Chapter 5

Uniform Convergence and the Space
of Continuous Functions

5.1 Pointwise and Uniform Convergence ( i% 2h1T ag 2 32
3 feac)

Definition 5.1. Let (M, d) and (N, p) be two metric spaces, A € M be a set, and f;, : A —

N be functions for £ = 1,2,---. The sequence of functions {f;};2, is said to converge

pointwise if { fk(a)}koczl converges for all @€ A. In other words, {f;}; converges pointwise
if there exists a function f: A — N such that

kli_r&p(fk(a),f(a)) =0 Vace A.

In this case, {fr}72; is said to converge pointwise to f and is denoted by fr — f p.w..

Let B < A be asubset. The sequence of functions {f;};”, is said to converge uni-
formly on B if there exists f : B — N such that

lim sup p(fi(), f(x) = 0.

k—0 zep

In this case, {fi}; is said to converge uniformly to f on B (or converge to f uniformly on
B). In other words, {fi}7~; converges uniformly to f on B if for every e > 0, 3N > 0 such
that

P(fk(lﬂ),f(m)) <e Vk> N and x € B.
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156 CuaPTER 5. Uniform Convergence and the Space of Continuous Functions

Example 5.2. Let fi, f : [0,1] — R be given by

1
0 if - <<l .
PR 0 if z € (0,1],
fr(x) = ) and f(m):{l o= 0
—kr+1 if0<w< . =>4

Then {fi}, converges pointwise to f on [0,1]. To see this, fix = € [0, 1].

1. Case x # 0: Let5>0begiven,takeN>%@%<x. Ifk>N,
|fr(2) = f(2)] = [fu(z) = 0] =0 -0 <¢.

2. Case x =0: Forany e >0, k=1,2,3,...,

£:(0) = f(O)] =[1—-1=0<e.

However, {fi}72; does not converge uniformly to f on [0, 1] because

o [fole) = f(2)| =1 = Jim sup | fa) - @) =140,

z€[0,1] k=00 zel0,1

Example 5.3. Let f; : [0,1] — R be given by fi(x) = z¥. Then for each a € [0,1), fx(a) — 0
0 ifzel0,1),
1

1 ifz=1, then

as k — oo, while if a = 1, fi(a) = 1 for all. k. Therefore, if f(z) = {
fr = f p.w.. However, since
sup |fi(z) = f(z)| = SUP) |fu(z)| =1,

z€(0,1] z€(0,1

we must have
lim sup |fi(z) — f(z)] =1+#0.

k=0 zefo,1]

Therefore, {fi}72, does not converge uniformly to f on [0, 1].
On the other hand, if 0 < a < 1, then

sup ‘fk(x) - f(m)‘ <av;

z€(0,a]

thus by the Sandwich lemma,

lim sup |fi(z) — f(z)| =0.

k—o0 z€(0,a]

Therefore, {fi}72, converges to uniformly f on [0,a] if 0 < a < 1.
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sin x

Example 5.4. Let f; : R — R be given by fi(x) = . Then for each x € R, | fx(z)| <

which converges to 0 as £ — co. By the Sandwich lemma,

=

lim |fy(z)| =0 VzeR.

k—o0

1

Therefore, f, — 0 p.w.. Moreover, since sup!fk(:rz)| < o ]}im sup!fk(x)| = 0. Therefore,
zeR —®0 zeR

{fr}72, converges uniformly to 0 on R.

Proposition 5.5. Let (M,d) and (N,p) be two metric spaces, A < M be a set, and
fr, [+ A— N be functions for k =1,2,---. If {fi}i2, converges uniformly to f on A, then

{fx}32, converges pointwise to f.

Proof. For each a € A,
p(fr(a), f(a)) < sup p(fu(z), £(2)) ;

reA

thus the Sandwich lemma shows that
lim p(fi(a), f(a)) =0
since {fx}, converges uniformly to fon A. o

Proposition 5.6 (Cauchy criterion for uniform convergence). Let (M, d) and (N, p) be two
metric spaces, A < M be a set;-and fr : A — N be a sequence of functions. Suppose that
(N, p) is complete. Then {fi};o; converges uniformly on B < A if and only if for every
e>0,dN >0 such that

p(fe(@), fo(z)) <& Vk,{=N andz € B.

Proof. “=7" Suppose that {fx}, converges uniformly to f on B. Let € > 0 be given. Then
3N > 0 such that

p(fr(2), f(z)) < Vk>Nand z € B.

DO ™

Then if £,/ > N and z € B,

p(fu(@), fol@)) < p(fule), f(2)) + p(f(2), filw)) < g + g —c.
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“<” Let b € B. By assumption, { fk(b)}zozl is a Cauchy sequence in (N, p); thus is conver-
gent. Let f(b) denote the limit of { fk(b)}zozl. Then {fi}y>, converges pointwise to f

on B. We claim that the convergence is indeed uniform on B.

Let € > 0 be given. Then 3 N > 0 such that

p(fr(@), fo(x)) < g Vk,{>=Nandz€eB.

Moreover, for each x € B there exists /N, > 0 such that

p(fe@), f@) <5 V=N,
Then for all K > N and = € B,
p(fi(2), f(2)) < p(fu(@), f(x)) + p(fe(@), f(2)) < g + % —c
in which we choose ¢ > max{N, N,} to conclude the inequality. o

Theorem 5.7. Let (M,d) and (N, p) be two metric spaces, A = M be a set, and fr: A — N
be a sequence of continuous functions converging to f : A — N uniformly on A. Then f is

continuous on A; that is,

lim f(z) = lim lim fy(z) = lim lim fi(x) = f(a).

T—a r—a'k—0 k—o0 z—a

Proof. Let a € A and € > 0 be given. Since {fi}72, converges uniformly to f on A, 3N >0
such that
Mﬁ@)ﬂ@)<§ Vik>Nandze A,

By the continuity of fx; 30 > 0 such that
p(fn(z), fn(a)) < % whenever z € D(a,d) n A.

Therefore, if z € D(a,d) n A, by the triangle inequality

p(f(@), f(a)) < p(f(@), fn(2)) + p(fn (@), fn(a) + p(fx(a), f(a))
E € €
< 3 + 3 + 3 =£;
thus f is continuous at a. =

k

Example 5.8. Let f; : [0,2] — R be given by fi(z) = . Then

1+ 2k
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1. For each a € [0,1), fr(a) — 0 as k — o0;

2. For each a € (1,2], fx(a) > 1 as k — oo;

3. If a =1, then fi(a) = % for all k.
0 ifzel0,1),
Let f(x) = % ife=1, Then {fy}72, converges pointwise to f. However, {fi}72,
1 ifze(1,2].

does not converge uniformly to f on [0,2] since fj are continuous functions for all £ € N
but f is not.

Remark 5.9. The uniform limit of sequence of continuous function might not be uniformly

continuous. For example, let A = (0,1) and fi(x) = L for all k &N. Then {fr}i2, converges
X
1
uniformly to f(z) = = but the limit function is not uniformly continuous on A.

Theorem 5.10. Let I < R be a finite interval, fr : I — R be a sequence of differentiable
functions, and g : I — R be a function. Suppose that {fk(a)}zo:l converges for some a € I,

and {fi}{, converges uniformly to g on I. Then

L. {fe}, converges uniformly to some function f on I.

2. The limit function f is differentiable on I, and f'(x) = g(x) for all x € I; that is,

lim fi(w)' =l fi(x) = < lim fi(x) = f'(@).

k—o0 k—o dT dx k—on

Proof. 1. Let € > 0 be given. Since {fk }k | converges to f(a {fk )},20:1 is a Cauchy
sequence. Therefore, 3 N; > 0 such that

| fe(a) — fola)| < % Vk, (=N

By the uniform convergence of {f;}{2, on I and Proposition 5.6, 3 Ny > 0 such that

fi(x) — fi(x)] < ﬁ Vk (> Nyandawel,

where |I| is the length of the interval.
Let N = max{N;, No}. By the mean value theorem, for all k,¢ > N and z € I,
there exists £ in between x and a such that

elx — al

() = few) = felo) + ful@)] = 1) = Fi&)llw = al < =57

~

6.
27
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thus for all £,/ > N and z € I,

€ €
Therefore, Proposition 5.6 implies that { fx}2; converges uniformly on I.

2. Suppose that the uniform limit of {fx}{2, is f. Let x € I be a fixed point, and define

Fi®) = filz) iftel t+x ft) = flz) iftel, t+x
oi(t) = t—x ’ " and ¢(t) = t—x ’ ’
fi(z) ift=uz, g(z) ift=ux.

Then ¢y, is continuous on [ for all k € N, and {¢x}2; converges pointwise to ¢.
Claim: {¢x}{_, converges uniformly to ¢ on I.
Proof of claim: Let € > 0 be given. Since {f}};>y converges uniformly on I, there

exists N > (0 such that

sup | fr(t) — fi(t)| <e Vk, 0> N.
tel

Since
|[fi(t) = fi(@) = fe(t) + fo(2)] ift#a tel
6u(8) - éu(0)] = =] o
|fi(z) = fi(2)] itt=az,

by the mean value theorem we obtain that

|0(t) = e(t)| < sup|fi(s) — fi(s)| <e  Vk{>=Nandtel.

sel

Finally, by Theorem 5.7, ¢ is continuous on [; thus
fi(@) =limg(t) = ¢(x) = g(x). :

t—z

Example 5.11. Assume that f; : I — R is differentiable for all k € N, and { f; }}2_; converges
uniformly to g on I. Then {f;};>; might NOT converge. For example, consider fi(z) = k.
Then f; =0 but {f;}, does not converge.

Example 5.12. Assume that f; : I — R is differentiable for all £ € N, and {fi}72,
converges uniformly to f on I. Then f might NOT be differentiable. In fact, there are
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differentiable functions fj : [a,b] — R such that f; converges uniformly to f on [a,b] but f

is not differentiable. For example, consider

ng if ‘x| < %,
fu(@) =

Observe that fr(—z) = fr(x), so it suffices to consider x = 0.
1. Let f(x) = |z|. Then f; — f uniformly:

sup ’fk(x) —f(a:)’ = sup |fk —:c‘ = max{ sup ‘fk(x) — x|, .sup }fk(:z;) —x‘}

ze[—1,1] z€(0,1] z€[0,] x4 ,1]
:max{ sup ’——x‘ sup |x—i—x|}
IE[O,E} [ 1]
ka? k1, 1 3
S el <5 g =5 — 0

1
2. To see if f are differentiable, it suffices toshow f,;(g) exists.

1 1 |
L R =) ] ) g gy R0
fr.(=) = lim = lim —
k h—0 h h—0 h ﬁ(l_’_ )2_i ifh <0
2k 2k
1 (7 ifh>0
= lim — =
WO | B AR R <0
Example 5.13. Assume that f; : [-1,1] — R be given by
( 0 if ze[-1,0],
kQ

. 2:c 1fxe(0,k]

W) =9 g2 12

1—?(x— ) ifve (%’E}

2

\ 1 ifve (k:’l]
( 0 if z € [-1,0],
Koo ifze (0,1],

Then f;(z) = < 9 1 2. and {f{};2, converges pointwise to 0 but not
—k*(z— %) ifze (-, 5],
k k' k
. 2

| 0 ifxe (k,l} ,
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uniformly on [—1,1]. We note that {fx};2,; converges to a discontinuous function

f(x):{ 0 ifxe[-1,0],

1 ifze(0,1],
so the convergence of {fy}72, cannot be uniform on [—1,1].

Example 5.14. Suppose f; : [0,1] — R are differentiable on (0,1) and f; converges uni-

formly to f on [0, 1] for some f : [0,1] — R. Does f; converge uniformly?
sin(k?x)

Answer: No! Take f, = o k=1,2,---, then f; — 0 uniformly on [0, 1] since
sin(k?z 1 .
sup |fi(z) — 0| = sup | ( )}g—:hm sup |fi(z) =0|=0.
€[0,1] €(0,1] k ko k=00 4eio)

Now fi(x) = kcos(k*x) and f}(0) = k — o0 as k — 0.

Example 5.15. There are differentiable functions fi :*[a,b] — R such that f; converges
X

. . / . 12 -
uniformly to f on [a,b] but khil;) fi # (klglolo fr).. For example, take fr(x) = T on
y 4] n Jp\T) = (1+k2$2)2'

- 0] = lim L 0, fx converges uniformly to 0 on [—1,1].

1. Since lim sup lim
00

| X
k—o0 xe[—l,l} 1+ k21’2

2. (lim fy(z)) =0/ = 0.

k—o0

. . 1= k%22 1 ifx=0,
3. k}lm fi(x) = lim = Note that f; does not converge
—0

k—o (T4 k222)2 | 0 ifz #0,

x‘ < 1.
uniformly.

Theorem 5.16. Let f; : [a,b] — R be a sequence of Riemann integrable functions which
converges uniformly to f on [a,b]. Then f is Riemann integrable, and
b b b
lim [ fy(2)de = f lim fi(z)de = f f(z)dz. (5.1.1)
k—w J, o k—© a

Proof. Let € > 0 be given. Since {fi};>; converges uniformly to f on [a,b], 3N > 0 such
that

| fu(2) = f(2)] < 1h—a) Vk>= N and z € [a,b]. (5.1.2)
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Since fy is Riemann integrable on [a, b], by Riemann’s condition there exists a partition P
of [a,b] such that

U(fn,P) = L(fn,P) <

DO | ™

Using (4.7.3), we find that

U(f,P)—L(f,P)=U(f - fn+ fn,P) = L(f — fn + [N, P)
<U(f - fn,P)+U(f§,P) = L(f — fn,P) — L(fn,P)
G-+ (b—a) + U(fx. P)= L(fx.P)

4(b —a)

b—a)
+-+-=

<1
<& £
=1 2 = "

£

4

thus by Riemann’s condition f is Riemann integrable on [a, b].
Now, if £ = N, (5.1.2) implies that

x)dr — J;bf(:c)d:c’ =

() s@)e] < [ [50) - )las
—<€

which shows (5.1.1). o

Example 5.17. Let {gx};2, be the rational numbers in [0, 1], and

1 otherwise.

@) :{ 0 ifxe{q,q -, ut,

Then f; converges pointwise to the Dirichlet function

0 ifzeQn]0,1],

f@):{1 it z e [0,1\Q.

However, {fi}{_, does not converge uniformly to f since f; are Riemann integrable on [0, 1]
for all £ € N but f is not.

Example 5.18. Let fi : [0,1] — R be functions given in Example 5.13, and let g, = f;.
1

Then {gx}72, converges pointwise to 0, but J gr(z)dzr =1 for all k e N.
0
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5.2 Series of Functions and The Weierstrass M-Test

Definition 5.19. Let (M, d) be a metric space, (V,| -||) be a norm space, A < M be a

0

subset, and gx, g : A — V be functions. We say that the series Y] g converges pointwise if
k=1

the sequence of partitial sum {s,}>_, given by

n
Sn:ng
k=1

0

e}
converges pointwise. We use Y, gr = ¢ p.w. to denote that the series ) g converges

k=1 k=1
0

pointwise to g. We say that > g, converges uniformly on B & A if {s,}? ; converges
k=1
uniformly on B.

[ee}
Example 5.20. Consider the geometric series Y. x*. The partial sum s, is given by
k=0

_ n+l
-z ifx#1,
sp(x) = 1—x

n+1 ifz=1.

Then

Q0
1. > 2% converges pointwise to.g(r) = :
k=0

in (—1,1).

Q0
2. > x* does not converge pointwise in (—oo, —1] U [1, %0).
k=0

o0
3. > xF converges uniformly on (—a,a) if 0 < a < 1 since
k=0

|x|n+1 |a|n+1
— 0 asn — .

sup |Spl®x) —glx)| = sSup <
z€(—a,a) ’ ( ) ( )| ze(—a,a) 1—=x 1—a

a0
4. > x* does not converge uniformly on (—1,1) since sup |s,(z) — g(z)| = 0.
k=0 ve(~1,1)

The following two corollaries are direct consequences of Proposition 5.6 and Theorem
5.7.
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Corollary 5.21. Let (M,d) be a metric space, (V, |- |) be a complete normed vector space,
0

A< M be a subset, and gy : A — V be functions. Then >, g, converges uniformly on A if
k=1
and only if

n

Ve>0,3N>05 | Z gr(z)]| <€ Vn>mz>=N andx e A.
k=m+1

Corollary 5.22. Let (M,d) be a metric space, (V,| -||) be a normed vector space, A = M

o0
be a subset, and gy, g : A — V be functions. If g : A — V are continuous and > gp(x)
k=1
converges to g uniformly on A, then g is continuous.
Theorem 5.23. Let f : (a,b) — R be an infinitely differentiable functions; that is, f*)(x)
exists for all k € N and = € (a,b). Let ¢ € (a,b) and suppose that for some 0 < h < o0,

|f®)(x)| < M forallz € (c—h,c+h) < (a,b). Then

Zf x—ck Vze(c—h,c+h).

Proof. First, we claim that

noork) (e Ny —x)™
) = Z f k!( >($ L (_1)nj uf(”“)(y)dy Ve (ab). (5.2.1)

By the fundamental theorem or Calculus (Theorem 4.90) it is clear that (5.2.1) holds for
n = 0. Suppose that (5.2.1) holds for n = m. Then

mo (k) (. —x)mt! y=e (7 (y—x)™
-2 k'( )<w A e O I e )
Z =t ot [T ey

which implies that (5.2.1) also holds for n = m+ 1. By induction (5.2.1) holds for all n € N.
Letting s,(z) = >
k=0

®)(c) k :
7 (r —¢)¥, then if x € (¢ — h,c+ h),

T pn hn+1
|sn(z) — fz)] < ‘fc dey’ < M.

n+1
Let € > 0 be given. Since lim —M =0,3N >0 such that h

n—oo M.

n+1

‘M<51fn > N. As a
n!

consequence, if n = N,

|sn(z) — f(z)] <& whenever n > N. o



166 CuaPTER 5. Uniform Convergence and the Space of Continuous Functions

l‘2k+1

o (2k £ 1)!

0
Example 5.24. The series . (— converges to sin x uniformly on any bounded
k=0

subset of R.

Theorem 5.25 (Weierstrass M-test). Let (M,d) be a metric space, (V, | -||) be a complete

normed vector space, A = M be a subset, and g, : A — V be a sequence of functions. Suppose
e ¢]

that there exists My > 0 such that sup lgr(x)| < My, for all k € N and Z M, converges.

Then Z gr converges uniformly and absolutely (that is, Z lgk|l converges uniformly) on A.
k=1 k=1

Proof. We show that the partial sum s, = >, gi satisfies the Cauchy criterion. Let ¢ > 0
k=1

e¢]
be given. Since Z M, converges (which means Z M, converges as n-— ), there exists
=1 k=1
N > 0 such that

i Mk:‘ i Mk‘<a Vn Xm>N.

k=m-+1 k=m+1
Therefore,
n n n
H Z gk(:c)Hé Z | ()] < Z Mp<e Yn>m>=NandzeA.
k=m+1 k=m+1 k=m+1
Apply Proposition 5.6 to the sequence {s,}*., we conclude the theorem. o

Theorem 5.7 and 5.25 together imply the following

Corollary 5.26. Let (M,d) be a metric space, (V, | -|) be a complete normed vector space,

A < M be a subset, and g : A — V be a sequence of continuous functions. Suppose that
©0]

there exists My > 0-such that sup |gr(z)| < My for all k € N and >, My converges. Then
zeA

18

gi s continuous-on A.

k=1

. . & rak2 zF\2  R%
Example 5.27. Consider the series f(x) = ;CZZO (E) . For all z € [-R, R, (k:') < e
Moreover,
RQ(k—f—l R 2k RQ
lim su =limsup———= =0;
NS T T RSP

kN 2
thus the ratio test and the Weierstrass M-test imply that the series Z ( ) converges

uniformly on [~ R, R]. Theorem 5.7 then shows that f is continuous on [ R R]. Since R is

arbitrary, we find that f is continuous on R.
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e}
Example 5.28. Let {ax};2, be a bounded sequence. Then Z %xk converges to a contin-
k=0 "

uous function.

Q0
Example 5.29. Consider the function f(x) = g - % ]EO W

(much later) that f(z) = |z| for all z € [, 7], and by the Weierstrass M-test it is easy to

. We can in fact show

see that the convergence is uniform on R.

Y

—y = |z|

—y = folx

—y.= filz

—y = folz
T —7/2 O /2 7T x

Figure 5.1: The graph of some partial sums

5.3 Integration and Differentiation of Series

The following two theorems are direct consequences of Theorem 5.10 and 5.16.

0

Theorem 5.30. Let g, : [, b] — R be a sequence of Riemann integrable functions. If >, g
k=1

converges uniformly on |a,b], then

Z gr(x)dx = Z J gr(x)dx .

a k=1
Theorem 5.31. Let gi. : (a,b) — R be a sequence of differentiable functions. Suppose that
Q0 Q0

> g converges for some c € (a,b), and Y, g converges uniformly on (a,b). Then
k=1 k=1

> dhlx) = =3 gula)

Definition 5.32. A series is called a power series about c or centered at c if it is of

o0
the form Y az(x — ¢)* for some sequence {a;}?*, S R (or C) and c€ R (or C).
k=0
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Proposition 5.33. If a power series centered at c is convergent at some point b # ¢, then

the power series converges pointwise on D(c,|b—c¢|), and converges uniformly on any compact
subsets of D(c,|b— cl).

o0

Proof. Since the series . a(b— c)¥ converges, |a||b— c|¥ — 0 as k — oo; thus there exists
k=0

M > 0 such that |ag||b — c[f < M for all k.

Q0
1. x € D(c,|b— c|), the series >} ax(z — ¢)* converges absolutely since
k=0

ar(z — )| < arllz — ¢l = ar|lb—c <M ( >
35 loute = o < 3 falle =l = 3 aullo — e =g <MD (=

k=0

which converges (because of the geometric series test or-ratio test).

2. Let K < D(c,|b— ¢|) be a compact set. Then

dist(K,0D(c, |b—c|)) = inf{lz = y||z e K, |y —c|=|b— |} > 0.

|b — c| — dist(K,0D(c, |b—¢|))
|b— ¢l
x € K. Therefore, |ax(x — ¢)f| < -Mr¥if x € K; thus the Weierstrass M-test implies

Define r =

. Then 0 <r < 1,and |z —c| < r|b—] for all

o0
that the series Y. ax(x — ¢)* converges uniformly on K. o
k=0

By the proposition above, we immediately conclude that the collection of all x at which
the power series converges must be connected and symmetric; thus is a disc or a point. This

observation induce the following

Definition 5.34. A non-negative number R is called the radius of convergence of the
o0

power series Y. ap(z — ¢)F if the series converges for all x € D(c, R) but diverges if = ¢
k=0

D(c, R). In other words,

R=sup{r=0| Z ar(z — ¢)* converges in D(c,R) } .

k=0

The interval of convergence or convergence interval of a power series is the collection

of all x at which the power series converges.

Remark 5.35. A power series converges pointwise on its interval of convergence.
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0
Theorem 5.36. Let {ay}i2, < C, c € C, ) ar(z — ¢)F be a power series with radius of
k=0

convergence R > 0, and K < D(c, R) be a compact set. Then
©¢]

1. The power series Y, ap(x — c)
k=0

k converges uniformly on K.

Q0
2. The power series . (k+1)apy1(x —c)* converges pointwise on D(c, R), and converges
k=0
uniformly on K.

Proof. 1. It is simply a restatement of Proposition 5.33.

0
2. By 1, it suffices to show that the power series > (k+1)ay 1 (2= c)* converges pointwise
k=0

on D(c, R). Clearly the series converges at x = ¢. Let z € D(c, R) and x # c. Since
| — ¢| < R, there exists b € D(c, R) such that

R i
b— ¢ = R jo—d
2
Thenifr:M,0<r<1and
b —¢]

S RS k(17 =\ S k

Yk + Dlanllz e < Yok HDlansallb— ol (F—) <M Y (k+1)r

k=0 k=0 b= k=0

a0

for some M > 0. Note that the ratio test implies that the series . (k+1)r* converges

k=0

0
if 0 < r < 1; thus the power series Y (k+1)|aps1]|z —c|* converges by the comparison

test. h=0 o

0
Corollary 5.37. Let {a;}, € R and c € R, and Y, ap(x — ¢)* be a power series with
k=0

oe}
radius of convergence R > 0. Then Y. ai(x — c)¥ is differentiable in (c — R,c+ R) and is
k=0

Riemann integrable over any closed intervals [a, f] € (¢ — R, c+ R). Moreover,

oe]

d 0
d—Zak(x—c)k:Zkak(a:—c)k_l Vexe(c—R,c+ R)
T =0 k=1

and

JB i ap(r — c)¥dr = i a fﬁ@ L

a Ek—0 k=0 @
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Example 5.38. Let {a;};~, be a bounded sequence. Then

i(zak k)_i Uk k-1 _ J- U1 k-
dx KT A (k-1 B k!

k=0

o] k

t
Example 5.39. We show J e*dr = e' — 1 as follows. By Theorem 5.23, e* = Z % and
0 =0

the convergence is uniform on any bounded sets of R; thus Corollary 5.37 imphes that

o0 ee}
tk—‘rl tk

t thk 0 t k;
Ty = Y e = Y e et 1.
Le * L; e ZJ ! ];)(kﬂ)! R >4

d D Lk o0 0
Example 5.40. d—( > ?> = Y Pt = 3 aF for all z € (—1,1); thus
X

AS a consequence,
o0 ¢ t 0 l’k
E?IJ (’;?>dx:—log(1—t) Vie (—1,1). (5.3.1)

Using the alternating series test, it is clear that the left-hand side of (5.3.1) converges at
t = —1. What is the value of

0
(=1)* 1 1 1 1 1
— — ]l 4 4.7
E: 5+ + g

3 4 5

Consider the partial sum i( i xk) = nil xk = - 1 & Integrating both
p de\= k) = 1-z l-z 11—z & &

sides over [—1,0],

1 2)< dr < | (—a)"de =
‘Z k + Og -1 1_3: v 71( x> * n+1

k=1

— 0 as n — oo;

thus
1 1+ + 1+ log 2
- — _ — — _ — — ... =1]0 .
2 6 &

In other words,

iz = —log(1—t) Vte[-1,1).



§5.4 The space of Continuous Functions 171

0 0
Example 5.41. It is clear that o S (=22 = > (=1)*z?% for all x € (—1,1). So if
1+a2 = k=0
e (—1,1),
0 T
tan 1x—f J et f (—1)*t*dt
k=00
:i (=1)* orir x_$_$_3+x_5_$_7_’_
2k +1 t=0 3 5 7

The right-hand side of the identity above converges at x = 1. What is the value of

o0 k
—1 1 1 1
Zo2k+1 375 7

Mimic the previous example, we consider

Tt . —t2 n+1 T —t2 n+1
= [ 12 - [ e [ S

o L+82 Jy 1422 o L+t

Tz N T (42 ntl

f Z t%dt—i—J %dt

n T x _t2 n+1 n -1 k T (42 ntl
k=0 0 0

o 1t 42k +1 1+¢2

thus plugging x = 1,

"o(—1)k L 42(n+1) 1 1
‘tan_l 1-— ( ) < f dt < f 20+t g — — 0 as n — oo.
— 2k +1 0 0 2n+3

Therefore,

5.4 The Space of Continuous Functions

Definition 5.42. Let (M,d) be a metric space, (V.| - |) be a normed vector space, and
A < M be a subset. We define € (A;V) as the collection of all continuous functions on A

with value in V; that is,

¢(A; V) ={f:A— V| [ is continuous on A}.
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Let 6,(A; V) be the subspace of €' (A; V) which consists of all bounded continuous functions
on A; that is,
G (A; V) = {f € €(A; V)| f is bounded} .

Every f € %,(A; V) is associated with a non-negative real number | f|, given by
[flloo = sup {f(2)] |2 € A} = sup | f ()]
xe

The number | f| is called the sup-norm of f.

Proposition 5.43. Let (M,d) be a metric space, (V,||-|) be a normed vector space, A < M

be a subset.

1. €(A;V) and 6,(A; V) are vector spaces.

2. (G4(A; V), | - |0) is a normed vector space.

3. If K € M is compact, then € (K;V) = €,(K; V).
Proof. 1 and 2 are trivial, and 3 is concluded by Theorem 4.21. =
Remark 5.44. In general | - | is not a-“norm” on € (A;V). For example, the function

flz) = i belongs to €'((0,1); R) and |[f|. = c0. Note that to be a norm | f| has to take

values in R, and o ¢ R.

Proposition 5.45. Let (M,d) be a metric space, (V,|-|) be a normed vector space, A < M
be a subset, and fr € €,(A; V) for all k € N. Then {fi}{, converges uniformly on A if and
only if {fr}i, converges in (%(A; V), | - Hoo)

Proof. (<) Suppose that {f;}7, converges in (¢4(A4;V),| - |»). Then there exists f €
(€,(4;V), | - |) such that klim |fx — flloo = 0, and by the definition of the sup-norm,
—00

lim sup | fx(z) — f(2)] = 0.

k=0 zcA

Therefore, {f}~, converges to f uniformly on A.

(=) Suppose that {fi}72, converges uniformly on A. Then there exists a function f: A —
V such that

lim sup | f(z) — f(z)] = 0.

k=0 zca
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By the definition of the sup-norm, it suffices to show that f € %,(A4;V) in order to
conclude the proposition. By Theorem 5.7, we obtain that f € € (A;V). Moreover,

the uniform convergence implies that there exists N > 0 such that
| fe(z) — f(z)] <1 Vk>Nandze A.

In particular, the boundedness of fx provides M > 0 such that |fx(z)| < M for all
x € A; thus

[f@)] < |fx@)]+[f(z) = fv(@)]| <M+1  VzeA.

This implies that f is bounded; thus f € 6,(A; V). o
Theorem 5.46. Let (M, d) be a metric space, (V,|-|) be a normed vector space, and A < M
be a subset. If (V,| - |) is complete, so is (€5(A; V), ] - ||oo)-

Proof. Let {f,}7, be a Cauchy sequence in (¢,(A;V), |- [): Then
Ve>0,3N >0 3 |fr — fillow <ecif k,{ = N .
By the definition of the sup-norm, the statement above implies that

Ve>0,3N >0 o |fe(x)—fe(x)] <e ifk,l{>NandzeA

which implies that {fi}72, satisfies the Cauchy criterion. By Proposition 5.6, {fi}7>, con-
verges uniformly on A, and Proposition 5.45 shows that {f;};2, converges in (6,(4;V),] -
o). g
Example 5.47. The set. B = {f € ¢([0,1];R)| f(z) > 0 for all z € [0,1]} is open in
(€0, 1;R), | - [l)-

Reason: Let f € B be given. Since [0,1] is compact and f is continuous, by the extreme

f (o)
2

. Now

value theorem there exists g € [0, 1] so that i[nf ] f(z) = f(xog) > 0. Take ¢ =
z€|0,1

if g is such that g = fleo = sup |g(z) = f(2)] <& = f(;vo)’ we have for any y € [0, 1],
z€[0,1]
9v) = 1) < sup [glo) ~ f(@)] < @
= )~ L% < g0 < sy + 2
= g(y) = fy) - f(;”0> > () — f(;:o) _ f(;co) 0
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Therefore, g € B; thus D(f,e) < B

Y

O T

Figure 5.2: g € D(f,¢) if the graph of g lies in between the two red dash lines

Example 5.48. Find the closure of B given in the previous example.

Proof. Claim: cl(B) = {f € ¢/([0,1], !f > 0}.
Proof of claim: We show V f € {fe% ([0,1],R) ‘f 0}, Afk e Ba|fk — floo — 0 as
k — co. Take fi(x) :f(x)%—%, then fr € B (. fr(x) >0), and
1 1
| fx = flloo = sup |fu(z) = f(z)| < sup = = Oas k- 0. o
z€[0,1] z€[0,1]

5.5 The Arzela-Ascoli Theorem

Bip- &0 o APMET T - R o S i chiE BT ar B 39 5 e ar B eh L i

Bifme L EREI NPRF OS] BiER > @ FRE LTl F SH) —%iifz’%‘
Teag s & l% WIGIEE R 2 o BIER s R3] B3 e R T EF AR > i
FrulniE 2o R et (2 k) e ¥z > RIEs A ¥ Al ?wﬁi; A5 ik

5.5.1 Equi-continuous family of functions

The first part of this section is devoted to the investigation of the difference between the

pointwise convergence and the uniform convergence of sequence of continuous functions.

Definition 5.49. Let (M,d) be a metric space, (V.| - |) be a normed vector space, and
A < M be a subset. A subset B < %,(A;V) is said to be equi-continuous ( % & § ) if

Ve>0,30 >0 3| f(x1) — f(z2)| <& whenever d(z1,x9) <0, x1,20€ A, and f e B.
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Remark 5.50. 1. If B < %,(A;V) is equi-continuous, and C' is a subset of B, then C' is

also equi-continuous.
2. In an equi-continuous set of functions B, every f € B is uniformly continuous.

Remark 5.51. For a uniformly continuous function f, let d7(¢) (we have defined this
number in Remark 4.51) denote the largest § that can be used in the definition of the
uniform continuity; that is, d;(¢) has the property that

|f(z) — f(y)| < e whenever d(z,y) <d,z,yec A < 0<d<ds(e).

Suppose that every element in B < %(A;V) is uniformly continuous on A. Then B is

equi-continuous if and only if }n£ dr(e) > 0.
€

Example 5.52. Let B = {f € 6,((0,1); | |f'(z)| < 1 for all z € (0, 1)} Then B is equi-

continuous (by choosing ¢ = € for any given e, and applying the mean value theorem).

Example 5.53. Let f; : [0,1] — R be a sequence of functions given by

-

1

kx fog<x < S5
o1 2

fe(x) =<4 2~ kx le< <7

0 ifx >

E ) H

\

and B = {fr}7>;. Then B isnot equi-continuous since the largest ¢ for each k is % which

converges to 0.

Lemma 5.54. Let (M, d) be a metric space, (V,|-|) be a normed vector space, and K < M

be a compact subset. If B < € (K;V) is pre-compact, then B is equi-continuous.

Proof. Suppose the contrary that B is not equi-continuous. Then 3¢ > 0 such that
1
VkeN, 3z, yp € K and fy € B 3 d(wg, yp) < T but | fr(zr) — fe(yr)| =€

Since B is pre-compact in (€ (K;V),| - |lx) and K is compact in (M,d), there exists a
subsequence { Ix; } and {zy,}72, such that { Tx; } converges uniformly to some function
fe (€KY, |o ) and {zy,}72, converges to some a € K. We must also have {yx,}72,

converges to a since d(zx,, ;) < o
J
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Since f is continuous at a,
35> 0 3 |f(z) — fla)] < % if 2 € D(a,8) N K.

Moreover, since { fk]};il converges to f uniformly on K and xy,,yx;, — aasj — 00, IN >0
such that
| fi, () = f(2)] < % if j>Nandze K

and
d(zy;,a) <6 and d(yk;,a) <0 if j > N.

As a consequence, for all j > N,

€ < | fi, (@) = oy )| < [ f; () = )| + 1 f (@r;) = f(a)
4e

1 () = Fl@)l + 1 (i) = iy () <

which is a contradiction. o

Alternative proof of Lemma 5.54. Suppose the contrary that B is not equi-continuous. Then
de > 0 such that

1
VEke N, Ell'k,yk € K and fk €B 3 d(l‘k,yk) < % but ka(l'k) — fk(ll/k)“ = €.

Since B is pre-compact in (€ (K; V), | - [«), there exists a subsequence {fkj}jozl

to some function f in (¢'(K;V), | |«). By Proposition 5.45, {fkj};ozl converges uniformly
to f on K; thus there exists IN; > 0 such that

converges

kaj(x) —f(x)” < Z Vi=N andre K.
Since f € €(K;V), by Theorem 4.52, f is uniformly continuous on K; thus

36> 053 | f(z) — f(y)| <Z if d(z,y) <0 and =,y € K .

Let N = max {Nl, [%} + 1}, and j = N. Then d(zy,,yr;) < ¢ and this further implies that

e < | fi; @ny) = fa; i)l < | fr; (ny) — Flan) |+ [ f@r,) = Flup) |+ 1 r,) — fr; r,) | < % ;

a contradiction. o
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Corollary 5.55. Let (M, d) be a metric space, (V, |-||) be a normed vector space, and K < M

be a compact subset. If { fr}., converges uniformly on K, then {f}i2, is equi-continuous.

Example 5.56. Corollary 5.55 fails to hold if the compactness of K is removed. For
example, let {fx}72; be a sequence of identical functions fi(x) = é on (0,1). Then {fi},
converges uniformly on (0, 1) but {f}{2; is not equi-continuous since none of f, is uniformly

continuous on (0, 1) which violates Remark 5.50.

We have just shown that if { f.}72, converges uniformly on a compact set K, then {fi}7>,
must be equi-continuous. The inverse statement, on the other hand, cannot be true. For
example, taking {fx}72,; to be a sequence of constant functions fi(z) = k. Then {fx}7,
obviously does not converge, not even any subsequence. Therefore; we would like to study
under what additional conditions, equi-continuity of a sequence of functions (defined on
a compact set K) indeed converges uniformly. The following lemma is an answer to the

question.

Lemma 5.57. Let (M,d) be a metric space, (V.| -|) be a Banach space, K < M be a
compact set, and {fi}i72, < €(K;V) be a equi-continuous sequence of functions. If {fi}i,
converges pointwise on a dense subset E of K (that is, E < K < cl(E)), then {fx}{,

converges uniformly on K.
Proof. Let € > 0 be given. By the equi-continuity of {fi}7,

35> 0 3 | fu(z) = F= ()] <§ if d(z,y) <0, z,ye K and ke N.

Since K is compact, K is totally-bounded; thus

" )
Hyr, - sym} = K 3K < UD(yj,i)-
=1

By the denseness of F'in K, foreach j = 1, --- ,m, there exists z; € E such that d(z;, y;) < g
Moreover, D (y;, g) < D(zj,9); thus K < UID(ZJ-, d). Since { fx}{, converges pointwise on
]:
E, {fi(z;)}r., converges as k — oo for all j =1,--- ,m. Therefore,
€
Let N = max{Ny,---, N}, then

8 .
ka(zj)_fﬁ(zj)\|<§ Vik,{>Nandj=1,--- ,m.
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Now we are in the position of concluding the lemma. If z € K, there exists z; € E such
that d(z, z;) < 0; thus if we further assume that £,/ > N,

| fie(w) = felo) | < [ fele) = fulz) |+ [1e(z) = fe(z) + 1elz5) = fulz)] < e

By Proposition 5.6, {fi};2, converges uniformly on K. o

Remark 5.58. Corollary 5.55 and Lemma 5.57 imply that “a sequence {fi}i2, € € (K;V)
converges uniformly on K if and only if { f};2; is equi-continuous and pointwise convergent

(on a dense subset of K)”.

5.5.2 Compact sets in ¢ (K;V)

The next subject in this section is to obtain a (useful) criterion of determining the compact-
ness (or pre-compactness) of a subset B < %(K;)) which guarantees the existence of a

convergent subsequence { fi, }?:1 of a given sequence {fp}il; € B in (€(K;V),| - [x)-

Lemma 5.59 (Cantor’s Diagonal Process). Let E be a countable set, (V.| -|) be a Banach
space, and f : E—V be a sequence of functions. Suppose that for each x € F, {fk(x)}zo:l

is pre-compact in V. Then there exists a-subsequence of { fi};2, that converges pointwise on
E.

Proof. Since E is countable, E' = {a,}2.

1. Since {fk(xl)}zo:l is pre-compact in (V, || - ), there exists a subsequence { fy, };OZI such
that {fkj(:cl)};il converges in (V, | - |).

2. Since {fk(xg)}zozl is pre-compact in (V, || - |), the sequence {fk].(xQ)}j,ozl c {fk(xg)}]zo:l
has a convergent subsequence { s, (xg)};il

Continuing this process, we obtain a sequence of sequences Sy, Ss, - -+ such that
1. Sk consists of a subsequence of {fx}{_; which converges at z;, and
2. S, 2 Sk+1 for all k € N.

Let gi, be the k-th element of S;. Then the sequence {g;};”, is a subsequence of {fi},

and {gx}7_, converges at each point of E. o
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The condition that “{ fk(x)}zozl is pre-compact in V for each x € E” in Lemma 5.59

motivates the following

Definition 5.60. Let (M,d) be a metric space, (V.| - |) be a normed vector space, and

compact
A < M be a subset. A subset B € 6;(A;V) is said to be pointwise pre-compact if the
bounded
compact
set B, = {f(z)|f € B} is pre-compact in (V,]|-|) for all z € A.
bounded

Example 5.61. Let f; : [0,1] — R be given in Example 5.53, and B-= {f;}~,;. Then B
is pointwise compact: for each z € [0, 1], B, is a finite set since if f;(0) = 0 for all k£ € N,

while if z > 0, fy(z) = 0 for all k£ large enough which implies that # B, < o0.

EPiEe kg G(K;V) &k 0 compact sets § HAE R iR T o gAAPLg R
P BcF(K;V) n—\compact set o BE -~ B S| {fi}l, € B AP RACE R A oS T
- # & sup-norm T T @i Subsequence { Jx; } ( T sequentially compact ) o d Dlagonal
Process (Lemma 5.59) %> AR & K ¢ 5- BB+ & F 7 {fi}, & F

&_ pointwise pre-compact (iz B30 > T %23 7 1135 F] subsequence & BLiTar) 0 R |
4 Lemma 5.57 0§84 » & F Frig 4o b equi-continuity e7if i 2. {5 > iR BhiTac § %51@3} Ed
& o FH o fp Ry A ¢ & R B % & pointwise pre-compact i equi-continuous iz
B kE A B A C(K;V) ¥ 41 compact set o @ f— B compact set K ® it 7 it 45 ¥
- BRBFEEPED T 5 5B Lemma #7k & o

Lemma 5.62. A compact set K in a metric space (M,d) is separable; that is, there exists
a countable subset E of K such that cl(F) = K.

Proof. Since K is compact, K is totally bounded; thus Vn e N, 4 F,, € K such that

#E, < and Kc || D(y,%).

yeEnR

Let £ = U E,. Then FE is countable by Theorem 1.40. We claim that cl(E) = K.

To see thls first by the deﬁnltlon of the closure of a set, cl(F) € K (since K is closed).
Letz € K. Since K < D(y, ) x e D(y, ) for some y € E,,. Therefore, D(x l) NE #

yeEn

& for all n € N. This implies that z € E = cl(E). o
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Theorem 5.63. Let (M,d) be a metric space, (V.| -|) be a Banach space, K < M be a
compact set, and B < €(K;V) be equi-continuous and pointwise pre-compact. Then B is
pre-compact in (€(K; V), |- |x)-

Proof. We show that every sequence { fx};~, in B has a convergent subsequence. Since K is
compact, there is a countable dense subset F of K (Lemma 5.62), and the diagonal process
(Lemma 5.59) implies that there exists { f, }30:1 that converges pointwise on E. Since E is
dense in K, by Lemma 5.57 { Jx; };OZI converges uniformly on K; thus { Jx; };Ozl converges in
(€¢(K;V), | - |») by Proposition 5.45. o

Remark 5.64. Lemma 5.54 and Theorem 5.63 imply that “a set B < @(K;V) is pre-
compact if and only if B is equi-continuous and pointwise pre-compact”. (That B is pre-

compact implies that B is pointwise pre-compact is left as an exercise).

Corollary 5.65. Let (M,d) be a metric space, and K < M be a compact set. Assume that
B < € (K;R) is equi-continuous and pointwise bounded on K. Then every sequence in B

has a uniformly convergent subsequence.

Proof. By the Bolzano-Weierstrass theorem the boundedness of { fk(:c)}zozl implies that
{ fk(a:)}zozl is pre-compact for all x € E. Therefore, we can apply Theorem 5.63 under the
setting (W, || - |) = (R, |- |) to conclude the corollary. o

The following theorem provides how compact sets look like in € (K; V).

Theorem 5.66 (The Arzela-Ascoli Theorem). Let (M,d) be a metric space, (V,| - ||) be
a Banach space, K .= M be a compact set, and B < €(K;V). Then B is compact in

(‘K(K; V), Il ||oo) if and only if B is closed, equi-continuous, and pointwise compact.
Proof. “<" This direction is conclude by Theorem 5.63 and the fact that B is closed.

“="” By Lemma 3.10 and Lemma 5.54, it suffices to shows that B is pointwise compact.
Let v € K and {fk(a:)}zozl be a sequence in B,. Since B is compact, there exists a
subsequence { Jx; }20:1 that converges uniformly to some function f € B. In particular,

{fx, (x)}jozl converges to f(z) € B,. In other words, we find a subsequence { f, (x)}jozl
of { fk(x)}zozl that converges to a point in B,. This implies that B, is sequentially

compact; thus B, is compact. =

Example 5.67. Let f; : [0,1] — R be a sequence of functions such that
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(1) |fe(x)] < M, forall ke Nand z € [0,1]; (2) |fi(z)| < M, forall k € N and z € [0, 1].

Then {fi}72, is clearly pointwise bounded. Moreover, by the mean value theorem
’fk(x)_fk(y)|<M2’$_y’ V.I',yE[O,l],kEN

which implies that {fx}{, is equi-continuous. Therefore, by Corollary 5.65 there exists a
subsequence { fkj}j.o:l that converges uniformly on [0, 1].

Question: If assumption (1) of Example 5.67 is omitted, can {fi};~; still have a convergent
subsequence?

Answer: No! Take fi(z) = k, then {f};2, does not have a convergent subsequence (note

that fi is continuous and f;(x) = 0; that is, Assumption (2) is fulfilled).

Example 5.68. We show that Assumption (1) of Example 5.67 can be replaced by f5(0) = 0
for all k£ e N.

Proof. (a) If f,,(0) = 0, then by the mean value theorem we have for all x € (0,1] and k € N,
fr(x) — fx(0) = fi(ck)(x — 0). Then Assumption (2) of Example 5.67 implies that

| () — Fe(O)] = | Fi(en)||z] < My)z| < My

which shows that {f;}{; is uniformly bounded by M,.

(b) {fx}r, are equi-continuous (same proof as in Example 5.67). o

5.6 The Stone-Weierstrass Theorem

Theorem 5.69 (Weierstrass). Let f : [0, 1] — R be continuous and let ¢ > 0 be given. Then
there is a polynomial p : [0,1] — R such that | f — p|o < . In other words, the collection of
all polynomials is dense in the space (€([0,1;R), | - [)-

Proof. Let ry(z) = Cz*(1 — )" . By looking at the partial derivatives with respect to =
of the identity (z +y)" = 3, Cra*y"*, we find that
k=0

n

L. é}ork(:p) =1; 2. i kre(x) =nx; 3. Y k(k — Dri(z) =n(n —1)z%

k=0 k=0
As a consequence,

n n

Z(k —nx)ry(z) = Z [k(k —1) + (1 — 2n2)k + n’2*|re(z) = na(l — ).

k=0 k=0
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Since f : [0, 1] — R is continuous on a compact [0, 1], f is uniformly continuous on [0, 1] (by
Theorem 4.52); thus

36> 05|f(z) - f(y) <g if o —y| <8, 2,y€0,1].
Consider the Bernstein polynomial p,(z) = Y, f(%)rk(x) Note that
k=0

n

£0) - @] = | 3 (10 = 75 )ruta)| = 32 [r@) = £ ruta)

n
k=0

Mo+ Y )@ -G

|k—nz|<dn  |k—nz|=dn

£ (k — nx)?
<5T 2/| floo Z mrk@)
|k—nz|=0n
e, 0l e, 2o e, e
n242 Z (v) < §+ no? (1_x><§+2n52’
Choose N large enough such that !Q; < —. Then for all n > N,
|f = pallw =" sup. | f(2) — pulz)| <& o

z€[0,1]

Remark 5.70. A polynomial of the form p,(x) = >, Spri(z) is called a Bernstein poly-
k=0
nomial of degree n, and the coefficients [ are called Bernstein coefficients.

Figure 5.3: Using a Bernstein polynomial of degree 350 (the red curve) to approximate a
“saw-tooth” function (the blue curve)

Corollary 5.71. The collection of polynomials on [a,b] is dense in (€([a,b];R), | - |x)-
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Proof. We note that g € €([a,b];R) if and only if f(z) = g(z(b—a)+a) € €([0,1];R); thus

r—a

’f(x) —p(:v)’ <eVaxel01] < |g(x) —p(b

)’<€Vxe[a,b]. o

—a
Example 5.72.

Question: Let f € €([0,1],R) be such that |p, — f|x — 0 as n — o; that is, {p,}r,
converges uniformly to f on [0, 1], where p, € £([0,1]). Is f differentiable?

Answer: No! Take any continuous but not differentiable function f (for example, let

flx) = ‘{B - %D By Theorem 5.69, 3p,: polynomial 3 |p, — f|lcc — 0 as n — o0.

Definition 5.73. Let (M, d) be a metric space, and E < M be a subset. A family A of

functions defined on F is called an algebra if
1. f+ge Aforall f,ge A,
2. f-ge Aforall f ge A,
3. afe Aforall fe Aand a e R.

In other words, A is an algebra if A is closed under addition, multiplication, and scalar

multiplication.

Example 5.74. A function g : [a,b] — R is called simple if we can divide up [a, b] into
sub-intervals on which ¢ is constant except perhaps at the end-points. In other words, g is
called simple if there is a partition P = {xg, 1, -+ ,xy} of [a,b] such that

glx) = g(%%m) if ze(xi_y,2;).

Then the collection of all simple functions is an algebra.

Proposition 5.75. Let (M,d) be a metric space, and A < M be a subset. If A< 6,(A;R)

is an algebra, then cl(A) is also an algebra.

Proof. Let f,g € cl(A). Then 3{fi}r, {gr}i2, < A such that {f,}}2, converges uniformly
to f on A, and {gx},; converges uniformly to g on A. Since A is an algebra, fr + gk, fr - 9k
and afy belong to A for all £ € N. As a consequence, the uniform limit of fi + gx, fr - 9
and afy belong to cl(A) which implies that f + ¢, f - g and af belong to cl(.A). Therefore,
cl(A) is an algebra. o
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Definition 5.76. Let (M,d) be a metric space, and A € M be a subset. A family .% of

functions defined on A is said to

1. separate points on A if for all z,y € A and = # y, there exists f € .% such that

f(x) # f(y).
2. vanish at no point of A if for each x € A there is f € .# such that f(x) # 0.

Example 5.77. Let Z([a,b]) denote the collection of polynomials defined on |[a,b] is an
algebra. Moreover, Z([a,b]) separates points on [a, b] since p(z) = x does the separation,

and Z([a, b]) vanishes at no point of [a, b].

Example 5.78. Let Z.en([a,b]) denote the collection of all polynomials p(x) of the form
p(x) = Z apz? = a,22" + a, 122" 4+ ag .
k=0

Then Peven([a, b]) is an algebra. Moreover, Peven([a, b]) vanishes at no point of [a, b] since the
constant functions are polynomials (since constant functions belongs to #([a, b]). However,
if ab < 0, Peven([a, b]) does not separate points on [a,b]. On the other hand, if ab > 0, then

Peven(|a, b]) separates points on [a, b] since p(x) = z? does the job.

Lemma 5.79. Let (M,d) be a metric space, and A = M be a subset. Suppose that A is an
algebra of functions defined on A, A separates points on A, and A vanishes at no point of

A. Then for all x1,19 € A; Ty # X9, and c1,co € R (c1, ¢ could be the same), there exists
f e A such that f(xy) = ¢ and f(x2) = co.

Proof. Since A separates points on A, 3¢ € A such that g(z1) # g(z2), and since A vanishes
at no point of A, 3h,k € A such that h(z1) # 0 and k(x2) # 0. Then

[9(x) — g(w2)] h(x) [9(x) — g(a1)] k(x)
g(z1) — 9(532)] h(z1) [9(552) - g(%)] k()

has the desired property. =

f(m):cl[ + ¢

Theorem 5.80 (Stone). Let (M,d) be a metric space, K = M be a compact set, and
A < € (K;R) satisfying

1. A is an algebra. 2. A vanishes at no point of K. 3. A separates points on K.
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Then A is dense in € (K;R).

Example 5.81. Let K = [—1,1] x [-1,1] = R% Consider the set Z(K) of all polynomials
p(z,y) in two variables (x,y) € K. Then & (K) is dense in € (K;R).

Reason: Since K is compact, and #(K) is definitely an algebra and the constant function
p(z,y) = 1 € Z(K) vanishes at no point of K, it suffices to show that &?(K) separates
points. Let (aq,b;) and (ag, by) be two different points in K. Then the polynomial

p(z,y) = (r = a1)” + (y — br)?
has the property that p(ay,by) # p(ag, by). Therefore, 2 (K) separates points in K,
Proof of Theorem 5.80. We divide the proof into the following four steps:

Step 1: We claim that if f € A, then |f| € A.

Proof of claim: Let M = sup|f(z)|, and € > 0 be given. By Corollary 5.71, for every
zeK

e > 0 there is a polynomial p(y) such that |p(y) = |y|| < € for all y € [-M, M]. Since
A is an algebra, by Proposition 5.75 cl(.A) is also an algebra; thus g = p(f) € cl(A) if
f € cl(A). Nevertheless,

’g(:z:)—|f(:c)H<5 Vee K
which shows that |f| e A.
Step 2: Let the functions max{f, g} and min{f, g} be defined by

max{f, g}(v) = max {f (), g(z)}, min{f, g}(x) = min{f(z),g(x)}.

f+g+|f—g| f+g |f—4d

and min{f, g} = 5 we find that if
f,g € A, then max{f, g} € A and min{f, g} € A. As a consequence, if fi, -, f, € A,

Since max{f,g} =

max{f,, -, fu} €A and min{f;, -, f.}eA.

Step 3: We claim that for any given f € €(K;R), a € K and £ > 0, there exists a function
ga € A such that

ga(a) = f(a) and g.(x) > f(x) —¢ Vre K. (5.6.1)
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Proof of claim: Since A separates points on K and A vanishes at no point of K, so
does A. Therefore, Lemma 5.79 implies that for every b e K with b # a, there exists
hy € A such that hy(a) = f(a) and hy(b) = f(b). Note that every function in A is
continuous (by Theorem 5.7); thus the continuity of h, provides § = §, > 0 such that

hy(z) > f(x) —e Vaze [D(b,d) uD(a,d)] nK.
Let U, = D(b7 51;) U D(a7 55). Then U, is open. Since K < |J U, and K is com-

be K
b#a

pact, there exists a finite set {b1,---,b,} < K such that K "< |JU,,. Define
9o = max {hy,, - hy, }. Then g, € A, and gq(a) = f(a). Moreover, if z € K, x € U,
for some j; thus

Ja() = hy,(x) > f(x) — €

which implies that g satisfies (5.6.1).

Step 4: Let f € €(K;R) and ¢ > 0 be given. Forany a € K, let g, € A be a function

provided in Step 3 satisfying

ga(a) = f(a) and gu(z) > f(x) —g Voe K. (5.6.2)
By the continuity of g,, there exists 0 = 9, > 0 such that
ga(T) < f(z) 7+ g VaeD(a,d,)nK. (5.6.3)
Similar to Step 3, 3{ay,: -+ ,am} S K such that
K < | JD(aj,6a,) - (5.6.4)
j=1

Define A = min {gal, e ,gam}. Then h e A, and (5.6.2) shows that
hz) > fz) — % VaeK.

Moreover, similar to Step 3 (5.6.3) and (5.6.4) imply that
h(x)<f(x)+g Vae K.

On the other hand, since h € A, there exists p € A such that
Ip(z) — h(z)| < % VreK;

thus

N

p(z) — f(2)] < |p(x) = h(@)| + |h(z) — f(z)| <e VaeeK
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which concludes the theorem. o

Example 5.82. Consider Peen([0,1]) = {p(x) = > apz? ) ay € ]R} (see Example 5.78).
k=0

Then A = Peuen([0,1]) satisfies all the conditions in the Stone theorem, s0 Peven([0, 1]) is
dense in € ([0, 1]; R).

On the other hand, if K = [—1,1], then Peyen([—1, 1]) does not separate points on K
since if p € Poven([—1,1]), p(z) = p(—z); thus the Stone theorem cannot be applied to
conclude the denseness of Peven([—1,1]) in €([—, 1];R). In fact, Peyen([—1,1]) is not dense
in €([—1,1];R) since polynomials in Peyen([—1,1]) are all even functions and f(z) = =

cannot be approximated by even functions.

Corollary 5.83. Let € (T) be the collection of all 2m-periodic continuous functions, and
P,(T) be the collection of all trigonometric polynomials of degree n; that is,

Z,(T) = {%0 + Z ¢k cos kx + spsinkx [ {crtp_o, {Sk}rey S R} .
k=1

Let 2 (T U P, (T). Then P (T) is dense in€(T). In other words, if f € €(T) and
e>01s gwen there exists p e P (T) such that

|f(x) =plx)l<e VazeR.

Proof. We note that €(T) can be viewed as the collection of all continuous functions defined
on the unit circle S' in the sense that every f € €(T) corresponds to a unique F' € € (S*; R)
such that f(x) = F(cosa,sinz), and vice versa. Since S! < [—1,1] x [—1,1] is compact,
Example 5.81 provides that Z2(S!), the collection of all polynomials defined on S!, is an
algebra that separates points of S' and vanishes at no point on S'. The Stone-Weierstrass
Theorem then implies that there exists P € Z2(S') such that

|F(z,y) — P(z,y)| <e  V(z,y) €S (that is, 2° + > = 1).

Let p(xz) = P(cosz,sinz). Note that

ix —iT n n
e”+e ) C«nzkx —i(n—k)x anQk n)x

COSs x:< 9

k=0 k:O
n

1 1
— Z 2—nC,’j(cos(2k: —n)z + isin(2k — n)z) = Z Q—nC,? cos(2k —n)x € Z,(T),
k=0

k=0
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and similarly, sin™ z € £,,(T). Therefore, if P(x,y) = >, ags2*y’, then P(cosz,sinz) €
=0

P9, (T) because of the identities

cosfcosp = % :COS(Q — ) + cos(f + gp)] :
sin f cos p = % :sin(ﬁ + ) + sin(0 — @)] ,
sin f sin p = % :COS(Q — ) —cos(0 + gp)] :
As a consequence, we conclude that
]f(x)—p(x)]:‘F(cosx,sinx)—P(cosx,sinx)]<€ Ve eR. 0

5.7 The Contraction Mapping Principle (1t %5p & &
7 ) and its Applications

Definition 5.84. Let (M, d) be a metric space, and ®: M — M be a mapping. & is said

to be a contraction mapping if there exists a constant k € [0, 1) such that
d(®(x), d(y)) < kd(ry)  Va,ye M.

Remark 5.85. A contraction mapping must be (uniformly) continuous.
Reason: Given € > 0, take § = %, where k is set as in the definition of contraction. Now
if d(z,y) < 6, then

A(D(x), D(y)) < kd(x,y) < k- % —c.

Example 5.86. For what r < 1 do we have f : [0,7] — [0, 7] where f(z) = z? a contraction?

Answer: By the mean value theorem, f(x) — f(y) = f'(¢)(z — y), ¢ between z, y; thus

1f(@) = fW)] = |f'(0)]lz —y| = 2c|z — y| < 2r|x —y|.

2

Hence for all r < %, the map f:[0,7] — [0,7] is a contraction where f(z) = z*.

On the other hand, we show that f cannot be a contraction if r = Suppose the

1
1 2
contrary that there exists k € [0, 1) such that for all z,y € [0, 5}, |22 — y?| < k|z —y|. Then

2 _ .2
sup u<k:<1.

x#y,x,ye[o,%] !J) - y|
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1 1 1 1
Butwecantakexzi,ynzi—ﬁ,nzl,l'“713>Z/n€[075]-SO
. |$2—yn2|_. o L1 1,
S S = e =l (545 - ) =1
2% —y?|

This means  sup < 1 is not possible.

x;ﬁy,m,ye[o,%} ’JJ - y’
Definition 5.87. Let (M, d) be a metric space, and ® : M — M be a mapping. A point
xo € M is called a fized-point for ® if ®(xy) = zy.

2
Example 5.88. Let ® : R — R be given by ®(z) = < ;—2. Then 1 is a fixed-point, and 2

is also a fixed-point.

Theorem 5.89 (Contraction Mapping Principle). Let (M,d) be a complete metric space,
and ® : M — M be a contraction mapping. Then ® has a unique fixed-point.

Proof. Let xq € M, and define x, .1 = ®(z,,) for all n e Nv {0}. Then
d(xpi1, Ty) = d(fl)(xn), q)(xn,l)) < kd(zpyxn—1) < k"d(xq,20) 5
thus if n > m,

d(l’n, mm) < d(l’m, $m+1) + d(xm—i—la xm—i—?) +--+ d(l’n_l, mn)

< (K™ + K" e+ BN d(2, o)
km
Since k € [0,1), lim 1Ld(x1,:1:0) = 0; thus

m—wol + k

Ve>0,3N >03d(zp,xy) <e Vn,m=N.

In other words, {z,}r_; is a Cauchy sequence. Since (M,d) is complete, x,, — = as n — o
for some x € M. Finally, since ®(x,) = x,,1 for all n € N, by the continuity of ® we obtain
that
O(z) = lim ¢(x,) = lim 2,41 =2
n—0 n—0

which guarantees the existence of a fixed-point.

Suppose that for some x,y € M, ®(z) = x and ®(y) = y. Then

d(z,y) = d(®(x), ®(y)) < kd(z,y)

which implies that d(x,y) = 0 or x = y. Therefore, the fixed-point of ® is unique. =
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Remark 5.90. The proof of the contraction mapping principle also provides an iterative
way, Tx+1 = P(zy), of finding the fixed-point of a contraction mapping ®. Using (5.7.1), the

convergence rate of {z,,}%_; to the fixed-point = is measured by

: k™
d(xp, ) = 7}1_1)210 d(Tpm, Ty) < ﬂd(xl,xo).

Therefore, the smaller the contraction constant k, the faster the convergence.
Remark 5.91. Theorem 5.89 sometimes is also called the Banach fixed-point theorem.

Example 5.92. The condition £ < 1 in Theorem 5.89 is necessary. For example, let M = R,
d(z,y) = |z — y|, and @ : R — R be given by ®(z) = x + 1. Then |®(z) = P(y)| = |z — y|.
Suppose z, is a fixed-point of ®. Then z, = ®(x,) = x, + 1 which leads to a contradiction
that 0 = 1.

Example 5.93. Let @ : [1,00) — [1,0) be given by ®(z) = x + é Then if z # y,

1 1

|@(z) — ®(y)| = |~T—y+;—§‘ = |z —y)(

1
1—x—y)‘<|x—y|.

However, there is no fixed-point of ®.
Example 5.94 (The secant method). Suppose that f is continuously differentiable, f'(x) >
0 for all z € [a,b] and f(a)f(b) < 0./ By the intermediate value theorem there must be a

(unique) zero of f. How do we find this zero?

Assume that sup f'(z) <woo. Let

z€[a,b]

M = max{ sup f'(z), — fla) JO) }+ 1

z€la,b] b—a’b—a
be a positive constant, and consider ®(x) = = — f](wx) Then by the mean value theorem,

o)~ 2(w)| = |z -1 - L) < 1

~ mingepe ) J'(§)

i Nz —y| < klz -y,

where k € [0,1) is a fixed constant. Moreover, ®'(z) = 1 — f;\(j) > 0; thus @ is strictly
increasing. Since the choice of M implies that a < ®(a) < ®(b) < b; thus @ : [a,b] — |a, b].
Therefore, the contraction mapping principle implies that one can find the fixed-point of ¢
(which is the zero of f) using the iterative scheme x;,3 = ®(x) (by picking any arbitrary

initial guess zg € [a, b]).
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5.7.1 The existence and uniqueness of the solution to ODEs

In this sub-section we are concerned with if there is a solution to the initial value problem

of ordinary differential equation:

2(t) = f(z(t),t)  Vite[to,to+ A, (5.7.2a)
x(ty) = xg, (5.7.2b)

where x : [tg,tg + At] — R™ and f : R"™ x [tg,to + At] — R are vector-valued functions,
and xy € R" is a vector. Another question we would like to answer is “if (5.7.2) indeed has

a solution, is the solution unique?”

Theorem 5.95 (Fundamental Theorem of ODE). Suppose that for some r > 0, f :

D(zg,7) % [to, T] — R"™ is continuous and is Lipschitz in the spatial variable; that is,
3K >0 3 |f(x,t) = f(y,t)], < K|z —yl2 Vz,y€ D(xg,r) and t € [to, T).
Then there exists 0 < At < T — to such that there exists a unique solution to (5.7.2).

Proof. For any x € € ([to, T]; R"), define

t
O(z)(t) = a0+ f f(z(s),s)ds.
to

We note that if z(¢) is a solution to (5.7.2), then z is a fixed point of ® (for ¢ € [to, to + At]).
Therefore, the problem of finding a solution to (5.7.2) transforms to a problem of finding a
fixed-point of ®.

To guarantee the existence of a unique fixed-point, we appeal to the contraction mapping
principle. To be able to apply the contraction mapping principle, we need to specify the
metric space (M, d). Let

T 1
At:min{T—t, —} 5.7.3
O B+ 2 (oo, 2K (578)

and define
M = {x € € ([to, to + At]; R™)

,
o = @0l < 5}

with the metric induced by the sup-norm | - || of € ([to, to + At];R™). Then
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1. We first show that ® : M — M. To see this, we observe that

o) - w0, = | L:f(x(s),s)ds‘oo: |

J [f(x(s),s) — f(a:o,s)}ds —i—f f(a:o,s)dsHoo
to+At : to+At K
< J Hf(x(s), s) — f(xg,s)H2ds —|—J Hf(xo, S)Hst
° to+At N
< KL |x(s) — xoll2ds + AtHf(xo, )HOO
< At |:K||.I‘ — Zo|oo + Hf(xo, )HOO} :

thus if z € M, (5.7.3) implies that |®(z) — 2, <

N3

2. Next we show that ® is a contraction mapping. To see this, we compute |®(z)—®(y)|
for z,y € M and find that

0

20) 0001, < | [ 109 - £t )]

to+At 1
< |7 Klals) - yoMads < KAt~ gl < Gl yl
t,

0

thus ® : M — M is a contraction mapping.

3. Finally we show that (M, d) is complete. It suffices to show that M is a closed subset
of € ([to, to + At];R™). Let {zx}72, be a uniformly convergent sequence with limit .
Since |zg(t) — xoll2 < % for all t € [ty,to + At], passing k to the limit we find that

|x(t) — xoll2 < g for all ¢ € [to, to + At] which implies that |x — x¢] s < g; thus x € M.

Therefore, by the contraction mapping principle, there exists a unique fixed point ©x € M

which implies that there exists a unique solution to (5.7.2). o
Example 5.96. Let

z(t) =< 1

Z(t—c)2 ift>c.

Then for all ¢ > 0, z,(t) is a solution to /(t) = z(t)2 for all ¢ > 0 with initial value z(0) = 0.
The reason for not having unique solution is that if f(z,t) = v/z, f: D(0,7) x R — R is
not Lipschitz in the spatial variabvle for all » > 0. In other words, for all r, K > 0, there
exists z,y € D(0,r) satisfying |f(z) — f(y)| = K|z — y|.

{ 0 if0<t<ec,
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Example 5.97. Find a function x(t) satisfying 2’(t) = x(t) with initial value z(0) = 1.

Define ®(x)(t) =1 + f s)ds, xo(t) = 1 and xpyq(t) = ®(zx)(t). Then
t t2
x1<t):1+f o(s )d5_1+t:x2(t):1—|—f ra(s)ds = 1414+ 5
0 0
t 2 t3
3(t) =1 ds=1+1 —
= x3(t) +Lx2()s Tt 5t
= ...
2 tk
= By induction, we have z4(t) = 1+t + 3 +- i
: otk
which converges to z(t) = IEO T=¢

Example 5.98. Find a function z(t) satisfying a'(t) = tz(t) with initial value z(0) = 3.
t

Define ®(x)(t) = 3+ J sz(s)ds, xo(t) = 3 and x4 (t) = ®(zx)(t). Then
0

¢ 3t2 ! 32 3t!
$1(t):3+f 35d3:3+7:>952(t):3+f sri(s)ds =3+ — 4+ —
0

! 32 3t 3t6
3$3(t):3+LS$2<8)d8:3+7+24+246

We can conjecture and prove that

3¢ 3t4+ 3t
2 24 2.4 (2k)’

thus zx(t) — z(t) = 3 + 3k§1 T2

0 tQk 0 t2k 0 <t2/2)k B t2 '
t gy v a o)

To see what z(t) is, we observe that

2
thus the solution is x(t) = 3 exp (t ).

Remark 5.99. In the iterative process above of solving ODE, the iterative relation
t
Ty (t) = zo + J f(zx(s), s)ds

to

is called the Picard iteration.
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Example 5.100. Is there a solution to the Fredholm equation

—)\f K(t,s)x(s)ds + ¢(t)? (5.7.4)

Define @ : €¢([a, b]; R) — €(|a,b]; R) by

—)\JKzﬁs s)ds + (1) .

Then if K : [a,b] x [a,b] — R is continuous, and ¢ : [a,b] — R is continuous, ®(z) €
% (la,b];R) as long as x € €([a, b]; R). Moreover,

b
o)1) - 2)(®)] < A j K (t,5) (w(s) = y(s))ds| < MK Jlt =l 2 =yl
thus if |A|||Kx|b — a| < 1, ® is a contraction mapping. As a consequence, if
1. K :la,b] x [a,b] — R is continuous;
2. ¢ :[a,b] > R is continuous;
3. MK eclb —af <1,

there exists a unique function x(t) satisfying (5.7.4).

5.8 Exercises

§5.1 Pointwise and Uniform Convergence

Problem 5.1. Let (M,d) be a metric space, A € M, and f; : A — R be a sequence
of functions (not necessary continuous) which converges uniformly on A. Suppose that
a € cl(A) and

lim fi(2) = Ay

r—a

exists for all £ € N. Show that {A;}}”, converges, and

lim lim fi(z) = lim lim fj(z).

r—a k—o0 k—o0 z—a

Problem 5.2. Let (M,d) and (V,p) be metric spaces, A € M, and f, : A — N be
uniformly continuous functions, and {f};2, converges uniformly to f : A — N on A. Show

that f is uniformly continuous on A.
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Problem 5.3. Complete the following.
(a) Suppose that fi, f,g:[0,00) — R are functions such that

1. VR >0, fr and g are Riemann integrable on [0, R];
2. |fr(z)] < g(x) for all ke N and z € [0, 00);

3. YR >0, {fr}, converges to f uniformly on [0, R];

R
4. j x)dr = hm g(x)dx < .

R—o0 0

0 0
Show that khm Je(x)dr = J f(z)dz; that is,
—x Jo 0

R
lim limf fr(x)dz = lim hmf fr(x)dx

k—o0 R—00 R—00 k—0o0 0

1 ifk—-1< k,
(b) Let fix(z) be given by fi(z) = ' N Find the (pointwise) limit f of
0 otherwise.

0 Q0
the sequence {fi};”;, and check whether klim fr(x)dr = f f(z)dx or not. Briefly
-~ Jo 0
explain why one can or cannot apply (a).

(c¢) Let fr:[0,00) — R be given by fi(z) = 1+k ———. Find klgloloj Je(x

§5.2 The Weierstrass M-Test

Problem 5.4. Show that the series

PN
k=1 k2
converges uniformly on every bounded interval.

Problem 5.5. Consider the function

Z 1
2
k:11+kx

On what intervals does it converge uniformly? On what intervals does it fail to converge

uniformly? Is f continuous wherever the series converges? If f bounded?
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0

Problem 5.6. Determine which of the following real series Y gy converge (pointwise or
k=1

uniformly). Check the continuity of the limit in each case.

1 (z) = 0 ife<k,
A N N
1.
= if |z| <k,
2. gi(z) = |
— if |z| > k.
z

Y.
3. gr(z) = ((\/1%) )cos(kx) on R.

4. gr(x) = 2% on (0,1).
§5.3 Integration and Differentiation of Series

Problem 5.7. In the following series of functions defined on R, find its domain of conver-
gence (classify it into domain of absolute and conditional convergence). If the series is a
power series, find its radius of convergence.. Also discuss whether the series is uniformly
convergent in every compact subsets of its demain of convergence. Determine which series
can be differentiated or integrated term by term in its domain of convergence.

x
- a> .
() 3 o €20 620,

k=1
£ 1-3---(2k—1) 1 1\ o
(3) k; 3 A (o) (1+§+ +%)x,

(=Dt .
= klog(k+1)" 7

=
18

o]
(5) > apa®, where {a,}?_, is defined by the recursive relation a, = 3a,_, — 2ag_ for
k=1

k>2 and ap =1, a; = 2.

Also find the sum of the series in (5).
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Problem 5.8. In this problem we investigate the differentiability of a complex power series.

. . d & &
This requires a new proof of - S oagr® = Y] kagat?
X

k=0 k=1
2.10.

0
Let {ar}”, < R be a real sequence, and f(z) = Y axz” be a (real) power series with
k=0

arz® be the n-th partial sum, R,(z) =

instead of making use of Theorem

n
radius of convergence R > 0. Let s,(z) =
k=0

f(z) = su(7), and g(x) = 121 kapx®=1. For x, 29 € (—p, p) € (—R, R), where x # x4, write
%ﬁiﬁo) —g(z) = Sn(x; - Z(m) — 50 (o) + (5 (z0) — g(w0)) + Rn(m:z - Zn(xo) ‘

1. Show that

o
Rn(l‘) — RTL(IO) < Z k\ak]pk_l ’

T = Zo k=n-+1

and use the inequality above to show that lim f@) < flzo)
T=>T( T — X0

= g(o).
2. Generalize the conclusion to complex power series; that is, show that if {a;};2, = C

[ee}
and the power series Y. ayz* has radius of convergence R > 0, then
k=0

d 0 o0
- Z apzt = Z kapz"! V|z| <R.
k=0 k=1

d n n
Assume that you have known - S apz® = Y] kapz®! for all n € N U {0} (this can
Z k=0 k=1

be proved using the definition of differentiability of functions with values in normed

vector spaces provided in Chapter 6).

e} o]

Problem 5.9. Suppose that the series >; a, = 0, and f(z) = > a,a™ for —1 < 2 < 1.
n=0 n=0

Show that f is continuous at = 1 by complete the following.

1. Write s,, = ap + a1 + -+ - + a, and s,(z) = ag + a1 + - - - + a,z™. Show that

sn(w) = (1 —2)(sg + 510+ + 812" 1) + s,2"
Q0
and f(z) = (1—x) > s,z™.
n=0

2. Using the representation of f from above to conclude that lim f(x) = 0.

r—1-
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0
3. What if »] a, is convergent but not zero?

n=0

Problem 5.10. Construct the function g(z) by letting g(z) = |z| if z € [—%,%] and
extending ¢ so that it becomes periodic (with period 1). Define

% k—1
94" )
fla) = Z qh—1 "
k=1
1. Use the Weierstrass M-test to show that f is continuous on R.

2. Prove that f is differentiable at no point.

(So there exists a continuous which is nowhere differentiable!)

Hint: Google Blancmange function!
§5.4 The Space of Continuous Functions

Problem 5.11. Let ¢ : (4([0,1];R), || - [|sx) — R be defined by 6(f) = f(0). Show that ¢ is

linear and continuous.
Problem 5.12. Let (M, d) be a metric space, and K € M be a compact subset.

1. Show that the set U = {f € €(K;R)|a < f(z) < bforallze K} is open in
(€(K;R), [ - o) for all a,beR.

2. Show that the set = {f € €(K;R)|a < f(z) < bforallze K} is closed in
(€(K;R), [ o) for all a,beR.

3. Let A < M be a subset, not necessarily compact. Prove or disprove that the set
B={fe€(AR)|f(z)>0forall z € A} is open in (€,(A;R), |- o).

§5.5 The Arzela-Ascoli Theorem

Problem 5.13. Which of the following set B of continuous functions are equi-continuous

in the metric space M? Are the closure B compact in M?
1. B= {sinkx|k:O,1,2,---}, M =%€([0,7];R).

2. B={sinvz+4k?n2|k=0,1,2,--- }, M = ([0, %0); R).
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3. B= {M‘k:omz---}, M =%([0,1];R).
4. B={(k+1)2a*(1 —z)| ke N}, M = £€(0,1];R).

Problem 5.14. Let (M, d) be a metric space, (V, | - |) be a normed space, and A < M be
a subset. Suppose that B < %,(A;V) be equi-continuous. Prove or disprove that cl(B) is

equi-continuous.

Problem 5.15. Let f : [a,b] — R be a sequence of differentiable functions such that fx(a)
is bounded and |f}(z)] < M for all x € [a,b] and k € N. Show that {f,};2, contains an

uniformly convergent subsequence. Must the limit function differentiable?

Problem 5.16. Let €%“(]0, 1];R) denote the “space”

([0, 1;R) = {f c (0, 1K) | sup LDZIW 00},

z,y€[0,1] |.’£ S y’a

where « € (0,1]. For each f e ¢%%([0,1];R), define

||fH<gO,a = Sup |f($)| -+ sup M

2€0,1] eyel0 |z — y|*
1. Show that (¢°*([0,1];R), || - [l40.0) is & complete normed space.
2. Show that the set B = {f € €([0,1];R) | | f|40.« < 1} is equi-continuous.
3. Show that cl(B) is compact in (€([0, 1];R), || - [|o0)-

Problem 5.17. Given f.:"\R — R a continuous periodic function of period 1; that is,

flx+1) = f(x) for all'a’e R, and x4, - ,z,, € [0,1] arbitrary m points, define a new
function
1
I(f;xy, - yom)(z) = E(f(T+71)+f(T+Tm)) VzeR.

Prove that the set
B = {I(f;x1,~-~ ,xm)|x1,~-~ Ty € [0,1],meN}

is uniformly bounded and equi-continuous in the space ([0, 1]; R). Moreover, show that the

1
derived set B’ = {J f(rc)drc}; that is, the derived set of B consists of one single function
0

1
which is a constant function y = J f(x)dx.
0
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Problem 5.18. Let (M,d) be a metric space, (V,| - |) be a Banach space, K < M be
compact, and {fx}72,; € F(K;V) be a sequence of continuous functions. Suppose that
for all x € K, if {op} . {ye}i, € K and klgglo T = klgglo yr = x, the limits klgrolo fr(xy) and
kh—r»& fr(yr) exist and are identical. Show that { fi}72; converges uniformly on K. How about

if K is not compact?

Problem 5.19. Assume that {f;}7, is a sequence of monotone increasing functions on R
with 0 < fx(z) <1 for all z and k € N.

1. Show that there is a subsequence { Ir; }jozl which converges pointwise to a function f

(This is usually called the Helly selection theorem).

2. If the limit f is continuous, show that { Tr; }Jw:

compact set of R.

, converges uniformly to f on any

§5.6 The Stone-Weierstrass Theorem

Problem 5.20. Define B to be the set of all even functions in the space € (|—1, 1]; R); that
is, f € B if and only if f is continuous on [—1,1] and f(x) = f(—=x) for all x € [—1,1].
Prove that B is closed but not dense in. % ([—1,1]; R). Hence show that even polynomials
are dense in B, but not in €([—1,1];R).

Problem 5.21. Let f :[0,1] — R be a continuous function.

1. Suppose that
1
f f(z)z"dx =0 VneNu{0}.
0

Show that f =0-on [0, 1].

2. Suppose that for some m € N,
1
f f(z)x"dx =0 Vne{0,1,--- ,m}.
0

Show that f(z) = 0 has at least m distinct real roots around which f(z) change signs.

Problem 5.22. Let f : [0,1] — R be continuous. Show that

lim 1 f(z)sin(nz)dx =0.

n—0o0 0
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Problem 5.23. Put py = 0 and define

prr1(x) = pi(z) + VkeNu{0}.

Show that {px};2, converges uniformly to |z| on [—1,1].
Hint: Use the identity

1 _ 2+ pe(2)

2] = prsa () = [la] = pe(a)] | :

to prove that 0 < pp(x) < pro1(x) < |z] if || < 1, and that
\xl)’f 2
— < — < —
o] pi(a) < [zl —
if |z| < 1.
Problem 5.24. Let f : [0,1] — R be continuous and ¢ > 0. Prove that there is a simple
function ¢ (defined in Example 5.74) such that | f — g/, <e.

Problem 5.25. Suppose that p,, is a sequence of polynomials converging uniformly to f on
[0,1] and f is not a polynomial. Prove that the degrees of p, are not bounded.
Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points

Zo, - ,ry via Lagrange’s interpolation formula
plx)="> m(x ,
k=0 ' ()

where 7 (x) = (v — zo)(x — x1) - (x — zn) /(2 — xp) = 1<IEN(J: — ;).

Problem 5.26. Consider the set of all functions on [0, 1] of the form
h(z) = Z a;e’"
j=1

where a;, b; € R. Is this set dense in € ([0, 1];R)?
§5.7 The Contraction Mapping Principle and its Applications

Problem 5.27. Suppose that f : [a,b] — R is twice continuous differentiable; that is,
£ f" ¢ [a,b] — R are continuous, and f(a) < 0 = f(c) < f(b), and f'(x) # 0 for all

x € [a,b]. Consider the function
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1. Show that ® : [a,b] — R satisfies
|[®(x) = ()| < klz—y| Va,yelab]
for some k € [0, 1) if [b — a| are small enough.

2. Suppose that f”(z) > 0 for all x € [a,b]. Show that there exists a < @ < ¢ such that
P : [a,b] — [a,b].

3. Under the condition of 2, show that if zq € [a, b], then the iteration
Tt1 = (I)(.l’k) Vke NuU {0}
provides a convergent sequence {xy}r; with limit c.

(The iteration scheme above of finding the zero ¢ of f is called the Newton method.)

Problem 5.28. Let (M,d) be a complete metric space, and f : M — M. Define f, =
fofo---of, here the composition was taken for & — 1 times. Assume that there exists a

sequence {oy}7”; < R such that

1. a, > 0 as k — 0.

2. d(fu(z), fr(y)) < apd(z,y) for all'k eN, z,y € M.
Show that f has a unique fixed-point.
Problem 5.29. Let (M, d) be a metric space, and K < M be a compact set.

(1) Given f : M-— M a continuous map, define f, = fo fo---o f (as in the previous
problem) to the the k-th iterate of f. Prove that if f; has a unique fixed-point z,
then f(z¢) = xo.

(2) Let f: K — K be continuous and d(f(z), f(y)) < d(z,y) for all 2,y € K. Show that

f has a unique fixed-point in K. Show that the conclusion is false if K is not compact.

(3) Let K = [0,1] be a closed interval in (2) and |f(z) — f(y)| < |z — y| for all 2,y € K.

Given any x; € [0, 1], define a sequence {xy}72, by

1

Thg1 = i(xk + f(ﬂfk)) ViE>1.

Show that {z;}{, converges to a fixed-point of f.
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Problem 5.30. Let (M, d) be a metric space, and f : M — M be such that d(f(x), f(y)) <
d(xz,y) for all x,y e M, = # y.

1. Fixazge M. Let x,41 = f(x,,), and ¢,, = d(xy, Tp11). Show that {c,}_, is a decreasing

sequence; thus ¢ = lim ¢, exists.
n—oo

2. Assume that there is a subsequence {mnj};il of {x,},7_, such that z,,, — x as j — 0.
Show that

c=d(w, f(z)) = d(f(2), f(f(z))).

and deduce that z is a fixed-point of f.

3. Suppose further that M is compact. Show that the sequence {z,}7_, itself converges

to x.

Problem 5.31. Find an upper bound on r > 0 such that the mapping T : €([0,7];R) —
% (]0,7];R) defined by

T(f)(x)=1+ 3J tf(t)dt
0
is a contraction mapping. what is its fixed-point?

Problem 5.32. Let A = [a,b] x {a,b] be a closed square in R?, M = €([a,b];R), and
K : A — R be a continuous function. For f € € ([a,b];R), define

b
T(f)a) = f K(ep)f)dy  Vaoelab).

(1) Show that T'(f) € M for all f € M, and T': M — M is Lipschitz continuous. Find a
Lipschitz constant for T'.

(2) If B< M is a bounded subset of M, show that the image T'(B) = {T(f)| f € B} is

uniformly bounded and equi-continuous.

1
(3) If the norm |K |, < o show that T is a contraction mapping. What is its fixed-
point?

(4) If K satisfies the assumption in (3), show that the mapping S : M — M defined by
S(f)=f—T(f) is a homeomorphism.



204 CuaPTER 5. Uniform Convergence and the Space of Continuous Functions

(5) Let a =0, b =1, and K(z,y) = %e“y_l. Show that K satisfies the assumption in
(3). Given g € M, find f € M such that S(f) = g.

Problem 5.33. Let A = [a, b] x [a, b] be a closed square in R?, and K : A — R be continuous
on A. Define

T(f)(x) = f K (2, 9)9(y)dy.

where f is a real-valued function defined on [a, b] such that the integral makes sense. For
a family of functions F consisting of f such that T'(f) is well-defined and |f(y)| < M for
all y € [a,b], let G = T'(F). Show that each sequence of G contains a uniformly convergent

subsequence.

Problem 5.34 (True or False). Determine whether the following statements are true or

false. If it is true, prove it. Otherwise, give a counter-example.

1. Let f, : [a,b] — R be an uniformly convergent sequence of continuous functions. Then

the sequence of the indefinite integrals g,(z) defined by

gn(z) = Jx fu(t) dt Ve [a,b

converges uniformly to a continuously differentiable function.

2. Let f,, : [0,1] — R be a equi-continuous sequence of functions such that the sequence

1
{ f"(i)}:;l is bounded-in R. Then {f,}>_, contains a convergent subsequence.



