of the right-hand side as z approaches zy does not exist since lim P
z—20 — 20

does not exist (by the fact that the limit as z approaches 2 from the horizontal and vertical
directions are different).

On the other hand, the function g : R? — R given by g(z,y) = f(z +iy) = 2* + y? is
differentiable everywhere and (Dg)(a,b)v = 2av; + 2bvy for all v = (vy,v9) € R% To see
this,

(a+h)2+ (b+ k)% — (a® + b%) — (2ah+ 2bk) h? + k?

s = *h2+k2—)0 as (h,k) — (0,0)
[(#2 4 y*) — (a® +b?) — (Dg)(a,b)(z — a,y — b)| s

which implies that  lim = 0.

(@)~ (a,b) l(x —a,y — b)|ge

Example 6.15. Let (X, | |x) and (Y, - |y) be two normed spaces. Then every bounded
linear map L : X — Y is differentiable. In fact, (DL)(zo) = L for all 25 € X since

lim HLQ? — Lflfo — L(ZL’ — l’o)”y

=20 |z — z0] x

=0.

Example 6.16. Let f : GL(n) — GL(n) be given by f(L) = L™, where GL(n) is defined in
Theorem 6.8. Then f is differentiable at any “point” L € GL(n) with derivative (D f)(K) e
PB(GL(n),GL(n)) given by (Df)(L)(K) = —L'KL™! for all K € GL(n). The proof is left

as an exercise.

Theorem 6.17. Let (X, | -|x), (Y.| - |y) be normed vector spaces, U < X be an open set,
and f:U — 'Y be differentiable at xo € U. Then (Df)(xg) is uniquely determined by f.
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Proof. Suppose Ly, Ly € #B(X,Y) are derivatives of f at xy. Let € > 0 be given and e € X be
a unit vector; that is, |e||x = 1. Since U is open, there exists r > 0 such that D(zo,7) < U.
By Definition 6.10, there exists 0 < § < r such that

|f(z) = flwo) = Lu(w —zo)|y _e o [f(z) = flwo) = La(x —zo)|y _ e
|z — ol x 2 |z — ol x 2

if 0 < |l —xo|x < 9. Letting r = x4+ Ae with 0 < || < §, we have

|Lie — Loelly = |)\| HLl(l’ —x9) — Loz — 20) |y
|)\| (Hf To) — Li(z — $0)Hy + || f(z) = fzo) + La(x — $2)Hy)
B Hf x) — f(wo) — Ly(x — ﬂfo)Hy i Hf(x) — f(zo) — Loz — 5C0)Hy
a |z — o] x |z — @o| x
e €
< 5 + 5 =c£.

Since ¢ > 0 is arbitrary, we conclude that Lie = Loe for all unit vectors e € X which
guarantees that L; = Ly (since if z # 0, L1z = HxHXLl(ﬁ) || x L 2(H x ) =Lox). ©
X

Example 6.18. (Df)(xy) may not be unique if the domain of f is not open. For example,
let A= {(z,y)|0 <z <1,y=0}beasubsetof R? and f: A — R be given by f(z,y) = 0.
Fix zg = (a,0) € A, then both of the linear maps

Li(z,y) =0 and ‘Lsy(z,y) =ay  V(v,y)eR?

satisfy Definition 6.10 since

lim ‘f(fL',O)_f(a,O)—Ll(J}—a,O)‘
(2,0)—(a,0) |(z,0) =(a,0

‘f(ac,()) — f(a,0) — Lo(z — a,O)‘

(,0)—(a,0) |(z,0) = (a,0

= e
Remark 6.19. Let & < R” be an open set and suppose that f : U — R™ is differentiable
on U. Then Df : U — B(R™,R™). Treating Df as a map from U to the normed space
(BR",R™),]| - | #@w~grm)), and suppose that Df is also differentiable on #. Then the
derivative of D f, denoted by D?f, is a map from U to ZB(R", BZ(R",R™)). In other words,
for each a e U, (D?f)(a) € B(R", B(R",R™)) satisfying

(D) (@) = (D@ ~ (D) @)@ = O] g0 e

im =0,
a—a |z — all-

here (D?f)(a) is bounded linear map from R" to Z(R",R™); thus (D?f)(a)(x — a) €
B(R",R™).
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Definition 6.20. Let {e;}}_; be the standard basis of R", &/ € R"™ be an open set, a € U

and f:U — R be a function. The partial derivative of f at a in the direction e;, denoted

of . .
by %(a), is the limit

j
L flathe) - fla)
h—0 h
if it exists. In other words, if a = (ay,--- ,a,), then
af f(CL17"' y Aj—1, aj +h7aj+17'” 7an) - f(ala"' 7an)

ox; h—0 h

Theorem 6.21. Suppose U = R™ is an open set and f: U — R™ is differentiable at a € U.
Then the partial derivatives g‘fi(a) exists for alli =1,---m and j = 1,---n, and the matriz
.

representation of the linear map D f(a) with respect to the standard basis of R™ and R™ is

given by
[ df ofi ]
871(@) E(a) ;
@l =| = e (D@, - ).
Ofm Ofm
i Txl(a) m(a)

Proof. Since U is open and a € U, there exists r > 0 such that D(a,r) < U. By the
differentiability of f at a, there is L.e Z8(R"™,R™) such that for any given € > 0, there exists
0 < < r such that

|f(x) = fla)— L(z — a)|gm < €|z — allgn whenever z € D(a,0).

In particular, for each i =1,--- ,m,

fila + he;) — fi(a) - )f(ajthej) — f(a)
h h h

<e VO0<|h|<d,heR,

Rm

— (Lej)i

— Lej

where (Le;); denotes the i-th component of Le; in the standard basis. As a consequence,

foreachi=1,---,m,

fila+ hej) — fi(a)

;lzii% Y = (Le;); exists
" fi ofi
and by definition, we must have (Le;); = (a). Therefore, L;; = == (a). o

Jij 895]-
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Definition 6.22. Let &/ < R" be an open set, and f : U — R™. The matrix

[ afi ] [ Jf1 of1 i
PR 071(33) E(:ﬂ)
UH@)=1] + i ()= : S
Ofm Ofm Ofm Ofm
| oo ) L@m ™ E, W

is called the Jacobian matrix of f at z (if each entry exists). If n = m, the determinant
of (Jf)(x) is called the Jacobian of f at x.

Remark 6.23. A function f might not be differential even if the Jacobian matrix J f exists;
however, if f is differentiable at xg, then (Df)(z) can be represented-by (Jf)(x); that is,

[(Df)(@)] = (Jf)(=).
Example 6.24. Let f : R? — R? be given by f(z1,12) = (23, 2329, x{23). Suppose that f
is differentiable at z = (x1, z5), then

2I1 0
[(Df)(@)] = | Bafwy af

4rdrd 2xizy
Example 6.25. Let f : R? - R be given by

o y):{ s i) #(0,0),
’ 0 if (z,y) = (0,0).

Then Zx(o, 0) = Z(o, 0) = 0; thus if f is differentiable at (0,0), then [(Df)(0,0)] = [0 0] .
However,

i eyl eyl _
_ =yl

thus f is not differentiable at (0, 0) since -
(22 +42)>

cannot be arbitrarily small even if 2% 41>
is small.
Example 6.26. Let f : R? — R be given by

x ify=0,

flx,y)=1 vy ifz=0,
1 otherwise.
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of _ f(h,0) — £(0,0) A e of . o
Then P (0,0) = %_r)r(l) - }lllin - = 1. Similarly, 2 (0,0) = 1; thus if f is

differentiable at (0,0), then [(Df)(0,0)] = [1 1]. However,

e = 100 = [ 1] 2] =17t~ e+ )]

thus if xy # 0,
Therefore, f is not differentiable at (0,0).

6.3 Conditions for Differentiability

Proposition 6.27. Let U < R"™ be open, a € U, and f = (fi,- ), fm) : U — R™. Then
f is differentiable at a if and only if f; is differentiable at-a for all i =1,--- ,m. In other

words, for vector-valued functions defined on an open subset of R™,
Componentwise differentiable < Differentiable.
Proof. “=7" Let (Df)(a) be the Jacobian matrix of f at a. Then
Ve>0,36 > 03 |f(z)— f(a) =(Df)(a)(z—
Let {e;}7L, be the standard basis of R™, and L; € Z(R",R) be given by L;(h) =
el [(Df)(a )]h Then L; € Z(R",R) by Theorem 6.7, and if ||z — a|g» < 0,
(@) = (o) — Lie=a)| = |es - (F(@) — £(a) — (DF) (@)(x — 0))]
< |[f(z) = fla) = (D)(a)(z — a) g < ellz — aln;

thus f; is differentiable at a with derivatives L;.

a)|gm <éllz—alpn if |z —allzn < 6.

<" Suppose that f; : Y — R is differentiable at a for each ¢ = 1,--- ,m. Then there exists
L; e B(R™",R) such that

Ve> 0,36 > 053 |fi(z) - fila) — Li(z — a)| < %Hx — a|ge if |z — algn < 0;.

Let L € Z(R™,R™) be given by Lz = (Lix, Loz, -+, Lyx) € R™ if x € R". Then
L e Z(R",R™) by Theorem 6.7, and

m

|f(z) = f(a) - L(z — a) R,,L\Zlfz fila) = Li(z — a)| < ez — afps

if |z — alrr <& =min{b,---, 8, }- =
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Theorem 6.28. Let U < R™ be open, ae U, and f:U — R. If
1. the Jacobian matrixz of f exists in a neighborhood of a, and

2. at least (n — 1) entries of the Jacobian matriz of f are continuous at a,

then f is differentiable at a.

Proof. W.L.O.G. we can assume that of ﬁ, e of
ox1’ Oxo 0%Tn—1

are continuous at a. Let {e; i1

be the standard basis of R", and ¢ > 0 be given. Since is continuous at a for ¢ =

1, ,n—1,

T

‘ of of <= _ .
36, > 05 537@( x) — o (a)| < NG whenever |z — al|ga < ;.

On the other hand, by the definition of the partial derivatives,

fla+hey) — fla) Of
h - oxn, (a)‘ =

Let k:x—aandézmin{él,--- ,5n}. Then

F@) = £(a) ~ [ a)r —a) + -+ + (@)~ an)]|

- whenever 0 < |h| < 6.

36, >0> 7

0x1 O0xp,
~ [fla+ k) - fl@) - jyfl()kl = Lk,
= [flar b ot ) S o) = @k == o)k,
< [flart b ) = flan o+ by a4 ) = (k|
[ Fn,00 +hore S+ b) = flar,as, a5 4+ Fs, o an o+ b) - aii(a)kg‘

+ ‘f(afla”' 7an—17an+kn) _f(a17"' aa'n) - ﬁ(@k’n .

By the mean value theorem,

f(ala'“ 7a‘jflaa’j+kj7“' Jan—i_kn)_f(ala'“ 7aj7aj+1+kj+l7'“ 7an+kn>

0
= kjaa{;(ab“' L1, a5+ 05kj, ajen + ki, o an + ky)
for some 0 < 0; < 1; thusfor j=1,--- ,n—1,if [z — a|gn = |k|r» < 0,
0
‘f'(ab... 7aj717aj+kj;"' ’an+kn)—f(a,17... ;aj7a’j+1+kj+17"' ,an‘i‘k'n) aj( ) 7
J
0
‘axj @@y Ok + R ) — 2 (@)lk] < =kl

ox; \/ﬁ
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Moreover, if |z — allgn < 6, then |k,| < |k|ge = || — a|gr < 0 < §,; thus

(),

oxy,

)f(al,"- 1,0y + k) — flag, - a,) —

5
< k.
As a consequence, if |z — a|g» < d, by Cauchy’s inequality,

1@ - #ta) - [E @) —a) +- + (@)@ — 0]

oxy,
< ﬁZ [kl < ellkllzn = el — allgn

which implies that f is differentiable at a. =
of of

Remark 6.29. When two or more components of the Jacobian matrix [ﬁ s } of a
1 n

scalar function f are discontinuous at a point zy € U, in general f is not differentiable at xg.
For example, both components of the Jacobian matrix of the functions given in Example
6.25, 6.26, 6.41 are discontinuous at (0,0), and these functions are not differentiable at
(0,0).

Example 6.30. Let & = R?*\{(z,0) € R? |z > 0}, and f : U — R be given by

cosTl 2 ify>0,
/2 + y2
[z, y) = arg(x +iy) = m ify=0,
x .
ZW_COS_I\/TTy? if y<0.
Then
LY ity 20 5y iy #0,
Dy =l{ @50 Cad Ly ={ T
0z 0 ify=0, 0y ~ify=0.
Since a—i and é’g]; are both continuous on U, f is differentiable on U.

Definition 6.31. Let &/ < R" be open, and f : U4 — R™ be differentiable on U. f is
said to be continuously differentiable on U if Df : U — AB(R",R™) is continuous on
U. The collection of all continuously differentiable mappings from U to R™ is denoted by
€' (U;R™). The collection of all bounded differentiable functions from U to R™ whose

derivative is continuous and bounded is denoted by %! (U;R™). In other words,

¢'(U;R™) = {f : U — R™ is differentiable on U | Df : U — B(R",R™) is continuous}
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and
CHU;R™) = {f e ¢ (U;R™) sug |f(z)| + suZE) |Df(x)] z@nrm) < oo} :

Corollary 6.32. Let U < R" be open, and f : U — R™. Then f € €*(U;R™) if and only if
ofi
aIL’j

the partial derivatives exist and are continuous onU fori=1,--- mandj=1,--- n.

Proof. Note that for any matrix A = [a;j]mxn, |A|z@rzm) < 2 |ai;| < nm|lAl]; thus
i,

m n

(9fz 5fz
(D1 @) = (D)) ) < 20 23550 = 5, 0)|
i=1j=1
< an(Df)( ) = (D) (@0)| n gomy -

_ . ofi

Therefore, the continuity of D f P
J
for all 4, j. The corollary is then concluded by Proposition 6.27 and Theorem 6.28. =

Example 6.33. If f : R — R is differentiable at xy, must-f’ be continuous at xo? In other
words, is it always true that lim f'(z) = f'(x0)?
T—x0

Answer: No! For example, take

1,
xz%sin — if z # 0,

o) = E
0 if  =0.

Then f is differentiable at x = 0 since the limit
o . 1
fOR0) = fO) _ sy

) : 1
A A N

exists. Therefore,
. 291:sin1—cosl ifx #0,
') = T
0 if v =0.

However, lim f'(z) does not exist.

z—0

Proposition 6.34. Let U = R™ be open. Given f € €, (U;R™), define

”fH‘o”l U;R™) = Sup [|f | + Z Z ‘ afz ]

i=17=1

Then (€, (U;R™), | - H(gbl(u;Rm)) is a Banach space.
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Proof. Left as an exercise. O

Theorem 6.35. Let U < R™ be open, K < U be compact, and f : U — R be of class €*.
Then for each € > 0, there exists 6 > 0 such that

[f(y) = f(z) = (Df)(@)(y — o) <ely =z if |y—2]zn <6 andz,ye K.
Proof. Define g : U x U — R by

fly) = f(x) = (Df)(2)(y — x)|
g(l’,y) = Hy - I'HR”
0 ify=uz.

ify #x,

Since f is of class ¢!, g is continuous on U x U. In fact, it is clear that g is continuous at
(x,y) if  # y, while the mean value theorem implies that f(w)— f(z) = (Df)(&)(w — 2)

for some £ on the line segment joining w and z; thus

[f(w) = f(2) = (Df)(2)(w — )|

lim sup
(z,wz);u(’z,z) Hw - ZHRTL
. [(DHE) = (D) (w—2)[ .
= limsu < limsu D — (D)) pmn = 0.
<z,wg;gzg> lw — 2|gn (z,wz):éz% [(DHE) = (D) g )

Now by the compactness of K x K, for each given £ > 0, there exists § > 0 such that
lg(z,w) — g(z,y)] < e if {|(z,w) — (z,y)|g2zn <6 and z,y,z,we K .
In particular, with (z,w) = (2,2) we find that |g(z,y)| < ¢ if |2 — y|r» < 0; thus

[f(y) — (@) —(Df)()(y — 2)|

Iy =]z

<e if0<|r—yle <, 2,y K. o

Corollary 6.36. LetU < R™ be open, K € U be compact, and f: U — R™ be of class €.
Then for each € > 0, there exists 6 > 0 such that

|f(y) = (@) = (DH@) Y = 2) g <ely —lze i ly— 2]z <5 andz,ye K.

6.4 Properties of Differentiable Functions

6.4.1 Continuity of differentiable maps

Theorem 6.37. Let (X,| - |x) and (Y,|| - ||y) be normed spaces, U < X be open, and
f:U—Y be differentiable at xg € U. Then f is continuous at xq.
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Proof. Since f is differentiable at x(, there exists L € (X,Y) such that
361> 03| f(z) = f(wo) — Lz — 20)|y < |z — 2ol x Vae D(xo,d1).

As a consequence,

1£(2) = F@o)l, < (1L +1)|o — zolx Yo e D(zo,b1). (6.4.1)
For a given € > 0, let 6 = min {51, 2(|Li+1)} Then 6 > 0, and if = € D(xy, ),
|f(2) = flao)], < = <. :

2
Remark 6.38. In fact, if f is differentiable at xy, then f satisfies the “local Lipschitz
property”; that is,

IM = M(xg) > 0 and 6 = (xg) > 023 1if ||[x—xo|x <0, then'||f(z)—f(xo)|y < M|z—2x0|x
since we can choose M = |L| + 1 and 6 = d; (see (6.4.1)).

Example 6.39. Let f : R? — R be given in Example 6.25. We have shown that f is not
differentiable at (0,0). In fact, f is not even continuous at (0,0) since when approaching
the origin along the straight line x5 = ma;,

ma? oom?

lim f(z1,mzy) = lim # £(0,0) if m #0.

(z1,mz1)—(0,0) a—0(m? + a2 m2+1

Example 6.40. Let f : R? — R be given in Example 6.26. Then f is not continuous at
(0,0); thus not differentiable at (0, 0).

Example 6.41. Let f : R2 — R be given by

73

floy) =4 @+
0 if (z,y) = (0,0).

Then f,(0,0) =1 and f,(0,0) = 0. However,

if (x,y) # (0,0),

Flay) = 70,0 = [1 0] [7 2
‘( Y) (0,0) [1 O] L/M: |2y - 0as (x,y) — (0,0).

A 2?2 492 (22 +y?)2

Therefore, f is not differentiable at (0,0). On the other hand, f is continuous at (0, 0) since

[f(@,y) = £(0,0)] = [f(z,9)| < |z| = 0 as (z,y) — (0,0).
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6.4.2 The product rules

Proposition 6.42. Let (X, |- |x), (Y,| - |y) be normed vector spaces, U = X be open, and
f:U—->Y and g: U — T be differentiable at xq € U, where F is the scalar field associated
with the vector space Y. Then gf :U — Y 1is differentiable at o, and

D(gf)(wo)(v) = g(x0)(Df)(x0)(v) + (Dg)(wo)(v) f(x0) - (6.4.2)
Moreover, if g(xo) # 0, then g U — Y is also differentiable at x, and D(ch)(xo) X ->Y
s given by

D(g)(xo)(v) _ 9(5’30)((Df)(370)(7;)2)(;);1)9)(%)(U)f(xo) . (6.4.3)

Proof. We only prove (6.4.2), and (6.4.3) is left as an exercise.
Define Av = g(x0)(Df)(xo)(v) + (Dg)(z0)(v) f(xo). Then A e B(X,Y). Moreover,

(9£)(x) = (9)(@0) — Al — w0) = g(x0) (f(2) = f (%) — (Df)(wo)(z — 70))
+ (9(z) = g(x0) — (Dg)(z0)(z — 20)) f ()
+ ((Dg)(@o)(z — x0)) (f(2) — f(x0)) -

Since (Dg)(xo) € B(X,F), [|(Dg)(z0)|sexry < ©; thus using the inequality

|(Dg) (o) (z —0)| < |(Dg)(xo)

sxm T — ol x
and the continuity of f at xy(due to Theorem 6.37), we find that

’(Dg xO ‘H
|z — onHX

lim

T—T0

HY‘ g (XJF)Hf(x) - f(xO)HY -

T—>T0

As a consequence,

|(9) (@) = (9.)(x0) — Az — z0) |y

:Jclixo Hx _ xOHX
< |g ’ lim ”f(x)—f(xo) _(Df)(fﬁo)(;p—xo)uy
T |z — ol x
+ lim [ g0) = (Do)l Z o)l
T—T0 Hw xOHX
. [|(Dg)(xo) (2 — wo)| B
+ xlig;lo [ |z — CUOHX |f(x) f(l’g)”y} -0

which implies that ¢f is differentiable at z with derivative D(gf)(zo) given by (6.4.2). o
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6.4.3 The chain rule

Theorem 6.43. Let (X, |- |x), (Y, lly), (Z,|-|z) be normed vector spaces, U < X and
YV € Y be open sets. Suppose that f : U — Y is differentiable at xo € U, f(U) <V, and
g:V — Z is differentiable at f(xg). Then the map F = go f:U — Z defined by

F(z) = g(f(z)) Veel

is differentiable at xq¢, and
(DF)(x)(h) = (Dg) (f(z0)) (D) (w0} (h))  he X
In particular, if X =R™, Y =R™ and Z = R, then

(D)), = 3, 2 ()

k:l i
Proof. To simplify the notation, let yo = f(zo), A = (Df)(z0) € B(X,Y), and B =
(Dg)(yo) € B(Y,Z). Let € > 0 be given. By the differentiability of f and g at zo and yp,

there exists d1,dy > 0 such that if |z — zo|x < dy-and |y — yoHy < 09, we have

() — Flan) — Al — z)]y < min {1, 5

Io)

B~k

lg(y) — g(wo) — By — o)z < Hy—yo\ly.

&
2(]Al+1)
Define

u(h) = f(zo+ h) — f(zo) — Ah ¥V |[h|x <0y,
v(k) = 9(yo + k) — g(yo) = Bk V|[kl|y <0>.

Then if Hh”X < (51 and ”kHY < (52,
[uth)ly < [hlx, Ju(®)]y <

[h]x andfo(k)]z < [l -

(HBH +1) (HAH +1)
Let k = f(xg+ h) — f(zg) = Ah+u(h). Then }llirr(l] k = 0; thus there exists d3 > 0 such that
|klly < 2 whenever |h|x < 3.

Since
F(xo+ h) — F(zo) = g(yo + k) — g(yo) = Bk +v(k) = B(Ah + u(h)) +v(k)
— BAR + Bu(h) + v(k),
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we conclude that if |h|x < 6 = min{d, 03},

9
[F (20 +h) = Flzo) = BAR|z < |Bu(h)lz + [v(B)z < [ Bllu(mly + 5o 1Kl
5 5 5 £
< Sl + gy (AL + Tty < Sl + 5 bl = <lblx
which implies that F' is differentiable at xy and (DF)(zo) = BA. o

Example 6.44. Consider the polar coordinate x = rcos#, y = rsin . Then every function

[ :R? > R is associated with a function F': [0, 00) x [0,27) — R satisfying
F(r,0) = f(rcos,rsin@).

Suppose that f is differentiable. Then F' is differentiable, and the chain rule implies that

or Oz .
[&F aF}_{af (9]0] o 0 _[af a.f] cos —rsinf
or 00 dr Jy| |0y Oy or | 0y| |sinf rcosf |
or 00

Therefore, we arrive at the following form of chain rule

0 o o 0 o dyo

o T aros Tarap o =t a0y

which is commonly seen in Calculus textbook.

Example 6.45. Let f: R — Rand F : R? — R be differentiable, and F(a:, f(x)) =0 and

oF ion P (:U,f(:v)) __OF _OF
# 0. Then f'(x) = m, where I, = o and F, = 2

Example 6.46. Let v:(0,1) - R" and f: R” — R be differentiable. Let F(t) = f(v(t)).
Then F'(t) = (Df)(v(t))y'(t).

Example 6.47. Let f(u,v,w) = u?v + wv? and g(x,y) = (zy,sinz,e®). Let h = fog:

R? - R. Find %
ox

y

Way I: Compute Zh directly: Since
X

h(z,y) = f(g(z,y)) = f(zy,sinz,e”) = r?y?sinx + e sin’® x,

we have
ah 2 : 2,2 T 2 T
— = 2xy“sinx + x°y” cosx + e” sin” x + 2e” cos x .

ox
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Way II: Use the chain rule:

oh  0fdg 0fdg  Of Ogs 2 2

o= oo oo o = Juw 2wv) - e

%z duor " var T awor 2wyt (WA 2wu) cosyAuTee
2

= 2xy?sinx + (2%y® 4 2e”sinx) cos x + e” sin® z.

Example 6.48. Let F(z,y) = f(z*+v?), f: R —> R, F: R? > R. Show that :cgl; = yg]:
Proof: Let g(z,y) = 22 + y?, g : R*> > R, then F(z,y) = (f o g)(z,y). By the chain rule,

oF oF
oxr 0Oy

~ Flate) |2 %) = oo 2e %)

which implies that

oF _OF
Soy—— = f'(g(,y))2xy = x oy

6.4.4 The mean value theorem

Theorem 6.49. LetU < R" be open, and f U — R™ with f = (f1, -+, fm). Suppose that
f is differentiable on U and the line segment joining x and y lies in U. Then there exist

points ¢y, -+ , ¢y on that segment such that

fity) = fix) =(Dfi)(ei)(y —x)  Vi=1,--- m.

Moreover, if U is convex and sup ||(Df)(x)|z@rrm) < M, then
xeU

[F(2) = fF@)lem < M|z = ylen  Va,yeld.

Proof. Let v : [0,1] — R™ be given by 7(t) = (1 —t)z +ty. Then by Theorem 6.43, for each
i=1,---,m, (fioy) :[0,1] — R is differentiable on (0,1); thus the mean value theorem
(Corollary 4.65) implies that there exists ¢; € (0,1) such that

fily) = filz) = (fio)(1) = (fi 0 7)(0) = (fi o) (t:) = (Dfi) (i) (v'(8:)) ,

where ¢; = v(t;). On the other hand, v'(¢;) =y — «.
Let g(t) = (f oy)(t). Then the chain rule implies that ¢'(t) = (Df)(v(t))(y — x); thus

lg"@lem < WD) E)|@n ) ly — T rem < Mz =yl
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Define h(t) = (g(1) — g(0)) - g(¢). Then h : [0,1] — R is differentiable; thus by the mean
value theorem (Corollary 4.65) we find that there exists £ € (0,1) such that

thus by the fact that ¢(0) = f(x) and g(1) = f(y),

wm = 0(1) = h(0) < |g(1) = g(0) | | 9" (&) e
< M| f(x) = () |er]z = ylen

|f(x) = f(y)

which concludes the theorem. o

Example 6.50. Let f : [0,1] — R? be given by f(t) = (¢*,t*). Then there is no s € (0, 1)
such that

(1,1) = f(1) = f(0) = f'(s)(1. = 0) = f(s)
since f'(s) = (2s,3s%) # (1,1) for all s € (0,1):

Example 6.51. Let f : R — R? be given by f(z) = (cosz,sinz). Then f(27) — f(0) =

(0,0); however, f'(z) = (—sinz,cosx) which cannot be a zero vector.

Example 6.52. Let f be given.in Example 6.30, and U be a small neighborhood of the

curve

C={(z9)]|2*+y* =1,z <0} u{(zr,£1) [0 <z < 1}.

Then

-1 - fan =2

On the other hand,

00,2 = [ ][] -2

. 3T . 2z
which can never be > since }27
x

. o 3T .
—I—yQ‘ < 3 if (z,y) € U while -5 > 3. Therefore, no point

(x,y) in U validates

(D) y)((1,=1) = (1, 1)) = f(1,-1) = f(L,1).
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Example 6.53. Suppose that A < R" is an open convex set, and f : A — R™ is differen-
tiable and Df(x) =0 for all z € A. Then f is a constant; that is, for some a € R™ we have
f(z) =aforall x € A,

Reason: Since A is convex, then the Mean Value Theorem can be applied to any x,y € A
such that f;(z)—fi(y) = D fi(c;)(x—y) =0 (.- Dfi=0)fori=1,2,--- ,m;thus f(z) = f(y)
for any x,y € A. Let a = f(x) € R™, then we reach the conclusion.

Example 6.54. Let f : [0,0) — R be continuous and be differentiable on (0

,00). Suppose
that f(0) =0 and f'(z) is non-decreasing (that is, if x < y, then f'(x) < f'(y)).

Show that
) _ flx) . .
g:(0,00) > R, g(z) = —= is also non-decreasing.
X
Proof: It suffices to prove ¢’(x) = 0. Since f is differentiable on (0, %), then g is differentiable
oy 2f' (@) = f(x)
on (0,00), and ¢'(z) = " . Hence

g(x) 20 < zf(z) = f(z).

Let z > 0 be fixed. Applying the Mean Value Theorem to f we find that

Fee (0,2) 3 f(x) = f(z) = £(0) = f(e)(x = 0) < zf'(x).

6.5 Directional Derivatives and Gradient Vectors

Definition 6.55. Let f be real-valued and defined on a neighborhood of x5 € R”, and let

v € R" be a unit vector. Then

(Dyf) () = 2 f@o + tvt) — f(o)

a t:0f<$0 +tv) = E}(}

is called the directional derivative ( > = ¥ #c) of f at x( in the direction v.

Remark 6.56. Let {e;}7_; be the standard basis of R". Then the partial derivative ;f(xo)
Lj

(if it exists) is the directional derivative of f at x( in the direction e;.

Theorem 6.57. Let U = R"™ be open, and f : U — R be differentiable at xo. Then the

directional derivative of f at xo in the direction v is (Df)(xo)(v).

Proof. Let € > 0 be given. Since f is differentiable at xg, there exists § > 0 such that

|£(2) = f(z0) = (Df) (o) (@ = 20)| < 5|lw = wo|lzn Whenever |z — zoln < 3.
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In particular, if x = z + tv with v being a unit vector in R” and 0 < |¢| < 4, then

f(xo +t\;) — f(wo) B (Df)(xo)(v)‘ _ ‘ﬂ% +tv) — f(‘75|(t)|) - (Df)(%)(tv)‘

_ £ (@) = f(xo) = (Df)(wo) (& — o)
]

thus (D, f)(xo) = (DF)(w0) (¥) .
Remark 6.58. When v € R™ but 0 < |[v|ge # 1, we let v =

<e;

~

DO | M

. Then the direction

|[v][n
derivatives of a function f: U € R" — R at a € U in the direction v is

(Dof)(a) = tim L) = (0).

t—0 t

Making a change of variable s = . Then

v]&n

fla+tv) = fla)

t s—0 S

(Df)(xo)(v) = [v]en (D f)(20)(v) = [[v]n lim

We sometimes also call the value (D f)(xg)(v) the “directional derivative” of f in the “direc-

tion” v.

Example 6.59. The existence of directional'derivatives of a function f at x( in all directions
does not guarantee the differentiability of f at z,. For example, let f : R?> — R be given as

in Example 6.41, and v = (vy, vo) € R? be a unit vector. Then

(Daf)(0) = lim L0V 0¥2) = (0,00 s

t—0 t

However, f is not differentiable at (0,0). We also note that in this example, (D, f)(0) #

(Jf)(0)v, where (Jf)(0) = [Zi(0,0) ZZJ:(O,O)] = [1 0] is the Jacobian matrix of f at (0,0).

Example 6.60. The existence of directional derivatives of a function f at x in all directions
does not even guarantee the continuity of f at xy. For example, let f : R?> — R be given by

2

fo | e 1000

0 if (z,9) = (0,0),
and v = (v, vy) € R? be a unit vector. Then if v; # 0,

(D)) =ty 00D 2SO0y, Fvs e

t TS0 12V VY vy
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while if vi =0,
(D f)(0) = Tim L1 12) = f(0,0)

t—0 t

=0.

However, f is not continuous at (0, 0) since if (z, y) approaches (0, 0) along the curve z = my?
with m # 0, we have
4

. , my m
1 2 — 1 fr
yo0 Jmy™y) yo0 m?yt+yt m?+1

which depends on m. Therefore, f is not continuous at (0, 0).

Example 6.61. Here comes another example showing that a function having directional

derivative in all directions might not be continuous. Let f : R?> — R be given by

xy .

0 ifz+y*=0,
and v = (v{,vs) € R? be a unit vector. Then ifv, # 0,

e fvastve) = (0,00 Pvive
(Dof)(0) = lim t ey

while if v; =0,

(D4 f)(0) = lim f““?tv?i —J0.0 _

t—0

However, f is not continuous-at (0, 0) since if (z,y) approaches (0, 0) along the polar curve

O(r) = g +sin~H(r — mr?) O<r«l,
we have
lim f(z,y) = lim 7”'2 ‘;089(7”) sinf(r) 7"(.—7;+ mr?) sin 0(r)
(z:)=(0,0) r—0t r28in” 0(r) + rcosO(r)  r—0+ rsin”(r) — r + mr?

z=r cos 0(r),y=rsin 6(r)
= lim (fr;r mr?)sinf(r) _ —1
r—0+ sinf(r) —1+mr  m

which depends on m. Therefore, f is not continuous at (0, 0).

Definition 6.62. Let &/ < R" be an open set. The derivative of a scalar function f : U/ — R
is called the gradient of f and is denoted by gradf or V f.
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Let 4 < R™ be an open set, a € U and f : U — R be a real-valued function. Suppose

that f € €' (U;R) and (Vf)(a) # 0. Then ;f(a) # 0 for some 1 < k < n. W.L.O.G.,
Tk
we can assume that j—f(a) # 0. By the implicit function theorem, there exists an open
Tn
neighborhood ¥V € R" ! of (ay,- - ,a,_1) and an open neighborhood W < R of a,,, as well as
a ¢'-function ¢ : V — R such that in a neighborhood of a the level set {z € U | f(z) = f(a)}
can be represented by z, = p(x1, -+ ,z,_1); that is,

f(SUh o T, (T, 7$n—1)) = f(a) V(z1, -, Tn-1) €V.
Moreover,

_f$j (xla -1, @(xla T 7xn—1))

fxn(‘r17 e 7‘%71717%0(1‘17 U 7xn71))

Pu;(T1, o+ Tn1) =

Consider the collection of vectors {v; ’;;11 given by

0

= 67 (1'1,' o 7xn717§0($17' o anfl)) (xla T 7'rn71) eV.
Lj

r=a

U

Then v/s are tangent vectors of the level surface. If {e;}"_, is the standard basis of R”, then

fa:j (a)
Fow)

Therefore, the gradient vector (Vf)(a) is perpendicular to v; for all 1 < j < n — 1 which

Uj:e]—‘r_(o’ 70’¢Ij(a1’... 7an—1)) :ej— (07 70

conclude the following

Proposition 6.63. Let U = R" be open and f € € (U;R); that is, f : U — R is contin-

uously differentiable. Then if (V f)(xo) # 0, the vector _)@o) is the unit normal to
(V) (o) [rn

the level set {:z; eU ‘ flz) = f(xo)} at xg.

Example 6.64. Find the normal to S = {(z,y,2) |2? +y* + 2 =3} at (1,1,1) € S.
Solution: Take f(x,y,2) = 2®> + y*> + 2> — 3. Then (Vf)(z,y,2) = (2z,2y,22); thus
(Vf)(1,1,1) =(2,2,2) is normal to S at (1,1, 1).

Example 6.65. Consider the surface
S = {(w,y,z) G]R‘g‘a:Q — P+ ayr = 1}.

Find the tangent plane of S at (1,0, 1).
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Solution: Let f(x,y,2) = 2% — y*> + zyz. Then

S = {(x,y,Z)ER3|f($,yaz) :f<17071>};

that is, S is a level set of f. Since (Vf)(1,0,1) = (2,1,0) # (0,0,0), (2,1,0) is normal to

S at (1,0, 1); thus the tangent plane of S at (1,0,1) is 2(x — 1) +y = 0. o
Proposition 6.66. Let f : R® — R be differentiable. Then i\VZ’{ is the direction in
R

which the function f increases/decreases most rapidly (B + =2 /T3 % ) |

Proof. Let xy € R™ be given. Suppose that f increases most rapidly in the direction v,
then (Dyf)(z9) = sup (Dwf)(xg). Since f is differentiable, (D, f)(zg) = (Df)(zo)(w) =

]l =1
(Vf)(zo) - w which is maximized in the direction M. o

[(V)(o) |

Example 6.67. Let f : R* — R be given by f(z,y,2) = 2?ysinz. Find the direction of
the greatest rate of change at (3,2,0).
Solution: We compute the gradient of f at (3,2,0) as follows:

(V£)(3,2,0) = (%(3,2,0) ng(3,2,0),%(3,2,0))

0 Oy
= (2zysin z, =’ sin z, 2%y cos 2))| = (0,0, 18).

(x,y,z):(3,,2,0)

Therefore, the direction of the greatest rate of change of f at (3,2,0) is (0,0, 1).

6.6 Higher Order Derivatives of Functions

Let U < R™ be open, and f : U — R™ is differentiable. By Proposition 6.5, the space
(BR™,R™), ||| 2 rm)) is a normed space (in fact, it is a Banach space), so it is legitimate
to ask if Df : U — Z(R",R™) is differentiable or not. If Df is differentiable at xy, we
call f twice differentiable at zy, and denote the twice derivative of f at zg as (D?*f)(zg). If
Df is differentiable on U, then D*f : U — %’(R", BR", Rm)) Similar, we can talk about
three times differentiability of a function if it is twice differentiable. In general, we have the

following

Definition 6.68. Let (X, | - |x) and (Y, - |y) be normed spaces, and Y < X be open. A
function f : U — Y is said to be twice differentiable at a € U if
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1. fis (once) differentiable in a neighborhood of a;

2. there exists Ly € #(X, #(X,Y)), usually denoted by (D?f)(a) and called the second

derivative of f at a, such that

. |(Df)(z) = (Df)(a) = Lo(z — a)

w—a |z = alx

B(X,Y)

=0.
For any two vectors u,v € X, (D?f)(a)(v) € B(X,Y) and (D?f)(a)(v)(u) € Y. The vector
(D?f)(a)(v)(u) is usually denoted by (D?f)(a)(u,v).

In general, a function f is said to be k-times differentiable at ae U if

1. fis (k — 1)-times differentiable in a neighborhood of «;

2. there exists L, € B(X,B(X,--- ,B(X,Y)---)) ,usually denoted by (D*f)(a) and

~
k copies of “X” k copies of “)”

called the k-th derivative of f at a, such that

. H(Dk_lf)(w) — (D*'f)(a) — Dy(x — a>H@(X,@(X,~-,%(X,Yy--)) _0.
z—a o — alx

For any k vectors u(”,---u® e X, the vector (D*f)(a)(u™, -, u®) is defined as the
vector

(D" Fla) (™) (@® ) - ().

Example 6.69. Let (X, || |x) and (Y,] - [ly) be two normed spaces, and f(z) = Lz for
some L € #(X,Y ). From Example 6.15, (D f)(z¢) = L for all zg € X; thus (D?f)(x) = 0

since Df : U € B(X,Y) is a “constant” map. In fact, one can also conclude from

lim H(Df)((l:) - (Df)(xo) - O(‘T - xO)Hgg(ij)

T—x0 Hx — JZ()HX

=0

that (D?f)(zo) = 0 for all 25 € X.

Remark 6.70. We focus on what (D*f)(a)(ug)(---)(u;) means in this remark. We first
look at the case that f is twice differentiable at a. With x = a +tv for v e X with |v|x =1
in the definition, we find that

(D) + ) — (D) (@) ~ HD2D(@ )| oy,
lim

=0.
t—0 |t|
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Since (Df)(a + tv) — (Df)(a) — t(D*f)(a)(v) € B(X,Y), for all u € X with |ul|x = 1 we

have

[(Df)(a + tv)(w) — (Df)(a)(u) — t(D*f)(a)(v)(w)],

fimn 1]
_ iy (2D 10) - SR HDA) (@) ()] ()]
iy 2119~ (Df)(c‘zt)‘ D @Oy

On the other hand, by the definition of the direction derivative,

(DF)fa-+)(w) — (D) @) = lim [LaH 00 = ot i) _(flarsn) =)

)
s—0

S S
thus the limit above implies that

(D2f)(a)(v)(u) = lim lim L@ 0+ 50) = fla+ t0) = fla+ su) + f(a)

t—0 s—0 st
lim fla+tv+su)=fla+tv) lim fla+ su) — f(a)
— lim 5—0 S s—0 S
t—0 t
= Dy(Duf)(a) .

Therefore, (D?f)(a)(v)(u) is obtained by first differentiating f near a in the u-direction,
then differentiating (D f) at a in the v-direction.

In general, (D*f)(a)(uy)---(uy) is obtained by first differentiating f near a in the u;-
direction, then differentiating (D) near a in the up-direction, and so on, and finally differ-

entiating (D*1f) at a in-the uy-direction.

Remark 6.71. Since (D?*f)(a) € B(X,%B(X,Y)), if vi,v5 € X and ¢ € R, we have
(D2f)(a)(cvy +v2) = c(D*f)(a)(v1) + (D%f)(a)(vs) (treated as “vectors” in B(X,Y)); thus

(D*f)(a)(cvr +v2)(u) = e(D*f)(a) (1) (u) + (D*f)(a)(v2)(w)  Vu,v1,02€ X
On the other hand, since (D?f)(a)(v) € B(X,Y),
(D*f)(@)(v)(cur +uz) = e(D*f)(a)(v)(ur) + (D*f)(a)(v)(u2) ~ Yur,up,veX.

Therefore, (D?f)(a)(v)(u) is linear in both u and v variables. A map with such kind of
property is called a bilinear map (meaning 2-linear). In particular, (D*f)(a) : X x X - Y

is a bilinear map.
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In general, the vector (D*f)(a)(u®,---  u®) is linear in u™®, -- -, u®); that is,

(D" (@)@, uD av + Bw, ulD, .. ®)
— (D)@, D, v, )
+5(Dkf)(a)(u(1)7 e 7U(i_1),w,u(i+1), o 7u(k:))

for all v,w € X, o, € R, and ¢ = 1,--- ,n. Such kind of map which is linear in each
component when the other k£ — 1 components are fixed is called k-linear.

Consider the case that X is finite dimensional with dim(X) = n, {el, €9, ... ,en} is a basis
of X, and Y = R. Then (D?*f)(a) : X x X — Y is a bilinear form (here the term “form”

means that Y = R). A bilinear form B : X x X — R can be represented as follows: Let
a;; = B(e;,ej) e Rfori,j=1,2,--- ,n. Given z,y € R", write w= Y, u;e; and v = ) vje;.

i=1 Jj=1
Then by the bilinearity of B,

a1 - Qin U1

B(U,'U) - B(ZUiei, Z /Ujej) = Z uivjaij - [ul .. un]
i=1 j=1

iy=1 Ap1 Ann Up,
Therefore, if f: U < R" — R is twice differentiable at a, then the bilinear form (D?f)(a)
can be represented as
(D?f)(er,en) - (D*f)(a)(eren)] Ty
(D*f)a)(u,v) = [ur -+ ] : : :
(D*f)(en,e1) -+ (D*f)(a)(en,en)) LT
The following proposition is an analogy of Proposition 6.27. The proof is similar to the

one of Proposition 6.27, and is left as an exercise.

Proposition 6.72. Let U < R" be open, xg € U, and f = (fi,-+ , fm) : U — R™. Then
f s k-times differentiable at xo if and only if f; is k-times differentiable at xo for all

=1, ,m.
Due to the proposition above, when talking about the higher-order differentiability of

f:U < R" — R™ and a point zy € U, from now on we only focus on the case m = 1.

Example 6.73. In this example, we focus on what the second derivative (D?f)(a) of a
function f is, or in particular, what (D?f)(a)(e;, e;) (which appears in the Remark 6.71) is,
if X =R2
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Let f:R? — R be differentiable, then

(DN )] = (L) few)] =L@y Lay).

Suppose that f is twice differentiable at (a,b), and let Ly = (D?f)(a,b). Then

|(Df) (@, y) = (Df)(a,b) = La((2 — a,y — b))

B(R2 R)

li —
(w,y)lir%a,b) V(z—a)? + (y —b)? 0
or equivalently,
. H [-fm(x’y) fy(xa?J)] - [fm(a7b) fy(avb)] - [L2((a:—a,y—b))] B(R2R
llm ( ’ ) — 0
(w0~ V=Pt 0P ’

where [Lg ((a: —a,y— b))] denotes the matrix representation of the linear map Lo ((x —a,y—
b)) € Z(R? R). In particular, we must have

lim

r—a

[fx(va)_fx(a7b) fy(xab)_fy(a7b):| _ [Lgel} H =0

Tr—a T—a %(R2 R)

and

. =(a,y) — fz(a,b a,y) — fy(a,b
mﬂ[f(ﬁ_i() ”(f_f()}—uﬁﬂ

y—b

Using the notation of second partial derivatives, we find that

[Laer] = [fuw(a,b) fyu(a,b)]  and  [Loes] = [fuy(a,b)  fyy(a,b)] ,

where fu, = (f2)y = é(%) and fy. = (fy)z = % (Zi) Therefore, if v = vie; + vaey,

[Lov] = [Lg(vlel + Ugeg)} = [vlfm(a, b) + v fuy(a,b) vy fya(a,b) +vafy,la, b)] . (6.6.1)

Symbolically, we can write

[LQ} = “fm(avb) fye(a, b)] [fxy<avb) fyy(avb)u

so that

[Lg(vlel + Ugeg)} = |:L2:| |iz;

=0 [fwx(aa b) fyl‘(av b)] + Vo [fl’y(a: b) fyy(aa b)] .

}: [ealat) fu(@ )] [fupl@d) fufaD)]] {vl}

V2
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For two vectors w and v, what does (D?f)(a,b)(v)(u) or (D*f)(a,b)(wu, v) mean? To see

this, let w = uye; + uze; and v = vye; + vpey. Then
[(D2f)(a,b)(v)(w)] = [(D*f)(a,b)(v)] [u] = [La(vier + vaes)] m

= 01 [fon(@,0)  fya(a,b)] {“1} + vy [ fay(a,0)  fyy(a,b)] {Zﬂ

g [l

b)
wy(a, D)
Therefore, (D )(a.5)(erse1) = fola,0), (D), 0)(ere2) — fw<a, B), (D)@, b)(es,e1) =
Fyela,B) and (D?F)(a,b)(e2,2) = f(a,b).
On the other hand, we can identify Z(R?* R) as R? (every 1 x 2 matrix is a “row” vector),
and treat g = [Df]T : R? - R? as a vector-valued function. By Theorem 6.21 (Dg)(a,b)
can be represented as a 2 x 2 matrix given by

(Po)a.0)] = [foloopy Falm].

We note that the representation above means

H [fx €,y :| [fx(aa b):| \ [fxx(avb) f:I:y(aa b):| |:x —CL:|
1. fy €T y fy(a,b) fym(aab) fyy(aab> y_b R2 -
im =0
(2.9)—(a.b) V(r—a)?+ (y—b)?
The equality above is equivalent to that
fwz(aa b) J m(aab)
| wonte) —{@hieh) - fe-a y-1 Foten Tenlle
(.y)—(a,b) V(@ —a)?+ (y—b)?

According to the equality above, Ly, = (D?f)(a,b) should be defined by

ot e} = o [ffer) o] = ([fler) o] o))

which agrees with what (6.6.1) provides.

Proposition 6.74. Let U < R™ be open, and f : U — R. Suppose that f is k-times
differentiable at a. Then for k vectors u®M,--. u®) e R,

(Dkf><a)(u(1)7 o ,u(k)) _ Zn: a’ff (a)u(-l)u@) N .u(k)

axjk axjk—l Y 8le

Ji k=1
n

_ 4 o (... 0 af))) W, @ ®
N Z 1a$]’k (axj“< @ij <8le (a)ujl Uy, Uy s

Jiy s Je=
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where u® = (uf”,u§), - ul)) for alli =1, k. (F e3¢ i3 Fr b wen k B
B s el THRHF-BATENEBBLE)

Proof. Let {e;}7_; be the standard basis of R". By Remark 6.71 (on multi-linearity), it

suffices to show that

ok f

amjk amjk—l T amjl

(D*f)(@)(e)(eis) - (er)(es) = (D" f)(a)(ess s ej) (a) (6.6:2)

provided that f is k-times differentiable at a since if so, we must have

(Dkf)(a)(u(l),"' ,u(k)) _ (Dkf)(a)< Z uﬁ)ej“,.. 7 Z U;]Z)ejk)

J1=1 Je=1
- Z Z T Z (Dkf>(a’)(ej1a T 7ejk)u_§'i)u§'§) e uy:)
Jji1=1j2=1 Jr=1
N o f W, @ #)

= (@)u; 'us) - uy
j17.§k1 axjk axjk41 T axﬁ e I

We prove the proposition by induction. Note that the case k = 1 is true because of Theorem

6.21. Next we assume that (6.6.2) holds true for k = ¢ if f is (¢ — 1)-times differentiable in a

neighborhood of a and f is (-times differentiable at a. Now we show that (6.6.2) also holds

true for k = ¢+ 1 if f is (-times differentiable in a neighborhood of a, and f is (¢ + 1)-times

differentiable at a. By the definition of (¢ 4 1)-times differentiability at a,

D)@ - (DED(@) = (D)@ = @) e e
oo Iz — agn =0,

(D" )(@) = (D' F)(@) = (D F)a)(z = )] (e5) -+ (o) (es0)
(D)) = (D" f)(@) = (D" f)(@)(w = )] (e5,) - (es2)

)(@) = (D' f)(a) — (D f)(a)(z — a)
)(@) = (D*f)(a) — (D f)(a)(z — a)

- leji

:@(Rn7(@(Rn’...’E@(RR,R)...))He]& HR" T HejeHR”

BR™ B(R" - BR™R)---))
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using (6.6.2) (for the case k = {) we conclude that

o° ot
lim ‘axje(?xjk_;f- oy, (7xj£6$jk_fc- -0, (a) = (DL f) @) (e s ejer @ = a)‘
z—a |z — a|rn
— lim ‘(Déf)(x)(eju T >ejz) - (sz)(a)(ejw T 7ejz) - (D£+1f)(a)(x - a)(eju T 7ejé)|
z—a |z — allrn
< lim [(DEf) (@) = (D' f)(a) = (D f)(a)(@ = )| yan @ ... sEnz)-)) _0.
z—a |z — a|rn
In particular, if z = a+te;,,, for some jo41 = 1,--- ,n, by the definition of partial derivatives

we conclude that

o*f o'f
. ) , (a + tejeﬂ) ) ] , ) (a)
(DL F) (@)egy, e, = lim S 0 e O
5€+1f
T x0T 0T ...5.(a>
Ljo410Lje OLjpy Tji
which is (6.6.2) for the case k = ¢ + 1. o

Example 6.75. Let f : R? — R be given by f(z1,22) = 22cosxy, and u) = (2,0),
u® = (1,1), u® = (0,—1). Suppose that f is three-times differentiable at a = (0,0) (in
fact it is, but we have not talked about this yet). Then

3 (1) 1), (2, (3) e
(D°f)la)(u Z ﬁxk(?xj(%:l )u Uy U Z 8562(395]8331 2 Yy (1)
63f (3‘3f B
= 0.0 21 () F (0,021 (<1 =0,

Corollary 6.76. Let U < R" be open, and f: U — R be (k + 1)-times differentiable at a.

Then for uM, .. u®) y*+) e R,

n

k+1 ... k+1) (k+1) k O N D)
(D )@, = R ] PO .
In other words, (using the terminology in Remark 6.58) (D**1f)(a)(u™, -, u® u*+D) s
the “directional derivative” of the function (D f)(-)(u™, .- u®) at a in the “direction”

w1
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Proof. By Proposition 6.74,

n

k+1
(DkJrlf)(a)(u(l)’ o u®) u(k+1)) _ Z o (a)u(l) g (D)

. . . J1 Ik T Jk+1
0T jy 1 0Ty, - 0T,

J1y s JksJk+1=1

n n k41
_ (k+1) Z o f (@)ul? (k)
B Y : o op. WUy
Jrr1=1 . Jujk=1 a‘T]k'HaJU]k’ 0xj, ' *
o ke 0 Zn: ok f (@ - o
= Z U : A A Uy
Je41=1 T 0% T G k=1 0j - OTjy 1 *
— Z D) 0 (D 1) (@)D, -, u®). .
. jk+1 axjk+1 Tr=a
Jk+1=1

Example 6.77. Let f : R? - R be twice differentiable at'a" = (a;,as) € R?. Then the

proposition above suggests that for u = (uy, us),v = (v, v9) € R?

2
0’f
(D*f)(@)(v)(w) = (D*f)(a)(u, v) = ——(a)u;v;
e 0x§0x;
_f *f >f *f
— &Tc%(a)ulvl + p - (a)ujvg + T (a)ugvy + a—x%(a)ugvg
>f >f
) Y Fmn | 1y,
= (U1 U3 62'](. . 627']0(&) Vs .
0x10x2 63:%
In general, if f : R™ — R be twice differentiable at a = (ai, -+ ,a,) € R". Then for
U= (ula"' 7un)7U: (Ulv"' 7Un) €R2
>f 2f ]
727 Fenom o
(D?f)(a)(v)(u) = [w Un] : : : :
o f o f Un
| For0e, @ 2@

The bilinear form B : R” x R™ — R given by

B(u,v) = (D*f)(a)(v)(u) Vu,veR"
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is called the Hessian of f, and is represented (in the matrix form) as an n x n matrix by

2f 2f ]
8755%@) 07,071 (a)
0% f 62f

| 0z10z, a @(a) i

2

aag (a) of f at a exists for all 4,5 = 1,--- ,n (here the
TjO0Lg

twice differentiability of f at a is ignored), the matrix (on the right-hand side of equality)

If the second partial derivatives

above is also called the Hessian matrix of f at a.

Even though there is no reason to believe that (D?f)(a)(u;v) = (D?f)(a)(v,u) (since
the left-hand side means first differentiating f in w-direction and then differentiating D f
in v-direction, while the right-hand side means first differentiating f in v-direction then
differentiating D f in u-direction), it is still reasonable to-ask whether (D?f)(a) is symmetric
or not; that is, could it be true that (D*f)(a)(u,v) = (D*f)(a)(v,u) for all u,v € R®? When
f is twice differentiable at a, this is equivalent of asking (by plugging in u = e; and v = ¢;)

that whether or not ) )
o“f . 0°f
al'jal‘i (a o a$1al‘j a) '

The following example provides afunction f : R? — R such that (6.6.3) does not hold at

(6.6.3)

a = (0,0). We remark that the function in the following example is not twice differentiable

at a even though the Hessian matrix of f at a can still be computed.

Example 6.78. Let f : R? — R be defined by

wy(@® —y?) 4 (z,y) # (0,0),

flzy) =< @ +y?
0 if(ny) = (0,0).
Then . ) ;
xry +4dxcy® —y° .
if (x,y) # (0,0),
Fay=q @ 000
0 if (z,y) = (0,0),
and

x® — dady? — a:y4

fey) =] G
0 if (z,y) = (0,0),

if (z,y) # (0,0),
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It is clear that f, and f, are continuous on R?; thus f is differentiable on R%. However,

. f2(0,k) — f2(0,0
Fu0,0) = i =00 = 0.0

=1,

while £(0.0) — £,(0.0)
o f(0) = £,(0,0)
fye(0,0) = lim ; =1;

thus the Hessian matrix of f at the origin is not symmetric.

Definition 6.79. A function is said to be of class € if the first r derivatives exist and
are continuous. A function is said to be smooth or of class €% if it is of class € for all

positive integer r.

Now we would like to answer the question of what kind of functions are k-times differ-
entiable. Suppose that 4 < R"™ is open and f : 4 — R. Note that by the definition of
differentiability, f is k-times differentiable in I/ if and only if D*~!f is differentiable in U.
This would further imply that f is k-times differentiablein 2/ if and only if D¥=2f is twice
differentiable in U. Therefore, Proposition 6.27 and Corollary 6.32 imply that

f is k-times (continuously) differentiable in I/

< Df is (k — 1)-times (continuously) differentiable in U
AR

——] is (k — 1)-times (continuously) differentiable in ¢/

oz, 0zy’ o0z,
= if is (k — 1)-times (continuously) differentiable in U for all 1 < j; <n
J1

< D ;f is (k= 2)-times (continuously) differentiable in ¢/ for all 1 < j; <n

Tj1
> f Af 4. . . . . :
TR axn&le} is (k — 2)-times (continuously) differentiable in U

forall 1 <j;<n
0 f

8:5]-2 ale

is (k — 2)-times (continuously) differentiable in ¢ for all 1 < 71,72 < n.

Applying similar argument several times, we obtain the following theorem which is an anal-

ogy of Corollary 6.32.

Theorem 6.80. Let U — R™ and f : U — R. Suppose that the partial derivative
ok f

axjkaxjkq T ale

exists in a neighborhood of a € U and is continuous at a for all ji,--- , jxr =



§6.6 Higher Order Derivatives of Functions 241

ok f

18 continuous
0%, 0%, -+ 0Tj,

1,---,n. Then f is k-times differentiable at a. Moreover, if
on U, then f is of class €*.

Theorem 6.81. Let U = R™ be open, and f : U — R. Suppose that the mized partial
of  of 0% f % f
ox;’ Oz’ dxjor;’ dxjdx;
O f f
dx;0x; (a) = 0x;0x; (a).
Proof. Let S(a,h,k) = f(a+ he; +ke;) — f(a+ he;) — f(a+ke;) + f(a), and define p(x) =
f(x + he;) — f(z) as well as Y(x) = f(z + ke;) — f(z) for = in a neighborhood of a. Then
S(a, h, k) = p(a+ke;) —p(a) = (a+he;) —1(a); thus the mean value theorem implies that
there exists ¢ on the line segment joining a and a + ke; and d on the line segment joining a

and a + he; such that

exist in a neighborhood of a, and are continuous at a.

derivatives

Then

(6.6.4)

S(a,h, k) = p(a+kej) — p(a) = ka—w(c) = k;(alf(c + he;) of (0)),

é’xj al'j B E

S(a,hok) = la+ hey) = (a) = h2a(d) = h(ZL(d + key) ~ 2L ().

As a consequence, if h # 0 # k,

1.0 0 Sla, h, k 1,0 0
(ke - L) ~ S Ly pe - Lo

By the mean value theorem again, there exists ¢; and d; on the line segment joining c,

c+ he; and d, d + kej, respectively, such that

o f % f
d) = :
030]03% ( 1) 8.:1:163:] <Cl)
_ . *f *f
The theorem is then concluded by the continuity of and at a, and ¢; — a
&xiﬁxj 630]6.%
and d; — a as (h, k) — (0,0). o

Corollary 6.82. Let U < R™ be open, and f is of class €*. Then
(D?f)(a)(u,v) = (D*f)(a)(v,u) Vael and u,v e R".
Remark 6.83. In view of Remark 6.70, (6.6.4) is the same as the following identity

lim lim fla+ he; + kej) — f(a+ he;) — fa+ kej) + f(a)
h—0 k—0 hk
iy lig L0 ) = flat he) = flatkey) + fa)
k—0 h—0 hk
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which implies that the order of the two limits lim and liH[l) can be interchanged without

changing the value of the limit (under certain conditions).
Example 6.84. Let f(z,y) = yz*cosy®. Then

foy(T,y) = 22y cosy?), = 2z cosy® — 2xy(2y) siny® = 2x cosy® — 4ay®siny?,
fyz(,y) = (2% cosy? — ya?(2y) siny?), = (2% cos y? — 22%y” siny?),
= 2z cosy® — dxy’ siny® = fo,(7,y).

The following two theorems concern the €*-regularity of inverse functions and implicit

functions.

Theorem 6.85. Let D € R” be open, f : D — R" be injective and be of class €*. If f~1,

the inverse function of f, ewists and is differentiable in f(D), then f~! is of class €*.

Proof. Let yo € f(D). Then yo = f(zo) for some z € D. Since f is differentiable at xy and

f~1is differentiable at 1o, by the chain rule we must have

L = [D(f o f)(yo) = [Df)(zo)[Df](wo) .

where I,, is the n x n identity matrix. - Therefore, [Df](zo) is invertible, and the inverse
function theorem implies that f7! is of class €' (in a neighborhood of yp).
We note that the map ¢ : GL(n) — GL(n) given by g(L) = L™! is infinitely many times

differentiable; thus using the identity (from the inverse function theorem)

(DF H(y) = (D)) = (go(Df)o f (),

by the chain rule we find that if f € €%, then Df~! € €*~! which is the same as saying
that f~1 e €*. O

Theorem 6.86. Let D < R" x R™ be open, and F : D — R™ be a function of class €*.
Suppose that for some open set U = R™ and some differentiable function f : U — R™,
Ux f(U) <D and F(x, f(x)) =0 for all z e U. Then f is of class €*.

Proof. (Not yet finished!!!) o
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6.7 Taylor’s Theorem

Recall the Taylor theorem for functions of one variable that if f : (a,b) — R be of class
€+t for some k € N and c € (a,b), then for all x € (a,b), there exists d in between ¢ and x
such that

k+1

x—c J+

(k+1)! (=)

i 79 )

where f)(c) denotes the ]—th derivative of f at c. In this section, we extend this result to

functions of several variables.

Theorem 6.87 (Taylor). LetU < R™ be open, and f : U — R be (k+ 1)-times differentiable.
Suppose that x,a € U and the line segment joining x and a lies i U.~Then there exists a
point ¢ on the line segment joining x and a such that

j copies of x —a
A

G .
Zﬁ a)(x —a, -+, r—a)
7=1

+(k§+1) (D’H—lf)(C)(‘?_a’? ,ZE-C)L)

(6.7.1)

(k+1) co;;es ofx—a
Proof. Let g(t) = f((l —t)a + t:c). Since-Ta. < U and U is open, there exists § > 0 such
that (1 —t)a+tx e U for all t € (=9, L'+ §). By the chain rule, for t € (—9,1 + 9),

g ()= (Df)((1 = t)a+ tz)(z— a) :Z aai;

thus for t € (—5 1+ 6), Proposition 6.74 shows that

(1 =t)a+ tz)(z; — a;);

Z ax]axz t)a+t$) (xz az)(l"j aj) ( f)(( '[;)a +t$) (l’ a,x a)
By 1nduct10n, we conclude that

9(0) = (D) (1= tha +to) (g —a - o —a).
J copie;:)f r—a

By the fact that f is (k + 1)-times differentiable, g : (—=0,1 + ) — R is (k + 1)-times
differentiable as well. Theorem 4.68 then implies that for some ¢y € (0, 1),

g g(k+1)(to)
Z ‘ N (6.7.2)

Letting ¢ = (1 — tg)a + toz, (6.7.2) 1mphes (6.7.1). o
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Definition 6.88. Let &/ < R" be open, and f : U/ — R be k-times differentiable. The k-th

degree Taylor polynomial for f centered at a is the polynomial

1
Z— —CL,”',Z‘—CJL).

g

M

J copies ¢ — a

Corollary 6.89. Let U < R™ be open, f:U — R be (k+ 1)-times differentiable, and define

the remainder

k
1
Ri(a,h) = f(a+h) — Z— h,-- ,h)

K\

Then lim 24(4:h)
h=0 |[h]gn

=0, or in notation, Ry(a,h) = o(|h|%.) ash — 0.

Example 6.90. Let f(x,y) = e”cosy. Compute the fourth degree Taylor polynomial for
f centered at (0,0).

Solution: We compute the zeroth, the first, the second, the third and the fourth mixed

derivatives of f at (0,0) as follows:

£0,00=1, “f0,00=1,  f£,(0,0)=0,
f22(0,0) =1, fay(0,0) = f2(0,0) =0, fyy(0,0) = —
J122(0,0) = 1, fry(0,0) = f1ye(0,0) = fye2(0,0) = 0,
Juy(0,0) =0, fya(0,0) = fyay(0,0) = fryy (0,0) = 1,
and
fr222(0,0) =1, fyyyy(oao)
frway(0,0) = fraye(0,0) = foyaw(0,0) = fyeaa(0,0) =0,
Jayyy(0,0) = fyayy(0,0) = fyyay(0,0) = fyyya(0,0) =0,
Jawyy(0,0) = fayay(0,0) = foyyo(0,0) = fyawy(0,0)
= fyaye(0,0) = fyye2(0,0) = —1.
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Then the fourth degree Taylor polynomial for f centered at (0,0) is

1
£0,0) + £(0,0)2 + £,(0,0)y + 5 [ £2a(0,0)2% + 21 (0, 0)y + £ (0, 0)y?]
1
[ Foa (0,007 4 810y (0,0)2%y + 31y (0, 00" + (0,0
1
+ ﬂ [fxmm(o’ O)IA + 4f$$$y(07 O)xg + 6f;m:yy(07 O)ZL’QyQ
+ 4 fayyy (0, 0)zy® + Sy (0, 0)94]
1 1 1
=1l+x+ —(x2 — y2) + —(x3 — 3xy2) + —(J:4 — 62%y° +y4) .
2 6 24
Observing that using the Taylor expansions

1 1 1 1 1
ex:1+x+§x2+6x3+ﬂx4+~~ and cosy:1—§y2+ﬂy4+-~,

we can “formally” compute e” cos y by multiplying the two “polynomials” above and obtain
that

T w__» 1 2 2 13_1 2 i4_122 iQ .
e cosy = 1+:1c+2(x y)—l—(Gm 2xy)+(24x 4:133; +24y)—|—h.0.t.,

where h.o.t. stands for the higher order terms which are terms with fifth or higher degree.

Definition 6.91. Let & < R" be open. ‘A function f : U4 — R is said to be real analytic
. 1 ) .
at aeU if f(x) = ] H(D f)(a)(x—a, -,z —a) in a neighborhood of a.

Example 6.92. Let f: R — R be defined by
exp (—%) ifx >0,

f(z) = ]
0 ifx <0.

Then f is of class €%, and f*)(0) = 0 for all k € N. Therefore, f is not real analytic at 0.

6.8 Maxima and Minima

Definition 6.93. Let &/ < R" be open, and f : U — R.

1. If there is a neighborhood of zq € U such that f(z¢) is a maximum in this neighbor-

hood, then xq is called a local maximum point of f.
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2. If there is a neighborhood of zy € U such that f(x() is a minimum in this neighborhood,

then z is called a local minimum point of f.

3. A point is called an extreme point of f if it is either a local maximum point or a

local minimum point of f.

4. A point z is a eritical point of f if f is differentiable at zq and (D f)(zo) = 0; that
is, (Df)(zo) € B(R™ R) is the trivial map (which sends every vector in R™ to zero

vector).

5. A point xg is a saddle point of f if xq is a critical point of f but not an extreme

point of f.

Theorem 6.94. Let U < R" be open, f : U — R be differentiable, and xq € U is an extreme
point of f. Then xq is a critical point of f.

Proof. Suppose the contrary that the linear map (Df)(z) : R™ — R is not the zero map;
that is, there exists u € R", u # 0, such that (Df)(x¢)(u) = ¢ # 0 for some constant ¢ € R.
W.L.O.G, we can assume that |[u|g. = 1 and ¢ > 0(for otherwise change u to —u). By the
differentiability of f,

30> 053 |f(wo+h) — f(zo) — (D f) o) (h)| < thHRn whenever ||h|lg. < §.

Then for any 0 < A < 4,

e

[ (@0 Xua) = f (o) FADS) (o) (u)| < 5.

Therefore, —% < flaot Au) — f(zg) FAe < % which further implies that

f(zo) < faog 4+ Au) — %C < f(xo+ M) and f(zo) = f(xg — Au) + %C > f(xo — Au)

for all A > 0 small enough. As a consequence, xy cannot be a local extreme point of f, a

contradiction. o

Definition 6.95. If f : &/ — R is of class €2, the Hessian of f at x( is the bilinear
function H,,(f) : R® x R® — R given by

Hayo(f)(u,0) = (D*f)(zo)(u,v)  Vu,veR".
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The matrix representation of H,,(f)(:,) is given by

02 02

(9:5?<x0) é’mnéfxl <m0)
[Hao(f)] = :

02 02

e (0) o Sa(e)

in the sense that Hy,(f)(u,v) = [u]"[Hy, (f)][v] = [0]" [Hao (f)] [u].

Definition 6.96. A bilinear form B : R" x R* — R is called ? osztz:v € deﬁnz!t €
negative definite
q positive semi-definite

> :
B(u,u) _ 0 for all u # 0, and is calle negative semi-definite

if B(w, u) i 0 for all u € R™.

Theorem 6.97. Let U < R™ be open, and f : U — R be a function of class €>.

negative

1. If xg is a critical point of f such that the Hessian H,,(f) is positive

definite, then f

maximum .
has a local =~ .. point at xg.
minimum

maximum negative

2. If f has a local P point at xo, then H,,(f) is positive semi-definite.

Proof. 1. Suppose that H,,(f) is negative definite.

Claim: There exists 0 < A < oo such that

Hyo(f)(u,u) < =Aulg.  VueR™ (6.8.1)

Proof of claim: Since H,,(f)(u,u), viewed as a function of u, is continuous, by Theorem
421 A= — max H, (f)(u,u) exists and is positive. Then for all u e R™ with u # 0,

lulgrn=

U U

[

H,, (f)( ) < =X VueR" u+#0.

The inequality (6.8.1) follows from that the Hessian H,,(f) is bilinear.
Since f € €2, there exists § > 0 such that D(zq,d) €U and

(D% )(@) ~ (D 1)) gy < 5 ¥ € Do, ). (6.8.2)
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Now since x is a critical point of f, (Df)(z¢) = 0. As a consequence, by Taylor’s

theorem (Theorem 6.87), for any x € D(xg,d), we can find ¢ = ¢(x) € Tz such that

f(@) = flzo) + (Df)(l’o)(iv—xo)+%(DZf)(C)(l‘—iUo?I—fo)
= f(x0) + 5(D*f) (o) (x — 2o, 2 — o) + % [(D?f)(e) = (D*f)(wo)] (x — w0, x — o)

< fa0) ~ gAle —aollan + 5| (D)) — (D*F) o)) (2 — 0,7~ )|

| —

1 1
< flwo) — 5)\”1’ — o[z + §H(DQf)(C) - (DQf)(JUO)HL@(Rn;L@(RnyR))Hx — Zo|[n -

Note that ¢ = ¢(x) € D(xo,9) if x € D(zy,0); thus (6.8.2) implies that if x € D(zo,0),

A 1A X
f@) < flwo) = Sl = @olzn + 5512 — olgn < flxo) =2 — o[zn -
2 22 4
As a consequence, for all x € D(x,0), f(x) < f(xo) which validates that z( is a local
maximum point of f.
2. Suppose the contrary that f has a local maximum point at xy but for some v € R",

Ho(f)(u,u) > 0.

W.L.O.G, we can assume that |ul|g= = 1. By Theorem 6.94, (Df)(xo) = 0; thus
Taylor’s Theorem implies that

1

£(2) = (o) + 5D~ w0, = m0) = Flaw) + 5o — w0 [H(P)] & — a0).

Since zq is a local maximum point of f, there exists § > 0 such that f(z) < f(xo) for

all x € D(xo;9). As a consequence, for some ¢ = ¢(z) € Ty,
(z — z0) " [Ho(f)] (z — 20) = 2[f(z) — f(z0)] <0 Va e D(xg,0).
Let 0 <t < d and = x¢ + tu. Then x € D(zy,9); thus
H.(f)(u,u) <0 Vte (0,0).

We note that ¢ depends on ¢, and ¢ — zy as t — 0. Therefore, by the continuity of
H,(f), passing t — 0 in the inequality above we find that

Heo (f)(u, u) = lim He(f)(u, u) < 0

t—0

which is a contradiction. o
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Remark 6.98. Inequality (6.8.1) can also be obtained by studying the largest eigenvalue of
H,,(f). Note that since f € €%, H,,(f) is symmetric by Theorem 6.81. As a consequence,

there exists an orthonormal matrix @ € GL(n) whose columns are (real) eigenvectors of

Hyo(f)
[Hz(f)] = OAQT,

where A is a diagonal matrix whose diagonal entries are eigenvalues of H, (f). Note that

by the orthonormality of @, every vector u € R satisfies Q% u|gn = |ul|gs. Therefore,
Hyo (f)(u,u) = u"OAQ w = (07 ) " A0 u) < MO ullgn = Muzn
where A is the largest eigenvalue of A.

Remark 6.99 (Sylvester’s criterion). To justify if a matrix {H,,(f)] is positive/negative
definite, let

oz? 0xp0r1
Ay = : : (o) -
D N |
| Ox10ay, 8xi i
. positive o . det(Ag) >0 o
Then H,,(f) is negative definite if and only if (1) det(Ag) > 0 forall k=1,--- ,n.

6.9 Exercises

Problem 6.1. Let {7}, € #A(R",R™) be a sequence of bounded linear maps from

R™ — R™. Prove that the following three statements are equivalent:
1. {T%};2, converges pointwise (to a function T);
Jm | — Tel e rmy = 0;
3. {Tk}, converges uniformly (to 7') on every compact subsets of R™.

Problem 6.2. Let #((0,1)) < %,((0,1); R) be the collection of all polynomials defined on
(0,1).

1. Show that the operator % : 2((0,1)) — 6,((0,1)) is linear.
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9. Show that -

I (2(0,1),] - ll.e) = (%5((0,1)), ] - |0) is unbounded; that is, show
that

sup ||p'flo = 0.
Ipllz=1

§6.2 Definition of Derivatives and the Jacobian Matrices

Problem 6.3. Show that if f : C — R is differentiable at zg, then (D f)(zy) = 0.
Hint: Show that Z(C,R) = {0}.
Problem 6.4. Let f : R? — R be given by
|0 if 2y =0,
fwy) = {1 if 2y #0.

of of
Compute %(x,y) and @(x,y).

Problem 6.5. Investigate the differentiability of

Y if (z,y) # (0,0),

flay) = VE+Y

0 if (x,y) = (0,0).

Problem 6.6. Investigate the differentiability of

Ty .
o= @ if 2 +y2+#0,
0 ifx+y?=0.

Problem 6.7. Define f : R? - R by

(2?2 + y?) sin 1
fla.y) = Vat+y?

0 if (z,y) = (0,0).

if (x,y) # (0,0),

Discuss the differentiability of f. Find (V f)(z,y) at points of differentiability.

Problem 6.8. Let r > 0 and a > 1. Suppose that f : D(0,7) — R satisfies |f(z)| < |x[*
for all x € D(0,r). Show that f is differentiable at 0. What happens if a = 17

Problem 6.9. Suppose that f,g: R — R™ are differentiable at a and there is a 6 > 0 such
that g(z) # 0 for all 0 < |z —a|] < d. If f(a) = g(a) =0 and (Dg)(a) # 0, show that

i @ _ I(Df)(a)]
==a g(z)| [(Dg)(a)]
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Problem 6.10. Consider the map ¢ defined in Problem 5.11 in Chapter 5; that is, ¢ :
%([0,1];R) — R be defined by 6(f) = f(0). Show that ¢ is differentiable. Find (DJ)(f)
(for f e Z([0,1}R)).

Problem 6.11. Let f : GL(n) — GL(n) be given by f(L) = L. In class we have shown
that f is continuous on GL(n). Show that f is differentiable at each “point” (or more
precisely, linear map) of GL(n).

Hint: In order to show the differentiability of f at L € GL(n), we need to figure out what
(Df)(L) is. So we need to compute f(L + h) — f(L), where h € B(R",R") is a “small”
linear map. Compute (L + h)~! — L' and make a conjecture what (D f)(L) should be.

Problem 6.12. Let I : €([0, 1];R) — R be defined by

0= ey de.

Show that [ is differentiable at every “point” f € €([0, 1};R).

Hint: Figure out what (DI)(f) is by computing I(f + h) — I(f), where h € € ([0, 1];R) is
a “small” continuous function.

Remark. A map from a space of functions such as ([0, 1];R) to a scalar field such as R

or C is usually called a functional. The derivative of a functional I is usually denoted by
01 instead of DI.

§6.3 Conditions for Differentiability
§6.4 Properties of Differentiable Functions

Problem 6.13. Let & < R” be open, and f : U — R. Suppose that the partial derivatives
of of

T, are bounded on U; that is, there exists a real number M > 0 such that
T In

af(x)‘<M Veeldand j=1,---,n.
61']‘

Show that f is continuous on U.
Hint: Mimic the proof of Theorem 6.28.

Problem 6.14. Let i/ < R" be open, and f : U4 — R. Show that f is differentiable at a € U

if and only if there exists a vector-valued function € : «f — R"™ such that
f(x) = fla) = ), gj(a)(wj —a;) =e(x) - (r —a)
J=1

and e(z) — 0 as z — a.
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Problem 6.15. Verify the chain rule for
u(z,y,z) =xe’, v(x,y,z) =yzsinz

and

f(u,v) = u® 4+ vsinu
with h(z,y,z) = f(u(x,y, z),v(z,y, z))
Problem 6.16. Let (1,0, ) be the spherical coordinate of R? so that
xr=rcosfsiny,y=rsinfsinp,z =rcosp.

1. Find the Jacobian matrices of the map (z,y,2) — (r,6,¢) and the map (1,6, ¢) —
(x,y,2).

2. Suppose that f(x,y,2) is a differential function in R3. Express |V f|? in terms of the
spherical coordinate.

Problem 6.17. Let &/ < R” be open and convex, and f : Y — R™ be differentiable on U.
Show that for each a,b e U and vector v e R™, there exists ¢ on the line segment joining a
and b such that

v [fO)=f(@) =v- D(f)c)(b—a).

Problem 6.18. Let i/ < R" beopen, and for each 1 < 4,7 <n, a;; : U — R be differentiable
functions. Define A = [a;;] and J = det(A). Show that

Ot (Adj(A)

aA) Vi<k<n,

oxy. oxy,

where for a square matrix M = [m;;], tr(M) denotes the trace of M, Adj(M) denotes the

. . oM . o o om;
adjoint matrix of M, and F denotes the matrix whose (i, j)-th entry is given by am” :
Tk Tk
Hint: Show that
oa oa Oain
ﬁlkl a2 -+ Qip ai 6:}@1; aiz - Qip Al 0 Qp-1)1 a;k
dagy dagy dazy,
oJ I 22 Qa2n n (21 . a3 Q2n ot 21 Q(n—1)2 P
oy, : : : : :
aa/nl aan2 aanl
Ern Ap2 - App n1 oxr, Ap3 - QGpn Ap1 - a(n—l)n oxr,
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and rewrite this identity in the form which is asked to prove. You can also show the dif-
ferentiation formula by applying the chain rule to the composite function F' o g of maps
g:U — R” and F : R — R defined by g(z) = (a11(x), a12(z), -, ann(z)) and
F(a, -+, an,) = det ([aij]). Check first what ;F is

aij

Problem 6.19. Let ¢ : R” — R" be a differentiable function such that P _ 0 (%)

or;0x;  Ox; Oz
exists and is continuous in R” for each 1 < i, 7, k < n. Suppose that (Dv)(z) € GL(n) for all
r € R", and define A = (D%)~! (or in terms of their matrix representation, [A] = [Dy]™!).

Let ¢ = (Y, , ) and [4] = [ag].

1. Show that ) aikgwk = 21/% = 0;j, where 9;; is the Kronecker delta; that is,
k=1 Ly =1

(L-jzlifz':jor&ij:()lfz;éj.

2. Show that for each 1 <4, 7,k <n, a;; : R” — R is differentiable, and
Oaij Zn: P
= — a;

—a
0x " OxLoxs Y

s=1

Problem 6.20. Let &/ < R™ be open and connected, and f : &/ — R be a function such

that g(x) = 0 for all x € Y. Show that f is constant in Y.
J

§6.5 Directional Derivatives and Gradient Vectors

Problem 6.21. Let

flay) =4 o +v°
0 if (x,y) = (0,0).

Show that the directional derivative of f at the origin exists in all directions u, and

(0.)0.0) = (5£0.0. 5 0,0)) -u.

§6.6 Higher Derivatives of Functions

Problem 6.22. Let f(z,y,z) = (z*+1) cos(yz), and a = (0, g, 1), w=(1,0,0), v = (0,1,0)
and w = (2,0,1).

1. Compute (Df)(a)(u).
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2. Compute (D?f)(a)(v)(u).
3. Compute (D?f)(a)(w)(v)(u).

Problem 6.23. 1. If f: ACR" - R™and g: B € R™ — R’ are twice differentiable and
f(A) € B, then for 25 € A, u,v € R", show that

D*(g o f)(@o)(u,v)
= (D?9)(f(20)) ((Df) (o) (u), D f(z0)(v)) + (Dg)(f (o)) ((D*f)(0) (u,v)) -

2. If p: R® — R™ is a linear map plus some constant; that is, p(x) = Lz + ¢ for some
Le BR"R™),and f: A< R™ — R® is k-times differentiable, prove that

D*(f o p)(wo) (@, -+ u®) = (D*f) (p(w0)) (Dp) (o) (u®)s-+ -, (Dp) (o) (™) .
§6.7 Taylor’s Theorem

Problem 6.24. Let f(z,y) be a real-valued function on R%. Suppose that f is of class €
2

(that is, all first partial derivatives are continuous on R?) and exists and is continuous.

0% f ) 0% f 0% f
30 exists and dwdy ~ dyox’

oxoy
Show that

Hint: Mimic the proof of Theorem 6.81.

Problem 6.25. Let f : R" — R™ be differentiable, and D f is a constant map in Z(R", R™);
that is, (Df)(x1)(u) = (Df)(x2)(u)for all z1, 25 € R™ and u € R™. Show that f is a linear

term plus a constant and that the linear part of f is the constant value of Df.

Problem 6.26. Let &/ < R" be open, and f : U — R™ be of class €2 such that Df : U —
PB(R", R") satisfies (Df)(z) € GL(n) for all z € U. Define J = det([Df]) and A = [Df]L.
With a;; denoting the (7, j)-th entry of A, show the Piola identity

Z;(Jaij)(x):O Vi<j<nandzrel. (6.9.1)
i=1

Is f continuous at (0,0)7 Is f differentiable at (0,0)7

Problem 6.27. Let 4 < R" be open, and f : U — R be of class €* and (D’ f)(xq) = 0 for
j=1,-,k—1,but (D*f)(xo)(u,u, - ,u) <0 for all u € R?, u # 0. Show that f has a

local maximum at xg; that is, 3 > 0 such that

f(z) < f(zo) Ve D(xo,0).
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§6.8 Maxima and Minima
Problem 6.28. Let f(z,y) = 2° + x — day + 212,
1. Find all critical points of f.

2. Find the corresponding quadratic from Q(z,y, h, k) (or (D?f(x, y)((h, k), (h, k:))) at

these critical points, and determine which of them is positive definite.
3. Find all relative extrema and saddle points.

4. Find the maximal value of f on the set

A={(z,y)|0<z<L,0<y<Lo+y<1}

Problem 6.29. Let f : R? — R be given by

4x0y>?
24 y? =2ty — o
flz,y) = (2 +92)°

0 if (x,y) = (0,0).

if (z,y) # (0,0),

1. Show that f is continuous (at (0,0)) by showing that for all (z,y) € R?,
4ty < (2 + )2,
2. For 0 <0 < 2w, —0 <t < o0, define
go(t) = f(tcos@,tsind).

Show that each gy has a strict local minimum at ¢ = 0. In other words, the restriction

of f to each straight line through (0,0) has a strict local minimum at (0, 0).
3. Show that (0,0) is not a local minimum for f.

Problem 6.30 (True or False). Determine whether the following statements are true or

false. If it is true, prove it. Otherwise, give a counter-example.

1.
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3.

4. Let U < R™ be open. Then f : U — R is differentiable at a € U if and only if each
directional derivative (D, f)(a) exists and

N\ of ._<‘9f .. 9F )
(Duf) (CL) - ; axj (CL)UJ - (3931 ((l), ) axn (CL) u

where u = (uq, -+ ,u,) is a unit vector.

5. Let f:R? — R be of class €'. Assume that all second order partial derivatives of f
exist, then f is second times differentiable in R2.

6. Let f be a function defined on R?, and A be an invertible matrix. Define y = Ax for
xz € R". Then f(y) is differentiable if and only if f(Az) is differentiable as a function
of x.

7. Let f : [a,b] — R? be continuous and be differentiable on (a,b). If f(a) = f(b), then

there exists some ¢ € (a,b) such that f'(c) =0.



