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Chapter 5

Uniform Convergence and the Space
of Continuous Functions

5.1 Pointwise and Uniform Convergence（逐點收斂與均
勻收斂）

Definition 5.1. Let (M,d) and (N, ρ) be two metric spaces, A Ď M be a set, and fk : A Ñ

N be functions for k = 1, 2, ¨ ¨ ¨ . The sequence of functions tfku8
k=1 is said to converge

pointwise if
␣

fk(a)
(8

k=1
converges for all a P A. In other words, tfku8

k=1 converges pointwise
if there exists a function f : A Ñ N such that

lim
kÑ8

ρ
(
fk(a), f(a)

)
= 0 @ a P A.

In this case, tfku8
k=1 is said to converge pointwise to f and is denoted by fk Ñ f p.w..

Let B Ď A be a subset. The sequence of functions tfku8
k=1 is said to converge uni-

formly on B if there exists f : B Ñ N such that

lim
kÑ8

sup
xPB

ρ
(
fk(x), f(x)

)
= 0 .

In this case, tfku8
k=1 is said to converge uniformly to f on B (or converge to f uniformly on

B). In other words, tfku8
k=1 converges uniformly to f on B if for every ε ą 0, DN ą 0 such

that

ρ
(
fk(x), f(x)

)
ă ε @ k ě N and x P B .
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156 CHAPTER 5. Uniform Convergence and the Space of Continuous Functions

Example 5.2. Let fk, f : [0, 1] Ñ R be given by

fk(x) =

$

’

&

’

%

0 if 1

k
ď x ď 1 ,

´kx+ 1 if 0 ď x ă
1

k
.

and f(x) =

"

0 if x P (0, 1],
1 if x = 0.

Then tfku8
k=1 converges pointwise to f on [0, 1]. To see this, fix x P [0, 1].

1. Case x ‰ 0: Let ε ą 0 be given, take N ą
1

x
ô

1

N
ă x. If k ě N ,

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ =
ˇ

ˇfk(x) ´ 0
ˇ

ˇ = |0 ´ 0| ă ε .

2. Case x = 0: For any ε ą 0, k = 1, 2, 3, . . . ,
ˇ

ˇfk(0) ´ f(0)
ˇ

ˇ = |1 ´ 1| = 0 ă ε.

However, tfku8
k=1 does not converge uniformly to f on [0, 1] because

sup
xP[0,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = 1 ñ lim
kÑ8

sup
xP[0,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = 1 ‰ 0 .

Example 5.3. Let fk : [0, 1] Ñ R be given by fk(x) = xk. Then for each a P [0, 1), fk(a) Ñ 0

as k Ñ 8, while if a = 1, fk(a) = 1 for all k. Therefore, if f(x) =
"

0 if x P [0, 1) ,
1 if x = 1 ,

then
fk Ñ f p.w.. However, since

sup
xP[0,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = sup
xP[0,1)

ˇ

ˇfk(x)
ˇ

ˇ = 1 ,

we must have
lim
kÑ8

sup
xP[0,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = 1 ‰ 0 .

Therefore, tfku8
k=1 does not converge uniformly to f on [0, 1].

On the other hand, if 0 ă a ă 1, then

sup
xP[0,a]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ď ak ;

thus by the Sandwich lemma,

lim
kÑ8

sup
xP[0,a]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = 0 .

Therefore, tfku8
k=1 converges to uniformly f on [0, a] if 0 ă a ă 1.
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Example 5.4. Let fk : R Ñ R be given by fk(x) =
sinx
k

. Then for each x P R, |fk(x)| ď
1

k
which converges to 0 as k Ñ 8. By the Sandwich lemma,

lim
kÑ8

ˇ

ˇfk(x)
ˇ

ˇ = 0 @x P R .

Therefore, fk Ñ 0 p.w.. Moreover, since sup
xPR

ˇ

ˇfk(x)
ˇ

ˇ ď
1

k
, lim
kÑ8

sup
xPR

ˇ

ˇfk(x)
ˇ

ˇ = 0 . Therefore,
tfku8

k=1 converges uniformly to 0 on R.

Proposition 5.5. Let (M,d) and (N, ρ) be two metric spaces, A Ď M be a set, and
fk, f : A Ñ N be functions for k = 1, 2, ¨ ¨ ¨ . If tfku8

k=1 converges uniformly to f on A, then
tfku8

k=1 converges pointwise to f .

Proof. For each a P A,
ρ
(
fk(a), f(a)

)
ď sup

xPA
ρ
(
fk(x), f(x)

)
;

thus the Sandwich lemma shows that

lim
kÑ8

ρ
(
fk(a), f(a)

)
= 0

since tfku8
k=1 converges uniformly to f on A. ˝

Proposition 5.6 (Cauchy criterion for uniform convergence). Let (M,d) and (N, ρ) be two
metric spaces, A Ď M be a set, and fk : A Ñ N be a sequence of functions. Suppose that
(N, ρ) is complete. Then tfku8

k=1 converges uniformly on B Ď A if and only if for every
ε ą 0, DN ą 0 such that

ρ
(
fk(x), fℓ(x)

)
ă ε @ k, ℓ ě N and x P B .

Proof. “ñ” Suppose that tfku8
k=1 converges uniformly to f on B. Let ε ą 0 be given. Then

DN ą 0 such that

ρ
(
fk(x), f(x)

)
ă
ε

2
@ k ě N and x P B .

Then if k, ℓ ě N and x P B,

ρ
(
fk(x), fℓ(x)

)
ď ρ

(
fk(x), f(x)

)
+ ρ(f(x), fℓ(x)

)
ă
ε

2
+
ε

2
= ε .
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“ð” Let b P B. By assumption,
␣

fk(b)
(8

k=1
is a Cauchy sequence in (N, ρ); thus is conver-

gent. Let f(b) denote the limit of
␣

fk(b)
(8

k=1
. Then tfku8

k=1 converges pointwise to f
on B. We claim that the convergence is indeed uniform on B.

Let ε ą 0 be given. Then DN ą 0 such that

ρ
(
fk(x), fℓ(x)

)
ă
ε

2
@ k, ℓ ě N and x P B .

Moreover, for each x P B there exists Nx ą 0 such that

ρ
(
fℓ(x), f(x)

)
ă
ε

2
@ ℓ ě Nx .

Then for all k ě N and x P B,

ρ
(
fk(x), f(x)

)
ď ρ

(
fk(x), fℓ(x)

)
+ ρ

(
fℓ(x), f(x)

)
ă
ε

2
+
ε

2
= ε

in which we choose ℓ ě maxtN,Nxu to conclude the inequality. ˝

Theorem 5.7. Let (M,d) and (N, ρ) be two metric spaces, A Ď M be a set, and fk : A Ñ N

be a sequence of continuous functions converging to f : A Ñ N uniformly on A. Then f is
continuous on A; that is,

lim
xÑa

f(x) = lim
xÑa

lim
kÑ8

fk(x) = lim
kÑ8

lim
xÑa

fk(x) = f(a) .

Proof. Let a P A and ε ą 0 be given. Since tfku8
k=1 converges uniformly to f on A, DN ą 0

such that
ρ
(
fk(x), f(x)

)
ă
ε

3
@ k ě N and x P A .

By the continuity of fN , D δ ą 0 such that

ρ
(
fN(x), fN(a)

)
ă
ε

3
whenever x P D(a, δ) X A .

Therefore, if x P D(a, δ) X A, by the triangle inequality

ρ
(
f(x), f(a)

)
ď ρ

(
f(x), fN(x)

)
+ ρ

(
fN(x), fN(a)

)
+ ρ

(
fN(a), f(a)

)
ă
ε

3
+
ε

3
+
ε

3
= ε ;

thus f is continuous at a. ˝

Example 5.8. Let fk : [0, 2] Ñ R be given by fk(x) =
xk

1 + xk
. Then
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1. For each a P [0, 1), fk(a) Ñ 0 as k Ñ 8;

2. For each a P (1, 2], fk(a) Ñ 1 as k Ñ 8;

3. If a = 1, then fk(a) =
1

2
for all k.

Let f(x) =

$

’

&

’

%

0 if x P [0, 1) ,
1

2
if x = 1 ,

1 if x P (1, 2] .

Then tfku8
k=1 converges pointwise to f . However, tfku8

k=1

does not converge uniformly to f on [0, 2] since fk are continuous functions for all k P N
but f is not.

Remark 5.9. The uniform limit of sequence of continuous function might not be uniformly
continuous. For example, let A = (0, 1) and fk(x) =

1

x
for all k P N. Then tfku8

k=1 converges

uniformly to f(x) = 1

x
, but the limit function is not uniformly continuous on A.

Theorem 5.10. Let I Ď R be a finite interval, fk : I Ñ R be a sequence of differentiable
functions, and g : I Ñ R be a function. Suppose that

␣

fk(a)
(8

k=1
converges for some a P I,

and tf 1
ku8
k=1 converges uniformly to g on I. Then

1. tfku8
k=1 converges uniformly to some function f on I.

2. The limit function f is differentiable on I, and f 1(x) = g(x) for all x P I; that is,

lim
kÑ8

f 1
k(x) = lim

kÑ8

d

dx
fk(x) =

d

dx
lim
kÑ8

fk(x) = f 1(x) .

Proof. 1. Let ε ą 0 be given. Since
␣

fk(a)
(8

k=1
converges to f(a),

␣

fk(a)
(8

k=1
is a Cauchy

sequence. Therefore, DN1 ą 0 such that
ˇ

ˇfk(a) ´ fℓ(a)
ˇ

ˇ ă
ε

2
@ k, ℓ ě N1 .

By the uniform convergence of tf 1
ku8
k=1 on I and Proposition 5.6, DN2 ą 0 such that

ˇ

ˇf 1
k(x) ´ f 1

ℓ(x)
ˇ

ˇ ă
ε

2|I|
@ k, ℓ ě N2 and x P I ,

where |I| is the length of the interval.

Let N = maxtN1, N2u. By the mean value theorem, for all k, ℓ ě N and x P I,
there exists ξ in between x and a such that

ˇ

ˇfk(x) ´ fℓ(x) ´ fk(a) + fℓ(a)
ˇ

ˇ = |f 1
k(ξ) ´ f 1

ℓ(ξ)||x ´ a| ă
ε|x ´ a|

2|I|
ď
ε

2
;
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thus for all k, ℓ ě N and x P I,

ˇ

ˇfk(x) ´ fℓ(x)
ˇ

ˇ ď
ˇ

ˇfk(a) ´ fℓ(a)
ˇ

ˇ+
ε

2
ă
ε

2
+
ε

2
= ε.

Therefore, Proposition 5.6 implies that tfku8
k=1 converges uniformly on I.

2. Suppose that the uniform limit of tfku8
k=1 is f . Let x P I be a fixed point, and define

ϕk(t) =

$

&

%

fk(t) ´ fk(x)

t´ x
if t P I, t ‰ x ,

f 1
k(x) if t = x ,

and ϕ(t) =

$

&

%

f(t) ´ f(x)

t´ x
if t P I, t ‰ x ,

g(x) if t = x .

Then ϕk is continuous on I for all k P N, and tϕku8
k=1 converges pointwise to ϕ.

Claim: tϕku8
k=1 converges uniformly to ϕ on I.

Proof of claim: Let ε ą 0 be given. Since tf 1
ku8
k=1 converges uniformly on I, there

exists N ą 0 such that

sup
tPI

ˇ

ˇf 1
k(t) ´ f 1

ℓ(t)
ˇ

ˇ ă ε @ k, ℓ ě N .

Since
ˇ

ˇϕk(t) ´ ϕℓ(t)
ˇ

ˇ =

$

&

%

ˇ

ˇfk(t) ´ fk(x) ´ fℓ(t) + fℓ(x)
ˇ

ˇ

|t´ x|
if t ‰ x, t P I ,

ˇ

ˇf 1
k(x) ´ f 1

ℓ(x)
ˇ

ˇ if t = x ,

by the mean value theorem we obtain that

ˇ

ˇϕk(t) ´ ϕℓ(t)
ˇ

ˇ ď sup
sPI

ˇ

ˇf 1
k(s) ´ f 1

ℓ(s)
ˇ

ˇ ă ε @ k, ℓ ě N and t P I .

Finally, by Theorem 5.7, ϕ is continuous on I; thus

f 1(x) = lim
tÑx

ϕ(t) = ϕ(x) = g(x) . ˝

Example 5.11. Assume that fk : I Ñ R is differentiable for all k P N, and tf 1
ku8
k=1 converges

uniformly to g on I. Then tfku8
k=1 might NOT converge. For example, consider fk(x) = k.

Then f 1
k ” 0 but tfku8

k=1 does not converge.

Example 5.12. Assume that fk : I Ñ R is differentiable for all k P N, and tfku8
k=1

converges uniformly to f on I. Then f might NOT be differentiable. In fact, there are
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differentiable functions fk : [a, b] Ñ R such that fk converges uniformly to f on [a, b] but f
is not differentiable. For example, consider

fk(x) =

$

’

&

’

%

k

2
x2 if

ˇ

ˇx
ˇ

ˇ ď
1

k
,

ˇ

ˇx
ˇ

ˇ ´
1

2k
if 1

k
ď
ˇ

ˇx
ˇ

ˇ ď 1.

Observe that fk(´x) = fk(x), so it suffices to consider x ě 0.

1. Let f(x) = |x|. Then fk Ñ f uniformly:

sup
xP[´1,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = sup
xP[0,1]

ˇ

ˇfk(x) ´ x
ˇ

ˇ = max
!

sup
xP[0, 1

k
]

ˇ

ˇfk(x) ´ x
ˇ

ˇ, sup
xP[ 1

k
,1]

ˇ

ˇfk(x) ´ x
ˇ

ˇ

)

= max
!

sup
xP[0, 1

k
]

ˇ

ˇ

kx2

2
´ x

ˇ

ˇ, sup
xP[ 1

k
,1]

ˇ

ˇx ´
1

2k
´ x

ˇ

ˇ

)

ď sup
xP[0, 1

k
]

ˇ

ˇ

kx2

2

ˇ

ˇ+
ˇ

ˇx
ˇ

ˇ ď
k

2
(
1

k
)2 +

1

k
=

3

2k
Ñ 0 as k Ñ 8 .

2. To see if fk are differentiable, it suffices to show f 1
k(

1

k
) exists.

f 1
k(
1

k
) = lim

hÑ0

fk(
1
k
+ h) ´ fk(

1
k
)

h
= lim

hÑ0

1

h

$

’

&

’

%

(1
k
+ h

)
´

1

2k
´

1

2k
if h ą 0

k

2
(
1

k
+ h)2 ´

1

2k
if h ă 0

= lim
hÑ0

1

h

#

h if h ą 0

h+
k

2
h2 if h ă 0

= 1 .

Example 5.13. Assume that fk : [´1, 1] Ñ R be given by

fk(x) =

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if x P [´1, 0] ,

k2

2
x2 if x P

(
0,

1

k

]
,

1 ´
k2

2

(
x ´

2

k

)2 if x P
(1
k
,
2

k

]
,

1 if x P
(2
k
, 1
]
.

Then f 1
k(x) =

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 if x P [´1, 0] ,

k2x if x P
(
0,

1

k

]
,

´k2
(
x ´

2

k

)
if x P

(1
k
,
2

k

]
,

0 if x P
(2
k
, 1
]
,

and tf 1
ku8
k=1 converges pointwise to 0 but not
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uniformly on [´1, 1]. We note that tfku8
k=1 converges to a discontinuous function

f(x) =

"

0 if x P [´1, 0] ,

1 if x P (0, 1] ,

so the convergence of tfku8
k=1 cannot be uniform on [´1, 1].

Example 5.14. Suppose fk : [0, 1] Ñ R are differentiable on (0, 1) and fk converges uni-
formly to f on [0, 1] for some f : [0, 1] Ñ R. Does f 1

k converge uniformly?
Answer: No! Take fk =

sin(k2x)
k

, k = 1, 2, ¨ ¨ ¨ , then fk Ñ 0 uniformly on [0, 1] since

sup
xP[0,1]

ˇ

ˇfk(x) ´ 0
ˇ

ˇ = sup
xP[0,1]

ˇ

ˇ

sin(k2x)
k

ˇ

ˇ ď
1

k
ñ lim

kÑ8
sup
xP[0,1]

ˇ

ˇfk(x) ´ 0
ˇ

ˇ = 0 .

Now f 1
k(x) = k cos(k2x) and f 1

k(0) = k Ñ 8 as k Ñ 8.

Example 5.15. There are differentiable functions fk : [a, b] Ñ R such that fk converges
uniformly to f on [a, b] but lim

kÑ8
f 1
k ‰ ( lim

kÑ8
fk)

1. For example, take fk(x) =
x

1 + k2x2
on

[´1, 1]. Then f 1
k(x) =

1 ´ k2x2

(1 + k2x2)2
.

1. Since lim
kÑ8

sup
xP[´1,1]

ˇ

ˇ

x

1 + k2x2
´ 0

ˇ

ˇ = lim
kÑ8

1

2k
= 0, fk converges uniformly to 0 on [´1, 1].

2. ( lim
kÑ8

fk(x))
1 = 01 = 0.

3. lim
kÑ8

f 1
k(x) = lim

kÑ8

1 ´ k2x2

(1 + k2x2)2
=

"

1 if x = 0,
0 if x ‰ 0,

ˇ

ˇx
ˇ

ˇ ă 1.
Note that f 1

k does not converge

uniformly.

Theorem 5.16. Let fk : [a, b] Ñ R be a sequence of Riemann integrable functions which
converges uniformly to f on [a, b]. Then f is Riemann integrable, and

lim
kÑ8

ż b

a

fk(x)dx =

ż b

a

lim
kÑ8

fk(x)dx =

ż b

a

f(x)dx . (5.1.1)

Proof. Let ε ą 0 be given. Since tfku8
k=1 converges uniformly to f on [a, b], DN ą 0 such

that
ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ă
ε

4(b ´ a)
@ k ě N and x P [a, b] . (5.1.2)
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Since fN is Riemann integrable on [a, b], by Riemann’s condition there exists a partition P
of [a, b] such that

U(fN ,P) ´ L(fN ,P) ă
ε

2
.

Using (4.7.3), we find that

U(f,P) ´ L(f,P) = U(f ´ fN + fN ,P) ´ L(f ´ fN + fN ,P)

ď U(f ´ fN ,P) + U(fN ,P) ´ L(f ´ fN ,P) ´ L(fN ,P)

ď
ε

4(b ´ a)
(b ´ a) +

ε

4(b ´ a)
(b ´ a) + U(fN ,P) ´ L(fN ,P)

ă
ε

4
+
ε

4
+
ε

2
= ε ;

thus by Riemann’s condition f is Riemann integrable on [a, b].
Now, if k ě N , (5.1.2) implies that

ˇ

ˇ

ˇ

ż b

a

fk(x)dx ´

ż b

a

f(x)dx
ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

ż b

a

(
fk(x) ´ f(x)

)
dx

ˇ

ˇ

ˇ
ď

ż b

a

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇdx

ď
ε

4(b ´ a)
(b ´ a) =

ε

4
ă ε

which shows (5.1.1). ˝

Example 5.17. Let tqku8
k=1 be the rational numbers in [0, 1], and

fk(x) =

"

0 if x P tq1, q2, ¨ ¨ ¨ , qku ,

1 otherwise .

Then fk converges pointwise to the Dirichlet function

f(x) =

"

0 if x P Q X [0, 1] ,

1 if x P [0, 1]zQ .

However, tfku8
k=1 does not converge uniformly to f since fk are Riemann integrable on [0, 1]

for all k P N but f is not.

Example 5.18. Let fk : [0, 1] Ñ R be functions given in Example 5.13, and let gk = f 1
k.

Then tgku8
k=1 converges pointwise to 0, but

ż 1

0
gk(x)dx = 1 for all k P N.
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5.2 Series of Functions and The Weierstrass M-Test

Definition 5.19. Let (M,d) be a metric space, (V , } ¨ }) be a norm space, A Ď M be a

subset, and gk, g : A Ñ V be functions. We say that the series
8
ř

k=1

gk converges pointwise if
the sequence of partitial sum tsnu8

n=1 given by

sn =
n
ÿ

k=1

gk

converges pointwise. We use
8
ř

k=1

gk = g p.w. to denote that the series
8
ř

k=1

gk converges

pointwise to g. We say that
8
ř

k=1

gk converges uniformly on B Ď A if tsnu8
n=1 converges

uniformly on B.

Example 5.20. Consider the geometric series
8
ř

k=0

xk. The partial sum sn is given by

sn(x) =

$

&

%

1 ´ xn+1

1 ´ x
if x ‰ 1 ,

n+ 1 if x = 1 .

Then

1.
8
ř

k=0

xk converges pointwise to g(x) = 1

1 ´ x
in (´1, 1).

2.
8
ř

k=0

xk does not converge pointwise in (´8,´1] Y [1,8).

3.
8
ř

k=0

xk converges uniformly on (´a, a) if 0 ă a ă 1 since

sup
xP(´a,a)

|sn(x) ´ g(x)| = sup
xP(´a,a)

|x|n+1

1 ´ x
ď

|a|n+1

1 ´ a
Ñ 0 as n Ñ 8.

4.
8
ř

k=0

xk does not converge uniformly on (´1, 1) since sup
xP(´1,1)

|sn(x) ´ g(x)| = 8.

The following two corollaries are direct consequences of Proposition 5.6 and Theorem
5.7.
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Corollary 5.21. Let (M,d) be a metric space, (V , } ¨ }) be a complete normed vector space,
A Ď M be a subset, and gk : A Ñ V be functions. Then

8
ř

k=1

gk converges uniformly on A if
and only if

@ ε ą 0, DN ą 0 Q
›

›

n
ÿ

k=m+1

gk(x)
›

› ă ε @n ą m ě N and x P A .

Corollary 5.22. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, A Ď M

be a subset, and gk, g : A Ñ V be functions. If gk : A Ñ V are continuous and
8
ř

k=1

gk(x)

converges to g uniformly on A, then g is continuous.

Theorem 5.23. Let f : (a, b) Ñ R be an infinitely differentiable functions; that is, f (k)(x)

exists for all k P N and x P (a, b). Let c P (a, b) and suppose that for some 0 ă h ă 8,
ˇ

ˇf (k)(x)
ˇ

ˇ ď M for all x P (c ´ h, c+ h) Ď (a, b). Then

f(x) =
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k @x P (c ´ h, c+ h) .

Proof. First, we claim that

f(x) =
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)n

ż x

c

(y ´ x)n

n!
f (n+1)(y)dy @x P (a, b) . (5.2.1)

By the fundamental theorem or Calculus (Theorem 4.90) it is clear that (5.2.1) holds for
n = 0. Suppose that (5.2.1) holds for n = m. Then

f(x) =
m
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)m

[(y ´ x)m+1

(m+ 1)!
f (m+1)(y)

ˇ

ˇ

ˇ

y=x

y=c
´

ż x

c

(y ´ x)m+1

(m+ 1)!
f (m+2)(y)dy

]
=

m+1
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)m+1

ż x

c

(y ´ x)m+1

(m+ 1)!
f (m+2)(y)dy

which implies that (5.2.1) also holds for n = m+1. By induction (5.2.1) holds for all n P N.

Letting sn(x) =
n
ř

k=0

f (k)(c)

k!
(x ´ c)k, then if x P (c ´ h, c+ h),

ˇ

ˇsn(x) ´ f(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż x

c

hn

n!
Mdy

ˇ

ˇ

ˇ
ď
hn+1

n!
M .

Let ε ą 0 be given. Since lim
nÑ8

hn+1

n!
M = 0, DN ą 0 such that

ˇ

ˇ

ˇ

hn+1

n!

ˇ

ˇ

ˇ
M ă ε if n ě N . As a

consequence, if n ě N ,
ˇ

ˇsn(x) ´ f(x)
ˇ

ˇ ă ε whenever n ě N . ˝
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Example 5.24. The series
8
ř

k=0

(´1)k
x2k+1

(2k + 1)!
converges to sin x uniformly on any bounded

subset of R.

Theorem 5.25 (Weierstrass M -test). Let (M,d) be a metric space, (V , } ¨ }) be a complete
normed vector space, A Ď M be a subset, and gk : A Ñ V be a sequence of functions. Suppose
that there exists Mk ą 0 such that sup

xPA
}gk(x)} ď Mk for all k P N and

8
ř

k=1

Mk converges.

Then
8
ř

k=1

gk converges uniformly and absolutely (that is,
8
ř

k=1

}gk} converges uniformly) on A.

Proof. We show that the partial sum sn =
n
ř

k=1

gk satisfies the Cauchy criterion. Let ε ą 0

be given. Since
8
ř

k=1

Mk converges (which means
n
ř

k=1

Mk converges as n Ñ 8), there exists
N ą 0 such that

n
ÿ

k=m+1

Mk =
ˇ

ˇ

ˇ

n
ÿ

k=m+1

Mk

ˇ

ˇ

ˇ
ă ε @n ą m ě N .

Therefore,
›

›

›

n
ÿ

k=m+1

gk(x)
›

›

›
ď

n
ÿ

k=m+1

›

›gk(x)
›

› ď

n
ÿ

k=m+1

Mk ă ε @n ą m ě N and x P A .

Apply Proposition 5.6 to the sequence tsnu8
n=1, we conclude the theorem. ˝

Theorem 5.7 and 5.25 together imply the following

Corollary 5.26. Let (M,d) be a metric space, (V , } ¨ }) be a complete normed vector space,
A Ď M be a subset, and gk : A Ñ V be a sequence of continuous functions. Suppose that
there exists Mk ą 0 such that sup

xPA
}gk(x)} ď Mk for all k P N and

8
ř

k=1

Mk converges. Then
8
ř

k=1

gk is continuous on A.

Example 5.27. Consider the series f(x) =
8
ÿ

k=0

(xk
k!

)2
. For all x P [´R,R],

(xk
k!

)2
ď

R2k

(k!)2
.

Moreover,

lim sup
kÑ8

R2(k+1)

((k + 1)!)2
/ R2k

(k!)2
= lim sup

kÑ8

R2

(k + 1)2
= 0 ;

thus the ratio test and the Weierstrass M -test imply that the series
8
ÿ

k=0

(xk
k!

)2
converges

uniformly on [´R,R]. Theorem 5.7 then shows that f is continuous on [´R,R]. Since R is
arbitrary, we find that f is continuous on R.
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Example 5.28. Let taku8
k=0 be a bounded sequence. Then

8
ÿ

k=0

ak
k!
xk converges to a contin-

uous function.

Example 5.29. Consider the function f(x) = π

2
´

4

π

8
ř

k=0

cos(2k + 1)x

(2k + 1)2
. We can in fact show

(much later) that f(x) = |x| for all x P [´π, π], and by the Weierstrass M -test it is easy to
see that the convergence is uniform on R.

x

y

π ´π/2 O π/2 π

y = |x|
y = f0(x)
y = f1(x)
y = f2(x)

Figure 5.1: The graph of some partial sums

5.3 Integration and Differentiation of Series
The following two theorems are direct consequences of Theorem 5.10 and 5.16.

Theorem 5.30. Let gk : [a, b] Ñ R be a sequence of Riemann integrable functions. If
8
ř

k=1

gk

converges uniformly on [a, b], then
ż b

a

8
ÿ

k=1

gk(x)dx =
8
ÿ

k=1

ż b

a

gk(x)dx .

Theorem 5.31. Let gk : (a, b) Ñ R be a sequence of differentiable functions. Suppose that
8
ř

k=1

gk converges for some c P (a, b), and
8
ř

k=1

g1
k converges uniformly on (a, b). Then

8
ÿ

k=1

g1
k(x) =

d

dx

8
ÿ

k=1

gk(x) .

Definition 5.32. A series is called a power series about c or centered at c if it is of
the form

8
ř

k=0

ak(x ´ c)k for some sequence taku8
k=0 Ď R (or C) and c P R (or C).
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Proposition 5.33. If a power series centered at c is convergent at some point b ‰ c, then
the power series converges pointwise on D(c, |b´c|), and converges uniformly on any compact
subsets of D(c, |b ´ c|).

Proof. Since the series
8
ř

k=0

ak(b´ c)k converges, |ak||b´ c|k Ñ 0 as k Ñ 8; thus there exists

M ą 0 such that |ak||b ´ c|k ď M for all k.

1. x P D(c, |b ´ c|), the series
8
ř

k=0

ak(x ´ c)k converges absolutely since

8
ÿ

k=0

|ak(x ´ c)k| ď

8
ÿ

k=0

|ak||x ´ c|k =
8
ÿ

k=0

|ak||b ´ c|k
|x´ c|k

|b´ c|k
ď M

8
ÿ

k=0

(
|x´ c|

|b´ c|

)k
which converges (because of the geometric series test or ratio test).

2. Let K Ď D(c, |b ´ c|) be a compact set. Then

dist(K, BD(c, |b ´ c|)) ” inf
␣

|x ´ y|
ˇ

ˇx P K, |y ´ c| = |b ´ c|
(

ą 0 .

Define r = |b´ c| ´ dist(K, BD(c, |b´ c|))

|b´ c|
. Then 0 ď r ă 1, and |x´ c| ď r|b´ c| for all

x P K. Therefore, |ak(x ´ c)k| ď Mrk if x P K; thus the Weierstrass M -test implies

that the series
8
ř

k=0

ak(x ´ c)k converges uniformly on K. ˝

By the proposition above, we immediately conclude that the collection of all x at which
the power series converges must be connected and symmetric; thus is a disc or a point. This
observation induce the following

Definition 5.34. A non-negative number R is called the radius of convergence of the
power series

8
ř

k=0

ak(x ´ c)k if the series converges for all x P D(c, R) but diverges if x R

D(c, R). In other words,

R = sup
␣

r ě 0
ˇ

ˇ

8
ÿ

k=0

ak(x ´ c)k converges in D(c, R)
(

.

The interval of convergence or convergence interval of a power series is the collection
of all x at which the power series converges.

Remark 5.35. A power series converges pointwise on its interval of convergence.
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Theorem 5.36. Let taku8
k=0 Ď C, c P C,

8
ř

k=0

ak(x ´ c)k be a power series with radius of

convergence R ą 0, and K Ď D(c, R) be a compact set. Then

1. The power series
8
ř

k=0

ak(x ´ c)k converges uniformly on K.

2. The power series
8
ř

k=0

(k+1)ak+1(x´ c)k converges pointwise on D(c, R), and converges
uniformly on K.

Proof. 1. It is simply a restatement of Proposition 5.33.

2. By 1, it suffices to show that the power series
8
ř

k=0

(k+1)ak+1(x´c)k converges pointwise

on D(c, R). Clearly the series converges at x = c. Let x P D(c, R) and x ‰ c. Since
|x ´ c| ă R, there exists b P D(c, R) such that

|b ´ c| =
R + |x ´ c|

2
.

Then if r = |x´ c|

|b´ c|
, 0 ă r ă 1 and

8
ÿ

k=0

(k + 1)|ak+1||x ´ c|k ď

8
ÿ

k=0

(k + 1)|ak+1||b ´ c|k
( |x ´ c|

|b ´ c|

)k
ď M

8
ÿ

k=0

(k + 1)rk

for some M ą 0. Note that the ratio test implies that the series
8
ř

k=0

(k+1)rk converges

if 0 ă r ă 1; thus the power series
8
ř

k=0

(k+1)|ak+1||x´c|k converges by the comparison
test. ˝

Corollary 5.37. Let taku8
k=0 Ď R and c P R, and

8
ř

k=0

ak(x ´ c)k be a power series with

radius of convergence R ą 0. Then
8
ř

k=0

ak(x ´ c)k is differentiable in (c ´ R, c + R) and is

Riemann integrable over any closed intervals [α, β] Ď (c ´ R, c+R). Moreover,

d

dx

8
ÿ

k=0

ak(x ´ c)k =
8
ÿ

k=1

kak(x ´ c)k´1 @x P (c ´ R, c+R)

and
ż β

α

8
ÿ

k=0

ak(x ´ c)kdx =
8
ÿ

k=0

ak

ż β

α

(x ´ c)kdx .
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Example 5.38. Let taku8
k=0 be a bounded sequence. Then

d

dx

( 8
ÿ

k=0

ak
k!
xk
)
=

8
ÿ

k=1

ak
(k ´ 1)!

xk´1 =
8
ÿ

k=0

ak+1

k!
xk .

Example 5.39. We show
ż t

0
exdx = et ´ 1 as follows. By Theorem 5.23, ex =

8
ř

k=0

xk

k!
and

the convergence is uniform on any bounded sets of R; thus Corollary 5.37 implies that
ż t

0

exdx =

ż t

0

8
ÿ

k=0

xk

k!
dx =

8
ÿ

k=0

ż t

0

xk

k!
dx =

8
ÿ

k=0

tk+1

(k + 1)!
=

8
ÿ

k=1

tk

k!
= et ´ 1 .

Example 5.40. d

dx

( 8
ř

k=1

xk

k

)
=

8
ř

k=1

xk´1 =
8
ř

k=0

xk for all x P (´1, 1); thus

d

dx

( 8
ÿ

k=1

xk

k

)
=

1

1 ´ x
@x P (´1, 1) .

As a consequence,
8
ÿ

k=1

tk

k
=

ż t

0

d

dx

( 8
ÿ

k=1

xk

k

)
dx = ´ log(1 ´ t) @ t P (´1, 1) . (5.3.1)

Using the alternating series test, it is clear that the left-hand side of (5.3.1) converges at
t = ´1. What is the value of

´

8
ÿ

k=1

(´1)k

k
= 1 ´

1

2
+

1

3
´

1

4
+

1

5
´

1

6
+ ¨ ¨ ¨ ?

Consider the partial sum d

dx

( n
ř

k=1

xk

k

)
=

n´1
ř

k=0

xk =
1 ´ xn

1 ´ x
=

1

1 ´ x
´

xn

1 ´ x
. Integrating both

sides over [´1, 0],
ˇ

ˇ

ˇ

n
ÿ

k=1

(´1)k

k
+ log 2

ˇ

ˇ

ˇ
ď

ż 0

´1

|x|n

1 ´ x
dx ď

ż 0

´1

(´x)ndx =
1

n+ 1
Ñ 0 as n Ñ 8;

thus
1 ´

1

2
+

1

3
´

1

4
+

1

5
´

1

6
+ ¨ ¨ ¨ = log 2 .

In other words,
8
ÿ

k=1

tk

k
= ´ log(1 ´ t) @ t P [´1, 1) .
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Example 5.41. It is clear that 1

1 + x2
=

8
ř

k=0

(´x2)k =
8
ř

k=0

(´1)kx2k for all x P (´1, 1). So if

x P (´1, 1),

tan´1 x =

ż x

0

dt

1 + t2
=

ż x

0

8
ÿ

k=0

(´1)kt2kdt =
8
ÿ

k=0

ż x

0

(´1)kt2kdt

=
8
ÿ

k=0

(´1)k

2k + 1
t2k+1

ˇ

ˇ

ˇ

t=x

t=0
= x ´

x3

3
+
x5

5
´
x7

7
+ ¨ ¨ ¨ .

The right-hand side of the identity above converges at x = 1. What is the value of

8
ÿ

k=0

(´1)k

2k + 1
= 1 ´

1

3
+

1

5
´

1

7
+ ¨ ¨ ¨?

Mimic the previous example, we consider

tan´1 x =

ż x

0

dt

1 + t2
=

ż x

0

1 ´ (´t2)n+1

1 + t2
dt+

ż x

0

(´t2)n+1

1 + t2
dt

=

ż x

0

n
ÿ

k=0

(´1)kt2kdt+

ż x

0

(´t2)n+1

1 + t2
dt

=
n
ÿ

k=0

ż x

0

(´1)kt2kdt+

ż x

0

(´t2)n+1

1 + t2
dt =

n
ÿ

k=0

(´1)k

2k + 1
x2k+1 +

ż x

0

(´t2)n+1

1 + t2
dt ;

thus plugging x = 1,

ˇ

ˇ

ˇ
tan´1 1 ´

n
ÿ

k=0

(´1)k

2k + 1

ˇ

ˇ

ˇ
ď

ż 1

0

t2(n+1)

1 + t2
dt ď

ż 1

0

t2(n+1)dt =
1

2n+ 3
Ñ 0 as n Ñ 8.

Therefore,
1 ´

1

3
+

1

5
´

1

7
+ ¨ ¨ ¨ = tan´1 1 =

π

4
.

5.4 The Space of Continuous Functions
Definition 5.42. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, and
A Ď M be a subset. We define C (A;V) as the collection of all continuous functions on A

with value in V ; that is,

C (A;V) =
␣

f : A Ñ V
ˇ

ˇ f is continuous on A
(

.
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Let Cb(A;V) be the subspace of C (A;V) which consists of all bounded continuous functions
on A; that is,

Cb(A;V) =
␣

f P C (A;V)
ˇ

ˇ f is bounded
(

.

Every f P Cb(A;V) is associated with a non-negative real number }f}8 given by

}f}8 = sup
␣

}f(x)}
ˇ

ˇx P A
(

= sup
xPA

}f(x)}

The number }f}8 is called the sup-norm of f .

Proposition 5.43. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, A Ď M

be a subset.

1. C (A;V) and Cb(A;V) are vector spaces.

2.
(
Cb(A;V), } ¨ }8

)
is a normed vector space.

3. If K Ď M is compact, then C (K;V) = Cb(K;V).

Proof. 1 and 2 are trivial, and 3 is concluded by Theorem 4.21. ˝

Remark 5.44. In general } ¨ }8 is not a “norm” on C (A;V). For example, the function
f(x) =

1

x
belongs to C ((0, 1);R) and }f}8 = 8. Note that to be a norm }f}8 has to take

values in R, and 8 R R.

Proposition 5.45. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, A Ď M

be a subset, and fk P Cb(A;V) for all k P N. Then tfku8
k=1 converges uniformly on A if and

only if tfku8
k=1 converges in

(
Cb(A;V), } ¨ }8

)
.

Proof. (ð) Suppose that tfku8
k=1 converges in

(
Cb(A;V), } ¨ }8

)
. Then there exists f P(

Cb(A;V), } ¨ }8

)
such that lim

kÑ8
}fk ´ f}8 = 0 , and by the definition of the sup-norm,

lim
kÑ8

sup
xPA

}fk(x) ´ f(x)} = 0 .

Therefore, tfku8
k=1 converges to f uniformly on A.

(ñ) Suppose that tfku8
k=1 converges uniformly on A. Then there exists a function f : A Ñ

V such that
lim
kÑ8

sup
xPA

}fk(x) ´ f(x)} = 0 .
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By the definition of the sup-norm, it suffices to show that f P Cb(A;V) in order to
conclude the proposition. By Theorem 5.7, we obtain that f P C (A;V). Moreover,
the uniform convergence implies that there exists N ą 0 such that

}fk(x) ´ f(x)} ă 1 @ k ě N and x P A .

In particular, the boundedness of fN provides M ą 0 such that }fN(x)} ď M for all
x P A; thus

}f(x)} ď }fN(x)} + }f(x) ´ fN(x)} ď M + 1 @x P A .

This implies that f is bounded; thus f P Cb(A;V). ˝

Theorem 5.46. Let (M,d) be a metric space, (V , }¨}) be a normed vector space, and A Ď M

be a subset. If (V , } ¨ }) is complete, so is
(
Cb(A;V), } ¨ }8

)
.

Proof. Let tfku8
k=1 be a Cauchy sequence in

(
Cb(A;V), } ¨ }8

)
. Then

@ ε ą 0, DN ą 0 Q }fk ´ fℓ}8 ă ε if k, ℓ ě N .

By the definition of the sup-norm, the statement above implies that

@ ε ą 0, DN ą 0 Q }fk(x) ´ fℓ(x)} ă ε if k, ℓ ě N and x P A

which implies that tfku8
k=1 satisfies the Cauchy criterion. By Proposition 5.6, tfku8

k=1 con-
verges uniformly on A, and Proposition 5.45 shows that tfku8

k=1 converges in
(
Cb(A;V), } ¨

}8

)
. ˝

Example 5.47. The set B =
␣

f P C ([0, 1];R)
ˇ

ˇ f(x) ą 0 for all x P [0, 1]
(

is open in(
C ([0, 1];R), } ¨ }8

)
.

Reason: Let f P B be given. Since [0, 1] is compact and f is continuous, by the extreme
value theorem there exists x0 P [0, 1] so that inf

xP[0,1]
f(x) = f(x0) ą 0. Take ε = f(x0)

2
. Now

if g is such that }g ´ f}8 = sup
xP[0,1]

ˇ

ˇg(x) ´ f(x)
ˇ

ˇ ă ε =
f(x0)

2
, we have for any y P [0, 1],

ˇ

ˇg(y) ´ f(y)
ˇ

ˇ ď sup
xP[0,1]

ˇ

ˇg(x) ´ f(x)
ˇ

ˇ ă
f(x0)

2

ñ f(y) ´
f(x0)

2
ď g(y) ď f(y) +

f(x0)

2

ñ g(y) ě f(y) ´
f(x0)

2
ě f(x0) ´

f(x0)

2
=
f(x0)

2
ą 0 .
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Therefore, g P B; thus D(f, ε) Ď B.

x

y

y=f(x)

O

y=f(x)+ε

y=f(x)´ε

Figure 5.2: g P D(f, ε) if the graph of g lies in between the two red dash lines

Example 5.48. Find the closure of B given in the previous example.

Proof. Claim: cl(B) =
␣

f P C ([0, 1],R)
ˇ

ˇ f(x) ě 0
(

.
Proof of claim: We show @ f P

␣

f P C ([0, 1],R)
ˇ

ˇ f(x) ě 0
(

, D fk P B Q }fk ´ f}8 Ñ 0 as
k Ñ 8. Take fk(x) = f(x) +

1

k
, then fk P B (7 fk(x) ą 0), and

}fk ´ f}8 = sup
xP[0,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ď sup
xP[0,1]

1

k
=

1

k
Ñ 0 as k Ñ 8 . ˝

5.5 The Arzelà-Ascoli Theorem
在這一節中，我們將研究一般情況下，連續函數列的逐點收斂與均勻收斂之間的具體差

異為何。更具體地說，我們希望能找到一個條件，使得逐點收斂的連續函數列，其均勻

收斂性等價於該條件成立。這個條件，刻劃了均勻收斂與逐點收斂的真實差異，而這個

特別的條件，也將提供額外（且有效）的判斷法，幫助我們判斷在連續函數空間裡面的集

合是否緊緻。

5.5.1 Equi-continuous family of functions

The first part of this section is devoted to the investigation of the difference between the
pointwise convergence and the uniform convergence of sequence of continuous functions.

Definition 5.49. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, and
A Ď M be a subset. A subset B Ď Cb(A;V) is said to be equi-continuous（等度連續）if

@ ε ą 0, D δ ą 0 Q }f(x1) ´ f(x2)} ă ε whenever d(x1, x2) ă δ, x1, x2 P A, and f P B .
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Remark 5.50. 1. If B Ď Cb(A;V) is equi-continuous, and C is a subset of B, then C is
also equi-continuous.

2. In an equi-continuous set of functions B, every f P B is uniformly continuous.

Remark 5.51. For a uniformly continuous function f , let δf (ε) (we have defined this
number in Remark 4.51) denote the largest δ that can be used in the definition of the
uniform continuity; that is, δf (ε) has the property that

}f(x) ´ f(y)} ă ε whenever d(x, y) ă δ, x, y P A ô 0 ă δ ď δf (ε) .

Suppose that every element in B Ď Cb(A;V) is uniformly continuous on A. Then B is
equi-continuous if and only if inf

fPB
δf (ε) ą 0.

Example 5.52. Let B =
␣

f P Cb((0, 1);V)
ˇ

ˇ |f 1(x)| ď 1 for all x P (0, 1)
(

. Then B is equi-
continuous (by choosing δ = ϵ for any given ϵ, and applying the mean value theorem).

Example 5.53. Let fk : [0, 1] Ñ R be a sequence of functions given by

fk(x) =

$

’

’

’

’

’

&

’

’

’

’

’

%

kx if 0 ď x ď
1

k
,

2 ´ kx if 1

k
ď x ď

2

k
,

0 if x ě
2

k
,

and B = tfku8
k=1. Then B is not equi-continuous since the largest δ for each k is ε

k
which

converges to 0.

Lemma 5.54. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, and K Ď M

be a compact subset. If B Ď C (K;V) is pre-compact, then B is equi-continuous.

Proof. Suppose the contrary that B is not equi-continuous. Then D ε ą 0 such that

@ k P N, Dxk, yk P K and fk P B Q d(xk, yk) ă
1

k
but }fk(xk) ´ fk(yk)} ě ε .

Since B is pre-compact in
(
C (K;V), } ¨ }8

)
and K is compact in (M,d), there exists a

subsequence
␣

fkj
(8

j=1
and txkju

8
j=1 such that

␣

fkj
(8

j=1
converges uniformly to some function

f P
(
C (K;V), } ¨ }8

)
and txkju

8
j=1 converges to some a P K. We must also have tykju

8
j=1

converges to a since d(xkj , ykj) ă
1

kj
.
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Since f is continuous at a,

D δ ą 0 Q }f(x) ´ f(a)} ă
ε

5
if x P D(a, δ) X K.

Moreover, since
␣

fkj
(8

j=1
converges to f uniformly on K and xkj , ykj Ñ a as j Ñ 8, DN ą 0

such that
}fkj(x) ´ f(x)} ă

ε

5
if j ě N and x P K

and
d(xkj , a) ă δ and d(ykj , a) ă δ if j ě N .

As a consequence, for all j ě N ,

ε ď }fkj(xkj) ´ fkj(ykj)} ď }fkj(xkj) ´ f(xkj)} + }f(xkj) ´ f(a)}

+ }f(ykj) ´ f(a)} + }f(ykj) ´ fkj(ykj)} ă
4ε

5

which is a contradiction. ˝

Alternative proof of Lemma 5.54. Suppose the contrary thatB is not equi-continuous. Then
D ε ą 0 such that

@ k P N, Dxk, yk P K and fk P B Q d(xk, yk) ă
1

k
but }fk(xk) ´ fk(yk)} ě ε .

Since B is pre-compact in
(
C (K;V), } ¨ }8

)
, there exists a subsequence

␣

fkj
(8

j=1
converges

to some function f in
(
C (K;V), } ¨ }8

)
. By Proposition 5.45,

␣

fkj
(8

j=1
converges uniformly

to f on K; thus there exists N1 ą 0 such that
›

›fkj(x) ´ f(x)
›

› ă
ε

4
@ j ě N1 and x P K .

Since f P C (K;V), by Theorem 4.52, f is uniformly continuous on K; thus

D δ ą 0 Q }f(x) ´ f(y)} ă
ε

4
if d(x, y) ă δ and x, y P K .

Let N = max
␣

N1,
[1
δ

]
+ 1

(

, and j ě N . Then d(xkj , ykj) ă δ and this further implies that

εď }fkj(xkj)´fkj(ykj)} ď }fkj(xkj)´f(xkj)} + }f(xkj)´f(ykj)} + }f(ykj)´fkj(ykj)} ă
3ε

4
,

a contradiction. ˝
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Corollary 5.55. Let (M,d) be a metric space, (V , }¨}) be a normed vector space, and K Ď M

be a compact subset. If tfku8
k=1 converges uniformly on K, then tfku8

k=1 is equi-continuous.

Example 5.56. Corollary 5.55 fails to hold if the compactness of K is removed. For
example, let tfku8

k=1 be a sequence of identical functions fk(x) =
1

x
on (0, 1). Then tfku8

k=1

converges uniformly on (0, 1) but tfku8
k=1 is not equi-continuous since none of fk is uniformly

continuous on (0, 1) which violates Remark 5.50.

We have just shown that if tfku8
k=1 converges uniformly on a compact set K, then tfku8

k=1

must be equi-continuous. The inverse statement, on the other hand, cannot be true. For
example, taking tfku8

k=1 to be a sequence of constant functions fk(x) = k. Then tfku8
k=1

obviously does not converge, not even any subsequence. Therefore, we would like to study
under what additional conditions, equi-continuity of a sequence of functions (defined on
a compact set K) indeed converges uniformly. The following lemma is an answer to the
question.

Lemma 5.57. Let (M,d) be a metric space, (V , } ¨ }) be a Banach space, K Ď M be a
compact set, and tfku8

k=1 Ď C (K;V) be a equi-continuous sequence of functions. If tfku8
k=1

converges pointwise on a dense subset E of K (that is, E Ď K Ď cl(E)), then tfku8
k=1

converges uniformly on K.

Proof. Let ε ą 0 be given. By the equi-continuity of tfku8
k=1,

D δ ą 0 Q }fk(x) ´ fk(y)} ă
ε

3
if d(x, y) ă δ, x, y P K and k P N .

Since K is compact, K is totally bounded; thus

Dty1, ¨ ¨ ¨ , ymu Ď K Q K Ď

m
ď

j=1

D
(
yj,

δ

2

)
.

By the denseness of E inK, for each j = 1, ¨ ¨ ¨ ,m, there exists zj P E such that d(zj, yj) ă
δ

2
.

Moreover, D
(
yj,

δ

2

)
Ď D(zj, δ); thus K Ď

m
Ť

j=1

D(zj, δ). Since tfku8
k=1 converges pointwise on

E, tfk(zj)u
8
k=1 converges as k Ñ 8 for all j = 1, ¨ ¨ ¨ ,m. Therefore,

DNj ą 0 Q }fk(zj) ´ fℓ(zj)} ă
ε

3
@ k, ℓ ě Nj .

Let N = maxtN1, ¨ ¨ ¨ , Nmu, then

}fk(zj) ´ fℓ(zj)} ă
ε

3
@ k, ℓ ě N and j = 1, ¨ ¨ ¨ ,m .
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Now we are in the position of concluding the lemma. If x P K, there exists zj P E such
that d(x, zj) ă δ; thus if we further assume that k, ℓ ě N ,

}fk(x) ´ fℓ(x)} ď }fk(x) ´ fk(zj)} + }fk(zj) ´ fℓ(zj)} + }fℓ(zj) ´ fℓ(x)} ă ε .

By Proposition 5.6, tfku8
k=1 converges uniformly on K. ˝

Remark 5.58. Corollary 5.55 and Lemma 5.57 imply that “a sequence tfku8
k=1 Ď C (K;V)

converges uniformly on K if and only if tfku8
k=1 is equi-continuous and pointwise convergent

(on a dense subset of K)”.

5.5.2 Compact sets in C (K;V)

The next subject in this section is to obtain a (useful) criterion of determining the compact-
ness (or pre-compactness) of a subset B Ď C (K;V) which guarantees the existence of a
convergent subsequence

␣

fkj
(8

j=1
of a given sequence tfku8

k=1 Ď B in
(
C (K;V), } ¨ }8

)
.

Lemma 5.59 (Cantor’s Diagonal Process). Let E be a countable set, (V , } ¨ }) be a Banach
space, and fk : E Ñ V be a sequence of functions. Suppose that for each x P E,

␣

fk(x)
(8

k=1

is pre-compact in V. Then there exists a subsequence of tfku8
k=1 that converges pointwise on

E.

Proof. Since E is countable, E = txℓu
8
ℓ=1.

1. Since
␣

fk(x1)
(8

k=1
is pre-compact in (V , } ¨ }), there exists a subsequence

␣

fkj
(8

j=1
such

that
␣

fkj(x1)
(8

j=1
converges in (V , } ¨ }).

2. Since
␣

fk(x2)
(8

k=1
is pre-compact in (V , } ¨ }), the sequence

␣

fkj(x2)
(8

j=1
Ď
␣

fk(x2)
(8

k=1

has a convergent subsequence
␣

fkjℓ (x2)
(8

ℓ=1
.

Continuing this process, we obtain a sequence of sequences S1, S2, ¨ ¨ ¨ such that

1. Sk consists of a subsequence of tfku8
k=1 which converges at xk, and

2. Sk Ě Sk+1 for all k P N.

Let gk be the k-th element of Sk. Then the sequence tgku8
k=1 is a subsequence of tfku8

k=1

and tgku8
k=1 converges at each point of E. ˝
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The condition that “
␣

fk(x)
(8

k=1
is pre-compact in V for each x P E” in Lemma 5.59

motivates the following

Definition 5.60. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, and

A Ď M be a subset. A subset B Ď Cb(A;V) is said to be pointwise
compact

pre-compact
bounded

if the

set Bx ”
␣

f(x)
ˇ

ˇ f P B
(

is
compact

pre-compact
bounded

in (V , } ¨ }) for all x P A.

Example 5.61. Let fk : [0, 1] Ñ R be given in Example 5.53, and B = tfku8
k=1. Then B

is pointwise compact: for each x P [0, 1], Bx is a finite set since if fk(0) = 0 for all k P N,
while if x ą 0, fk(x) = 0 for all k large enough which implies that #Bx ă 8.

是時候可以來看 C (K;V) 裡面的 compact sets 有什麼等價條件了。首先我們先看何
時 B Ď C (K;V) 是 compact set。給定一個函數列 tfku8

k=1 Ď B，我們想知道能不能找到

一個在 sup-norm 下收斂的 subsequence
␣

fkj
(8

j=1
（即 sequentially compact）。由 Diagonal

Process (Lemma 5.59) 知，我們得在 K 中找一個稠密的子集合 E 使得 tfku8
k=1 在 E 上

是 pointwise pre-compact（這個部份只保證了可以找到 subsequence 逐點收斂），然後加
上 Lemma 5.57 的幫助，馬上知道加上 equi-continuity 的條件之後，逐點收斂會變均勻收
斂。因此，很自然地我們會要求 B 滿足 pointwise pre-compact 還有 equi-continuous 這兩
個條件來證出 B 是 C (K;V) 中的 compact set。而在一個 compact set K 中能不能找到
一個稠密子集合則是由下面這個 Lemma 所提供。

Lemma 5.62. A compact set K in a metric space (M,d) is separable; that is, there exists
a countable subset E of K such that cl(E) = K.

Proof. Since K is compact, K is totally bounded; thus @n P N, DEn Ď K such that

#En ă 8 and K Ď
ď

yPEn

D
(
y,

1

n

)
.

Let E =
8
Ť

n=1

En. Then E is countable by Theorem 1.40. We claim that cl(E) = K.

To see this, first by the definition of the closure of a set, cl(E) Ď K (since K is closed).
Let x P K. Since K Ď

Ť

yPEn

D
(
y,

1

n

)
, x P D

(
y,

1

n

)
for some y P En. Therefore, D

(
x,

1

n

)
XE ‰

H for all n P N. This implies that x P sE = cl(E). ˝
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Theorem 5.63. Let (M,d) be a metric space, (V , } ¨ }) be a Banach space, K Ď M be a
compact set, and B Ď C (K;V) be equi-continuous and pointwise pre-compact. Then B is
pre-compact in

(
C (K;V), } ¨ }8

)
.

Proof. We show that every sequence tfku8
k=1 in B has a convergent subsequence. Since K is

compact, there is a countable dense subset E of K (Lemma 5.62), and the diagonal process
(Lemma 5.59) implies that there exists

␣

fkj
(8

j=1
that converges pointwise on E. Since E is

dense in K, by Lemma 5.57
␣

fkj
(8

j=1
converges uniformly on K; thus

␣

fkj
(8

j=1
converges in(

C (K;V), } ¨ }8

)
by Proposition 5.45. ˝

Remark 5.64. Lemma 5.54 and Theorem 5.63 imply that “a set B Ď C (K;V) is pre-
compact if and only if B is equi-continuous and pointwise pre-compact”. (That B is pre-
compact implies that B is pointwise pre-compact is left as an exercise).

Corollary 5.65. Let (M,d) be a metric space, and K Ď M be a compact set. Assume that
B Ď C (K;R) is equi-continuous and pointwise bounded on K. Then every sequence in B

has a uniformly convergent subsequence.

Proof. By the Bolzano-Weierstrass theorem the boundedness of
␣

fk(x)
(8

k=1
implies that

␣

fk(x)
(8

k=1
is pre-compact for all x P E. Therefore, we can apply Theorem 5.63 under the

setting (V , } ¨ }) = (R, | ¨ |) to conclude the corollary. ˝

The following theorem provides how compact sets look like in C (K;V).

Theorem 5.66 (The Arzelà-Ascoli Theorem). Let (M,d) be a metric space, (V , } ¨ }) be
a Banach space, K Ď M be a compact set, and B Ď C (K;V). Then B is compact in(
C (K;V), } ¨ }8

)
if and only if B is closed, equi-continuous, and pointwise compact.

Proof. “ð” This direction is conclude by Theorem 5.63 and the fact that B is closed.

“ñ” By Lemma 3.10 and Lemma 5.54, it suffices to shows that B is pointwise compact.
Let x P K and

␣

fk(x)
(8

k=1
be a sequence in Bx. Since B is compact, there exists a

subsequence
␣

fkj
(8

j=1
that converges uniformly to some function f P B. In particular,

␣

fkj(x)
(8

j=1
converges to f(x) P Bx. In other words, we find a subsequence

␣

fkj(x)
(8

j=1

of
␣

fk(x)
(8

k=1
that converges to a point in Bx. This implies that Bx is sequentially

compact; thus Bx is compact. ˝

Example 5.67. Let fk : [0, 1] Ñ R be a sequence of functions such that
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(1) |fk(x)| ď M1 for all k P N and x P [0, 1]; (2) |f 1
k(x)| ď M2 for all k P N and x P [0, 1].

Then tfku8
k=1 is clearly pointwise bounded. Moreover, by the mean value theorem

ˇ

ˇfk(x) ´ fk(y)
ˇ

ˇ ď M2|x ´ y| @x, y P [0, 1], k P N

which implies that tfku8
k=1 is equi-continuous. Therefore, by Corollary 5.65 there exists a

subsequence
␣

fkj
(8

j=1
that converges uniformly on [0, 1].

Question: If assumption (1) of Example 5.67 is omitted, can tfku8
k=1 still have a convergent

subsequence?
Answer: No! Take fk(x) = k, then tfku8

k=1 does not have a convergent subsequence (note
that fk is continuous and f 1

k(x) = 0; that is, Assumption (2) is fulfilled).

Example 5.68. We show that Assumption (1) of Example 5.67 can be replaced by fk(0) = 0

for all k P N.

Proof. (a) If fn(0) = 0, then by the mean value theorem we have for all x P (0, 1] and k P N,
fk(x) ´ fk(0) = f 1

k(ck)(x ´ 0). Then Assumption (2) of Example 5.67 implies that
ˇ

ˇfk(x) ´ fk(0)
ˇ

ˇ =
ˇ

ˇf 1
k(ck)

ˇ

ˇ

ˇ

ˇx
ˇ

ˇ ď M2|x| ď M2

which shows that tfku8
k=1 is uniformly bounded by M2.

(b) tfku8
k=1 are equi-continuous (same proof as in Example 5.67). ˝

5.6 The Stone-Weierstrass Theorem
Theorem 5.69 (Weierstrass). Let f : [0, 1] Ñ R be continuous and let ε ą 0 be given. Then
there is a polynomial p : [0, 1] Ñ R such that }f ´ p}8 ă ε. In other words, the collection of
all polynomials is dense in the space

(
C ([0, 1];R), } ¨ }8

)
.

Proof. Let rk(x) = Cn
k x

k(1 ´ x)n´k. By looking at the partial derivatives with respect to x
of the identity (x+ y)n =

n
ř

k=0

Cn
k x

kyn´k, we find that

1.
n
ř

k=0

rk(x) = 1; 2.
n
ř

k=0

krk(x) = nx; 3.
n
ř

k=0

k(k ´ 1)rk(x) = n(n ´ 1)x2.

As a consequence,
n
ÿ

k=0

(k ´ nx)2rk(x) =
n
ÿ

k=0

[
k(k ´ 1) + (1 ´ 2nx)k + n2x2

]
rk(x) = nx(1 ´ x) .
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Since f : [0, 1] Ñ R is continuous on a compact [0, 1], f is uniformly continuous on [0, 1] (by
Theorem 4.52); thus

D δ ą 0 Q
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ă
ε

2
if |x ´ y| ă δ, x, y P [0, 1] .

Consider the Bernstein polynomial pn(x) =
n
ř

k=0

f
(k
n

)
rk(x). Note that

ˇ

ˇf(x) ´ pn(x)
ˇ

ˇ =
ˇ

ˇ

ˇ

n
ÿ

k=0

(
f(x) ´ f

(k
n

))
rk(x)

ˇ

ˇ

ˇ
ď

n
ÿ

k=0

ˇ

ˇ

ˇ
f(x) ´ f

(k
n

)ˇ
ˇ

ˇ
rk(x)

ď

(
ÿ

|k´nx|ăδn

+
ÿ

|k´nx|ěδn

)ˇ
ˇ

ˇ
f(x) ´ f

(k
n

)ˇ
ˇ

ˇ
rk(x)

ă
ε

2
+ 2}f}8

ÿ

|k´nx|ěδn

(k ´ nx)2

(k ´ nx)2
rk(x)

ď
ε

2
+

2}f}8

n2δ2

n
ÿ

k=0

(k ´ nx)2rk(x) ď
ε

2
+

2}f}8

nδ2
x(1 ´ x) ď

ε

2
+

}f}8

2nδ2
.

Choose N large enough such that }f}8

2Nδ2
ă
ε

2
. Then for all n ě N ,

}f ´ pn}8 = sup
xP[0,1]

ˇ

ˇf(x) ´ pn(x)
ˇ

ˇ ă ε . ˝

Remark 5.70. A polynomial of the form pn(x) =
n
ř

k=0

βkrk(x) is called a Bernstein poly-
nomial of degree n, and the coefficients βk are called Bernstein coefficients.

x

y

O

Figure 5.3: Using a Bernstein polynomial of degree 350 (the red curve) to approximate a
“saw-tooth” function (the blue curve)

Corollary 5.71. The collection of polynomials on [a, b] is dense in
(
C ([a, b];R), } ¨ }8

)
.
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Proof. We note that g P C ([a, b];R) if and only if f(x) = g
(
x(b´a)+a

)
P C ([0, 1];R); thus

ˇ

ˇf(x) ´ p(x)
ˇ

ˇ ă ε @x P [0, 1] ô

ˇ

ˇ

ˇ
g(x) ´ p(

x ´ a

b ´ a

)ˇ
ˇ

ˇ
ă ε @x P [a, b] . ˝

Example 5.72.
Question: Let f P C ([0, 1],R) be such that }pn ´ f}8 Ñ 0 as n Ñ 8; that is, tpnu8

n=1

converges uniformly to f on [0, 1], where pn P P([0, 1]). Is f differentiable?
Answer: No! Take any continuous but not differentiable function f (for example, let
f(x) =

ˇ

ˇx ´
1

2

ˇ

ˇ). By Theorem 5.69, D pn: polynomial Q }pn ´ f}8 Ñ 0 as n Ñ 8.

Definition 5.73. Let (M,d) be a metric space, and E Ď M be a subset. A family A of
functions defined on E is called an algebra if

1. f + g P A for all f, g P A;

2. f ¨ g P A for all f, g P A;

3. αf P A for all f P A and α P R.

In other words, A is an algebra if A is closed under addition, multiplication, and scalar
multiplication.

Example 5.74. A function g : [a, b] Ñ R is called simple if we can divide up [a, b] into
sub-intervals on which g is constant except perhaps at the end-points. In other words, g is
called simple if there is a partition P = tx0, x1, ¨ ¨ ¨ , xNu of [a, b] such that

g(x) = g
(xi´1 + xi

2

)
if x P (xi´1, xi) .

Then the collection of all simple functions is an algebra.

Proposition 5.75. Let (M,d) be a metric space, and A Ď M be a subset. If A Ď Cb(A;R)
is an algebra, then cl(A) is also an algebra.

Proof. Let f, g P cl(A). Then D tfku8
k=1, tgku8

k=1 Ď A such that tfku8
k=1 converges uniformly

to f on A, and tgku8
k=1 converges uniformly to g on A. Since A is an algebra, fk + gk, fk ¨ gk

and αfk belong to A for all k P N. As a consequence, the uniform limit of fk + gk, fk ¨ gk

and αfk belong to cl(A) which implies that f + g, f ¨ g and αf belong to cl(A). Therefore,
cl(A) is an algebra. ˝



Copy
rig

ht
Prot

ect
ed

184 CHAPTER 5. Uniform Convergence and the Space of Continuous Functions

Definition 5.76. Let (M,d) be a metric space, and A Ď M be a subset. A family F of
functions defined on A is said to

1. separate points on A if for all x, y P A and x ‰ y, there exists f P F such that
f(x) ‰ f(y).

2. vanish at no point of A if for each x P A there is f P F such that f(x) ‰ 0.

Example 5.77. Let P([a, b]) denote the collection of polynomials defined on [a, b] is an
algebra. Moreover, P([a, b]) separates points on [a, b] since p(x) = x does the separation,
and P([a, b]) vanishes at no point of [a, b].

Example 5.78. Let Peven([a, b]) denote the collection of all polynomials p(x) of the form

p(x) =
n
ÿ

k=0

akx
2k = anx

2n + an´1x
2n´2 + ¨ ¨ ¨ + a0 .

Then Peven([a, b]) is an algebra. Moreover, Peven([a, b]) vanishes at no point of [a, b] since the
constant functions are polynomials (since constant functions belongs to P([a, b]). However,
if ab ă 0, Peven([a, b]) does not separate points on [a, b]. On the other hand, if ab ě 0, then
Peven([a, b]) separates points on [a, b] since p(x) = x2 does the job.

Lemma 5.79. Let (M,d) be a metric space, and A Ď M be a subset. Suppose that A is an
algebra of functions defined on A, A separates points on A, and A vanishes at no point of
A. Then for all x1, x2 P A, x1 ‰ x2, and c1, c2 P R (c1, c2 could be the same), there exists
f P A such that f(x1) = c1 and f(x2) = c2.

Proof. Since A separates points on A, D g P A such that g(x1) ‰ g(x2), and since A vanishes
at no point of A, Dh, k P A such that h(x1) ‰ 0 and k(x2) ‰ 0. Then

f(x) = c1

[
g(x) ´ g(x2)

]
h(x)[

g(x1) ´ g(x2)
]
h(x1)

+ c2

[
g(x) ´ g(x1)

]
k(x)[

g(x2) ´ g(x1)
]
k(x2)

has the desired property. ˝

Theorem 5.80 (Stone). Let (M,d) be a metric space, K Ď M be a compact set, and
A Ď C (K;R) satisfying

1. A is an algebra. 2. A vanishes at no point of K. 3. A separates points on K.
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Then A is dense in C (K;R).

Example 5.81. Let K = [´1, 1]ˆ [´1, 1] Ď R2. Consider the set P(K) of all polynomials
p(x, y) in two variables (x, y) P K. Then P(K) is dense in C (K;R).
Reason: Since K is compact, and P(K) is definitely an algebra and the constant function
p(x, y) = 1 P P(K) vanishes at no point of K, it suffices to show that P(K) separates
points. Let (a1, b1) and (a2, b2) be two different points in K. Then the polynomial

p(x, y) = (x ´ a1)
2 + (y ´ b1)

2

has the property that p(a1, b1) ‰ p(a2, b2). Therefore, P(K) separates points in K,

Proof of Theorem 5.80. We divide the proof into the following four steps:

Step 1: We claim that if f P sA, then |f | P sA.

Proof of claim: Let M = sup
xPK

|f(x)|, and ε ą 0 be given. By Corollary 5.71, for every

ε ą 0 there is a polynomial p(y) such that
ˇ

ˇp(y) ´ |y|
ˇ

ˇ ă ε for all y P [´M,M]. Since
A is an algebra, by Proposition 5.75 cl(A) is also an algebra; thus g ” p(f) P cl(A) if
f P cl(A). Nevertheless,

ˇ

ˇg(x) ´ |f(x)|
ˇ

ˇ ă ε @x P K

which shows that |f | P sA.

Step 2: Let the functions maxtf, gu and mintf, gu be defined by

maxtf, gu(x) = max
␣

f(x), g(x)
(

, mintf, gu(x) = min
␣

f(x), g(x)
(

.

Since maxtf, gu =
f + g

2
+

|f ´ g|

2
and mintf, gu =

f + g

2
´

|f ´ g|

2
, we find that if

f, g P sA, then maxtf, gu P sA and mintf, gu P sA. As a consequence, if f1, ¨ ¨ ¨ , fn P sA,

maxtf1, ¨ ¨ ¨ , fnu P sA and mintf1, ¨ ¨ ¨ , fnu P sA .

Step 3: We claim that for any given f P C (K;R), a P K and ε ą 0, there exists a function
ga P sA such that

ga(a) = f(a) and ga(x) ą f(x) ´ ε @x P K . (5.6.1)
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Proof of claim: Since A separates points on K and A vanishes at no point of K, so
does sA. Therefore, Lemma 5.79 implies that for every b P K with b ‰ a, there exists
hb P sA such that hb(a) = f(a) and hb(b) = f(b). Note that every function in sA is
continuous (by Theorem 5.7); thus the continuity of hb provides δ = δb ą 0 such that

hb(x) ą f(x) ´ ε @x P
[
D
(
b, δb

)
Y D

(
a, δb

)]
X K .

Let Ub = D
(
b, δb

)
Y D

(
a, δb

)
. Then Ub is open. Since K Ď

Ť

bPK
b‰a

Ub and K is com-

pact, there exists a finite set tb1, ¨ ¨ ¨ , bnu Ď K such that K Ď
n
Ť

j=1

Ubj . Define

ga = max
␣

hb1 , ¨ ¨ ¨hbn
(

. Then ga P sA, and ga(a) = f(a). Moreover, if x P K, x P Ubj
for some j; thus

ga(x) ě hbj(x) ą f(x) ´ ε

which implies that g satisfies (5.6.1).

Step 4: Let f P C (K;R) and ε ą 0 be given. For any a P K, let ga P sA be a function
provided in Step 3 satisfying

ga(a) = f(a) and ga(x) ą f(x) ´
ε

2
@x P K . (5.6.2)

By the continuity of ga, there exists δ = δa ą 0 such that

ga(x) ă f(x) +
ε

2
@x P D(a, δa) X K . (5.6.3)

Similar to Step 3, D ta1, ¨ ¨ ¨ , amu Ď K such that

K Ď

m
ď

j=1

D
(
aj, δaj

)
. (5.6.4)

Define h = min
␣

ga1 , ¨ ¨ ¨ , gam
(

. Then h P sA, and (5.6.2) shows that

h(x) ą f(x) ´
ε

2
@x P K.

Moreover, similar to Step 3 (5.6.3) and (5.6.4) imply that

h(x) ă f(x) +
ε

2
@x P K.

On the other hand, since h P sA, there exists p P A such that
ˇ

ˇp(x) ´ h(x)
ˇ

ˇ ă
ε

2
@x P K ;

thus
ˇ

ˇp(x) ´ f(x)
ˇ

ˇ ď
ˇ

ˇp(x) ´ h(x)
ˇ

ˇ+
ˇ

ˇh(x) ´ f(x)
ˇ

ˇ ă ε @x P K
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which concludes the theorem. ˝

Example 5.82. Consider Peven([0, 1]) =
!

p(x) =
n
ř

k=0

akx
2k
ˇ

ˇ

ˇ
ak P R

)

(see Example 5.78).

Then A = Peven([0, 1]) satisfies all the conditions in the Stone theorem, so Peven([0, 1]) is
dense in C ([0, 1];R).

On the other hand, if K = [´1, 1], then Peven([´1, 1]) does not separate points on K

since if p P Peven([´1, 1]), p(x) = p(´x); thus the Stone theorem cannot be applied to
conclude the denseness of Peven([´1, 1]) in C ([´, 1];R). In fact, Peven([´1, 1]) is not dense
in C ([´1, 1];R) since polynomials in Peven([´1, 1]) are all even functions and f(x) = x

cannot be approximated by even functions.

Corollary 5.83. Let C (T) be the collection of all 2π-periodic continuous functions, and
Pn(T) be the collection of all trigonometric polynomials of degree n; that is,

Pn(T) =
!

c0
2
+

n
ÿ

k=1

ck cos kx+ sk sin kx
ˇ

ˇ

ˇ
tckunk=0, tskunk=1 Ď R

)

.

Let P(T) =
8
Ť

n=0

Pn(T). Then P(T) is dense in C (T). In other words, if f P C (T) and

ε ą 0 is given, there exists p P P(T) such that
ˇ

ˇf(x) ´ p(x)
ˇ

ˇ ă ε @x P R .

Proof. We note that C (T) can be viewed as the collection of all continuous functions defined
on the unit circle S1 in the sense that every f P C (T) corresponds to a unique F P C (S1;R)
such that f(x) = F (cosx, sinx), and vice versa. Since S1 Ď [´1, 1] ˆ [´1, 1] is compact,
Example 5.81 provides that P(S1), the collection of all polynomials defined on S1, is an
algebra that separates points of S1 and vanishes at no point on S1. The Stone-Weierstrass
Theorem then implies that there exists P P P(S1) such that

ˇ

ˇF (x, y) ´ P (x, y)
ˇ

ˇ ă ε @ (x, y) P S1 (that is, x2 + y2 = 1).

Let p(x) = P (cosx, sinx). Note that

cosn x =
(eix + e´ix

2

)n
=

n
ÿ

k=0

1

2n
Cn
k e

ikxe´i(n´k)x =
n
ÿ

k=0

1

2n
Cn
k e

i(2k´n)x

=
n
ÿ

k=0

1

2n
Cn
k

(
cos(2k ´ n)x+ i sin(2k ´ n)x

)
=

n
ÿ

k=0

1

2n
Cn
k cos(2k ´ n)x P Pn(T) ,
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and similarly, sinm x P Pm(T). Therefore, if P (x, y) =
n
ř

k,ℓ=0

ak,ℓx
kyℓ, then P (cosx, sinx) P

P2n(T) because of the identities

cos θ cosφ =
1

2

[
cos(θ ´ φ) + cos(θ + φ)

]
,

sin θ cosφ =
1

2

[
sin(θ + φ) + sin(θ ´ φ)

]
,

sin θ sinφ =
1

2

[
cos(θ ´ φ) ´ cos(θ + φ)

]
.

As a consequence, we conclude that
ˇ

ˇf(x) ´ p(x)
ˇ

ˇ =
ˇ

ˇF (cosx, sinx) ´ P (cosx, sinx)
ˇ

ˇ ă ε @x P R . ˝

5.7 The Contraction Mapping Principle（收縮映射原
理）and its Applications

Definition 5.84. Let (M,d) be a metric space, and Φ : M Ñ M be a mapping. Φ is said
to be a contraction mapping if there exists a constant k P [0, 1) such that

d
(
Φ(x),Φ(y)

)
ď kd(x, y) @x, y P M .

Remark 5.85. A contraction mapping must be (uniformly) continuous.
Reason: Given ε ą 0, take δ =

ε

k
, where k is set as in the definition of contraction. Now

if d(x, y) ă δ, then
d
(
Φ(x),Φ(y)

)
ď kd(x, y) ă k ¨

ε

k
= ε .

Example 5.86. For what r ă 1 do we have f : [0, r] Ñ [0, r] where f(x) = x2 a contraction?
Answer: By the mean value theorem, f(x) ´ f(y) = f 1(c)(x ´ y), c between x, y; thus

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ =
ˇ

ˇf 1(c)
ˇ

ˇ|x ´ y| = 2c|x ´ y| ď 2r|x ´ y| .

Hence for all r ă
1

2
, the map f : [0, r] Ñ [0, r] is a contraction where f(x) = x2.

On the other hand, we show that f cannot be a contraction if r =
1

2
. Suppose the

contrary that there exists k P [0, 1) such that for all x, y P
[
0,

1

2

]
,
ˇ

ˇx2 ´ y2
ˇ

ˇ ď k
ˇ

ˇx´ y
ˇ

ˇ. Then

sup
x‰y,x,yP[0, 1

2
]

ˇ

ˇx2 ´ y2
ˇ

ˇ

ˇ

ˇx´ y
ˇ

ˇ

ď k ă 1 .
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But we can take x =
1

2
, yn =

1

2
´

1

n
, n = 1, 2, ¨ ¨ ¨ , x, yn P

[
0,

1

2

]
. So

lim
nÑ8

ˇ

ˇx2 ´ yn
2
ˇ

ˇ

ˇ

ˇx´ yn
ˇ

ˇ

= lim
nÑ8

ˇ

ˇx+ yn
ˇ

ˇ = lim
nÑ8

(1
2
+

1

2
´

1

n

)
= 1 .

This means sup
x‰y,x,yP[0, 1

2
]

ˇ

ˇx2 ´ y2
ˇ

ˇ

|x´ y|
ă 1 is not possible.

Definition 5.87. Let (M,d) be a metric space, and Φ : M Ñ M be a mapping. A point
x0 P M is called a fixed-point for Φ if Φ(x0) = x0.

Example 5.88. Let Φ : R Ñ R be given by Φ(x) =
x2 + 2

3
. Then 1 is a fixed-point, and 2

is also a fixed-point.

Theorem 5.89 (Contraction Mapping Principle). Let (M,d) be a complete metric space,
and Φ :M Ñ M be a contraction mapping. Then Φ has a unique fixed-point.

Proof. Let x0 P M , and define xn+1 = Φ(xn) for all n P N Y t0u. Then

d(xn+1, xn) = d
(
Φ(xn),Φ(xn´1)

)
ď kd(xn, xn´1) ď knd(x1, x0) ;

thus if n ą m,

d(xn, xm) ď d(xm, xm+1) + d(xm+1, xm+2) + ¨ ¨ ¨ + d(xn´1, xn)

ď (km + km+1 + ¨ ¨ ¨ + kn´1)d(x1, x0)

ď km(1 + k + k2 + ¨ ¨ ¨ )d(x1, x0) =
km

1 ´ k
d(x1, x0) . (5.7.1)

Since k P [0, 1), lim
mÑ8

km

1 ´ k
d(x1, x0) = 0; thus

@ ε ą 0, DN ą 0 Q d(xn, xm) ă ε @n,m ě N .

In other words, txnu8
n=1 is a Cauchy sequence. Since (M,d) is complete, xn Ñ x as n Ñ 8

for some x P M . Finally, since Φ(xn) = xn+1 for all n P N, by the continuity of Φ we obtain
that

Φ(x) = lim
nÑ8

Φ(xn) = lim
nÑ8

xn+1 = x

which guarantees the existence of a fixed-point.
Suppose that for some x, y P M , Φ(x) = x and Φ(y) = y. Then

d(x, y) = d
(
Φ(x),Φ(y)

)
ď kd(x, y)

which implies that d(x, y) = 0 or x = y. Therefore, the fixed-point of Φ is unique. ˝
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Remark 5.90. The proof of the contraction mapping principle also provides an iterative
way, xk+1 = Φ(xk), of finding the fixed-point of a contraction mapping Φ. Using (5.7.1), the
convergence rate of txmu8

m=1 to the fixed-point x is measured by

d(xm, x) = lim
nÑ8

d(xm, xn) ď
km

1 ´ k
d(x1, x0) .

Therefore, the smaller the contraction constant k, the faster the convergence.

Remark 5.91. Theorem 5.89 sometimes is also called the Banach fixed-point theorem.

Example 5.92. The condition k ă 1 in Theorem 5.89 is necessary. For example, let M = R,
d(x, y) = |x ´ y|, and Φ : R Ñ R be given by Φ(x) = x + 1. Then

ˇ

ˇΦ(x) ´ Φ(y)
ˇ

ˇ =
ˇ

ˇx ´ y
ˇ

ˇ.
Suppose x‹ is a fixed-point of Φ. Then x‹ = Φ(x‹) = x‹ + 1 which leads to a contradiction
that 0 = 1.

Example 5.93. Let Φ : [1,8) Ñ [1,8) be given by Φ(x) = x+
1

x
. Then if x ‰ y,

ˇ

ˇΦ(x) ´ Φ(y)
ˇ

ˇ =
ˇ

ˇx ´ y +
1

x
´

1

y

ˇ

ˇ =
ˇ

ˇ(x ´ y)
(
1 ´

1

xy

)ˇ
ˇ ă |x ´ y| .

However, there is no fixed-point of Φ.

Example 5.94 (The secant method). Suppose that f is continuously differentiable, f 1(x) ą

0 for all x P [a, b] and f(a)f(b) ă 0. By the intermediate value theorem there must be a
(unique) zero of f . How do we find this zero?

Assume that sup
xP[a,b]

f 1(x) ă 8. Let

M = max
!

sup
xP[a,b]

f 1(x), ´
f(a)

b´ a
,
f(b)

b´ a

)

+ 1

be a positive constant, and consider Φ(x) = x ´
f(x)

M
. Then by the mean value theorem,

ˇ

ˇΦ(x) ´ Φ(y)
ˇ

ˇ =
ˇ

ˇ(x ´ y)(1 ´
f 1(ξ)

M
)
ˇ

ˇ ď
(
1 ´

minξP[a,b] f
1(ξ)

M

)
|x ´ y| ď k|x ´ y| ,

where k P [0, 1) is a fixed constant. Moreover, Φ1(x) = 1 ´
f 1(x)

M
ą 0; thus Φ is strictly

increasing. Since the choice of M implies that a ă Φ(a) ă Φ(b) ă b; thus Φ : [a, b] Ñ [a, b].
Therefore, the contraction mapping principle implies that one can find the fixed-point of Φ
(which is the zero of f) using the iterative scheme xk+1 = Φ(xk) (by picking any arbitrary
initial guess x0 P [a, b]).
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5.7.1 The existence and uniqueness of the solution to ODEs

In this sub-section we are concerned with if there is a solution to the initial value problem
of ordinary differential equation:

x1(t) = f
(
x(t), t

)
@ t P [t0, t0 +∆t], (5.7.2a)

x(t0) = x0 , (5.7.2b)

where x : [t0, t0 + ∆t] Ñ Rn and f : Rn ˆ [t0, t0 + ∆t] Ñ Rn are vector-valued functions,
and x0 P Rn is a vector. Another question we would like to answer is “if (5.7.2) indeed has
a solution, is the solution unique?”

Theorem 5.95 (Fundamental Theorem of ODE). Suppose that for some r ą 0, f :

D(x0, r) ˆ [t0, T ] Ñ Rn is continuous and is Lipschitz in the spatial variable; that is,

DK ą 0 Q
›

›f(x, t) ´ f(y, t)
›

›

2
ď K}x ´ y}2 @x, y P D(x0, r) and t P [t0, T ] .

Then there exists 0 ă ∆t ď T ´ t0 such that there exists a unique solution to (5.7.2).

Proof. For any x P C ([t0, T ];Rn), define

Φ(x)(t) = x0 +

ż t

t0

f
(
x(s), s

)
ds .

We note that if x(t) is a solution to (5.7.2), then x is a fixed point of Φ (for t P [t0, t0+∆t]).
Therefore, the problem of finding a solution to (5.7.2) transforms to a problem of finding a
fixed-point of Φ.

To guarantee the existence of a unique fixed-point, we appeal to the contraction mapping
principle. To be able to apply the contraction mapping principle, we need to specify the
metric space (M,d). Let

∆t = min
!

T ´ t0,
r

Kr + 2}f(x0, ¨)}8

,
1

2K

)

, (5.7.3)

and define
M =

!

x P C
(
[t0, t0 +∆t];Rn

) ˇ
ˇ

ˇ
}x ´ x0}8 ď

r

2

)

with the metric induced by the sup-norm } ¨ }8 of C
(
[t0, t0 +∆t];Rn

)
. Then
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1. We first show that Φ :M Ñ M . To see this, we observe that

›

›Φ(x) ´ x0
›

›

8
=
›

›

›

ż t

t0

f
(
x(s), s

)
ds
›

›

›

8
=
›

›

›

ż t

t0

[
f
(
x(s), s

)
´ f(x0, s)

]
ds+

ż t

t0

f(x0, s)ds
›

›

›

8

ď

ż t0+∆t

t0

›

›f
(
x(s), s

)
´ f(x0, s)

›

›

2
ds+

ż t0+∆t

t0

›

›f(x0, s)
›

›

2
ds

ď K

ż t0+∆t

t0

}x(s) ´ x0}2ds+∆t
›

›f(x0, ¨)
›

›

8

ď ∆t
[
K}x ´ x0}8 +

›

›f(x0, ¨)
›

›

8

]
;

thus if x P M , (5.7.3) implies that }Φ(x) ´ x0}8 ď
r

2
.

2. Next we show that Φ is a contraction mapping. To see this, we compute
›

›Φ(x)´Φ(y)
›

›

8

for x, y P M and find that

›

›Φ(x) ´ Φ(y)
›

›

8
ď

›

›

›

ż t

t0

[
f
(
x(s), s

)
´ f

(
y(s), s

)]
ds
›

›

›

8

ď

ż t0+∆t

t0

K}x(s) ´ y(s)}2ds ď K∆t}x ´ y}8 ď
1

2
}x ´ y}8 ;

thus Φ :M Ñ M is a contraction mapping.

3. Finally we show that (M,d) is complete. It suffices to show that M is a closed subset
of C ([t0, t0 +∆t];Rn). Let txku8

k=1 be a uniformly convergent sequence with limit x.
Since }xk(t) ´ x0}2 ď

r

2
for all t P [t0, t0 + ∆t], passing k to the limit we find that

}x(t)´ x0}2 ď
r

2
for all t P [t0, t0 +∆t] which implies that }x´ x0}8 ď

r

2
; thus x P M .

Therefore, by the contraction mapping principle, there exists a unique fixed point x P M

which implies that there exists a unique solution to (5.7.2). ˝

Example 5.96. Let

xc(t) =

#

0 if 0 ď t ă c ,
1

4
(t ´ c)2 if t ě c .

Then for all c ą 0, xc(t) is a solution to x1(t) = x(t)
1
2 for all t ą 0 with initial value x(0) = 0.

The reason for not having unique solution is that if f(x, t) =
?
x, f : D(0, r) ˆ R Ñ R is

not Lipschitz in the spatial variabvle for all r ą 0. In other words, for all r,K ą 0, there
exists x, y P D(0, r) satisfying

ˇ

ˇf(x) ´ f(y)| ě K|x ´ y| .
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Example 5.97. Find a function x(t) satisfying x1(t) = x(t) with initial value x(0) = 1.
Define Φ(x)(t) = 1 +

ż t

0
x(s)ds, x0(t) = 1 and xk+1(t) = Φ(xk)(t). Then

x1(t) = 1 +

ż t

0

x0(s)ds = 1 + t ñ x2(t) = 1 +

ż t

0

x1(s)ds = 1 + t+
t2

2

ñ x3(t) = 1 +

ż t

0

x2(s)ds = 1 + t+
t2

2
+

t3

3 ¨ 2

ñ ¨ ¨ ¨ ¨ ¨ ¨

ñ By induction, we have xk(t) = 1 + t+
t2

2
+ ¨ ¨ ¨ +

tk

k!

which converges to x(t) =
8
ř

k=0

tk

k!
= et .

Example 5.98. Find a function x(t) satisfying x1(t) = tx(t) with initial value x(0) = 3.
Define Φ(x)(t) = 3 +

ż t

0
sx(s)ds, x0(t) = 3 and xk+1(t) = Φ(xk)(t). Then

x1(t) = 3 +

ż t

0

3sds = 3 +
3t2

2
ñ x2(t) = 3 +

ż t

0

sx1(s)ds = 3 +
3t2

2
+

3t4

2 ¨ 4

ñ x3(t) = 3 +

ż t

0

sx2(s)ds = 3 +
3t2

2
+

3t4

2 ¨ 4
+

3t6

2 ¨ 4 ¨ 6
.

We can conjecture and prove that

xk(t) = 3 +
3t2

2
+

3t4

2 ¨ 4
+ ¨ ¨ ¨ +

3t2k

2 ¨ 4 ¨ ¨ ¨ (2k)
;

thus xk(t) Ñ x(t) = 3 + 3
8
ř

k=1

t2k

2 ¨ 4 ¨ ¨ ¨ (2k)
. To see what x(t) is, we observe that

1 +
8
ÿ

k=1

t2k

2 ¨ 4 ¨ ¨ ¨ (2k)
=

8
ÿ

k=0

t2k

2kk!
=

8
ÿ

k=0

(
t2/2)k

k!
= exp

(t2
2

)
;

thus the solution is x(t) = 3 exp
( t2
2

)
.

Remark 5.99. In the iterative process above of solving ODE, the iterative relation

xk+1(t) = x0 +
ż t

t0

f
(
xk(s), s

)
ds

is called the Picard iteration.
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Example 5.100. Is there a solution to the Fredholm equation

x(t) = λ

ż b

a

K(t, s)x(s)ds+ φ(t) ? (5.7.4)

Define Φ : C ([a, b];R) Ñ C ([a, b];R) by

Φ(x)(t) = λ

ż b

a

K(t, s)x(s)ds+ φ(t) .

Then if K : [a, b] ˆ [a, b] Ñ R is continuous, and φ : [a, b] Ñ R is continuous, Φ(x) P

C ([a, b];R) as long as x P C ([a, b];R). Moreover,

ˇ

ˇΦ(x)(t) ´ Φ(y)(t)
ˇ

ˇ ď

ˇ

ˇ

ˇ
λ

ż b

a

K(t, s)
(
x(s) ´ y(s)

)
ds
ˇ

ˇ

ˇ
ď |λ|}K}8|b ´ a|}x ´ y}8 ;

thus if |λ|}K}8|b ´ a| ă 1, Φ is a contraction mapping. As a consequence, if

1. K : [a, b] ˆ [a, b] Ñ R is continuous;

2. φ : [a, b] Ñ R is continuous;

3. |λ|}K}8|b ´ a| ă 1,

there exists a unique function x(t) satisfying (5.7.4).

5.8 Exercises
§5.1 Pointwise and Uniform Convergence

Problem 5.1. Let (M,d) be a metric space, A Ď M , and fk : A Ñ R be a sequence
of functions (not necessary continuous) which converges uniformly on A. Suppose that
a P cl(A) and

lim
xÑa

fk(x) = Ak

exists for all k P N. Show that tAku8
k=1 converges, and

lim
xÑa

lim
kÑ8

fk(x) = lim
kÑ8

lim
xÑa

fk(x) .

Problem 5.2. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and fk : A Ñ N be
uniformly continuous functions, and tfku8

k=1 converges uniformly to f : A Ñ N on A. Show
that f is uniformly continuous on A.
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Problem 5.3. Complete the following.

(a) Suppose that fk, f, g : [0,8) Ñ R are functions such that

1. @R ą 0, fk and g are Riemann integrable on [0, R];

2. |fk(x)| ď g(x) for all k P N and x P [0,8);

3. @R ą 0, tfku8
k=1 converges to f uniformly on [0, R];

4.
ż 8

0
g(x)dx ” lim

RÑ8

ż R

0
g(x)dx ă 8.

Show that lim
kÑ8

ż 8

0
fk(x)dx =

ż 8

0
f(x)dx; that is,

lim
kÑ8

lim
RÑ8

ż R

0

fk(x)dx = lim
RÑ8

lim
kÑ8

ż R

0

fk(x)dx .

(b) Let fk(x) be given by fk(x) =
"

1 if k ´ 1 ď x ă k ,

0 otherwise.
Find the (pointwise) limit f of

the sequence tfku8
k=1, and check whether lim

kÑ8

ż 8

0
fk(x)dx =

ż 8

0
f(x)dx or not. Briefly

explain why one can or cannot apply (a).

(c) Let fk : [0,8) Ñ R be given by fk(x) =
x

1 + kx4
. Find lim

kÑ8

ż 8

0
fk(x)dx.

§5.2 The Weierstrass M-Test

Problem 5.4. Show that the series
8
ÿ

k=1

(´1)k
x2 + k

k2

converges uniformly on every bounded interval.

Problem 5.5. Consider the function

f(x) =
8
ÿ

k=1

1

1 + k2x
.

On what intervals does it converge uniformly? On what intervals does it fail to converge
uniformly? Is f continuous wherever the series converges? If f bounded?
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Problem 5.6. Determine which of the following real series
8
ř

k=1

gk converge (pointwise or

uniformly). Check the continuity of the limit in each case.

1. gk(x) =
"

0 if x ď k ,
(´1)k if x ą k .

2. gk(x) =

$

’

&

’

%

1

k2
if |x| ď k ,

1

x2
if |x| ą k .

3. gk(x) =
((´1)k

?
k

)
cos(kx) on R.

4. gk(x) = xk on (0, 1).

§5.3 Integration and Differentiation of Series

Problem 5.7. In the following series of functions defined on R, find its domain of conver-
gence (classify it into domain of absolute and conditional convergence). If the series is a
power series, find its radius of convergence. Also discuss whether the series is uniformly
convergent in every compact subsets of its domain of convergence. Determine which series
can be differentiated or integrated term by term in its domain of convergence.

(1)
8
ř

k=1

x

kα + kβx2
, α ě 0, β ą 0;

(2)
8
ř

k=1

1

2k

?
1 ´ x2k;

(3)
8
ř

k=1

1 ¨ 3 ¨ ¨ ¨ (2k ´ 1)

2 ¨ 4 ¨ ¨ ¨ (2k)

(
1 +

1

2
+ ¨ ¨ ¨ +

1

k

)
x2k;

(4)
8
ř

k=1

(´1)k´1

k log(k + 1)
xk!;

(5)
8
ř

k=1

akx
k, where taku8

k=1 is defined by the recursive relation ak = 3ak´1 ´ 2ak´2 for

k ě 2, and a0 = 1, a1 = 2.

Also find the sum of the series in (5).
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Problem 5.8. In this problem we investigate the differentiability of a complex power series.

This requires a new proof of d

dx

8
ř

k=0

akx
k =

8
ř

k=1

kakx
k´1 instead of making use of Theorem

5.10.
Let taku8

k=0 Ď R be a real sequence, and f(x) =
8
ř

k=0

akx
k be a (real) power series with

radius of convergence R ą 0. Let sn(x) =
n
ř

k=0

akx
k be the n-th partial sum, Rn(x) =

f(x) ´ sn(x), and g(x) =
8
ř

k=1

kakx
k´1. For x, x0 P (´ρ, ρ) Ĺ (´R,R), where x ‰ x0, write

f(x) ´ f(x0)

x ´ x0
´ g(x) =

sn(x) ´ sn(x0)

x ´ x0
´ s 1

n(x0) +
(
s 1
n(x0) ´ g(x0)

)
+
Rn(x) ´ Rn(x0)

x ´ x0
.

1. Show that
ˇ

ˇ

ˇ

Rn(x) ´ Rn(x0)

x ´ x0

ˇ

ˇ

ˇ
ď

8
ÿ

k=n+1

k|ak|ρk´1 ,

and use the inequality above to show that lim
xÑx0

f(x) ´ f(x0)

x´ x0
= g(x0).

2. Generalize the conclusion to complex power series; that is, show that if taku8
k=0 Ď C

and the power series
8
ř

k=0

akz
k has radius of convergence R ą 0, then

d

dz

8
ÿ

k=0

akz
k =

8
ÿ

k=1

kakz
k´1 @ |z| ă R .

Assume that you have known d

dz

n
ř

k=0

akz
k =

n
ř

k=1

kakz
k´1 for all n P N Y t0u (this can

be proved using the definition of differentiability of functions with values in normed
vector spaces provided in Chapter 6).

Problem 5.9. Suppose that the series
8
ř

n=0

an = 0, and f(x) =
8
ř

n=0

anx
n for ´1 ă x ď 1.

Show that f is continuous at x = 1 by complete the following.

1. Write sn = a0 + a1 + ¨ ¨ ¨ + an and sn(x) = a0 + a1x+ ¨ ¨ ¨ + anx
n. Show that

sn(x) = (1 ´ x)(s0 + s1x+ ¨ ¨ ¨ + sn´1x
n´1) + snx

n

and f(x) = (1 ´ x)
8
ř

n=0

snx
n.

2. Using the representation of f from above to conclude that lim
xÑ1´

f(x) = 0.
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3. What if
8
ř

n=0

an is convergent but not zero?

Problem 5.10. Construct the function g(x) by letting g(x) = |x| if x P
[

´
1

2
,
1

2

]
and

extending g so that it becomes periodic (with period 1). Define

f(x) =
8
ÿ

k=1

g(4k´1x)

4k´1
.

1. Use the Weierstrass M -test to show that f is continuous on R.

2. Prove that f is differentiable at no point.

(So there exists a continuous which is nowhere differentiable!)
Hint: Google Blancmange function!

§5.4 The Space of Continuous Functions

Problem 5.11. Let δ : (C ([0, 1];R), } ¨ }8) Ñ R be defined by δ(f) = f(0). Show that δ is
linear and continuous.

Problem 5.12. Let (M,d) be a metric space, and K Ď M be a compact subset.

1. Show that the set U =
␣

f P C (K;R)
ˇ

ˇ a ă f(x) ă b for all x P K
(

is open in(
C (K;R), } ¨ }8

)
for all a, b P R.

2. Show that the set F =
␣

f P C (K;R)
ˇ

ˇ a ď f(x) ď b for all x P K
(

is closed in(
C (K;R), } ¨ }8

)
for all a, b P R.

3. Let A Ď M be a subset, not necessarily compact. Prove or disprove that the set
B =

␣

f P Cb(A;R)
ˇ

ˇ f(x) ą 0 for all x P A
(

is open in
(
Cb(A;R), } ¨ }8

)
.

§5.5 The Arzelà-Ascoli Theorem

Problem 5.13. Which of the following set B of continuous functions are equi-continuous
in the metric space M? Are the closure sB compact in M?

1. B =
␣

sin kx
ˇ

ˇ k = 0, 1, 2, ¨ ¨ ¨
(

, M = C ([0, π];R).

2. B =
␣

sin
?
x+ 4k2π2

ˇ

ˇ k = 0, 1, 2, ¨ ¨ ¨
(

, M = Cb([0,8);R).
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3. B =
!

x2

x2 + (1 ´ kx)2

ˇ

ˇ

ˇ
k = 0, 1, 2, ¨ ¨ ¨

)

, M = C ([0, 1];R).

4. B =
␣

(k + 1)xk(1 ´ x)
ˇ

ˇ k P N
(

, M = C ([0, 1];R).

Problem 5.14. Let (M,d) be a metric space, (V , } ¨ }) be a normed space, and A Ď M be
a subset. Suppose that B Ď Cb(A;V) be equi-continuous. Prove or disprove that cl(B) is
equi-continuous.

Problem 5.15. Let fk : [a, b] Ñ R be a sequence of differentiable functions such that fk(a)
is bounded and |f 1

k(x)| ď M for all x P [a, b] and k P N. Show that tfku8
k=1 contains an

uniformly convergent subsequence. Must the limit function differentiable?

Problem 5.16. Let C 0,α([0, 1];R) denote the “space”

C 0,α([0, 1];R) ”

!

f P C ([0, 1];R)
ˇ

ˇ

ˇ
sup

x,yP[0,1]

|f(x) ´ f(y)|

|x ´ y|α
ă 8

)

,

where α P (0, 1]. For each f P C 0,α([0, 1];R), define

}f}C 0,α = sup
xP[0,1]

|f(x)| + sup
x,yP[0,1]

x‰y

|f(x) ´ f(y)|

|x ´ y|α
.

1. Show that
(
C 0,α([0, 1];R), } ¨ }C 0,α

)
is a complete normed space.

2. Show that the set B =
␣

f P C ([0, 1];R)
ˇ

ˇ }f}C 0,α ă 1
(

is equi-continuous.

3. Show that cl(B) is compact in
(
C ([0, 1];R), } ¨ }8

)
.

Problem 5.17. Given f : R Ñ R a continuous periodic function of period 1; that is,
f(x + 1) = f(x) for all x P R, and x1, ¨ ¨ ¨ , xm P [0, 1] arbitrary m points, define a new
function

I(f ;x1, ¨ ¨ ¨ , xm)(x) =
1

m

(
f(x+ x1) + ¨ ¨ ¨ f(x+ xm)

)
@x P R .

Prove that the set

B =
␣

I(f ;x1, ¨ ¨ ¨ , xm)
ˇ

ˇx1, ¨ ¨ ¨ , xm P [0, 1],m P N
(

is uniformly bounded and equi-continuous in the space C ([0, 1];R). Moreover, show that the
derived set B1 =

!

ż 1

0
f(x)dx

)

; that is, the derived set of B consists of one single function

which is a constant function y =
ż 1

0
f(x)dx.
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Problem 5.18. Let (M,d) be a metric space, (V , } ¨ }) be a Banach space, K Ď M be
compact, and tfku8

k=1 Ď C (K;V) be a sequence of continuous functions. Suppose that
for all x P K, if txku8

k=1, tyku8
k=1 Ď K and lim

kÑ8
xk = lim

kÑ8
yk = x, the limits lim

kÑ8
fk(xk) and

lim
kÑ8

fk(yk) exist and are identical. Show that tfku8
k=1 converges uniformly on K. How about

if K is not compact?

Problem 5.19. Assume that tfku8
k=1 is a sequence of monotone increasing functions on R

with 0 ď fk(x) ď 1 for all x and k P N.

1. Show that there is a subsequence
␣

fkj
(8

j=1
which converges pointwise to a function f

(This is usually called the Helly selection theorem).

2. If the limit f is continuous, show that
␣

fkj
(8

j=1
converges uniformly to f on any

compact set of R.

§5.6 The Stone-Weierstrass Theorem

Problem 5.20. Define B to be the set of all even functions in the space C ([´1, 1];R); that
is, f P B if and only if f is continuous on [´1, 1] and f(x) = f(´x) for all x P [´1, 1].
Prove that B is closed but not dense in C ([´1, 1];R). Hence show that even polynomials
are dense in B, but not in C ([´1, 1];R).

Problem 5.21. Let f : [0, 1] Ñ R be a continuous function.

1. Suppose that
ż 1

0

f(x)xndx = 0 @n P N Y t0u .

Show that f = 0 on [0, 1].

2. Suppose that for some m P N,
ż 1

0

f(x)xndx = 0 @n P t0, 1, ¨ ¨ ¨ ,mu .

Show that f(x) = 0 has at least m distinct real roots around which f(x) change signs.

Problem 5.22. Let f : [0, 1] Ñ R be continuous. Show that

lim
nÑ8

ż 1

0

f(x) sin(nx) dx = 0 .
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Problem 5.23. Put p0 = 0 and define

pk+1(x) = pk(x) +
x2 ´ p2k(x)

2
@ k P N Y t0u .

Show that tpku8
k=1 converges uniformly to |x| on [´1, 1].

Hint: Use the identity

|x| ´ pk+1(x) =
[
|x| ´ pk(x)

][
1 ´

|x| + pk(x)

2

]
to prove that 0 ď pk(x) ď pk+1(x) ď |x| if |x| ď 1, and that

|x| ´ pk(x) ď |x|

(
1 ´

|x|

2

)k
ă

2

k + 1

if |x| ď 1.

Problem 5.24. Let f : [0, 1] Ñ R be continuous and ε ą 0. Prove that there is a simple
function g (defined in Example 5.74) such that }f ´ g}8 ă ε.

Problem 5.25. Suppose that pn is a sequence of polynomials converging uniformly to f on
[0, 1] and f is not a polynomial. Prove that the degrees of pn are not bounded.
Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points
x0, ¨ ¨ ¨ , xN via Lagrange’s interpolation formula

p(x) =
N
ÿ

k=0

πk(x)
p(xk)

πk(xk)
,

where πk(x) = (x ´ x0)(x ´ x1) ¨ ¨ ¨ (x ´ xN)/(x ´ xk) =
ś

1ďjďN
j‰k

(x ´ xj).

Problem 5.26. Consider the set of all functions on [0, 1] of the form

h(x) =
n
ÿ

j=1

aje
bjx ,

where aj, bj P R. Is this set dense in C ([0, 1];R)?

§5.7 The Contraction Mapping Principle and its Applications

Problem 5.27. Suppose that f : [a, b] Ñ R is twice continuous differentiable; that is,
f 1, f 2 : [a, b] Ñ R are continuous, and f(a) ă 0 = f(c) ă f(b), and f 1(x) ‰ 0 for all
x P [a, b]. Consider the function

Φ(x) = x ´
f(x)

f 1(x)
.
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1. Show that Φ : [a, b] Ñ R satisfies

|Φ(x) ´ Φ(y)| ď k|x ´ y| @x, y P [a, b]

for some k P [0, 1) if |b ´ a| are small enough.

2. Suppose that f2(x) ą 0 for all x P [a, b]. Show that there exists a ď ra ă c such that
Φ : [ra, b] Ñ [ra, b].

3. Under the condition of 2, show that if x0 P [ra, b], then the iteration

xk+1 = Φ(xk) @ k P N Y t0u

provides a convergent sequence txku8
k=1 with limit c.

(The iteration scheme above of finding the zero c of f is called the Newton method.)

Problem 5.28. Let (M,d) be a complete metric space, and f : M Ñ M . Define fk =

f ˝ f ˝ ¨ ¨ ¨ ˝ f , here the composition was taken for k ´ 1 times. Assume that there exists a
sequence tαku8

k=1 Ď R such that

1. αk Ñ 0 as k Ñ 8.

2. d
(
fk(x), fk(y)

)
ď αkd(x, y) for all k P N, x, y P M .

Show that f has a unique fixed-point.

Problem 5.29. Let (M,d) be a metric space, and K Ď M be a compact set.

(1) Given f : M Ñ M a continuous map, define fk = f ˝ f ˝ ¨ ¨ ¨ ˝ f (as in the previous
problem) to the the k-th iterate of f . Prove that if fk has a unique fixed-point x0,
then f(x0) = x0.

(2) Let f : K Ñ K be continuous and d
(
f(x), f(y)

)
ă d(x, y) for all x, y P K. Show that

f has a unique fixed-point in K. Show that the conclusion is false if K is not compact.

(3) Let K = [0, 1] be a closed interval in (2) and
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ď |x ´ y| for all x, y P K.
Given any x1 P [0, 1], define a sequence txku8

k=1 by

xk+1 =
1

2

(
xk + f(xk)

)
@ k ą 1 .

Show that txku8
k=1 converges to a fixed-point of f .
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Problem 5.30. Let (M,d) be a metric space, and f :M Ñ M be such that d
(
f(x), f(y)

)
ă

d(x, y) for all x, y P M , x ‰ y.

1. Fix x0 P M . Let xn+1 = f(xn), and cn = d(xn, xn+1). Show that tcnu8
n=1 is a decreasing

sequence; thus c = lim
nÑ8

cn exists.

2. Assume that there is a subsequence
␣

xnj

(8

j=1
of txnu8

n=1 such that xnj
Ñ x as j Ñ 8.

Show that
c = d

(
x, f(x)

)
= d

(
f(x), f(f(x))

)
.

and deduce that x is a fixed-point of f .

3. Suppose further that M is compact. Show that the sequence txnu8
n=1 itself converges

to x.

Problem 5.31. Find an upper bound on r ą 0 such that the mapping T : C ([0, r];R) Ñ

C ([0, r];R) defined by

T (f)(x) = 1 + 3

ż x

0

tf(t) dt

is a contraction mapping. what is its fixed-point?

Problem 5.32. Let A = [a, b] ˆ [a, b] be a closed square in R2, M = C ([a, b];R), and
K : A Ñ R be a continuous function. For f P C ([a, b];R), define

T (f)(x) =

ż b

a

K(x, y)f(y)dy @x P [a, b] .

(1) Show that T (f) P M for all f P M , and T : M Ñ M is Lipschitz continuous. Find a
Lipschitz constant for T .

(2) If B Ď M is a bounded subset of M , show that the image T (B) =
␣

T (f)
ˇ

ˇ f P B
(

is
uniformly bounded and equi-continuous.

(3) If the norm }K}8 ă
1

b´ a
, show that T is a contraction mapping. What is its fixed-

point?

(4) If K satisfies the assumption in (3), show that the mapping S : M Ñ M defined by
S(f) = f ´ T (f) is a homeomorphism.
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(5) Let a = 0, b = 1, and K(x, y) =
1

4
ex+y´1. Show that K satisfies the assumption in

(3). Given g P M , find f P M such that S(f) = g.

Problem 5.33. Let A = [a, b]ˆ[a, b] be a closed square in R2, and K : A Ñ R be continuous
on A. Define

T (f)(x) =

ż b

a

K(x, y)g(y)dy ,

where f is a real-valued function defined on [a, b] such that the integral makes sense. For
a family of functions F consisting of f such that T (f) is well-defined and |f(y)| ď M for
all y P [a, b], let G = T (F). Show that each sequence of G contains a uniformly convergent
subsequence.

Problem 5.34 (True or False). Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.

1. Let fn : [a, b] Ñ R be an uniformly convergent sequence of continuous functions. Then
the sequence of the indefinite integrals gn(x) defined by

gn(x) =

ż x

a

fn(t) dt @x P [a, b]

converges uniformly to a continuously differentiable function.

2. Let fn : [0, 1] Ñ R be a equi-continuous sequence of functions such that the sequence
␣

fn(
1

2
)
(8

n=1
is bounded in R. Then tfnu8

n=1 contains a convergent subsequence.

3.

4.


