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Chapter 4

Continuous Maps

4.1 Continuity

Definition 4.1. Let (M,d) and (N, ρ) be two metric spaces, A Ď M and f : A Ñ N be a
map. For a given x0 P A1, we say that b P N is the limit of f at x0, written

lim
xÑx0

f(x) = b or f(x) Ñ b as x Ñ x0 ,

if for every sequence txku8
k=1 Ď Aztx0u converging to x0, the sequence

␣

f(xk)
(8

k=1
converges

to b.

Proposition 4.2. Let (M,d) and (N, ρ) be two metric spaces, A Ď M and f : A Ñ N be a
map. Then lim

xÑx0
f(x) = b if and only if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q ρ(f(x), b) ă ε whenever 0 ă d(x, x0) ă δ and x P A .

Proof. “ñ” Assume the contrary that D ε ą 0 such that for all δ ą 0, there exists xδ P A

with
0 ă d(xδ, x0) ă δ and ρ(f(xδ), b) ě ε .

In particular, letting δ = 1

k
, we can find txku8

k=1 Ď Aztx0u such that

0 ă d(xk, x0) ă
1

k
and ρ(f(xk), b) ě ε .

Then xk Ñ x0 as k Ñ 8 but f(xk) Ñ̂ b as k Ñ 8, a contradiction.
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§4.1 Continuity 105

“ð” Let txku8
k=1 Ď Aztx0u be such that xk Ñ x0 as k Ñ 8, and ε ą 0 be given. By

assumption,

D δ = δ(x0, ε) ą 0 Q ρ(f(x), b) ă ε whenever 0 ă d(x, x0) ă δ and x P A .

Since xk Ñ x0 as k Ñ 8, DN ą 0 Q d(xk, x0) ă δ if k ě N . Therefore,

ρ(f(xk), b) ă ε @ k ě N

which suggests that lim
kÑ8

f(xk) = b. ˝

Remark 4.3. Let (M,d) = (N, ρ) = (R, | ¨ |), A = (a, b), and f : A Ñ N . We write
lim
xÑa+

f(x) and lim
xÑb´

f(x) for the limit lim
xÑa

f(x) and lim
xÑb

f(x), respectively, if the later exist.
Following this notation, we have

lim
xÑa+

f(x) = L ô @ ε ą 0, D δ ą 0 Q |f(x) ´ L| ă ε if 0 ă x ´ a ă δ and x P (a, b) ,

lim
xÑb´

f(x) = L ô @ ε ą 0, D δ ą 0 Q |f(x) ´ L| ă ε if 0 ă b ´ x ă δ and x P (a, b) .

Definition 4.4. Let (M,d) and (N, ρ) be two metric spaces, A Ď M , and f : A Ñ N

be a map. For a given x0 P A, f is said to be continuous at x0 if either x0 P AzA1 or
lim
xÑx0

f(x) = f(x0).

Example 4.5. The identity map f :
Rn Ñ Rn

x ÞÑ x
is continuous at each point of Rn.

Example 4.6. The function f : (0,8) Ñ R defined by f(x) =
1

x
is continuous at each

point of (0,8).

Proposition 4.7. Let (M,d) and (N, ρ) be two metric spaces, A Ď M , and f : A Ñ N be
a map. Then f is continuous at x0 P A if and only if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q ρ(f(x), f(x0)) ă ε whenever x P D(x0, δ) X A .

Proof. Case 1: If x0 P A1, then f is continuous at x0 if and only if

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q ρ(f(x), f(x0)) ă ε whenever x P D(x0, δ) X Aztx0u .

Since ρ(f(x0), f(x0)) = 0 ă ε, we find that the statement above is equivalent to that

@ ε ą 0, D δ = δ(x0, ε) ą 0 Q ρ(f(x), f(x0)) ă ε whenever x P D(x0, δ) X A .
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106 CHAPTER 4. Continuous Maps

Case 2: Let x0 P AzA1.

“ñ” then D δ ą 0 such that D(x0, δ) X A = tx0u. Therefore, for this particular δ, we
must have

ρ(f(x), f(x0)) = 0 ă ε whenever x P D(x0, δ) X A .

“ð” We note that if x0 P AzA1, f is defined to be continuous at x0. In other
words,
f is continuous at each isolated point. ˝

Remark 4.8. We remark here that Proposition 4.7 suggests that f is continuous at x0 P A

if and only if
@ ε ą 0, D δ ą 0 Q f(D(x0, δ) X A) Ď D(f(x0), ε) .

Remark 4.9. In general the number δ in Proposition 4.7 also depends on the function f .
For a function f : A Ñ R which is continuous at x0 P A, let δ(f, x0, ε) denote the largest
δ ą 0 such that if x P D(x0, δ) X A, then ρ

(
f(x), f(x0)

)
ă ε. In other words,

δ(f, x0, ε) = sup
␣

δ ą 0
ˇ

ˇ ρ
(
f(x), f(x0)

)
ă ε if x P D(x0, δ) X A

(

.

This number provides another way for the understanding of the uniform continuity (in
Section 4.5) and the equi-continuity (in Section 5.5). See Remark 4.51 and Remark 5.51 for
further details.

Definition 4.10. Let (M,d) and (N, ρ) be metric spaces, and A Ď M . A map f : A Ñ N

is said to be continuous on the set B Ď A if f is continuous at each point of B.

Theorem 4.11. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : A Ñ N be a map.
Then the following assertions are equivalent:
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1. f is continuous on A.

2. For each open set V Ď N , f´1(V) Ď A is open relative to A; that is, f´1(V) = U XA

for some U open in M .

3. For each closed set E Ď N , f´1(E) Ď A is closed relative to A; that is, f´1(E) = FXA

for some F closed in M .

Proof. It should be clear that 2 ô 3 (left as an exercise); thus we show that 1 ô 2. Before
proceeding, we recall that B Ď f´1(f(B)) for all B Ď A and f(f´1(B)) Ď B for all B Ď N .

“1 ñ 2” Let a P f´1(V). Then f(a) P V . Since V is open in (N, ρ), D εf(a) ą 0 such that
D(f(a), εf(a)) Ď V . By continuity of f (and Remark 4.8), there exists δa ą 0 such
that

f(D(a, δa) X A) Ď D
(
f(a), εf(a)

)
.

Therefore, by Proposition 0.16, for each a P f´1(V), D δa ą 0 such that

D(a, δa) X A Ď f´1
(
f(D(a, δa) X A)

)
Ď f´1

(
D
(
f(a), εf(a)

))
Ď f´1(V) . (4.1.1)

Let U =
Ť

aPf´1(V)
D(a, δa). Then U is open (since it is the union of arbitrarily many

open balls), and

(a) U Ě f´1(V) since U contains every center of balls whose union forms U ;

(b) U X A Ď f´1(V) by (4.1.1).

Therefore, U X A = f´1(V).

“2 ñ 1” Let a P A and ε ą 0 be given. Define V = D(f(a), ε). By assumption there exists
U open in (M,d) such that f´1(V) = U X A . Since a P f´1(V), a P U ; thus by the
openness of U , D δ ą 0 such that D(a, δ) Ď U . Therefore, by Proposition 0.16 we have

f(D(a, δ) X A) Ď f(U X A) = f(f´1(V)) Ď V = D(f(a), ε)

which suggests that f is continuous at a for all a P A; thus f is continuous on A. ˝

Example 4.12. Let f : Rn Ñ Rm be continuous. Then
␣

x P Rn
ˇ

ˇ }f(x)}2 ă 1
(

is open since
␣

x P Rn
ˇ

ˇ }f(x)}2 ă 1
(

= f´1
(
D(0, 1)

)
.
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Remark 4.13. For a function f of two variable or more, it is important to distinguish the
continuity of f and the continuity in each variable (by holding all other variables fixed). For
example, let f : R2 Ñ R be defined by

f(x, y) =

"

1 if either x = 0 or y = 0,
0 if x ‰ 0 and y ‰ 0.

Observe that f(0, 0) = 1, but f is not continuous at (0, 0). In fact, for any δ ą 0, f(x, y) = 0

for infinitely many values of (x, y) P D((0, 0), δ); that is, |f(x, y) ´ f(0, 0)| = 1 for such
values. However if we consider the function g(x) = f(x, 0) = 1 or the function h(y) =

f(0, y) = 1, then g, h are continuous. Note also that lim
(x,y)Ñ(0,0)

f(x, y) does not exists but

lim
xÑ0

(lim
yÑ0

f(x, y)) = lim
xÑ0

0 = 0.

4.2 Operations on Continuous Maps
Definition 4.14. Let (M,d) be a metric space, (V , } ¨ }) be a (real) normed space, A Ď M ,
and f, g : A Ñ V be maps, h : A Ñ R be a function. The maps f + g, f ´ g and hf ,
mapping from A to V , are defined by

(f + g)(x) = f(x) + g(x) @x P A ,

(f ´ g)(x) = f(x) ´ g(x) @x P A ,

(hf)(x) = h(x)f(x) @x P A .

The map f

h
: Aztx P A |h(x) = 0u Ñ V is defined by

(f
h

)
(x) =

f(x)

h(x)
@x P Aztx P A |h(x) = 0u .

Proposition 4.15. Let (M,d) be a metric space, (V , } ¨ }) be a (real) normed space, A Ď M ,
and f, g : A Ñ V be maps, h : A Ñ R be a function. Suppose that x0 P A1, and lim

xÑx0
f(x) = a,

lim
xÑx0

g(x) = b, lim
xÑx0

h(x) = c. Then

lim
xÑx0

(f + g)(x) = a+ b ,

lim
xÑx0

(f ´ g)(x) = a ´ b ,

lim
xÑx0

(hf)(x) = ca ,

lim
xÑx0

(f
h

)
=
a

c
if c ‰ 0 .
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Corollary 4.16. Let (M,d) be a metric space, (V , } ¨ }) be a (real) normed space, A Ď M ,
and f, g : A Ñ V be maps, h : A Ñ R be a function. Suppose that f, g, h are continuous at
x0 P A. Then the maps f + g, f ´ g and hf are continuous at x0, and f

h
is continuous at

x0 if h(x0) ‰ 0.

Corollary 4.17. Let (M,d) be a metric space, (V , } ¨ }) be a (real) normed space, A Ď M ,
and f, g : A Ñ V be continuous maps, h : A Ñ R be a continuous function. Then the maps
f + g, f ´ g and hf are continuous on A, and f

h
is continuous on Aztx P A |h(x) = 0u.

Definition 4.18. Let (M,d), (N, ρ) and (P, r) be metric space, A Ď M , B Ď N , and
f : A Ñ N , g : B Ñ P be maps such that f(A) Ď B. The composite function g ˝f : A Ñ P

is the map defined by
(g ˝ f)(x) = g

(
f(x)

)
@x P A .

Figure 4.1: The composition of functions

Theorem 4.19. Let (M,d), (N, ρ) and (P, r) be metric space, A Ď M , B Ď N , and
f : A Ñ N , g : B Ñ P be maps such that f(A) Ď B. Suppose that f is continuous at x0,
and g is continuous at f(x0). Then the composite function g ˝ f : A Ñ P is continuous at
x0.

Proof. Let ε ą 0 be given. Since g is continuous at f(x0), D r ą 0 such that

g(D(f(x0), r) X B) Ď D
(
(g ˝ f)(x0), ε

)
.

Since f is continuous at x0, D δ ą 0 such that

f(D(x0, δ) X A) Ď D
(
f(x0), r

)
.

Since f(A) Ď B, f(D(x0, δ) X A) Ď D
(
f(x0), r

)
X B; thus

(g ˝ f)(D(x0, δ) X A) Ď g(D(f(x0), r) X B) Ď D
(
(g ˝ f)(x0), ε

)
. ˝
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Corollary 4.20. Let (M,d), (N, ρ) and (P, r) be metric space, A Ď M , B Ď N , and
f : A Ñ N , g : B Ñ P be continuous maps such that f(A) Ď B. Then the composite
function g ˝ f : A Ñ P is continuous on A.

Alternative Proof of Corollary 4.20. Let W be an open set in (P, r). By Theorem 4.11,
there exists V open in (N, ρ) such that g´1(W) = V X B. Since V is open in (N, ρ), by
Theorem 4.11 again there exists U open in (M,d) such that f´1(V) = U X A. Then

(g ˝ f)´1(W) = f´1
(
g´1(W)

)
= f´1(V X B) = f´1(V) X f´1(B) = U X A X f´1(B) ,

while the fact that f(A) Ď B further suggests that

(g ˝ f)´1(W) = U X A .

Therefore, by Theorem 4.11 we find that (g ˝ f) is continuous on A. ˝

4.3 Images of Compact Sets under Continuous Maps
Theorem 4.21. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : A Ñ N be a
continuous map.

1. If K Ď A is compact, then f(K) is compact in (N, ρ).

2. Moreover, if (N, ρ) = (R, | ¨ |), then there exist x0, x1 P K such that

f(x0) = inf f(K) = inf
␣

f(x)
ˇ

ˇx P K
(

and f(x1) = sup f(K) = sup
␣

f(x)
ˇ

ˇx P K
(

.

Proof. 1. Let tVαuαPI be an open cover of f(K). Since Vα is open, by Theorem 4.11 there
exists Uα open in (M,d) such that f´1(Vα) = Uα X A. Since f(K) Ď

Ť

αPI

Vα,

K Ď f´1(f(K)) Ď
ď

αPI

f´1(Vα) = A X
ď

αPI

Uα

which implies that tUαuαPI is an open cover of K. Therefore,

D J Ď I,#J ă 8 Q K Ď A X
ď

αPJ

Uα =
ď

αPJ

f´1(Vα) ;

thus f(K) Ď
Ť

αPJ

f(f´1(Vα)) Ď
Ť

αPJ

Vα.
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2. By 1, f(K) is compact; thus sequentially compact. Corollary 3.5 then implies that
inf f(K) P f(K) and sup f(K) P f(K). ˝

Alternative Proof of Part 1. Let tynu8
n=1 be a sequence in f(K). Then there exists txnu8

n=1 Ď

K such that yn = f(xn). Since K is sequentially compact, there exists a convergent subse-
quence txnk

u8
k=1 with limit x P K. Let y = f(x) P f(K). By the continuity of f ,

lim
kÑ8

ρ
(
ynk

, y
)
= lim

kÑ8
ρ
(
f(xnk

), f(x)
)
= 0

which implies that the sequence
␣

ynk

(8

k=1
converges to y P f(K). Therefore, f(K) is sequen-

tially compact. ˝

Corollary 4.22 (The Extreme Value Theorem（極值定理）). Let f : [a, b] Ñ R be contin-
uous. Then f attains its maximum and minimum in [a, b]; that is, there are x0 P [a, b] and
x1 P [a, b] such that

f(x0) = inf
␣

f(x)
ˇ

ˇx P [a, b]
(

and f(x1) = sup
␣

f(x)
ˇ

ˇx P [a, b]
(

. (4.3.1)

Proof. The Heine-Borel Theorem suggests that [a, b] is a compact set in R; thus Theorem
4.21 implies that f([a, b]) must be compact in R. By the Heine-Borel Theorem again f([a, b])
is closed and bounded, so

inf f([a, b]) P f([a, b]) and sup f([a, b]) P f([a, b])

which further imply (4.3.1). ˝

Remark 4.23. If f attains its maximum (or minimum) on a set B, we use max
␣

f(x)
ˇ

ˇx P

B
( (

or min
␣

f(x)
ˇ

ˇx P B
()

to denote sup
␣

f(x)
ˇ

ˇx P B
( (

or inf
␣

f(x)
ˇ

ˇx P B
()

. Therefore,
(4.3.1) can be rewritten as

f(x0) = min
␣

f(x)
ˇ

ˇx P [a, b]
(

and f(x1) = max
␣

f(x)
ˇ

ˇx P [a, b]
(

.

Example 4.24. Two norms } ¨ } and ~ ¨ ~ on a real vector space V are called equivalent if
there are positive constants C1 and C2 such that

C1}x} ď ~x~ ď C2}x} @x P V .

We note that equivalent norms on a vector space V induce the same topology; that is, if } ¨ }

and ~ ¨ ~ are equivalent norms on V , then U is open in the normed space (V , } ¨ }) if and
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only if U is open in the normed space (V ,~ ¨ ~). In fact, let U be an open set in (V , } ¨ }).
Then for any x P U , there exists r ą 0 such that

D}¨}(x, r) ”
␣

y P V
ˇ

ˇ }x ´ y} ă r
(

Ď U .

Let δ = C1r. Then if z P D~¨~(x, δ) ”
␣

y P V
ˇ

ˇ~x ´ y~ ă δ
(

,

}x ´ z} ď
1

C1

~x ´ z~ ă
1

C1

¨ C1r = r

which implies that D~¨~(x, δ) Ď D}¨}(x, r) Ď U . Therefore, U is open in (V ,~ ¨ ~). Similarly,
if U is open in (V ,~ ¨ ~), then the inequality ~x~ ď C2}x} suggests that U is open in (V , }¨}).
Claim: Any two norms on Rn are equivalent.
Proof of claim: It suffices to show that any norm } ¨ } on Rn is equivalent to the two-norm
} ¨ }2 (check). Let tekunk=1 be the standard basis of Rn; that is,

ek = ( 0, ¨ ¨ ¨ , 0
looomooon

(k ´ 1) zeros

, 1, 0, ¨ ¨ ¨ , 0) .

Every x P Rn can be written as x =
n
ř

i=1

xiei, and }x}2 =

c

n
ř

i=1

|xi|2. By the definition of
norms and the Cauchy-Schwarz inequality,

}x} ď

n
ÿ

i=1

|xi|}ei} ď }x}2

d

n
ÿ

i=1

}ei}2 ; (4.3.2)

thus letting C2 =

c

n
ř

i=1

}ei}2 we have }x} ď C2}x}2.

On the other hand, define f : Rn Ñ R by

f(x) = }x} =
›

›

›

n
ÿ

i=1

xiei

›

›

›
.

Because of (4.3.2), f is continuous on Rn. In fact, for x, y P Rn,
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ =
ˇ

ˇ}x} ´ }y}
ˇ

ˇ ď }x ´ y} ď C2}x ´ y}2

which guarantees the continuity of f on Rn. Let Sn´1 =
␣

x P Rn
ˇ

ˇ }x}2 = 1
(

. Then Sn´1 is a
compact set in (Rn, } ¨ }2) (since it is closed and bounded); thus by Theorem 4.21 f attains
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its minimum on Sn´1 at some point a = (a1, ¨ ¨ ¨ , an). Moreover, f(a) ą 0 (since if f(a) = 0,
a = 0 R Sn´1). Then for all x P Rn, x

}x}2
P Sn´1; thus

f
( x

}x}2

)
ě f(a) .

The inequality above further implies that f(a)}x}2 ď f(x) = }x}; thus letting C1 = f(a) we
have C1}x}2 ď }x}.

Remark 4.25.

1. Let f : R Ñ R be defined by f(x) = 0. Then f is continuous. Note that t0u Ď R is
compact (7 closed and bounded), but f´1(t0u) = R is not compact.

2. Let f : R Ñ R be defined by f(x) = x2. Then f is continuous. Note that C = t1u is
connected, but f´1(C) = t1,´1u is not connected.

Remark 4.26.

1. If K is not compact, then Theorem 4.21 is not true. Consider the following counter
example: K = (0, 1), f : K Ñ R defined by f(x) = 1

x
. Then f(K) is unbounded.

2. If f is not continuous, then Theorem 4.21 is not true either.

(a) Counter example 1: f : K = [0, 1] Ñ R defined by

f(x, y) =

$

&

%

1

x
if x ‰ 0,

0 if x = 0.

Then f(K) is unbounded ñ E x1 P K Q f(x1) = sup f(K).

(b) Counter example 2: f : [0, 1] Ñ R by

f(x, y) =

"

x if x ‰ 1,
0 if x = 1.

Then there is no x1 P [0, 1] such that f(x1) = sup
xP[0,1]

f(x) = 1.

Example 4.27 (An example show that x0, x1 in Theorem 4.21 are not unique). Let f :

[´2, 2] Ñ R be defined by f(x) = (x2 ´ 1)2.

1. Critical point: f 1(x) = 2(x2 ´ 1) ¨ 2x = 0 ô x = 0,˘1.



Copy
rig

ht
Prot

ect
ed

114 CHAPTER 4. Continuous Maps

2. Comparison: f(0) = 1, f(1) = f(´1) = 0, f(2) = f(´2) = 9. Then

f(2) = f(´2) = sup
xP[´2,2]

f(x) and f(1) = f(´1) = inf
xP[´2,2]

f(x) .

Corollary 4.28. Let (M,d) be a metric space, K Ď M be a compact set, and f : K Ñ R
be continuous. Then the set

␣

x P K
ˇ

ˇ f(x) is the maximum of f on K
(

is a non-empty compact set.

Proof. Let M = sup f(K). Then the set defined above is f´1(tMu), and

1. f´1(tMu) is non-empty by Theorem 4.21;

2. f´1(tMu) is closed since tMu is a closed set in (R, | ¨ |) and f is continuous on K.

Lemma 3.11 suggests that f´1(tMu) is compact. ˝

4.4 Images of Connected and Path Connected Sets un-
der Continuous Maps

Definition 4.29. Let (M,d) be a metric space. A subset A Ď M is said to be path
connected if for every x, y P A, there exists a continuous map φ : [0, 1] Ñ A such that
φ(0) = x and φ(1) = y.

y

x

A

Figure 4.2: Path connected sets

Example 4.30. A set A in a vector space V is called convex if for all x, y P A, the line
segment joining x and y, denoted by xy, lies in A. Then a convex set in a normed space is
path connected. In fact, for x, y P A, define φ(t) = ty + (1 ´ t)x. Then
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1. φ : [0, 1] Ñ xy Ď A, φ(0) = x, φ(1) = y;

2. φ : [0, 1] Ñ A is continuous.

xy = φ([0, 1])

A
•

••
x

yt
1 ´ t

Figure 4.3: Convex sets

Example 4.31. A set S in a vector space V is called star-shaped if there exists p P S

such that for any q P S, the line segment joining p and q lies in S. A star-shaped set in a
normed space is path connected. In fact, for x, y P S, define

φ(t) =

$

&

%

2tp+ (1 ´ 2t)x if t P
[
0,

1

2

]
,

(2t ´ 1)y + (2 ´ 2t)p if t P
[1
2
, 1
]
.

Then

1. φ : [0, 1] Ñ xp Y py Ď S, φ(0) = x, φ(1) = y;

2. φ : [0, 1] Ñ A is continuous.

Theorem 4.32. Let (M,d) be a metric space, and A Ď M . If A is path connected, then A

is connected.

Proof. Assume the contrary that there are two open sets V1 and V2 such that

1. A X V1 X V2 = H; 2. A X V1 ‰ H; 3. A X V2 ‰ H; 4. A Ď V1 Y V2 .

Since A is path connected, for x P A X V1 and y P A X V2, there exists φ : [0, 1] Ñ A such
that φ(0) = x and φ(1) = y. By Theorem 4.11, there exist U1 and U2 open in (R, | ¨ |) such
that φ´1(V1) = U1 X [0, 1] and φ´1(V2) = U2 X [0, 1]. Therefore,

[0, 1] = φ´1(A) Ď φ´1(V1) Y φ´1(V2) Ď U1 Y U2 .

Since 0 P U1, 1 P U2, and [0, 1] X U1 X U2 = φ´1(A X V1 X V2) = H, we conclude that [0, 1]

is disconnected, a contradiction. ˝



Copy
rig

ht
Prot

ect
ed

116 CHAPTER 4. Continuous Maps

Example 4.33. Let A =
␣(
x, sin 1

x

) ˇ
ˇx P (0, 1]

(

Y (t0u ˆ [´1, 1]) . Then A is connected in
(R2, } ¨ }2), but A is not path connected.

To see this, we assume the contrary that A is path connected such that there is a
continuous function φ : [0, 1] Ñ A such that φ(0) = (x0, y0) P

!(
x, sin 1

x

) ˇ
ˇx P (0, 1)

)

and φ(1) = (0, 0) P t0u ˆ [´1, 1]. Let t0 = inf
␣

t P [0, 1]
ˇ

ˇφ(t) P t0u ˆ [´1, 1]
(

. In other
words, at t = t0 the path touches 0 ˆ [´1, 1] for the “first time”. By the continuity of φ,
φ(t0) P t0u ˆ [´1, 1]. Since φ(0) R t0u ˆ [´1, 1], φ([0, t0)) Ď

!(
x, sin 1

x

) ˇ
ˇ

ˇ
x P (0, 1)

)

.

Suppose that φ(t0) = (0, ȳ) for some ȳ P [´1, 1], and φ(t) =
(
x(t), sin 1

x(t)

)
for 0 ď t ă t0.

By the continuity of φ, there exists δ ą 0 such that if |t ´ t0| ă δ, |φ(t) ´ φ(t0)| ă 1. In
particular,

x(t)2 +
(

sin 1

x(t)
´ ȳ

)2

ă 1 @ t P (t0 ´ δ, t) .

On the other hand, since φ is continuous, x(t) is continuous on [0, t0); thus by the fact that
[0, t0) is connected, x([0, t0)) is connected. Therefore, x([0, t0)) = (0, x̄] for some x̄ ą 0. Since
lim
tÑt0

x(t) = 0, there exists ttnu8
n=1 P [0, t0) such that tn Ñ t0 as n Ñ 8 and

ˇ

ˇ sin 1

x(tn)
´ȳ

ˇ

ˇ ě 1.
For n " 1, tn P (t0 ´ δ, t0) but

x(tn)
2 +

(
sin 1

x(tn)
´ ȳ

)2

ě 1 ,

a contradiction.
On the other hand, A is the closure of the connected set B =

!(
x, sin 1

x

) ˇ
ˇ

ˇ
x P (0, 1)

) (
the

connectedness of B follows from the fact that the function ψ(x) =
(
x, sin 1

x

)
is continuous

on the connected set (0, 1)
)
. Therefore, by Problem 9 of Exercise 8, A = sB is connected.

Theorem 4.34. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : A Ñ N be a
continuous map.

1. If C Ď A is connected, then f(C) is connected in (N, ρ).

2. If C Ď A is path connected, then f(C) is path connected in (N, ρ).

Proof. 1. Suppose that there are two open sets V1 and V2 in (N, ρ) such that

(a) f(C)XV1 XV2 = H; (b) f(C)XV1 ‰ H; (c) f(C)XV2 ‰ H; (d) f(C) Ď V1 YV2.
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By Theorem 4.11, there are U1 and U2 open in (M,d) such that f´1(V1) = U1 XA and
f´1(V2) = U2 X A. By (d),

C Ď f´1(f(C)) Ď f´1(V1) Y f´1(V2) = (U1 Y U2) X A Ď U1 Y U2 .

Moreover, by (a) we find that

C X U1 X U2 = C X (U1 X A) X (U2 X A) = C X f´1(V1) X f´1(V2)

Ď f´1(f(C) X V1 X V2) = H

which implies C X U1 X U2 = H. Finally, (b) implies that for some x P C, f(x) P V1.
Therefore, x P f´1(V1) = U1 X A which suggests that x P U1; thus C X U1 ‰ H.
Similarly, C X U2 ‰ H. Therefore, C is disconnected which is a contradiction.

2. Let y1, y2 P f(C). Then D x1, x2 P C such that f(x1) = y1 and f(x2) = y2. Since C is
path connected, D r : [0, 1] Ñ C such that r is continuous on [0, 1] and r(0) = x1 and
r(1) = x2. Let φ : [0, 1] Ñ f(C) be defined by φ = f ˝ r. By Corollary 4.20 φ is
continuous on [0, 1], and φ(0) = y1 and φ(1) = y2. ˝

Corollary 4.35 (The Intermediate Value Theorem（中間值定理）). Let f : [a, b] Ñ R be
continuous. If f(a) ‰ f(b), then for all d in between f(a) and f(b), there exists c P (a, b)

such that f(c) = d.

Proof. The closed interval [a, b] is connected by Theorem 3.38, so Theorem 4.34 implies that
f([a, b]) must be connected in R. By Theorem 3.38 again, if d is in between f(a) and f(b),
then d belongs to f([a, b]). Therefore, for some c P (a, b) we have f(c) = d. ˝

Example 4.36. Let f : [0, 1] Ñ [0, 1] be continuous. Then D x0 P [0, 1] Q f(x0) = x0.

Proof. Let g(x) = x ´ f(x). Then

1. g(0) = 0 or g(1) = 0 ñ x0 = 0 or 1.

2. g(0) ‰ 0 or g(1) ‰ 0 ñ g(0) ă 0 and g(1) ą 0. Since g : [0, 1] Ñ R is continuous,

D x0 P [0, 1] Q g(x0) = 0 ñ D x0 P (0, 1) Q f(x0) = x0. ˝

Remark 4.37. Such an x0 in Example 4.36 is called a fixed-point of f .
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Example 4.38. Let f : [1, 2] Ñ [0, 3] be continuous, and f(1) = 0 and f(2) = 3. Then
D x0 P [1, 2] Q f(x0) = x0.

Proof. Let g(x) = x ´ f(x). Then g : [1, 2] Ñ R is continuous. Moreover,

g(1) = 1 ´ f(1) = 1, g(2) = 2 ´ f(2) = ´1 ;

thus D x0 P (1, 2) Q g(x0) = 0. ˝

Example 4.39. Let p be a cubic polynomial; that is, p(x) = a3x
3+a2x

2+a1x+a0 for some
a0, a1, a2 P R and a3 ‰ 0. Then p has a real root x0 (that is, D x0 P R such that p(x0) = 0).

Proof. Note that p is obviously continuous and R is connected. Write

p(x) = a3x
3
(
1 +

a2
a3x

+
a1
a3x2

+
a0
a3x3

)
.

Now lim
xÑ˘8

α

βxn
= 0 if n ą 0 and β ‰ 0, so

lim
xÑ˘8

(
1 +

a2
a3x

+
a1
a3x2

+
a0
a3x3

)
= 1 .

Moreover,

lim
xÑ8

ax3 =

"

8 if a ą 0,
´8 if a ă 0.

Suppose that a ą 0. Then lim
xÑ8

ax3 = 8 and lim
xÑ´8

ax3 = ´8 ñ D x, y P R Q p(x) ă 0 ă

p(y). By Corollary 4.35 D r P R Q p(r) = 0. The case that a ă 0 is similar. ˝

4.5 Uniform Continuity（均勻連續）

Definition 4.40. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : A Ñ N be
a map. For a set B Ď A, f is said to be uniformly continuous on B if for any
two sequences txnu8

n=1, tynu8
n=1 Ď B with the property that lim

nÑ8
d(xn, yn) = 0, one has

lim
nÑ8

ρ
(
f(xn), f(yn)

)
= 0.

Proposition 4.41. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : A Ñ N be a
map. If f is uniformly continuous on A, then f is continuous on A.
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Proof. Let x0 P A X A1, and txku8
k=1 Ď A be a sequence such that xk Ñ x0 as k Ñ 8.

Let tyku8
k=1 be a constant sequence with value x0; that is, yk = x0 for all k P N. Then

tyku8
k=1 Ď A and d(xk, yk) Ñ 0 as k Ñ 8. By the uniform continuity of f on A,

lim
kÑ8

ρ
(
f(xk), f(x0)

)
= lim

kÑ8
ρ
(
f(xk), f(yk)

)
= 0

which implies that f is continuous on x0. ˝

Example 4.42. Let f : [0, 1] Ñ R be the Dirichlet function; that is,

f(x) =

"

0 if x P Q ,
1 if x P QA.

and B = Q X [0, 1]. Then f is continuous nowhere in [0, 1], but f is uniformly continuous
on B. However, the proposition above guarantees that if f is uniformly continuous on A,
then f must be continuous on A (Check why the proof of Proposition 4.41 does not go
through if B is a proper subset of A).

Example 4.43. The function f(x) = |x| is uniformly continuous on R.

Proof. By the triangle inequality,
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ =
ˇ

ˇ|x| ´ |y|
ˇ

ˇ ď |x ´ y| ;

thus if txnu8
n=1 and tynu8

n=1 are sequences in R and lim
nÑ8

|xn ´ yn| = 0, by the Sandwich
lemma we must have lim

nÑ8

ˇ

ˇf(xn) ´ f(yn)
ˇ

ˇ = 0. ˝

Example 4.44. The function f : (0,8) Ñ R defined by f(x) = 1

x
is uniformly continuous

on [a,8) for all a ą 0. However, it is not uniformly continuous on (0,8).

Proof. Let txnu8
n=1 and tynu8

n=1 be sequences in [a,8) such that lim
nÑ8

|xn ´ yn| = 0. Then

|f(xn) ´ f(yn)| =
ˇ

ˇ

1

xn
´

1

yn

ˇ

ˇ =
|xn ´ yn|

|xnyn|
ď

|xn ´ yn|

a2
Ñ 0 as n Ñ 8

which implies that f is uniformly continuous on [a,8) if a ą 0. However, by choosing
xn =

1

n
and yn =

1

2n
, we find that

|xn ´ yn| =
1

2n
but |f(xn) ´ f(yn)| = n ě 1 ;

thus f cannot be uniformly continuous on (0,8). ˝
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Remark 4.45. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : B Ď A Ñ N be a
map. Then the following four statements are equivalent:

(1) f is not uniformly continuous on B.

(2) D txnu8
n=1, tynu8

n=1 Ď B Q lim
nÑ8

d(xn, yn) = 0 and lim sup
nÑ8

ρ
(
f(xn), f(yn)

)
ą 0.

(3) D txnu8
n=1, tynu8

n=1 Ď B Q lim
nÑ8

d(xn, yn) = 0 and lim
nÑ8

ρ
(
f(xn), f(yn)

)
ą 0.

(4) D ε ą 0 Q @n ą 0, D xn, yn P B and d(xn, yn) ă
1

n
Q ρ

(
f(xn), f(yn)

)
ě ε.

Example 4.46. Let f : R Ñ R defined by f(x) = x2. Then f is continuous in R but not
uniformly continuous on R. Let ε = 1, xn = n, and yn = n+

1

2n
,

ˇ

ˇf(xn) ´ f(yn)
ˇ

ˇ =
ˇ

ˇn2 ´ (n+
1

2n
)2
ˇ

ˇ =
ˇ

ˇn2 ´ n2 ´ 1 ´
1

4n2

ˇ

ˇ ą 1 @n ą 0 .

Example 4.47. The function f(x) = sin(x2) is not uniform continuous on R.

Proof. Let ε = 1, xn = 2n
?
π +

?
π

8n
and yn = 2n

?
π ´

?
π

8n
. Then

ˇ

ˇ sin(x2n) ´ sin(y2n)
ˇ

ˇ =
ˇ

ˇ

ˇ
sin

(
4n2π +

π

2
+

π

64n2

)
´ sin

(
4n2π ´

π

2
+

π

64n2

)ˇ
ˇ

ˇ
= 2 cos π

64n2
;

thus if n is large enough,
ˇ

ˇ sin(x2n) ´ sin(y2n)
ˇ

ˇ ě 1. ˝

Example 4.48. The function f : (0, 1) Ñ R defined by f(x) = sin 1

x
is not uniformly

continuous.

Proof. Let ε = 1, xn =
(
2nπ +

π

2

)´1 and yn =
(
2nπ ´

π

2

)´1. Then

ˇ

ˇ sin 1

xn
´ sin 1

yn

ˇ

ˇ = 2 ,

while |xn ´ yn| =
π

4n2π2 ´ π2

4

=
1

(4n2 ´ 1
4)π

ď
1

n
for all n P N. ˝

Theorem 4.49. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : A Ñ N be a map.
For a set B Ď A, f is uniformly continuous on B if and only if

@ ε ą 0, D δ ą 0 Q ρ
(
f(x), f(y)

)
ă ε whenever d(x, y) ă δ and x, y P B .



Copy
rig

ht
Prot

ect
ed

§4.5 Uniform Continuity 121

Proof. “ð” Suppose the contrary that f is not uniformly continuous on B. Then there are
two sequences txnu8

n=1, tynu8
n=1 in B such that

lim
kÑ8

d(xn, yn) = 0 but lim sup
nÑ8

ρ
(
f(xn), f(yn)

)
ą 0 .

Let ε =
1

2
lim sup
nÑ8

ρ
(
f(xn), f(yn)

)
. Then by the definition of the limit and the limit

superior (or Proposition 1.121) we conclude that there exist subsequences txnk
u8
k=1

and tynk
u8
k=1 such that

ρ
(
f(xnk

), f(ynk
)
)

ě lim sup
nÑ8

ρ
(
f(xn), f(yn)

)
´ ε = ε ą 0

while lim
kÑ8

d(xnk
, ynk

) = 0, a contradiction.

“ñ” Suppose the contrary that there exists ε ą 0 such that for all δ = 1

n
ą 0, there exist

two points xn and yn P B such that

d(xn, yn) ă
1

n
but ρ

(
f(xn), f(yn)

)
ě ε .

These points form two sequences txnu8
n=1, tynu8

n=1 in B such that lim
nÑ8

d(xn, yn) = 0,
while the limit of ρ

(
f(xn), f(yn)

)
, if exists, does not converges to zero as n Ñ 8. As

a consequence, f is not uniformly continuous on B, a contradiction. ˝

Remark 4.50. The theorem above provides another way (the blue color part) of defining
the uniform continuity of a function over a subset of its domain. Moreover, according to
this alternative definition, if f : A Ñ N is uniformly continuous on B Ď A, then

@ ε ą 0, D δ ą 0 Q @ b P M, f
(
D
(
b,
δ

2

)
X B

)
Ď D

(
c,
ε

2

)
for some c P N ;

that is, the diameter of the image, under f , of subsets of B whose diameter is not greater
than δ is not greater than ε（在 B 中直徑不超過 δ 的子集合被函數 f 映過去之後，在對

應域中的直徑不會超過 ϵ）.

Remark 4.51. In terms of the number δ(f, x, ε) defined in Remark 4.9, the uniform conti-
nuity of a function f : A Ñ N is equivalent to that

δf (ε) ” inf
xPA

δ(f, x, ε) ą 0 @ ε ą 0 .

The function δf (¨) is the inverse of the modulus of continuity of (a uniform continuous)
function f .
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Theorem 4.52. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : A Ñ N be a map.
If K Ď A is compact and f is continuous on K, then f is uniformly continuous on K.

Proof. Let ε ą 0 be given. Since f is continuous on K,

@ a P K, D δ = δ(a) ą 0 Q ρ
(
f(x), f(a)

)
ă
ε

2
whenever x P D(a, δ) X A .

Then
!

D
(
a,
δ(a)

2

))
aPK

is an open cover of K; thus

D ta1, ¨ ¨ ¨ , aNu Ď K Q K Ď

N
ď

i=1

D
(
ai,

δi
2

)
,

where δi = δ(ai). Let δ = 1

2
mintδ1, ¨ ¨ ¨ , δNu. Then δ ą 0, and if x1, x2 P K and d(x1, x2) ă

δ, there must be j = 1, ¨ ¨ ¨ , N such that x1, x2 P B(aj, δj). In fact, since x1 P D
(
aj,

δj
2

)
for

some j = 1, ¨ ¨ ¨ , N , then

d(x2, aj) ď d(x1, x2) + d(x1, aj) ă δ +
δj
2

ă δj .

Therefore, x1, x2 P D(aj, δj) X A for some j = 1, ¨ ¨ ¨ , N ; thus

ρ
(
f(x1), f(x2)

)
ď ρ

(
f(x1), f(aj)

)
+ ρ

(
f(x2), f(aj)

)
ă
ε

2
+
ε

2
= ε . ˝

Alternative proof. Assume the contrary that f is not uniformly continuous on K. Then ((3)
of Remark 4.45 implies that) there are sequences txnu8

n=1 and tynu8
n=1 in K such that

lim
nÑ8

d(xn, yn) = 0 but lim
nÑ8

ρ
(
f(xn), f(yn)

)
ą 0 .

SinceK is (sequentially) compact, there exist convergent subsequences txnk
u8
k=1 and tynk

u8
k=1

with limits x, y P K. On the other hand, lim
nÑ8

d(xn, yn) = 0, we must have x = y; thus by
the continuity of f (on K),

0 = ρ
(
f(x), f(x)

)
= lim

kÑ8
ρ
(
f(xnk

), f(ynk
)
)
= lim

nÑ8
ρ
(
f(xn), f(yn)

)
ą 0 ,

a contradiction. ˝

Lemma 4.53. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : A Ñ N be uniformly
continuous. If txku8

k=1 Ď A is a Cauchy sequence, so is
␣

f(xk)
(8

k=1
.
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Proof. Let txku8
k=1 be a Cauchy sequence in (M,d), and ε ą 0 be given. Since f : A Ñ N

is uniformly continuous,

D δ ą 0 Q ρ
(
f(x), f(y)

)
ă ε whenever d(x, y) ă δ and x, y P A .

For this particular δ, DN ą 0 Q d(xk, xℓ) ă δ if k, ℓ ě N . Therefore,

ρ(f(xk), f(xℓ)
)

ă ε if k, ℓ ě N . ˝

Corollary 4.54. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : A Ñ N be
uniformly continuous. If N is complete, then f has a unique extension to a continuous
function on sA; that is, D g : sA Ñ N such that

(1) g is uniformly continuous on sA;

(2) g(x) = f(x) for all x P A;

(3) if h : sA Ñ N is a continuous map satisfying (1) and (2), then h = g.

Proof. Let x P sAzA. Then D txku8
k=1 Ď A such that xk Ñ x as k Ñ 8. Since txku8

k=1

is Cauchy, by Lemma 4.53
␣

f(xk)
(8

k=1
is a Cauchy sequence in (N, ρ); thus is convergent.

Moreover, if tzku8
k=1 Ď A is another sequence converging to x, we must have d(xk, zk) Ñ 0

as k Ñ 8; thus ρ(f(xk), f(zk)) Ñ 0 as k Ñ 8, so the limit of
␣

f(xk)
(8

k=1
and

␣

f(zk)
(8

k=1

must be the same.

Define g : sA Ñ N by

g(x) =

#

f(x) if x P A ,

lim
kÑ8

f(xk) if x P sAzA, and txku8
k=1 Ď A converging to x as k Ñ 8 .

Then the argument above shows that g is well-defined, and (2), (3) hold.
Let ε ą 0 be given. Since f : A Ñ N is uniformly continuous,

D δ ą 0 Q ρ
(
f(x), f(y)

)
ă
ε

3
whenever d(x, y) ă 2δ and x, y P A .

Suppose that x, y P sA such that d(x, y) ă δ. Let txku8
k=1, tyku8

k=1 Ď A be sequences
converging to x and y, respectively. Then DN ą 0 such that

d(xk, x) ă
δ

2
, d(yk, y) ă

δ

2
and ρ

(
f(xk), g(x)

)
ă
ε

3
, ρ
(
f(yk), g(y)

)
ă
ε

3
@ k ě N .
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In particular, due to the triangle inequality,

d(xN , yN) ď d(xN , x) + d(x, y) + d(y, yN) ă
δ

2
+ δ +

δ

2
= 2δ ;

thus ρ
(
f(xN), f(yN)

)
ă
ε

3
. As a consequence,

ρ
(
g(x), g(y)

)
ď ρ

(
g(x), f(xN)

)
+ ρ

(
f(xN), f(yN)

)
+ ρ

(
f(yN), f(y)

)
ă
ε

3
+
ε

3
+
ε

3
= ε . ˝

4.6 Differentiation of Functions of One Variable
Definition 4.55. A function f : (a, b) Ñ R is said to be differentiable at x0 if there exists
a number m such that

lim
xÑx0

f(x) ´ f(x0) ´ m(x ´ x0)

x ´ x0
= 0 .

The (unique) number m is usually denoted by f 1(x0), and is called the derivative of f at
x0.

Remark 4.56. The derivative of f at x0 can be computed by

f 1(x0) = lim
xÑx0

f(x) ´ f(x0)

x ´ x0
.

Remark 4.57. By the definition of the limit of functions, f : (a, b) Ñ R is differentiable at
x0 P (a, b) if and only if there exists m P R, denoted by f 1(x0), such that

@ ε ą 0, D δ ą 0 Q
ˇ

ˇf(x) ´ f(x0) ´ f 1(x0)(x ´ x0)
ˇ

ˇ ď ε|x ´ x0| if |x ´ x0| ă δ .

Definition 4.58. A function f : (a, b) Ñ R is said to be differentiable (on (a, b)) if f is
differentiable at each x0 P (a, b).

Proposition 4.59. Suppose that a function f : (a, b) Ñ R is differentiable at x0. Then f

is continuous at x0.

Proof. For x ‰ x0, f(x)´f(x0) =
f(x) ´ f(x0)

x´ x0
¨ (x´x0); thus Proposition 4.15 implies that

lim
xÑx0

(
f(x) ´ f(x0)

)
= lim

xÑx0

f(x) ´ f(x0)

x ´ x0
¨ lim
xÑx0

(x ´ x0) = f 1(x0) ¨ 0 = 0 . ˝

Theorem 4.60. Suppose that functions f, g : (a, b) Ñ R are differentiable at x0, and k P R
is a constant. Then
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1. (kf)1(x0) = kf 1(x0).

2. (f ˘ g)1(x0) = f 1(x0) ˘ g1(x0).

3. (fg)1(x0) = f 1(x0)g(x0) + f(x0)g
1(x0).

4.
(f
g

)1
(x0) =

f 1(x0)g(x0) ´ f(x0)g
1(x0)

g(x0)2
if g(x0) ‰ 0.

Theorem 4.61 (Chain Rule). Suppose that a function f : (a, b) Ñ R is differentiable at x0,
and g : (c, d) Ñ R is differentiable at y0 = f(x0) P (c, d). Then g ˝ f is differentiable at x0,
and

(g ˝ f)1(x0) = g1(f(x0))f
1(x0) .

Proof. Let ε ą 0 be given. Since f : (a, b) Ñ R is differentiable at x0 and g : (c, d) Ñ R is
differentiable at y0 = f(x0),

D δ1 ą 0 Q
ˇ

ˇf(x) ´ f(x0) ´ f 1(x0)(x ´ x0)
ˇ

ˇ ď min
!

1,
ε

2(1 + |g1(y0)|)

)

|x ´ x0| if |x ´ x0| ă δ1

and
D δ2 ą 0 Q

ˇ

ˇg(y) ´ g(y0) ´ g1(y0)(y ´ y0)
ˇ

ˇ ď
ε|y ´ y0|

2(1 + |f 1(x0)|)
if |y ´ y0| ă δ2 .

Moreover, by Proposition 4.59 f is continuous at x0; thus

D δ3 ą 0 Q
ˇ

ˇf(x) ´ f(x0)
ˇ

ˇ ă δ2 if |x ´ x0| ă δ3 and x P (a, b) .

Let δ = mintδ1, δ3u, and denote f(x) by y. Then if |x ´ x0| ă δ, we have |y ´ y0| ă δ2 and
ˇ

ˇ(g ˝ f)(x) ´ (g ˝ f)(x0) ´ g1(y0)f
1(x0)(x ´ x0)

ˇ

ˇ =
ˇ

ˇg(y) ´ g(y0) ´ g1(y0)f
1(x0)(x ´ x0)

ˇ

ˇ

=
ˇ

ˇg(y) ´ g(y0) ´ g1(y0)(y ´ y0) + g1(y0)(f(x) ´ f(x0) ´ f 1(x0)(x ´ x0)
ˇ

ˇ

ď
ε
ˇ

ˇf(x) ´ f(x0)
ˇ

ˇ

2(1 + |f 1(x0)|)
+
ˇ

ˇg1(y0)
ˇ

ˇ

ε|x´ x0|

2(1 + |g1(y0)|)

ď
ε

2(1 + |f 1(x0)|)

(
|x ´ x0| + |f 1(x0)||x ´ x0|

)
+
ε

2
|x ´ x0| = ε|x ´ x0| .

By Remark 4.57, g ˝ f is differentiable at x0 with derivative g1(f(x0))f
1(x0). ˝

Proposition 4.62. If f : (a, b) Ñ R is differentiable at x0 P (a, b) and f attains a local
minimum or maximum at x0, then f 1(x0) = 0.
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Proof. W.L.O.G. we assume that f attains its local minimum at x0. Then f(x)´ f(x0) ě 0

for all x P I, where I is an open interval containing x0. Therefore,

f 1(x0) = lim
xÑx0

f(x) ´ f(x0)

x ´ x0
= lim

xÑx´
0

f(x) ´ f(x0)

x ´ x0
ď 0

and
f 1(x0) = lim

xÑx0

f(x) ´ f(x0)

x ´ x0
= lim

xÑx+0

f(x) ´ f(x0)

x ´ x0
ě 0 .

As a consequence, f 1(x0) = 0. ˝

Theorem 4.63 (Rolle). Suppose that a function f : [a, b] Ñ R is continuous, and is
differentiable on (a, b). If f(a) = f(b), then D c P (a, b) such that f 1(c) = 0.

Proof. By the Extreme Value Theorem, there exists x0 and x1 in [a, b] such that

f(x0) = min f([a, b]) and f(x1) = max f([a, b]) .

Case 1. f(x0) = f(x1), then f is constant on [a, b]; thus f 1(x) = 0 for all x P (a, b).

Case 2. One of f(x0) and f(x1) is different from f(a). W.L.O.G. we may assume that
f(x0) ‰ f(a). Then x0 P (a, b), and f attains its global minimum at x0. By Proposi-
tion

4.62, f 1(x0) = 0. ˝

Theorem 4.64 (Cauchy’s Mean Value Theorem). Suppose that functions f, g : [a, b] Ñ R
are continuous, and f, g : (a, b) Ñ R are differentiable. If g(a) ‰ g(b) and g 1(x) ‰ 0 for all
x P (a, b), then there exists c P (a, b) such that

f 1(c)

g1(c)
=
f(b) ´ f(a)

g(b) ´ g(a)
.

Proof. Consider the function

h(x) ”
(
f(x) ´ f(a)

)(
g(b) ´ g(a)

)
´
(
f(b) ´ f(a)

)(
g(x) ´ g(a)

)
.

Then h : [a, b] Ñ R is continuous, and is differentiable on (a, b). Moreover, h(b) = h(a) = 0.
By Rolle’s theorem, there exists c P (a, b) such that

h1(c) = f 1(c)
(
g(b) ´ g(a)

)
´
(
f(b) ´ f(a)

)
g1(c) = 0 . ˝
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Corollary 4.65 (Mean Value Theorem). Suppose that a function f : [a, b] Ñ R is continu-
ous, and f : (a, b) Ñ R is differentiable. Then there exists c P (a, b) such that

f 1(c) =
f(b) ´ f(a)

b ´ a
.

Proof. Apply the Cauchy Mean Value Theorem for the case that g(x) = x. ˝

Corollary 4.66. Suppose that a function f : [a, b] Ñ R is continuous and f 1(x) = 0 for all
x P (a, b). Then f is constant.

Proof. Let x P (a, b) be given. By Mean Value Theorem, there exists c P (a, x) such that

f(x) ´ f(a) = f 1(c)(x ´ a) = 0 .

Therefore, f(x) = f(a); thus for all x P (a, b), f(x) = f(a). Now by continuity, f(b) =

lim
xÑb´

f(x) = f(a). ˝

Corollary 4.67 (L’Hôspital’s rule). Let f, g : (a, b) Ñ R be differentiable functions. Suppose

that for some x0 P (a, b), f(x0) = g(x0) = 0, g1(x) ‰ 0 for all x ‰ x0, and the limit lim
xÑx0

f 1(x)

g1(x)

exists. Then the limit lim
xÑx0

f(x)

g(x)
also exists, and

lim
xÑx0

f(x)

g(x)
= lim

xÑx0

f 1(x)

g1(x)
.

Proof. We first note that g(x) ‰ g(x0) for all x ‰ x0 since if not, the Mean Value Theorem
implies that the existence of c in between x and x0 such that g1(c) = 0 which contradicts
to the condition that g1(x) ‰ 0 for all x ‰ x0. By Cauchy’s Mean Value Theorem, for all
x P (a, b) and x ‰ x0, there exists ξ = ξ(x) in between x and x0 such that

f(x)

g(x)
=
f(x) ´ f(x0)

g(x) ´ g(x0)
=
f 1(ξ)

g1(ξ)

Since ξ Ñ x0 as x Ñ x0, we have

lim
xÑx0

f(x)

g(x)
= lim

ξÑx0

f 1(ξ)

g1(ξ)
= lim

xÑx0

f 1(x)

g1(x)
. ˝

Theorem 4.68 (Taylor). Suppose that for some k P N, f : (a, b) Ñ R be (k + 1)-times
differentiable and c P (a, b). Then for all x P (a, b), there exists d in between c and x such
that

f(x) =
k
ÿ

j=0

f (j)(c)

j!
(x ´ c)j +

f (k+1)(d)

(k + 1)!
(x ´ c)(k+1),

where f (j) denotes the j-th derivative of f .
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Proof. Let g(x) = f(x) ´
k
ř

j=0

f (j)(c)

j!
(x ´ c)j, and h(x) = (x ´ c)k+1. Then for 1 ď j ď k,

g(j)(c) = h(j)(c) = 0 ;

thus by the Cauchy mean value theorem (Theorem 4.64), there exists ξ1 in between x and
c, ξ2 in between ξ1 and c, ¨ ¨ ¨ , ξk+1 in between ξk and c such that

g(x)

h(x)
=
g(x) ´ g(c)

h(x) ´ h(c)
=
g1(ξ1)

h1(ξ1)
=
g1(ξ1) ´ g1(c)

h1(ξ1) ´ h1(c)
=
g2(ξ2)

h2(ξ2)
= ¨ ¨ ¨

=
g(k)(ξk)

h(k)(ξk)
=
g(k)(ξk) ´ g(k)(c)

h(k)(ξk) ´ h(k)(c)
=
g(k+1)(ξk+1)

h(k+1)(ξk)
=
f (k+1)(ξk+1)

(k + 1)!
.

Letting d = ξk+1 we conclude the theorem. ˝

Example 4.69. A function f : [a, b] Ñ R is said to be Lipschitz continuous if DM ą 0

such that
|f(x1) ´ f(x2)| ď M |x1 ´ x2| @x1, x2 P [a, b] .

If the derivative of a differentiable function f : (a, b) Ñ R is bounded; that is, DM ą 0

Q |f 1(x)| ď M for all x P (a, b), then the Mean Value Theorem implies that f is Lipschitz
continuous. A Lipschitz continuous function must be uniformly continuous.

Definition 4.70. A function f : (a, b) Ñ R is said to be

increasing
decreasing

strictly increasing
strictly decreasing

(on (a, b))

if f(x1)

ď

ě

ă

ą

f(x2) if a ă x1 ă x2 ă b. f is said to be monotone if f is either increasing

or decreasing on (a, b), and strictly monotone if f is either strictly increasing or strictly
decreasing.

Theorem 4.71. Suppose that f : (a, b) Ñ R is differentiable.

1. f is increasing on (a, b) if and only if f 1(x) ě 0 for all x P (a, b).

2. f is decreasing on (a, b) if and only if f 1(x) ď 0 for all x P (a, b).

3. If f 1(x) ą 0 for all x P (a, b), then f is strictly increasing.
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4. If f 1(x) ă 0 for all x P (a, b), then f is strictly decreasing.

Theorem 4.72 (Inverse Function Theorem). Let f : (a, b) Ñ R be differentiable, and f 1

be sign-definite; that is, f 1(x) ą 0 for all x P (a, b) or f 1(x) ă 0 for all x P (a, b). Then
f : (a, b) Ñ f((a, b)) is a bijection, and f´1, the inverse function of f , is differentiable on
f((a, b)), and

(f´1)1(f(x)) =
1

f 1(x)
@x P (a, b) . (4.6.1)

Proof. W.L.O.G. we assume that f 1(x) ą 0 for all x P (a, b). By Theorem 4.71 f is strictly
increasing; thus f´1 exists.
Claim: f´1 : f((a, b)) Ñ (a, b) is continuous.
Proof of claim: Let y0 = f(x0) P f((a, b)), and ε ą 0 be given. Then f((x0 ´ ε, x0 + ε)) =(
f(x0 ´ ε), f(x0 + ε)

)
since f is continuous on (a, b) and (x0 ´ ε, x0 + ε) is connected. Let

δ = mintf(x0) ´ f(x0 ´ ε), f(x0 + ε) ´ f(x0)
(

. Then δ ą 0, and

(y0 ´ δ, y0 + δ) =
(
f(x0) ´ δ, f(x0) + δ

)
Ď f((x0 ´ ε, x0 + ε)) ;

thus by the injectivity of f ,

f´1((y0 ´ δ, y0+ δ)) Ď f´1(f((x0 ´ε, x0+ε))) = (x0 ´ε, x0+ε) = (f´1(y0)´ε, f´1(y0)+ε) .

The inclusion above implies that f´1 is continuous at y0.
Writing y = f(x) and x = f´1(y). Then if y0 = f(x0) P f((a, b)),

f´1(y) ´ f´1(y0)

y ´ y0
=

x ´ x0
f(x) ´ f(x0)

.

Since f´1 is continuous on f((a, b)), x Ñ x0 as y Ñ y0; thus

lim
yÑy0

f´1(y) ´ f´1(y0)

y ´ y0
= lim

xÑx0

x ´ x0
f(x) ´ f(x0)

=
1

f 1(x0)

which implies that f´1 is differentiable at y0. ˝

4.7 Integration of Functions of One Variable
Definition 4.73. Let A Ď R be a bounded subset. A collection P of finitely many points
tx0, x1, ¨ ¨ ¨ , xnu is called a partition of A if infA = x0 ă x1 ă ¨ ¨ ¨ ă xn´1 ă xn = supA.
The mesh size of the partition P , denoted by }P}, is defined by

}P} = max
␣

xk ´ xk´1

ˇ

ˇ k = 1, ¨ ¨ ¨ , n
(

.
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Definition 4.74. Let A Ď R be a bounded subset, and f : A Ñ R be a bounded function.
For any partition P = tx0, x1, ¨ ¨ ¨ , xnu of A, the upper sum and the lower sum of f
with respect to the partition P , denoted by U(f,P) and L(f,P) respectively, are numbers
defined by

U(f,P) =
n
ÿ

k=1

sup
xP[xk´1,xk]

sf(x)(xk ´ xk´1) =
n´1
ÿ

k=0

sup
xP[xk,xk+1]

sf(x)(xk+1 ´ xk) ,

L(f,P) =
n
ÿ

k=1

inf
xP[xk´1,xk]

sf(x)(xk ´ xk´1) =
n´1
ÿ

k=0

inf
xP[xk,xk+1]

sf(x)(xk+1 ´ xk) ,

where sf is an extension of f given by

sf(x) =

"

f(x) x P A ,

0 x R A .
(4.7.1)

The two numbers
ż

A

f(x)dx ” inf
␣

U(f,P)
ˇ

ˇP is a partition of A
(

,

and
ż

A

f(x)dx ” sup
␣

L(f,P)
ˇ

ˇP is a partition of A
(

are called the upper integral and lower integral of f over A, respective. The function

f is said to be Riemann (Darboux) integrable (over A) if
ż

A
f(x)dx =

ż

A
f(x)dx, and

in this case, we express the upper and lower integral as
ż

A
f(x)dx, called the integral of f

over A. The upper integral, the lower integral, and the integral of f over [a, b] sometimes

are also denoted by
ż b

a
f(x)dx,

ż b

a
f(x)dx, and

ż b

a
f(x)dx.

Example 4.75.
ż b

a
f(x)dx and

ż b

a
f(x)dx are not always the same. For example, define

f : [0, 1] Ñ R by

f(x) =

"

1 if x P [0, 1]zQ,
0 if x P [0, 1] X Q.

Let P = t0 = x0 ă x1 ă ¨ ¨ ¨ ă xn = 1u be any partition on [0, 1]. Then for any k =
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0, 1, ¨ ¨ ¨ , n ´ 1, sup
xP[xk,xk+1]

f(x) = 1 and inf
xP[xk,xk+1]

f(x) = 0; thus

U(f,P) =
n´1
ÿ

k=0

sup
xP[xk,xk+1]

f(x)(xk ´ xk´1) =
n
ÿ

k=0

(xk ´ xk´1)

= (x1 ´ x0) + (x2 ´ x1) + ¨ ¨ ¨ + (xn ´ xn´1) = xn ´ x0 = 1 ´ 0 = 1

and
L(f,P) =

n
ÿ

i=1

0(xi ´ xi´1) = 0 .

As a consequence,
ż 1

0

f(x)dx = inf
␣

U(f,P)
ˇ

ˇP is a partition on [0, 1]
(

= 1 ,

ż 1

0

f(x)dx = sup
␣

L(f,P)
ˇ

ˇP is a partition on [0, 1]
(

= 0 ;

hence f is not Riemann integrable over [0, 1].

Example 4.76. Suppose f : [a, b] Ñ R is integrable and f ě 0 on [a, b], then
ż b

a
f(x)dx ě 0.

Reason: Since f ě 0 on [a, b] ñ sup
xP[xk,xk+1]

f(x) ě 0 for k = 0, 1, . . . , n ´ 1. Therefore,

U(f,P) ě 0 for all partition P on [a, b], so
ż b

a

f(x)dx =

ż b

a

f(x)dx = inftU(f,P)
ˇ

ˇP is a partition on [a, b]
(

ě 0 .

Definition 4.77. A partition P 1 of a bounded set A Ď R is said to be a refinement of
another partition P if P Ď P 1.

Proposition 4.78. Let A Ď R be a bounded subset, and f : A Ñ R be a bounded function.
If P and P 1 are partitions of A and P 1 is a refinement of P, then

L(f,P) ď L(f,P 1) ď U(f,P 1) ď U(f,P) .

Proof. Let sf be the extension of f given by (4.7.1). Suppose that P = tx0, x1, ¨ ¨ ¨ , xnu, P 1 =

ty0, y1, ¨ ¨ ¨ , ymu, and P Ď P 1. For any fixed k = 0, 1, ¨ ¨ ¨ , n ´ 1, either P 1 X (xk, xk+1) = H

or P 1 X (xk, xk+1) ‰ H.

1. If P 1 X (xk, xk+1) = H, then xk = yℓ and xk+1 = yℓ+1 for some ℓ. Therefore,

sup
xP[xk,xk+1]

sf(x)(xk+1 ´ xk) = sup
xP[yℓ,yℓ+1]

sf(x)(yℓ+1 ´ yℓ).
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2. If P 1 X (xk, xk+1) = tyℓ+1, yℓ+2, ¨ ¨ ¨ , yℓ+pu, then xk = yℓ and xk+1 = yℓ+p+1. Therefore,
p+1
ÿ

i=1

sup
xP[yℓ+i´1,yℓ+i]

sf(x)(yℓ+i ´ yℓ+i´1) = sup
xP[yℓ,yℓ+1]

sf(x)(yℓ+1 ´ yℓ)

+ sup
xP[yℓ+1,yℓ+2]

sf(x)(yℓ+2 ´ yℓ+1) + ¨ ¨ ¨ + sup
xP[yℓ+p,yℓ+p+1]

sf(x)(yℓ+p+1 ´ yℓ+p)

ď sup
xP[xk,xk+1]

sf(x)(yℓ+1 ´ yℓ) + sup
xP[xk,xk+1]

sf(x)(yℓ+2 ´ yℓ+1) + ¨ ¨ ¨

+ sup
xP[xk,xk+1]

sf(x)(yℓ+p+1 ´ yℓ+p) = sup
xP[xk,xk+1]

sf(x)(xk+1 ´ xk) .

In either case,
ÿ

[yℓ´1,yℓ]Ď[xk,xk+1]

sup
xP[yℓ´1,yℓ]

sf(x)(yℓ ´ yℓ´1) ď sup
xP[xk,xk+1]

sf(x)(xk+1 ´ xk) .

As a consequence,

U(f,P 1) =
m´1
ÿ

ℓ=0

sup
xP[yℓ,yℓ+1]

sf(x)(yℓ+1 ´ yℓ) =
n´1
ÿ

k=0

ÿ

[yℓ´1,yℓ]Ď[xk,xk+1]

sf(x)(yℓ ´ yℓ´1)

ď

n´1
ÿ

k=0

sup
xP[xk,xk+1]

sf(x)(xk+1 ´ xk) = U(f,P) .

Similarly, L(f,P) ď L(f,P 1); thus the fact that L(f,P 1) ď U(f,P 1) concludes the proposi-
tion. ˝

Corollary 4.79. Let f : [a, b] Ñ R be a function bounded by M ; that is, |f(x)| ď M for all
a ď x ď b. Then for all partitions P1 and P2 of [a, b],

´M(b ´ a) ď L(f,P1) ď

ż b

a

f(x)dx ď

ż b

a

f(x)dx ď U(f,P2) ď M(b ´ a) .

Proof. It suffices to show that
ż b

a
f(x)dx ď

ż b

a
f(x)dx. By the definition of infimum and

supremum, for any given ε ą 0, D partitions sP and rP such that
ż b

a

f(x)dx ´
ε

2
ă L(f, sP) ď

ż b

a

f(x)dx and
ż b

a

f(x)dx ď U(f, rP) ă

ż b

a

f(x)dx+
ε

2
.

Let P = sP Y rP . Then P is a refinement of both sP and rP ; thus
ż b

a

f(x)dx ´
ε

2
ă L(f, sP) ď L(f,P) ď U(f,P) ď U(f, rP) ă

ż b

a

f(x)dx+
ε

2
.
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Since ε ą 0 is given arbitrarily, we must have
ż b

a
f(x)dx ď

ż b

a
f(x)dx. ˝

Proposition 4.80 (Riemann’s condition). Let A Ď R be a bounded set, and f : A Ñ R be
a bounded function. Then f is Riemann integrable over A if and only if

@ ε ą 0, D a partition P of A Q U(f,P) ´ L(f,P) ă ε .

Proof. “ñ” Let ε ą 0 be given. Since f is integrable over A,

inf
P: Partition of A

U(f,P) = sup
P: Partition of A

L(f,P) =

ż

A

f(x)dx ;

thus there exist P1 and P2, partitions of A, such that
ż

A

f(x)dx ´
ε

2
ă L(f,P1) ď

ż

A

f(x)dx ď U(f,P2) ă

ż

A

f(x)dx+
ε

2
.

Let P = P1 Y P2. Then P is a refinement of P1 and P2; thus
ż

A

f(x)dx ´
ε

2
ă L(f,P1) ď L(f,P) ď

ż

A

f(x)dx

ď U(f,P) ď U(f,P2) ă

ż

A

f(x)dx+
ε

2

which implies that U(f,P) ´ L(f,P) ă ε.

“ð” We note that for any partition P of A,

L(f,P) ď

ż

A

f(x)dx ď

ż

A

f(x)dx ď U(f,P) ;

so we have that for all partition P of A,
ż

A

f(x)dx ´

ż

A

f(x)dx ă U(f,P) ´ L(f,P) .

Let ε ą 0 be given. By choosing P so that U(f,P) ´ L(f,P) ă ε, we conclude that
ż

A

f(x)dx ´

ż

A

f(x)dx ă ε .

Since ε ą 0 is given arbitrarily,
ż

A
f(x)dx =

ż

A
f(x)dx; thus f is Riemann integrable

over A. ˝
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Proposition 4.81. Suppose that f, g : [a, b] Ñ R are Riemann integrable, and k P R. Then

1. kf is Riemann integrable, and
ż b

a
(kf)(x)dx = k

ż b

a
f(x)dx.

2. f ˘ g are Riemann integrable, and
ż b

a
(f ˘ g)(x)dx =

ż b

a
f(x)dx ˘

ż b

a
g(x)dx.

3. If f ď g for all x P [a, b], then
ż b

a
f(x)dx ď

ż b

a
g(x)dx.

4. If f is also Riemann integrable over [b, c], then f is Riemann integrable over [a, c],
and

ż c

a
f(x)dx =

ż b

a
f(x)dx+

ż c

b
f(x)dx . (4.7.2)

5. The function |f | is also Riemann integrable, and
ˇ

ˇ

ˇ

ż b

a
f(x)dx

ˇ

ˇ

ˇ
ď

ż b

a
|f(x)|dx.

Proof. 1. Case 1. k ě 0. We note that

inf
xP[xi´1,xi]

(kf)(x) = k inf
xP[xi´1,xi]

f(x) and sup
xP[xi´1,xi]

(kf)(x) = k sup
xP[xi´1,xi]

f(x) .

Then

L(kf,P) =
n
ÿ

i=1

inf
xP[xi´1,xi]

(kf)(x)(xi ´ xi´1)

=
n
ÿ

i=1

k inf
xP[xi´1,xi]

f(x)(xi ´ xi´1) = kL(f,P) .

Similarly, U(kf,P) = kU(f,P) for every partition P . So
ż b

a

(kf)(x)dx = sup
P: Partition of [a, b]

L(kf,P) = k sup
P: Partition of [a, b]

L(f,P)

= k

ż b

a

f(x)dx = k

ż b

a

f(x)dx .

Similarly,
ż b

a
(kf)(x)dx = k

ż b

a
f(x)dx. Hence kf is integrable and

ż b

a

(kf)(x)dx =

ż b

a

(kf)(x)dx = k

ż b

a

f(x)dx = k

ż b

a

f(x)dx .
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Case 2. k ă 0. We have

inf
xP[xi´1,xi]

(kf)(x) = k sup
xP[xi´1,xi]

f(x) and sup
xP[xi´1,xi]

(kf)(x) = k inf
xP[xi´1,xi]

f(x) .

Then L(kf,P) = kU(f,P) and U(kf,P) = kL(f,P); thus
ż b

a

(kf)(x)dx = sup
P: Partition of [a, b]

L(kf,P) = sup
P: Partition of [a, b]

kU(f,P)

= k inf
P: Partition of [a, b]

U(f,P) = k

ż b

a

f(x)dx = k

ż b

a

f(x)dx .

Similarly,
ż b

a
(kf)(x)dx = k

ż b

a
f(x)dx. Hence kf is Riemann integrable over [a, b] and

ż b

a

(kf)(x)dx =

ż b

a

(kf)(x)dx = k

ż b

a

f(x)dx = k

ż b

a

f(x)dx .

2. We prove the case of summation. For ant partition P , we have

L(f + g,P) =
n
ÿ

i=1

inf
xP[xi´1,xi]

(f + g)(x)(xi ´ xi´1)

ě

n
ÿ

i=1

inf
xP[xi´1,xi]

f(x)(xi ´ xi´1) +
n
ÿ

i=1

inf
xP[xi´1,xi]

g(x)(xi ´ xi´1)

= L(f,P) + L(g,P) .

Similarly, U(f + g,P) ď U(f,P) + U(g,P). Therefore,

L(f,P) + L(g,P) ď L(f + g,P) ď U(f + g,P) ď U(f,P) + U(g,P) . (4.7.3)

Let ε ą 0 be given. By Proposition 4.80, DP1,P2 partitions of [a, b] such that

U(f,P1) ´ L(f,P1) ă
ε

2
and U(g,P2) ´ L(g,P2) ă

ε

2
.

Let P = P1 Y P2. By (4.7.3),

U(f + g,P) ´ L(f + g,P) ď (U(f,P) + U(g,P)) ´ (L(f,P) + L(g,P))

= (U(f,P) ´ L(f,P)) + (U(g,P) ´ L(g,P))

ď (U(f,P1) ´ L(f,P1)) + (U(g,P2) ´ L(g,P2)) ă
ε

2
+
ε

2
= ε .
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By Proposition 4.80, f + g is Riemann integrable over [a, b].

To see
ż b

a
(f + g)(x)dx =

ż b

a
f(x)dx+

ż b

a
g(x)dx, we note that by Proposition 4.78,

U(f,P) ď L(f,P) + U(f,P1) ´ L(f,P1) ă L(f,P) +
ε

2

ď

ż b

a

f(x)dx+
ε

2
=

ż b

a

f(x)dx+
ε

2

and similarly, U(g,P) ă

ż b

a
g(x)dx+

ε

2
. Therefore, by (4.7.3),

ż b

a

(f + g)(x)dx =

ż b

a

(f + g)(x)dx ď U(f + g,P)

ď U(f,P) + U(g,P) ă

ż b

a

f(x)dx+

ż b

a

g(x)dx+ ε . (4.7.4)

On the other hand,

L(f,P) ą U(f,P) ´
ε

2
ě

ż b

a
f(x)dx ´

ε

2

and
L(g,P) ą U(g,P) ´

ε

2
ě

ż b

a
g(x)dx ´

ε

2
;

hence by (4.7.3),
ż b

a

(f + g)(x)dx =

ż b

a

(f + g)(x)dx ě L(f + g,P) ě L(f,P) + L(g,P)

ą

ż b

a

f(x)dx+

ż b

a

g(x)dx ´ ε . (4.7.5)

By (4.7.4) and (4.7.5),
ż b

a

f(x)dx+

ż b

a

g(x)dx ´ ε ă

ż b

a

(f + g)(x)dx ă

ż b

a

f(x)dx+

ż b

a

g(x)dx+ ε .

Since ε ą 0 is arbitrary,
ż b

a
(f + g)(x)dx =

ż b

a
f(x)dx+

ż b

a
g(x)dx.

3. Let P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu be a partition of [a, b]. Define

mi(f) = inf
xP[xi´1,xi]

f(x) and mi(g) = inf
xP[xi´1,xi]

g(x) .
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Since f(x) ď g(x) on [a, b], mi(f) ď mi(g). As a consequence, for any partition P ,

L(f,P) =
n
ÿ

i=1

mi(f)(xi ´ xi´1) ď

n
ÿ

i=1

mi(g)(xi ´ xi´1) = L(g,P) ;

thus taking the infimum over all partition P ,
ż b

a
f(x)dx =

ż b

a
f(x)dx = sup

P
L(f,P) ď sup

P
L(g,P) =

ż b

a
g(x)dx =

ż b

a
g(x)dx .

4. Let ε ą 0 be given. Since f is Riemann integrable of [a, b] and [b, c], there exist a
partition P1 over [a, b] and a partition P2 of [b, c] such that

U(f,P1) ´ L(f,P1) ă
ε

2
and U(f,P2) ´ L(f,P2) ă

ε

2
.

Let P = P1 Y P2. Then P is a partition of [a, c] such that

U(f,P) ´ L(f,P) = U(f,P1) + U(f,P2) ´ L(f,P1) ´ L(f,P2) ă ε .

Therefore, Proposition 4.80 implies that f is Riemann integrable over [a, c].

Now we show that
ż c

a
f(x)dx =

ż b

a
f(x)dx +

ż c

b
f(x)dx. To simplify the notation,

we let
A =

ż c

a
f(x)dx, B =

ż b

a
f(x)dx, C =

ż c

b
f(x)dx .

Let ε ą 0 be given. Then D partition P = tx0, x1, ¨ ¨ ¨ , xnu of [a, c] such that

A ď U(f,P) ă A+ ε .

Let P 1 = P Y tbu. Then P 1 is a refinement of P . Moreover,

U(f,P 1) = U(f,P1) + U(f,P2) ,

where P1 = P 1 X [a, b] and P2 = P 1 X [b, c] are partitions of [a, b] and [b, c] whose union
is P . Therefore,

B + C ď U(f,P1) + U(f,P2) = U(f,P 1) ď U(f,P) ă A+ ε .

On the other hand, D partition P1 of [a, b] and partition P2 of [b, c] such that

B ď U(f,P1) ă B +
ε

2
and C ď U(f,P2) ă C +

ε

2
.

Let P = P1 Y P2. Then P is a partition of [a, c]. Therefore,

A ď U(f,P) = U(f,P1) + U(f,P2) ă B + C + ε .

Therefore, @ ε ą 0, B + C ă A+ ε and A ă B + C + ε; thus A = B + C.
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5. Note that for any interval [α, β],

sup
xP[α,β]

|f(x)| ´ inf
xP[α,β]

|f(x)| ď sup
xP[α,β]

f(x) ´ inf
xP[α,β]

f(x) ; (Check!)

thus for any partition P of [a, b],

U(|f |,P) ´ L(|f |,P) ď U(f,P) ´ L(f,P) .

Therefore, Proposition 4.80 implies that |f | is Riemann integrable over [a, b]. More-
over, since ´|f(x)| ď f(x) ď |f(x)| for all x P [a, b], by 3 we have

´

ż b

a

|f(x)|dx ď

ż b

a

f(x)dx ď

ż b

a

|f(x)|dx . ˝

Remark 4.82. The proof of 4 in Proposition 4.81 in fact also shows that if a ă b ă c, then
ż c

a

f(x)dx =

ż b

a

f(x)dx+

ż c

b

f(x)dx .

Similar proof also implies that
ż c

a

f(x)dx =

ż b

a

f(x)dx+

ż c

b

f(x)dx .

Remark 4.83. If a ă b, we let the number
ż a

b
f(x)dx denote the number ´

ż b

a
f(x)dx. Then

(4.7.2) holds for all a, b, c P R.

Example 4.84. Let f : [0, 1] Ñ R be defined by

f(x) =

"

1 if x P Q,
´1 if x P QA.

Then f(x) is not Riemann integrable over [0, 1] since U(f, P ) = 1 and L(f, P ) = ´1.
However |f(x)| ” 1, thus |f | is Riemann integrable. In other words, if |f | is integrable, we
cannot know whether f is integrable or not.

Theorem 4.85. If f : [a, b] Ñ R is continuous, then f is Riemann integrable.

Proof. Let ε ą 0 be given. Theorem 4.52 implies that

D δ ą 0 Q |f(x) ´ f(y)| ă
ε

2(b ´ a)
whenever |x ´ y| ă δ and x, y P [a, b] .
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Let P be a partition with mesh size less than δ. Then

U(f,P) ´ L(f,P) =
n
ÿ

k=1

(
sup

xP[xk´1,xk]

f(x) ´ inf
xP[xk´1,xk]

f(x)
)
(xk ´ xk´1)

ď
ε

2(b ´ a)

n
ÿ

k=1

(xk ´ xk´1) =
ε

2(b ´ a)
(xn ´ x0) ă ε ;

thus by Proposition 4.80 f is Riemann integrable over [a, b]. ˝

Corollary 4.86. If f : (a, b) Ñ R is continuous and f is bounded on [a, b], then f is
Riemann integrable over [a, b].

Proof. Let |f(x)| ď M for all x P [a, b], and ε ą 0 be given. Since f :
[
a+

ε

8M
, b´

ε

8M

]
Ñ R

is continuous, by Theorem 4.85 f is Riemann integrable; thus

DP 1: partition of
[
a+

ε

8M
, b ´

ε

8M

]
Q U(f,P 1) ´ L(f,P 1) ă

ε

2
.

Let P = P 1 Y ta, bu. Then

U(f,P) ´ L(f,P)

ă
(

sup
xP[a,a+ ε

8M
]

f(x) ´ inf
xP[a,a+ ε

8M
]
f(x)

) ε

8M
+
ε

2
+
(

sup
xP[b´ ε

8M
,b]

f(x) ´ inf
xP[b´ ε

8M
,b]
f(x)

) ε

8M

ď 2M ¨
ε

8M
+
ε

2
+ 2M ¨

ε

8M
= ε ;

thus Proposition 4.80 implies that f is Riemann integrable over [a, b]. ˝

Corollary 4.87. If f : [a, b] Ñ R is bounded and is continuous at all but finitely many
points of [a, b], then f is Riemann integrable.

Proof. Let tc1, ¨ ¨ ¨ , cNu be the collection of all discontinuities of f in (a, b) such that c1 ă

c2 ă ¨ ¨ ¨ ă cN . Let a = c0 and b = cN+1. Then for all k = 0, 1, ¨ ¨ ¨ , N , f : (ck, ck+1) is
continuous and f : [ck, ck+1] is bounded; thus f is Riemann integrable by Corollary 4.87.
Finally, 4 of Proposition 4.81 implies that f is Riemann integrable over [a, b]. ˝

Theorem 4.88. Any increasing or decreasing function on [a, b] is Riemann integrable.

Proof. Let f : [a, b] Ñ R be a monotone function, and ε ą 0 be given. W.L.O.G. we may
assume that f(b) ‰ f(a). Let P = tx0, x1, ¨ ¨ ¨ , xnu be a partition of [a, b] with mesh size
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less than ε

|f(b) ´ f(a)|
. Then

U(f,P) ´ L(f,P) =
n
ÿ

k=1

(
sup

xP[xk´1,xk]

f(x) ´ inf
xP[xk´1,xk]

f(x)
)
(xk ´ xk´1)

ă

n
ÿ

k=1

ˇ

ˇf(xk) ´ f(xk´1)
ˇ

ˇ

ε

|f(b) ´ f(a)|
=
ˇ

ˇf(b) ´ f(a)
ˇ

ˇ

ε

|f(b) ´ f(a)|
= ε ;

thus Proposition 4.80 implies that f is Riemann integrable over [a, b]. ˝

Definition 4.89. A continuous function F : [a.b] Ñ R is called an anti-derivative（反導函數）of
f : [a, b] Ñ R if F is differentiable on (a, b) and F 1(x) = f(x) for all x P (a, b).

Theorem 4.90 (Fundamental Theorem of Calculus（微積分基本定理）). Let f : [a, b] Ñ R
be continuous. Then f has an anti-derivative F , and

ż b

a

f(x)dx = F (b) ´ F (a) .

Moreover, if G is any other anti-derivative of f , we also have
ż b

a
f(x)dx = G(b) ´G(a).

Proof. Define F (x) =
ż x

a
f(y)dy, where the integral of f over [a, x] is well-defined because

of continuity of f on [a, x]. We first show that F is differentiable on (a, b).
Let x0 P (a, b) and ε ą 0 be given. Since [a, b] is compact,

D δ1 ą 0 Q
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ă
ε

2
whenever |x ´ y| ă δ1 and x, y P [a, b] .

Let δ = mintδ1, x0 ´ a, b ´ x0u. By 4 of Proposition 4.81, if x, x0 P (a, b),
ż x

x0

f(y)dy =

ż x

a

f(y)dy ´

ż x0

a

f(y)dy = F (x) ´ F (x0) ;

thus if 0 ă |x ´ x0| ă δ,
ˇ

ˇ

ˇ

F (x) ´ F (x0)

x ´ x0
´ f(x0)

ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

1

x ´ x0

ż x

x0

f(y)dx ´ f(x0)
ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

1

x ´ x0

ż x

x0

(
f(y) ´ f(x0)

)
dy
ˇ

ˇ

ˇ

ď
1

|x ´ x0|

ż maxtx0,xu

mintx0,xu

ˇ

ˇf(y) ´ f(x0)
ˇ

ˇdy ď
1

|x ´ x0|

ż maxtx0,xu

mintx0,xu

ε

2
dy ă ε .

Therefore, lim
xÑx0

F (x) ´ F (x0)

x´ x0
= f(x0) for all x0 P (a, b), so F 1(x) = f(x) for all x P (a, b).
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Next we show that F is continuous at x = a and x = b. This is simply because of the
boundedness of f on [a, b] which implies that

lim sup
xÑa+

ˇ

ˇF (x) ´ F (a)
ˇ

ˇ = lim sup
xÑa+

ˇ

ˇ

ˇ

ż x

a

f(t)dt
ˇ

ˇ

ˇ
ď max

xP[a,b]
|f(x)| ¨ lim sup

xÑa+

ż x

a

1dt = 0

and

lim sup
xÑb´

ˇ

ˇF (x) ´ F (b)
ˇ

ˇ = lim sup
xÑb´

ˇ

ˇ

ˇ

ż b

x

f(t)dt
ˇ

ˇ

ˇ
ď max

xP[a,b]
|f(x)| ¨ lim sup

xÑb´

ż b

x

1dt = 0 .

Therefore, F is an anti-derivative of f .
Now suppose that G is another anti-derivative of f . Then (G ´ F )1(x) = 0 for all

x P (a, b). By Corollary 4.66, (G´F )(x) = (G´F )(a) for all x P [a, b]; thus G(b)´G(a) =

F (b) ´ F (a). ˝

Example 4.91. If f is only integrable but not continuous, then the function

F (x) =
ż x

a
f(t)dt

is not necessarily differentiable. For example, consider

f(x) =

"

0 if 0 ď x ď 1,
1 if 1 ă x ď 2.

Then
F (x) =

"

0 if 0 ď x ď 1,
x ´ 1 if 1 ď x ď 2.

so F is continuous on [0, 2] but not differentiable at x = 1.

Theorem 4.92. Let f : [a, b] Ñ R be differentiable. If f 1 is Riemann integrable over [a, b],

then
ż b

a
f 1(x)dx = f(b) ´ f(a).

Proof. Let P = tx0, x1, ¨ ¨ ¨ xnu be a partition of [a, b]. Since f : [a, b] Ñ R is differentiable,
by the Mean Value Theorem there exists tξ1, ¨ ¨ ¨ , ξnu with the property that xk ă ξk+1 ă

xk+1 for all k = 0, 1 ¨ ¨ ¨ , n ´ 1 such that

f 1(ξk+1)(xk+1 ´ xk) = f(xk+1) ´ f(xk) @ k = 0, 1, ¨ ¨ ¨ , n ´ 1 .

Therefore,
n´1
ÿ

k=0

inf
xP[xk,xk+1]

f 1(x)(xk+1 ´ xk) ď

n´1
ÿ

k=0

f 1(ξk+1)(xk+1 ´ xk) ď

n´1
ÿ

k=0

sup
xP[xk,xk+1]

f 1(x)(xk+1 ´ xk) .
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Since
n´1
ř

k=0

f 1(ξk+1)(xk+1 ´ xk) =
n´1
ř

k=0

(
f(xk+1) ´ f(xk)

)
= f(b) ´ f(a), the inequality above

implies that

L(f 1,P) ď f(b) ´ f(a) ď U(f 1,P) for all partitions P of [a, b] ;

thus by the definition of the upper and the lower integrals,
ż b

a

f 1(x)dx ď f(b) ´ f(a) ď

ż b

a

f 1(x)dx .

We then conclude the theorem by the identity
ż b

a
f 1(x)dx =

ż b

a
f 1(x)dx =

ż b

a
f 1(x)dx

since f 1 is Riemann integrable. ˝

Definition 4.93. Let P = tx0, x1, ¨ ¨ ¨ , xnu be a partition of a bounded set A Ď R. A
collection of points tξ1, ¨ ¨ ¨ , ξnu is called a sample set for the partition P if ξk P [xk´1, xk]

for all k = 1, ¨ ¨ ¨ , n.
Let f : A Ñ R be a bounded function with extension sf given by (4.7.1). A Riemann

sum of f for the partition P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu of A is a sum which takes the
form

n´1
ÿ

k=0

sf(ξk)(xk+1 ´ xk) ,

where the set Ξ = tξ0, ξ1, ¨ ¨ ¨ , ξn´1u is a sample set for P .

Theorem 4.94 (Darboux). Let f : A Ñ R be a bounded function with extension sf given by
(4.7.1). Then f is Riemann integrable over A if and only if there exists I P R such that for
every given ε ą 0, there exists δ ą 0 such that if P is a partition of A satisfying }P} ă δ,
then any Riemann sum of f for the partition P lies in the interval (I ´ ε, I + ε). In other
words, f is Riemann integrable over A if and only if for every given ε ą 0, there exists δ ą 0

such that there exists I P R such that
ˇ

ˇ

ˇ

n´1
ÿ

k=0

sf(ξk+1)(xk+1 ´ xk) ´ I
ˇ

ˇ

ˇ
ă ε (4.7.6)

whenever P = tx0, x1, ¨ ¨ ¨ , xnu is a partition of A satisfying }P} ă δ and tξ1, ξ2, ¨ ¨ ¨ , ξNu is
a sample set for P.
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Proof. “ð” Suppose the right-hand side statement is true. Let ε ą 0 be given. Then there
exists δ ą 0 such that if P is a partition of A satisfying }P} ă δ, then for all sets of
sample points tξ1, ¨ ¨ ¨ , ξnu with respect to P , we must have

ˇ

ˇ

ˇ

n´1
ÿ

k=0

sf(ξk+1)(xk+1 ´ xk) ´ I
ˇ

ˇ

ˇ
ă
ε

4
.

Let P = tx0, x1, ¨ ¨ ¨ , xnu be a partition of A with }P} ă δ. Choose sets of sample
points tξ1, ¨ ¨ ¨ , ξnu and tη1, ¨ ¨ ¨ , ηnu with respect to P such that

(a) sup
xP[xk,xk+1]

sf(x) ´
ε

4(xn ´ x0)
ă sf(ξk+1) ď sup

xP[xk,xk+1]

sf(x);

(b) inf
xP[xk,xk+1]

sf(x) +
ε

4(xn ´ x0)
ą sf(ηk+1) ě inf

xP[xk,xk+1]

sf(x).

Then

U(f,P) =
n´1
ÿ

k=0

sup
xP[xk,xk+1]

sf(x)(xk+1 ´ xk) ă

n´1
ÿ

k=0

[
sf(ξk+1) +

ε

4(xn ´ x0)

]
(xk+1 ´ xk)

=
n´1
ÿ

k=0

sf(ξk+1)(xk+1 ´ xk) +
ε

4(xn ´ x0)

n´1
ÿ

k=0

(xk+1 ´ xk) ă I + ε

4
+
ε

4
= I + ε

2

and

L(f,P) =
n´1
ÿ

k=0

inf
xP[xk,xk+1]

sf(x)(xk+1 ´ xk) ą

n´1
ÿ

k=0

[
sf(ηk+1) ´

ε

4(xn ´ x0)

]
(xk+1 ´ xk)

=
n´1
ÿ

k=0

sf(ηk+1)(xk+1 ´ xk) ´
ε

4(xn ´ x0)

n´1
ÿ

k=0

(xk+1 ´ xk) ą I ´
ε

4
´
ε

4
= I ´

ε

2
.

As a consequence, I ´
ε

2
ă L(f,P) ď U(f,P) ă I + ε

2
; thus U(f,P) ´ L(f,P) ă ε.

“ñ” Let ε ą 0 be given, and I =
ż

A

sf(x)dx. Since f is Riemann integrable over A, there

exists a partition P1 = ty0, y1, ¨ ¨ ¨ , ymu of A such that U(f,P1)´L(f,P1) ă
ε

2
. Define

δ = min
!

|y1 ´ y0|, |y2 ´ y1|, ¨ ¨ ¨ , |ym ´ ym´1|,
ε

4m
(

sup f(A) ´ inf f(A) + 1
)) .

If P = tx0, x1, ¨ ¨ ¨ , xnu is a partition of A with }P} ă δ, then at most 2m intervals
of the form [xk, xk+1] contains one of these yj’s, and each such interval [xk, xk+1] can
only contain one of these yj’s. Let P 1 = P Y P1.
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Claim: U(f,P) ´ U(f,P 1) ă
ε

2
.

Proof of claim: We note that

U(f,P) =
n´1
ÿ

k=0

sup
xP[xk,xk+1]

sf(x)(xk+1 ´ xk)

=
ÿ

0ďkďn´1 with
P1X[xk,xk+1]=H

sup
xP[xk,xk+1]

sf(x)(xk+1 ´ xk) +
ÿ

0ďkďn´1 with
P1X[xk,xk+1]‰H

sup
xP[xk,xk+1]

sf(x)(xk+1 ´ xk)

and

U(f,P 1) =
ÿ

0ďkďn´1 with
P1X[xk,xk+1]=H

sup
xP[xk,xk+1]

sf(x)(xk+1 ´ xk)

+
ÿ

0ďkďn´1 with
P1X[xk,xk+1]=yj

[
sup

xP[xk,yj ]

sf(x)(yj ´ xk) + sup
xP[yj ,xk+1]

sf(x)(xk+1 ´ yj)
]
.

Therefore,

U(f,P) ´ U(f,P 1) ď
(

sup f(A) ´ inf f(A)
) ÿ

0ďkďn´1 with
P1X[xk,xk+1]‰H

(xk+1 ´ xk)

ă 2m
(

sup f(A) ´ inf f(A)
)
δ ď

ε

2
.

On the other hand, the inequality U(f,P1) ´ L(f,P1) ă
ε

2
implies that

U(f,P1) ´ I ă
ε

2
.

As a consequence,

U(f,P) ´ I ď U(f,P) ´ I + U(f,P1) ´ U(f,P 1) ă ε .

Therefore, for any sample set tξ1, ¨ ¨ ¨ , ξnu with respect to P ,
n´1
ÿ

k=0

sf(ξk+1)(xk+1 ´ xk) ď U(f,P) ă I + ε .

Similar argument can be used to show that
n´1
ÿ

k=0

sf(ξk+1)(xk+1 ´ xk) ě L(f,P) ą I ´ ε ;

thus (4.7.6) is established. ˝
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Theorem 4.95 (Change of Variable Formula). Let g : [a, b] Ñ R be a one-to-one continu-
ously differentiable function, and f : g([a, b]) Ñ R be Riemann integrable. Then (f ˝ g)g 1 is
also Riemann integrable, and

ż

g([a,b])

f(y) dy =

ż b

a

f(g(x))|g1(x)| dx .

Proof. We only prove the case that f is continuous on g([a, b]), and the general case is
covered by Theorem 8.65 (which will be proved in detail).

W.L.O.G. we can assume that g 1(x) ě 0 for all x P [a, b] so that g([a, b]) = [g(a), g(b)].
Let F be an anti-derivative of f . Then F is differentiable, and the chain rule implies that

d

dx
(F ˝ g)(x) = (F 1 ˝ g)(x)g1(x) = (f ˝ g)(x)g 1(x) .

Therefore, the fundamental theorem of Calculus implies that
ż

g([a,b])

f(y)dy =

ż g(b)

g(a)

f(y)dy = F (g(b)) ´ F (g(a)) =

ż b

a

d

dx
(F ˝ g)(x)dx

=

ż b

a

(f ˝ g)(x)g1(x)dx . ˝

4.8 Exercises
§4.1 Continuity
Started from this section, for all n P N Rn always denotes the normed space (Rn, } ¨ }2).

Problem 4.1. Use whatever methods you know to find the following limits:

1. lim
xÑ0+

(1 + sin 2x)
1
x ; 2. lim

xÑ´8

(?
1 + x+ x2 ´

?
1 ´ x+ x2

)
;

3. lim
xÑ1

(2 ´ x)sec πx
2 ; 4. lim

xÑ8
x
(π
2

´ sin´1 x
?
x2 + 1

)
;

5. lim
xÑ8

x
(
e´1 ´

( x

x+ 1

)x); 6. lim
xÑ8

( ax ´ 1

x(a´ 1)

) 1
x , where a ą 0 and a ‰ 1.

Problem 4.2. Complete the following.

1. Find a function f : R2 Ñ R such that

lim
xÑ0

lim
yÑ0

f(x, y) and lim
yÑ0

lim
xÑ0

f(x, y)

exist but are not equal.
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2. Find a function f : R2 Ñ R such that the two limits above exist and are equal but f
is not continuous.

3. Find a function f : R2 Ñ R that is continuous on every line through the origin but is
not continuous.

Problem 4.3. Complete the following.

1. Show that the projection map f :
R2 Ñ R

(x, y) ÞÑ x
is continuous.

2. Show that if U Ď R is open, then A =
␣

(x, y) P R2
ˇ

ˇx P U
(

is open.

3. Give an example of a continuous function f : R Ñ R and an open set U Ď R such
that f(U) is not open.

Problem 4.4. Show that f : A Ñ Rm, where A Ď Rn, is continuous if and only if for every
B Ď A,

f(cl(B) X A) Ď cl(f(B)) .

Problem 4.5. Let } ¨ } be a norm on Rn, and f : Rn Ñ R be defined by f(x) = }x}. Show
that f is continuous on (Rn, } ¨ }2).
Hint: Show that |f(x) ´ f(y)| ď C}x ´ y}2 for some fixed constant C ą 0.

Problem 4.6. Let T : Rn Ñ Rm satisfy T (x+ y) = T (x) + T (y) for all x, y P Rn.

1. Show that T (rx) = rT (x) for all r P Q and x P Rn.

2. Suppose that T is continuous on Rn. Show that T is linear; that is, T (cx + y) =

cT (x) + T (y) for all c P R, x, y P Rn.

3. Suppose that T is continuous at some point x0 in Rn. Show that T is continuous on
Rn.

4. Suppose that T is bounded on some open subset of Rn. Show that T is continuous on
Rn.

5. Suppose that T is bounded from above (or below) on some open subset of Rn. Show
that T is continuous on Rn.
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6. Construct a T : R Ñ R which is discontinuous at every point of R, but T (x + y) =

T (x) + T (y) for all x, y P R.

Problem 4.7. Let (M,d) be a metric space, A Ď M , and f : A Ñ R. For a P A1, define

lim inf
xÑa

f(x) = lim
rÑ0+

inf
␣

f(x)
ˇ

ˇx P D(a, r) X Aztau
(

,

lim sup
xÑa

f(x) = lim
rÑ0+

sup
␣

f(x)
ˇ

ˇx P D(a, r) X Aztau
(

.

Complete the following.

1. Show that both lim inf
xÑa

f(x) and lim sup
xÑa

f(x) exist (which may be ˘8), and

lim inf
xÑa

f(x) ď lim sup
xÑa

f(x) .

Furthermore, there exist sequences txnu8
n=1, tynu8

n=1 Ď Aztau such that txnu8
n=1 and

tynu8
n=1 both converge to a, and

lim
nÑ8

f(xn) = lim inf
xÑa

f(x) and lim
nÑ8

f(yn) = lim sup
xÑa

f(x) .

2. Let txnu8
n=1 Ď Aztau be a convergent sequence with limit a. Show that

lim inf
xÑa

f(x) ď lim inf
nÑ8

f(xn) ď lim sup
nÑ8

f(yn) ď lim sup
xÑa

f(x) .

3. Show that lim
xÑa

f(x) = ℓ if and only if

lim inf
xÑa

f(x) = lim sup
xÑa

f(x) = ℓ .

4. Show that lim inf
xÑa

f(x) = ℓ P R if and only if the following two conditions hold:

(a) for all ε ą 0, there exists δ ą 0 such that ℓ´ε ă f(x) for all x P D(a, δ)XAztau;

(b) for all ε ą 0 and δ ą 0, there exists x P D(a, δ) X Aztau such that f(x) ă ℓ+ ε.

Formulate a similar criterion for limsup and for the case that ℓ = ˘8.

5. Compute the liminf and limsup of the following functions at any point of R.

(a) f(x) =

$

&

%

0 if x P QA ,
1

p
if x =

q

p
with (p, q) = 1, q ą 0, p ‰ 0 .
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(b) f(x) =

"

x if x P Q ,

´x if x P QA .

Problem 4.8. Let (M,d) be a metric space, and A Ď M . A function f : A Ñ R is called

lower semi-continuous
upper semi-continuous at a P A if

lim inf
xÑa

f(x) ě f(a) ,

lim sup
xÑa

f(x) ď f(a) ,
and is called lower/upper

semi-continuous on A if f is lower/uppser semi-continuous at a for all a P A.

1. Show that if f : A Ñ R is lower semi-continuous on A, then f´1((´8, r]) is closed
relative to A. Also show that if f : A Ñ R is upper semi-continuous on A, then
f´1([r,8)) is closed relative to A.

2. Show that f is lower semi-continuous at a if and only if for all convergent sequences
txnu8

n=1 Ď A and trnu8
n=1 Ď R satisfying f(xn) ď rn for all n P N, we have

f
(

lim
nÑ8

xn
)

ď lim
nÑ8

rn .

3. Let tfαuαPI be a family of lower semi-continuous functions on A. Prove that f(x) =
sup
αPI

fα(x) is lower semi-continuous on A.

4. Let f : A Ñ R be given. Define

f˚(x) = lim sup
yÑx

f(y) and f˚(x) = lim inf
yÑx

f(y) .

Show that f˚ is upper semi-continuous and f˚ is lower semi-continuous, and f˚(x) ď

f(x) ď f˚(x) for all x P A. Moreover, if g is a lowe semi-continuous function on A

such that g(x) ď f(x) for all x P A, then g ď f˚.

§4.2 Operations on Continuous Maps

Problem 4.9.

Problem 4.10.

§4.3 Images of Compact Sets under Continuous Maps

Problem 4.11. Complete the following.

1. Show that if f : Rn Ñ Rm is continuous, and B Ď Rn is bounded, then f(B) is
bounded.
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2. If f : R Ñ R is continuous and K Ď R is compact, is f´1(K) necessarily compact?

3. If f : R Ñ R is continuous and C Ď R is connected, is f´1(C) necessarily connected?

Problem 4.12. Consider a compact set K Ď Rn and let f : K Ñ Rm be continuous and
one-to-one. Show that the inverse function f´1 : f(K) Ñ K is continuous. How about if K
is not compact but connected?

Problem 4.13. Let (M,d) be a metric space, K Ď M be compact, and f : K Ñ R be lower
semi-continuous (see Problem 4.8 for the definition). Show that f attains its minimum on
K.

§4.4 Images of Connected and Path Connected Sets under Continuous Maps

Problem 4.14. Let D Ď Rn be an open connected set, where n ą 1. If a, b and c are any
three points in D, show that there is a path in G which connects a and b without passing
through c. In particular, this shows that D is path connected and D is not homeomorphic
to any subset of R.

Problem 4.15.

§4.5 Uniform Continuity

Problem 4.16. Check if the following functions on uniformly continuous.

1. f : (0,8) Ñ R defined by f(x) = sin log x.

2. f : (0, 1) Ñ R defined by f(x) = x sin 1

x
.

3. f : (0,8) Ñ R defined by f(x) =
?
x.

4. f : R Ñ R defined by f(x) = cos(x2).

5. f : R Ñ R defined by f(x) = cos3 x.

6. f : R Ñ R defined by f(x) = x sinx.

Problem 4.17. Find all positive numbers a and b such that the function f(x) = sin(xa)
1 + xb

is
uniformly continuous on [0,8).
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Problem 4.18. Find all positive numbers a and b such that the function f(x, y) = |x|a|y|b

is uniformly continuous on R2.

Problem 4.19. Let f : Rn Ñ Rm be continuous, and lim
|x|Ñ8

f(x) = b exists for some b P Rm.
Show that f is uniformly continuous on Rn.

Problem 4.20. Suppose that f : Rn Ñ Rm is uniformly continuous. Show that there exists
a ą 0 and b ą 0 such that }f(x)}Rm ď a}x}Rn + b.

Problem 4.21. Let f(x) = q(x)

p(x)
be a rational function define on R, where p and q are two

polynomials. Show that f is uniformly continuous on R if and only if the degree of q is not
more than the degree of p plus 1.

Problem 4.22. Suppose that f : R Ñ R is a continuous periodic function; that is, D p ą 0

such that f(x + p) = f(x) for all x P R (and f is continuous). Show that f is uniformly
continuous on R.

Problem 4.23. Let (a, b) Ď R be an open interval, and f : (a, b) Ñ Rm be a function.
Show that the following three statements are equivalent.

1. f is uniformly continuous on (a, b).

2. f is continuous on (a, b), and both limits lim
xÑa+

f(x) and lim
xÑb´

f(x) exist.

3. For all ε ą 0, there exists N ą 0 such that
ˇ

ˇf(x)´ f(y)
ˇ

ˇ ă ε whenever
ˇ

ˇ

ˇ

f(x) ´ f(y)

x´ y

ˇ

ˇ

ˇ
ą

N .

Problem 4.24. Suppose that f : [a, b] Ñ R is Hölder continuous with exponent α;
that is, there exist M ą 0 and α P (0, 1] such that

|f(x1) ´ f(x2)| ď M |x1 ´ x2|α @x1, x2 P [a, b] .

Show that f is uniformly continuous on [a, b]. Show that f : [0,8) Ñ R defined by
f(x) =

?
x is Hölder continuous with exponent 1

2
.

Problem 4.25. A function f : A ˆ B Ñ Rm, where A Ď R and B Ď Rp, is said to be
separately continuous if for each x0 P A, the map g(y) = f(x0, y) is continuous and for
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y0 P B, h(x) = f(x, y0) is continuous. f is said to be continuous on A uniformly with
respect to B if

@ ε ą 0, D δ ą 0 Q
›

›f(x, y) ´ f(x0, y)
›

›

2
ă ε whenever }x ´ x0}2 ă δ and y P B .

Show that if f is separately continuous and is continuous on A uniformly with respect to
B, then f is continuous on A ˆ B.

Problem 4.26. Let (M,d) be a metric space, A Ď M , and f, g : A Ñ R be uniformly
continuous on A. Show that if f and g are bounded, then fg is uniformly continuous on A.
Does the conclusion still hold if f or g is not bounded?

§4.6 Differentiation of Functions of One Variable

Problem 4.27. Show that f : (a, b) Ñ R is differentiable at x0 P (a, b) if and only if there
exists m P R, denoted by f 1(x0), such that

@ ε ą 0, D δ ą 0 Q
ˇ

ˇf(x) ´ f(x0) ´ f 1(x0)(x ´ x0)
ˇ

ˇ ď ε|x ´ x0| whenever |x ´ x0| ă δ .

Problem 4.28. Suppose that f, g : R Ñ R are differentiable, and f ě 0. Find d

dx
f(x)g(x).

Problem 4.29. Suppose α and β are real numbers, β ą 0 and f : [´1, 1] Ñ R is defined
by

f(x) =

"

xα sin(x´β) if x ‰ 0 ,

0 if x = 0 .

Prove the following statements.

1. f is continuous if and only if α ą 0.

2. f 1(0) exists if and only if α ą 1.

3. f 1 is bounded if and only if α ě 1 + β.

4. f 1 is continuous if and only if α ą 1 + β.

5. f 2(0) exists if and only if α ą 2 + β.

6. f 2 is bounded if and only if α ě 2 + 2β.

7. f 2 is continuous if and only if α ą 2 + 2β.
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Problem 4.30 (The inverse statement of the chain rule). Let f : (a, b) Ñ R be continuous
and g : (c, d) Ñ R be differentiable at y0 = f(x0) P (c, d). Show that if (g˝f) is differentiable
at x0 and g 1(y0) ‰ 0, then f is differentiable at x0.

Problem 4.31. Let f : R Ñ R be a polynomial, and f has a double root at a and b. Show
that f 1(x) has at least three roots in [a, b].

Problem 4.32. Let f : R Ñ R be differentiable. Assume that for all x P R, 0 ď f 1(x) ď

f(x). Show that g(x) = e´xf(x) is decreasing. If f vanishes at some point, conclude that f
is zero.

Problem 4.33. Let f : R Ñ R be twice differentiable. Suppose that f(x + h) ´ f(x) =

hf 1(x + θh) for all x, h P R, where θ is independent of h. Show that f is a quadratic
polynomial.

Problem 4.34. Let f be a differentiable function defined on some interval I of R. Prove
that f 1 maps connected subsets of I into connected set; that is, f 1 has the intermediate
value property.

Problem 4.35. Let f : R Ñ R be a polynomial, and f has a double root at a and b. Show
that f 1(x) has at least three roots in [a, b].

Problem 4.36. Let f : [´1, 1] Ñ R be a function such that x2 + f(x)2 = 1 for all |x| ď 1.
Define C =

␣

x
ˇ

ˇ |x| ď 1, f is continuous at x
(

. Show that C contains at least 2 points and
C X (´1, 1) is an open set. Hence if f is continuous at more than 2 points, it is continuous
at uncountably many points.

Problem 4.37. Let f, g : R Ñ R be differentiable functions. Suppose that lim
xÑ8

f(x) =

lim
xÑ8

g(x) = 0, g1(x) ‰ 0 for all x P R, and the limit lim
xÑ8

f 1(x)

g1(x)
exists. Show that the limit

lim
xÑ8

f(x)

g(x)
also exists, and

lim
xÑ8

f(x)

g(x)
= lim

xÑ8

f 1(x)

g1(x)
.

Problem 4.38. Let f, g : (a, b) Ñ R be differentiable functions. Show that if lim
xÑa+

f(x) =

lim
xÑa+

g(x) = 8, g 1(x) ‰ 0 for all x P (a, b), and the limit lim
xÑa+

f 1(x)

g1(x)
exists, then lim

xÑa+

f(x)

g(x)
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exists and
lim
xÑa+

f(x)

g(x)
= lim

xÑa+

f 1(x)

g1(x)
. (‹)

Hint: Let L = lim
xÑa+

f 1(x)

g 1(x)
and ϵ ą 0 be given. Choose c P (a, b) such that

ˇ

ˇ

ˇ

f 1(x)

g 1(x)
´ L

ˇ

ˇ

ˇ
ă
ϵ

2
@ a ă x ă c .

Then for a ă x ă c, the Cauchy mean value theorem implies that for some ξ P (x, c) such
that

f(x) ´ f(c)

g(x) ´ g(c)
=
f 1(ξ)

g 1(ξ)
.

Show that there exists δ ą 0 such that a+ δ ă c and
ˇ

ˇ

ˇ

f(x) ´ f(c)

g(x) ´ g(c)
´
f(x)

g(x)

ˇ

ˇ

ˇ
ă
ϵ

2
@x P (a, a+ δ)

and then conclude (‹).

Problem 4.39. Let f : (a, b) Ñ R be k-times differentiable, and c P (a, b). Let hk : (a, b) Ñ

R be given by

hk(x) = f(x) ´

k
ÿ

j=0

f (j)(c)

j!
(x ´ c)j .

Show that lim
xÑc

hk(x)

(x´ c)k
= 0.

Problem 4.40. Two metric spaces (M,d) and (N, ρ) are called homeomorphics if there
exists a continous map f : M Ñ N , called a homeomorphism between M and N , such
that f is one-to-one and onto, and its inverse f´1 is also continuous. Homeomorphic metric
spaces have the same topological properties. In the following problems, (M,d) and (N, ρ)

are two metric spaces.

1. Suppose that M is compact, and f : M Ñ N is one-to-one and onto. Show that f is
a homeomorphism between M and N .

2. Suppose that f is a homeomorphism between M and N . Show that the restriction of
f to any subset A Ď M establishes a homeomorphism between A and f(A).

3. Determine which of the following pairs of metric spaces is homeomorphic.
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(a) M = (a, b] Ď R and N = R.

(b) M is an open ball in Rn and N = Rn.

(c) M = R and N = Rn.

(d) M = [0, 1] ˆ [0, 1] Ď R2 and N = [0, 1] Ď R.

(e) M =
␣

(x, y) P R2
ˇ

ˇx2 + y2 = 1
(

and N = [0, 1] Ď R.

(f) M =
␣

(x, y) P R2
ˇ

ˇx2 + y2 = 1
(

and N =
␣

(x, y) P R2
ˇ

ˇx2 + xy + y2 = 1
(

.

(g) M = R2 and N = R3.

4. Let I Ď R be an interval and f : I Ñ R be a one-to-one continuous function. Show
that f must be strictly monotonic in I and f is a homeomorphism between I and
f(I).

If I Ď Rn for n ą 1 and f : I Ñ Rn is continuous and one-to-one, can we still assert
that f is homeomorphism between I and f(I)?

§4.7 Integration of Functions of One Variable

Problem 4.41. Let f : [a, b] Ñ R be a bounded function, and Pn denote the division of
[a, b] into 2n equal sub-intervals. Show that f is Riemann integrable over [a, b] if and only if

lim
nÑ8

U(f,Pn) = lim
nÑ8

L(f,Pn) .

Problem 4.42. Let f, g : [a, b] Ñ R be functions, where g is continuous, and f be non-
negative, bounded, Riemann integrable over [a, b]. Show that

1. fg is Riemann integrable.

2. D x0 P (a, b) such that
ż b

a

f(x)g(x)dx = g(x0)

ż b

a

f(x)dx .

Problem 4.43. Let f : [a, b] Ñ R be differentiable and assume that f 1 is Riemann inte-

grable. Prove that
ż b

a
f 1(x) dx = f(b) ´ f(a).

Hint: Use the Mean Value Theorem.
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Problem 4.44. Suppose that f : [a, b] Ñ R is Riemann integrable, m ď f(x) ď M for all
x P [a, b], and φ : [m,M ] Ñ R is continuous. Show that φ˝f is Riemann integrable on [a, b].

Problem 4.45 (True or False). Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.

1. Let f : R2zt(0, 0)u Ñ R satisfy lim
xÑ0

f(x, axn) = 0 for all a P R, n P N and lim
yÑ0

f(0, y) =

0. Then lim
(x,y)Ñ(0,0)

f(x, y) = 0.

2. There exists a function f : R Ñ R which is continuous only at three points of R.

3. Let f : R Ñ R. Then f is continuous on R if and only if its graph
␣

(x, f(x))
ˇ

ˇx P R
(

is closed in R2.

4. Let I1 and I2 be open intervals in R. Then f : I1 Ñ I2 is a diffeomorphism if and only
if f is differentiable and f 1(x) ‰ 0 for all x P I1.

5. Let f : [a, b] Ñ R be a function. If f 2 is Riemann integrable, then f is Riemann
integrable.

6. Let f : [a, b] Ñ R be a function. If f is Riemann integrable, then 3
?
f is Riemann

integrable.

7. Let f(x) = sin 1

x
be defined on (0, 1]. Then no matter how we define f(0), f is always

Riemann integrable on [0, 1].
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