# Chapter 4

# **Continuous** Maps

### 4.1 Continuity

**Definition 4.1.** Let (M, d) and  $(N, \rho)$  be two metric spaces,  $A \subseteq M$  and  $f : A \to N$  be a map. For a given  $x_0 \in A'$ , we say that  $b \in N$  is the limit of f at  $x_0$ , written

$$\lim_{x \to x_0} f(x) = b \quad \text{or} \quad f(x) \to b \text{ as } x \to x_0 \,,$$

if for every sequence  $\{x_k\}_{k=1}^{\infty} \subseteq A \setminus \{x_0\}$  converging to  $x_0$ , the sequence  $\{f(x_k)\}_{k=1}^{\infty}$  converges to b.

**Proposition 4.2.** Let (M, d) and  $(N, \rho)$  be two metric spaces,  $A \subseteq M$  and  $f : A \to N$  be a map. Then  $\lim_{x \to x_0} f(x) = b$  if and only if

$$\forall \, \varepsilon > 0, \exists \, \delta = \delta(x_0, \varepsilon) > 0 \Rightarrow \rho(f(x), b) < \varepsilon \text{ whenever } 0 < d(x, x_0) < \delta \text{ and } x \in A.$$

*Proof.* " $\Rightarrow$ " Assume the contrary that  $\exists \varepsilon > 0$  such that for all  $\delta > 0$ , there exists  $x_{\delta} \in A$  with

$$0 < d(x_{\delta}, x_0) < \delta$$
 and  $\rho(f(x_{\delta}), b) \ge \varepsilon$ .

In particular, letting  $\delta = \frac{1}{k}$ , we can find  $\{x_k\}_{k=1}^{\infty} \subseteq A \setminus \{x_0\}$  such that

$$0 < d(x_k, x_0) < \frac{1}{k}$$
 and  $\rho(f(x_k), b) \ge \varepsilon$ .

Then  $x_k \to x_0$  as  $k \to \infty$  but  $f(x_k) \Rightarrow b$  as  $k \to \infty$ , a contradiction.

" $\Leftarrow$ " Let  $\{x_k\}_{k=1}^{\infty} \subseteq A \setminus \{x_0\}$  be such that  $x_k \to x_0$  as  $k \to \infty$ , and  $\varepsilon > 0$  be given. By assumption,

 $\exists \delta = \delta(x_0, \varepsilon) > 0 \ni \rho(f(x), b) < \varepsilon \text{ whenever } 0 < d(x, x_0) < \delta \text{ and } x \in A.$ 

Since  $x_k \to x_0$  as  $k \to \infty$ ,  $\exists N > 0 \ni d(x_k, x_0) < \delta$  if  $k \ge N$ . Therefore,

$$\rho(f(x_k), b) < \varepsilon \quad \forall \, k \ge N$$

which suggests that  $\lim_{k \to \infty} f(x_k) = b$ .

**Remark 4.3.** Let  $(M,d) = (N,\rho) = (\mathbb{R}, |\cdot|), A = (a,b), \text{ and } f : A \to N$ . We write  $\lim_{x \to a^+} f(x)$  and  $\lim_{x \to b^-} f(x)$  for the limit  $\lim_{x \to a} f(x)$  and  $\lim_{x \to b} f(x)$ , respectively, if the later exist. Following this notation, we have

$$\begin{split} &\lim_{x \to a^+} f(x) = L \Leftrightarrow \forall \, \varepsilon > 0, \exists \, \delta > 0 \ni |f(x) - L| < \varepsilon \text{ if } 0 < x - a < \delta \text{ and } x \in (a, b) \,, \\ &\lim_{x \to b^-} f(x) = L \Leftrightarrow \forall \, \varepsilon > 0, \exists \, \delta > 0 \ni |f(x) - L| < \varepsilon \text{ if } 0 < b - x < \delta \text{ and } x \in (a, b) \,. \end{split}$$

**Definition 4.4.** Let (M,d) and  $(N,\rho)$  be two metric spaces,  $A \subseteq M$ , and  $f : A \to N$  be a map. For a given  $x_0 \in A$ , f is said to be continuous at  $x_0$  if either  $x_0 \in A \setminus A'$  or  $\lim_{x \to x_0} f(x) = f(x_0)$ .

**Example 4.5.** The identity map  $f: \begin{array}{c} \mathbb{R}^n \to \mathbb{R}^n \\ x \mapsto x \end{array}$  is continuous at each point of  $\mathbb{R}^n$ .

**Example 4.6.** The function  $f: (0, \infty) \to \mathbb{R}$  defined by  $f(x) = \frac{1}{x}$  is continuous at each point of  $(0, \infty)$ .

**Proposition 4.7.** Let (M,d) and  $(N,\rho)$  be two metric spaces,  $A \subseteq M$ , and  $f : A \to N$  be a map. Then f is continuous at  $x_0 \in A$  if and only if

$$\forall \varepsilon > 0, \exists \delta = \delta(x_0, \varepsilon) > 0 \ni \rho(f(x), f(x_0)) < \varepsilon \text{ whenever } x \in D(x_0, \delta) \cap A.$$

*Proof.* Case 1: If  $x_0 \in A'$ , then f is continuous at  $x_0$  if and only if

$$\forall \varepsilon > 0, \exists \delta = \delta(x_0, \varepsilon) > 0 \ni \rho(f(x), f(x_0)) < \varepsilon \text{ whenever } x \in D(x_0, \delta) \cap A \setminus \{x_0\}.$$

Since  $\rho(f(x_0), f(x_0)) = 0 < \varepsilon$ , we find that the statement above is equivalent to that

$$\forall \varepsilon > 0, \exists \delta = \delta(x_0, \varepsilon) > 0 \Rightarrow \rho(f(x), f(x_0)) < \varepsilon \text{ whenever } x \in D(x_0, \delta) \cap A.$$

Case 2: Let  $x_0 \in A \setminus A'$ .

"⇒" then  $\exists \delta > 0$  such that  $D(x_0, \delta) \cap A = \{x_0\}$ . Therefore, for this particular  $\delta$ , we must have

$$\rho(f(x), f(x_0)) = 0 < \varepsilon$$
 whenever  $x \in D(x_0, \delta) \cap A$ .

"⇐" We note that if  $x_0 \in A \setminus A'$ , f is defined to be continuous at  $x_0$ . In other words,

f is continuous at each isolated point.

**Remark 4.8.** We remark here that Proposition 4.7 suggests that f is continuous at  $x_0 \in A$  if and only if



**Remark 4.9.** In general the number  $\delta$  in Proposition 4.7 also depends on the function f. For a function  $f : A \to \mathbb{R}$  which is continuous at  $x_0 \in A$ , let  $\delta(f, x_0, \varepsilon)$  denote the largest  $\delta > 0$  such that if  $x \in D(x_0, \delta) \cap A$ , then  $\rho(f(x), f(x_0)) < \varepsilon$ . In other words,

$$\delta(f, x_0, \varepsilon) = \sup \left\{ \delta > 0 \, \big| \, \rho(f(x), f(x_0)) < \varepsilon \text{ if } x \in D(x_0, \delta) \cap A \right\}.$$

This number provides another way for the understanding of the uniform continuity (in Section 4.5) and the equi-continuity (in Section 5.5). See Remark 4.51 and Remark 5.51 for further details.

**Definition 4.10.** Let (M, d) and  $(N, \rho)$  be metric spaces, and  $A \subseteq M$ . A map  $f : A \to N$  is said to be continuous on the set  $B \subseteq A$  if f is continuous at each point of B.

**Theorem 4.11.** Let (M, d) and  $(N, \rho)$  be metric spaces,  $A \subseteq M$ , and  $f : A \to N$  be a map. Then the following assertions are equivalent:

- 1. f is continuous on A.
- 2. For each open set  $\mathcal{V} \subseteq N$ ,  $f^{-1}(\mathcal{V}) \subseteq A$  is open relative to A; that is,  $f^{-1}(\mathcal{V}) = \mathcal{U} \cap A$ for some  $\mathcal{U}$  open in M.
- 3. For each closed set  $E \subseteq N$ ,  $f^{-1}(E) \subseteq A$  is closed relative to A; that is,  $f^{-1}(E) = F \cap A$ for some F closed in M.

*Proof.* It should be clear that  $2 \Leftrightarrow 3$  (left as an exercise); thus we show that  $1 \Leftrightarrow 2$ . Before proceeding, we recall that  $B \subseteq f^{-1}(f(B))$  for all  $B \subseteq A$  and  $f(f^{-1}(B)) \subseteq B$  for all  $B \subseteq N$ .

"1  $\Rightarrow$  2" Let  $a \in f^{-1}(\mathcal{V})$ . Then  $f(a) \in \mathcal{V}$ . Since  $\mathcal{V}$  is open in  $(N, \rho)$ ,  $\exists \varepsilon_{f(a)} > 0$  such that  $D(f(a), \varepsilon_{f(a)}) \subseteq \mathcal{V}$ . By continuity of f (and Remark 4.8), there exists  $\delta_a > 0$  such that

$$f(D(a, \delta_a) \cap A) \subseteq D(f(a), \varepsilon_{f(a)})$$

Therefore, by Proposition 0.16, for each  $a \in f^{-1}(\mathcal{V}), \exists \delta_a > 0$  such that

$$D(a,\delta_a) \cap A \subseteq f^{-1}\big(f(D(a,\delta_a) \cap A)\big) \subseteq f^{-1}\big(D\big(f(a),\varepsilon_{f(a)}\big)\big) \subseteq f^{-1}(\mathcal{V}).$$
(4.1.1)

Let  $\mathcal{U} = \bigcup_{a \in f^{-1}(\mathcal{V})} D(a, \delta_a)$ . Then  $\mathcal{U}$  is open (since it is the union of arbitrarily many open balls), and

(a)  $\mathcal{U} \supseteq f^{-1}(\mathcal{V})$  since  $\mathcal{U}$  contains every center of balls whose union forms  $\mathcal{U}$ ;

(b) 
$$\mathcal{U} \cap A \subseteq f^{-1}(\mathcal{V})$$
 by (4.1.1).

Therefore,  $\mathcal{U} \cap A = f^{-1}(\mathcal{V}).$ 

"2  $\Rightarrow$  1" Let  $a \in A$  and  $\varepsilon > 0$  be given. Define  $\mathcal{V} = D(f(a), \varepsilon)$ . By assumption there exists  $\mathcal{U}$  open in (M, d) such that  $f^{-1}(\mathcal{V}) = \mathcal{U} \cap A$ . Since  $a \in f^{-1}(\mathcal{V}), a \in \mathcal{U}$ ; thus by the openness of  $\mathcal{U}, \exists \delta > 0$  such that  $D(a, \delta) \subseteq \mathcal{U}$ . Therefore, by Proposition 0.16 we have

$$f(D(a,\delta) \cap A) \subseteq f(\mathcal{U} \cap A) = f(f^{-1}(\mathcal{V})) \subseteq \mathcal{V} = D(f(a),\varepsilon)$$

which suggests that f is continuous at a for all  $a \in A$ ; thus f is continuous on A.  $\Box$ Example 4.12. Let  $f : \mathbb{R}^n \to \mathbb{R}^m$  be continuous. Then  $\{x \in \mathbb{R}^n \mid ||f(x)||_2 < 1\}$  is open since

$$\left\{x \in \mathbb{R}^n \, \big| \, \|f(x)\|_2 < 1\right\} = f^{-1} \big(D(0,1)\big) \, .$$

**Remark 4.13.** For a function f of two variable or more, it is important to distinguish the continuity of f and the continuity in each variable (by holding all other variables fixed). For example, let  $f : \mathbb{R}^2 \to \mathbb{R}$  be defined by

$$f(x,y) = \begin{cases} 1 & \text{if either } x = 0 \text{ or } y = 0, \\ 0 & \text{if } x \neq 0 \text{ and } y \neq 0. \end{cases}$$

Observe that f(0,0) = 1, but f is not continuous at (0,0). In fact, for any  $\delta > 0$ , f(x,y) = 0 for infinitely many values of  $(x,y) \in D((0,0), \delta)$ ; that is, |f(x,y) - f(0,0)| = 1 for such values. However if we consider the function g(x) = f(x,0) = 1 or the function h(y) = f(0,y) = 1, then g,h are continuous. Note also that  $\lim_{(x,y)\to(0,0)} f(x,y)$  does not exist but  $\lim_{x\to 0} (\lim_{x\to 0} f(x,y)) = \lim_{x\to 0} 0 = 0.$ 

# 4.2 Operations on Continuous Maps

**Definition 4.14.** Let (M, d) be a metric space,  $(\mathcal{V}, \|\cdot\|)$  be a (real) normed space,  $A \subseteq M$ , and  $f, g : A \to \mathcal{V}$  be maps,  $h : A \to \mathbb{R}$  be a function. The maps f + g, f - g and hf, mapping from A to  $\mathcal{V}$ , are defined by

$$\begin{split} (f+g)(x) &= f(x) + g(x) \qquad \forall \, x \in A \,, \\ (f-g)(x) &= f(x) - g(x) \qquad \forall \, x \in A \,, \\ (hf)(x) &= h(x)f(x) \qquad \forall \, x \in A \,. \end{split}$$

The map  $\frac{f}{h}: A \setminus \{x \in A \mid h(x) = 0\} \to \mathcal{V}$  is defined by

$$\left(\frac{f}{h}\right)(x) = \frac{f(x)}{h(x)} \qquad \forall x \in A \setminus \{x \in A \mid h(x) = 0\}$$

**Proposition 4.15.** Let (M, d) be a metric space,  $(\mathcal{V}, \|\cdot\|)$  be a (real) normed space,  $A \subseteq M$ , and  $f, g: A \to \mathcal{V}$  be maps,  $h: A \to \mathbb{R}$  be a function. Suppose that  $x_0 \in A'$ , and  $\lim_{x \to x_0} f(x) = a$ ,  $\lim_{x \to x_0} g(x) = b$ ,  $\lim_{x \to x_0} h(x) = c$ . Then

$$\lim_{x \to x_0} (f+g)(x) = a+b,$$
  

$$\lim_{x \to x_0} (f-g)(x) = a-b,$$
  

$$\lim_{x \to x_0} (hf)(x) = ca,$$
  

$$\lim_{x \to x_0} \left(\frac{f}{h}\right) = \frac{a}{c} \quad if \ c \neq 0.$$

**Corollary 4.16.** Let (M,d) be a metric space,  $(\mathcal{V}, \|\cdot\|)$  be a (real) normed space,  $A \subseteq M$ , and  $f, g: A \to \mathcal{V}$  be maps,  $h: A \to \mathbb{R}$  be a function. Suppose that f, g, h are continuous at  $x_0 \in A$ . Then the maps f + g, f - g and hf are continuous at  $x_0$ , and  $\frac{f}{h}$  is continuous at  $x_0$  if  $h(x_0) \neq 0$ .

**Corollary 4.17.** Let (M,d) be a metric space,  $(\mathcal{V}, \|\cdot\|)$  be a (real) normed space,  $A \subseteq M$ , and  $f, g: A \to \mathcal{V}$  be continuous maps,  $h: A \to \mathbb{R}$  be a continuous function. Then the maps f + g, f - g and hf are continuous on A, and  $\frac{f}{h}$  is continuous on  $A \setminus \{x \in A \mid h(x) = 0\}$ .

**Definition 4.18.** Let (M, d),  $(N, \rho)$  and (P, r) be metric space,  $A \subseteq M$ ,  $B \subseteq N$ , and  $f: A \to N, g: B \to P$  be maps such that  $f(A) \subseteq B$ . The composite function  $g \circ f: A \to P$  is the map defined by



Figure 4.1: The composition of functions

**Theorem 4.19.** Let (M,d),  $(N,\rho)$  and (P,r) be metric space,  $A \subseteq M$ ,  $B \subseteq N$ , and  $f: A \to N$ ,  $g: B \to P$  be maps such that  $f(A) \subseteq B$ . Suppose that f is continuous at  $x_0$ , and g is continuous at  $f(x_0)$ . Then the composite function  $g \circ f: A \to P$  is continuous at  $x_0$ .

*Proof.* Let  $\varepsilon > 0$  be given. Since g is continuous at  $f(x_0), \exists r > 0$  such that

$$g(D(f(x_0), r) \cap B) \subseteq D((g \circ f)(x_0), \varepsilon).$$

Since f is continuous at  $x_0$ ,  $\exists \delta > 0$  such that

$$f(D(x_0,\delta) \cap A) \subseteq D(f(x_0),r).$$

Since  $f(A) \subseteq B$ ,  $f(D(x_0, \delta) \cap A) \subseteq D(f(x_0), r) \cap B$ ; thus

$$(g \circ f)(D(x_0, \delta) \cap A) \subseteq g(D(f(x_0), r) \cap B) \subseteq D((g \circ f)(x_0), \varepsilon).$$

**Corollary 4.20.** Let (M,d),  $(N,\rho)$  and (P,r) be metric space,  $A \subseteq M$ ,  $B \subseteq N$ , and  $f : A \to N$ ,  $g : B \to P$  be continuous maps such that  $f(A) \subseteq B$ . Then the composite function  $g \circ f : A \to P$  is continuous on A.

Alternative Proof of Corollary 4.20. Let  $\mathcal{W}$  be an open set in (P, r). By Theorem 4.11, there exists  $\mathcal{V}$  open in  $(N, \rho)$  such that  $g^{-1}(\mathcal{W}) = \mathcal{V} \cap B$ . Since  $\mathcal{V}$  is open in  $(N, \rho)$ , by Theorem 4.11 again there exists  $\mathcal{U}$  open in (M, d) such that  $f^{-1}(\mathcal{V}) = \mathcal{U} \cap A$ . Then

$$(g \circ f)^{-1}(\mathcal{W}) = f^{-1}(g^{-1}(\mathcal{W})) = f^{-1}(\mathcal{V} \cap B) = f^{-1}(\mathcal{V}) \cap f^{-1}(B) = \mathcal{U} \cap A \cap f^{-1}(B),$$

while the fact that  $f(A) \subseteq B$  further suggests that

$$(g \circ f)^{-1}(\mathcal{W}) = \mathcal{U} \cap A$$

Therefore, by Theorem 4.11 we find that  $(g \circ f)$  is continuous on A.

## 4.3 Images of Compact Sets under Continuous Maps

**Theorem 4.21.** Let (M,d) and  $(N,\rho)$  be metric spaces,  $A \subseteq M$ , and  $f : A \rightarrow N$  be a continuous map.

- 1. If  $K \subseteq A$  is compact, then f(K) is compact in  $(N, \rho)$ .
- 2. Moreover, if  $(N, \rho) = (\mathbb{R}, |\cdot|)$ , then there exist  $x_0, x_1 \in K$  such that

$$f(x_0) = \inf f(K) = \inf \{ f(x) \mid x \in K \}$$
 and  $f(x_1) = \sup f(K) = \sup \{ f(x) \mid x \in K \}.$ 

*Proof.* 1. Let  $\{\mathcal{V}_{\alpha}\}_{\alpha \in I}$  be an open cover of f(K). Since  $\mathcal{V}_{\alpha}$  is open, by Theorem 4.11 there exists  $\mathcal{U}_{\alpha}$  open in (M, d) such that  $f^{-1}(\mathcal{V}_{\alpha}) = \mathcal{U}_{\alpha} \cap A$ . Since  $f(K) \subseteq \bigcup_{\alpha \in I} \mathcal{V}_{\alpha}$ ,

$$K \subseteq f^{-1}(f(K)) \subseteq \bigcup_{\alpha \in I} f^{-1}(\mathcal{V}_{\alpha}) = A \cap \bigcup_{\alpha \in I} \mathcal{U}_{\alpha}$$

which implies that  $\{\mathcal{U}_{\alpha}\}_{\alpha\in I}$  is an open cover of K. Therefore,

$$\exists J \subseteq I, \#J < \infty \ni K \subseteq A \cap \bigcup_{\alpha \in J} \mathcal{U}_{\alpha} = \bigcup_{\alpha \in J} f^{-1}(\mathcal{V}_{\alpha});$$

thus  $f(K) \subseteq \bigcup_{\alpha \in J} f(f^{-1}(\mathcal{V}_{\alpha})) \subseteq \bigcup_{\alpha \in J} \mathcal{V}_{\alpha}.$ 

2. By 1, f(K) is compact; thus sequentially compact. Corollary 3.5 then implies that  $\inf f(K) \in f(K)$  and  $\sup f(K) \in f(K)$ .

Alternative Proof of Part 1. Let  $\{y_n\}_{n=1}^{\infty}$  be a sequence in f(K). Then there exists  $\{x_n\}_{n=1}^{\infty} \subseteq K$  such that  $y_n = f(x_n)$ . Since K is sequentially compact, there exists a convergent subsequence  $\{x_{n_k}\}_{k=1}^{\infty}$  with limit  $x \in K$ . Let  $y = f(x) \in f(K)$ . By the continuity of f,

$$\lim_{k \to \infty} \rho(y_{n_k}, y) = \lim_{k \to \infty} \rho(f(x_{n_k}), f(x)) = 0$$

which implies that the sequence  $\{y_{n_k}\}_{k=1}^{\infty}$  converges to  $y \in f(K)$ . Therefore, f(K) is sequentially compact.

**Corollary 4.22** (The Extreme Value Theorem (極值定理)). Let  $f : [a, b] \to \mathbb{R}$  be continuous. Then f attains its maximum and minimum in [a, b]; that is, there are  $x_0 \in [a, b]$  and  $x_1 \in [a, b]$  such that

$$f(x_0) = \inf \{ f(x) \mid x \in [a, b] \} \quad and \quad f(x_1) = \sup \{ f(x) \mid x \in [a, b] \}.$$
(4.3.1)

*Proof.* The Heine-Borel Theorem suggests that [a, b] is a compact set in  $\mathbb{R}$ ; thus Theorem 4.21 implies that f([a, b]) must be compact in  $\mathbb{R}$ . By the Heine-Borel Theorem again f([a, b]) is closed and bounded, so

$$\inf f([a,b]) \in f([a,b]) \text{ and } \sup f([a,b]) \in f([a,b])$$

which further imply (4.3.1).

**Remark 4.23.** If f attains its maximum (or minimum) on a set B, we use max  $\{f(x) | x \in B\}$  (or min  $\{f(x) | x \in B\}$ ) to denote sup  $\{f(x) | x \in B\}$  (or inf  $\{f(x) | x \in B\}$ ). Therefore, (4.3.1) can be rewritten as

$$f(x_0) = \min \{ f(x) \mid x \in [a, b] \}$$
 and  $f(x_1) = \max \{ f(x) \mid x \in [a, b] \}$ 

**Example 4.24.** Two norms  $\|\cdot\|$  and  $\|\cdot\|\|$  on a real vector space  $\mathcal{V}$  are called equivalent if there are positive constants  $C_1$  and  $C_2$  such that

$$C_1 \|x\| \leq \|x\| \leq C_2 \|x\| \qquad \forall x \in \mathcal{V}.$$

We note that equivalent norms on a vector space  $\mathcal{V}$  induce the same topology; that is, if  $\|\cdot\|$ and  $\|\cdot\|$  are equivalent norms on  $\mathcal{V}$ , then  $\mathcal{U}$  is open in the normed space  $(\mathcal{V}, \|\cdot\|)$  if and

only if  $\mathcal{U}$  is open in the normed space  $(\mathcal{V}, \|\cdot\|)$ . In fact, let  $\mathcal{U}$  be an open set in  $(\mathcal{V}, \|\cdot\|)$ . Then for any  $x \in \mathcal{U}$ , there exists r > 0 such that

$$D_{\|\cdot\|}(x,r) \equiv \left\{ y \in \mathcal{V} \, \big| \, \|x - y\| < r \right\} \subseteq \mathcal{U}$$

Let  $\delta = C_1 r$ . Then if  $z \in D_{\parallel \cdot \parallel}(x, \delta) \equiv \{y \in \mathcal{V} \mid \parallel x - y \parallel < \delta\},\$ 

$$||x - z|| \le \frac{1}{C_1} ||x - z|| < \frac{1}{C_1} \cdot C_1 r = r$$

which implies that  $D_{\|\cdot\|}(x,\delta) \subseteq D_{\|\cdot\|}(x,r) \subseteq \mathcal{U}$ . Therefore,  $\mathcal{U}$  is open in  $(\mathcal{V}, \|\cdot\|)$ . Similarly, if  $\mathcal{U}$  is open in  $(\mathcal{V}, \|\cdot\|)$ , then the inequality  $\|x\| \le C_2 \|x\|$  suggests that  $\mathcal{U}$  is open in  $(\mathcal{V}, \|\cdot\|)$ . Claim: Any two norms on  $\mathbb{R}^n$  are equivalent.

Proof of claim: It suffices to show that any norm  $\|\cdot\|$  on  $\mathbb{R}^n$  is equivalent to the two-norm  $\|\cdot\|_2$  (check). Let  $\{e_k\}_{k=1}^n$  be the standard basis of  $\mathbb{R}^n$ ; that is,

$$e_k = (\underbrace{0, \cdots, 0}_{(k-1) \text{ zeros}}, 1, 0, \cdots, 0).$$

Every  $x \in \mathbb{R}^n$  can be written as  $x = \sum_{i=1}^n x_i e_i$ , and  $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ . By the definition of norms and the Cauchy-Schwarz inequality,

$$\|x\| \leq \sum_{i=1}^{n} |x_i| \|e_i\| \leq \|x\|_2 \sqrt{\sum_{i=1}^{n} \|e_i\|^2};$$
(4.3.2)

thus letting  $C_2 = \sqrt{\sum_{i=1}^{n} \|e_i\|^2}$  we have  $\|x\| \leq C_2 \|x\|_2$ . On the other hand, define the product of the second seco

On the other hand, define  $f : \mathbb{R}^n \to \mathbb{R}$  by

$$f(x) = ||x|| = \left\|\sum_{i=1}^{n} x_i e_i\right\|.$$

Because of (4.3.2), f is continuous on  $\mathbb{R}^n$ . In fact, for  $x, y \in \mathbb{R}^n$ ,

$$|f(x) - f(y)| = |||x|| - ||y||| \le ||x - y|| \le C_2 ||x - y||_2$$

which guarantees the continuity of f on  $\mathbb{R}^n$ . Let  $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n \mid ||x||_2 = 1\}$ . Then  $\mathbb{S}^{n-1}$  is a compact set in  $(\mathbb{R}^n, \|\cdot\|_2)$  (since it is closed and bounded); thus by Theorem 4.21 f attains its minimum on  $\mathbb{S}^{n-1}$  at some point  $a = (a_1, \dots, a_n)$ . Moreover, f(a) > 0 (since if f(a) = 0,  $a = 0 \notin \mathbb{S}^{n-1}$ ). Then for all  $x \in \mathbb{R}^n$ ,  $\frac{x}{\|x\|_2} \in \mathbb{S}^{n-1}$ ; thus

$$f\left(\frac{x}{\|x\|_2}\right) \ge f(a) \,.$$

The inequality above further implies that  $f(a)||x||_2 \leq f(x) = ||x||$ ; thus letting  $C_1 = f(a)$  we have  $C_1||x||_2 \leq ||x||$ .

#### Remark 4.25.

- 1. Let  $f : \mathbb{R} \to \mathbb{R}$  be defined by f(x) = 0. Then f is continuous. Note that  $\{0\} \subseteq \mathbb{R}$  is compact (: closed and bounded), but  $f^{-1}(\{0\}) = \mathbb{R}$  is not compact.
- 2. Let  $f : \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x^2$ . Then f is continuous. Note that  $C = \{1\}$  is connected, but  $f^{-1}(C) = \{1, -1\}$  is not connected.

### Remark 4.26.

- 1. If K is not compact, then Theorem 4.21 is not true. Consider the following counter example:  $K = (0, 1), f : K \to \mathbb{R}$  defined by  $f(x) = \frac{1}{x}$ . Then f(K) is unbounded.
- 2. If f is not continuous, then Theorem 4.21 is not true either.
  - (a) Counter example 1:  $f: K = [0, 1] \to \mathbb{R}$  defined by

$$f(x,y) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then f(K) is unbounded  $\Rightarrow \nexists x_1 \in K \ni f(x_1) = \sup f(K)$ .

(b) Counter example 2:  $f: [0,1] \to \mathbb{R}$  by

$$f(x,y) = \begin{cases} x & \text{if } x \neq 1, \\ 0 & \text{if } x = 1. \end{cases}$$

Then there is no  $x_1 \in [0, 1]$  such that  $f(x_1) = \sup_{x \in [0, 1]} f(x) = 1$ .

**Example 4.27** (An example show that  $x_0, x_1$  in Theorem 4.21 are not unique). Let  $f : [-2, 2] \to \mathbb{R}$  be defined by  $f(x) = (x^2 - 1)^2$ .

1. Critical point:  $f'(x) = 2(x^2 - 1) \cdot 2x = 0 \Leftrightarrow x = 0, \pm 1.$ 

2. Comparison: f(0) = 1, f(1) = f(-1) = 0, f(2) = f(-2) = 9. Then

$$f(2) = f(-2) = \sup_{x \in [-2,2]} f(x)$$
 and  $f(1) = f(-1) = \inf_{x \in [-2,2]} f(x)$ .

**Corollary 4.28.** Let (M,d) be a metric space,  $K \subseteq M$  be a compact set, and  $f: K \to \mathbb{R}$  be continuous. Then the set

 $\{x \in K \mid f(x) \text{ is the maximum of } f \text{ on } K\}$ 

is a non-empty compact set.

*Proof.* Let  $M = \sup f(K)$ . Then the set defined above is  $f^{-1}(\{M\})$ , and

1.  $f^{-1}({M})$  is non-empty by Theorem 4.21;

2.  $f^{-1}({M})$  is closed since  ${M}$  is a closed set in  $(\mathbb{R}, |\cdot|)$  and f is continuous on K.

Lemma 3.11 suggests that  $f^{-1}({M})$  is compact.

# 4.4 Images of Connected and Path Connected Sets under Continuous Maps

**Definition 4.29.** Let (M, d) be a metric space. A subset  $A \subseteq M$  is said to be **path** connected if for every  $x, y \in A$ , there exists a continuous map  $\varphi : [0, 1] \to A$  such that  $\varphi(0) = x$  and  $\varphi(1) = y$ .



Figure 4.2: Path connected sets

**Example 4.30.** A set A in a vector space  $\mathcal{V}$  is called <u>convex</u> if for all  $x, y \in A$ , the line segment joining x and y, denoted by  $\overline{xy}$ , lies in A. Then a convex set in a normed space is path connected. In fact, for  $x, y \in A$ , define  $\varphi(t) = ty + (1-t)x$ . Then

- 1.  $\varphi : [0,1] \to \overline{xy} \subseteq A, \, \varphi(0) = x, \, \varphi(1) = y;$
- 2.  $\varphi : [0,1] \to A$  is continuous.





**Example 4.31.** A set S in a vector space  $\mathcal{V}$  is called **star-shaped** if there exists  $p \in S$  such that for any  $q \in S$ , the line segment joining p and q lies in S. A star-shaped set in a normed space is path connected. In fact, for  $x, y \in S$ , define

$$\varphi(t) = \begin{cases} 2tp + (1-2t)x & \text{if } t \in \left[0, \frac{1}{2}\right], \\ (2t-1)y + (2-2t)p & \text{if } t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Then

1. 
$$\varphi : [0,1] \to \overline{xp} \cup \overline{py} \subseteq S, \, \varphi(0) = x, \, \varphi(1) = y;$$

2.  $\varphi: [0,1] \to A$  is continuous.

**Theorem 4.32.** Let (M, d) be a metric space, and  $A \subseteq M$ . If A is path connected, then A is connected.

*Proof.* Assume the contrary that there are two open sets  $\mathcal{V}_1$  and  $\mathcal{V}_2$  such that

1.  $A \cap \mathcal{V}_1 \cap \mathcal{V}_2 = \emptyset$ ; 2.  $A \cap \mathcal{V}_1 \neq \emptyset$ ; 3.  $A \cap \mathcal{V}_2 \neq \emptyset$ ; 4.  $A \subseteq \mathcal{V}_1 \cup \mathcal{V}_2$ .

Since A is path connected, for  $x \in A \cap \mathcal{V}_1$  and  $y \in A \cap \mathcal{V}_2$ , there exists  $\varphi : [0, 1] \to A$  such that  $\varphi(0) = x$  and  $\varphi(1) = y$ . By Theorem 4.11, there exist  $\mathcal{U}_1$  and  $\mathcal{U}_2$  open in  $(\mathbb{R}, |\cdot|)$  such that  $\varphi^{-1}(\mathcal{V}_1) = \mathcal{U}_1 \cap [0, 1]$  and  $\varphi^{-1}(\mathcal{V}_2) = \mathcal{U}_2 \cap [0, 1]$ . Therefore,

$$[0,1] = \varphi^{-1}(A) \subseteq \varphi^{-1}(\mathcal{V}_1) \cup \varphi^{-1}(\mathcal{V}_2) \subseteq \mathcal{U}_1 \cup \mathcal{U}_2.$$

Since  $0 \in \mathcal{U}_1$ ,  $1 \in \mathcal{U}_2$ , and  $[0,1] \cap \mathcal{U}_1 \cap \mathcal{U}_2 = \varphi^{-1}(A \cap \mathcal{V}_1 \cap \mathcal{V}_2) = \emptyset$ , we conclude that [0,1] is disconnected, a contradiction.

**Example 4.33.** Let  $A = \left\{ \left(x, \sin \frac{1}{x}\right) \mid x \in (0, 1] \right\} \cup \left(\{0\} \times [-1, 1]\right)$ . Then A is connected in  $(\mathbb{R}^2, \|\cdot\|_2)$ , but A is not path connected.

To see this, we assume the contrary that A is path connected such that there is a continuous function  $\varphi : [0,1] \to A$  such that  $\varphi(0) = (x_0, y_0) \in \left\{ \left(x, \sin \frac{1}{x}\right) \mid x \in (0,1) \right\}$  and  $\varphi(1) = (0,0) \in \{0\} \times [-1,1]$ . Let  $t_0 = \inf \{t \in [0,1] \mid \varphi(t) \in \{0\} \times [-1,1]\}$ . In other words, at  $t = t_0$  the path touches  $0 \times [-1,1]$  for the "first time". By the continuity of  $\varphi$ ,  $\varphi(t_0) \in \{0\} \times [-1,1]$ . Since  $\varphi(0) \notin \{0\} \times [-1,1]$ ,  $\varphi([0,t_0)) \subseteq \left\{ \left(x, \sin \frac{1}{x}\right) \mid x \in (0,1) \right\}$ .

Suppose that  $\varphi(t_0) = (0, \bar{y})$  for some  $\bar{y} \in [-1, 1]$ , and  $\varphi(t) = (x(t), \sin \frac{1}{x(t)})$  for  $0 \le t < t_0$ . By the continuity of  $\varphi$ , there exists  $\delta > 0$  such that if  $|t - t_0| < \delta$ ,  $|\varphi(t) - \varphi(t_0)| < 1$ . In particular,

$$x(t)^{2} + \left(\sin\frac{1}{x(t)} - \bar{y}\right)^{2} < 1 \qquad \forall t \in (t_{0} - \delta, t)$$

On the other hand, since  $\varphi$  is continuous, x(t) is continuous on  $[0, t_0)$ ; thus by the fact that  $[0, t_0)$  is connected,  $x([0, t_0))$  is connected. Therefore,  $x([0, t_0)) = (0, \bar{x}]$  for some  $\bar{x} > 0$ . Since  $\lim_{t \to t_0} x(t) = 0$ , there exists  $\{t_n\}_{n=1}^{\infty} \in [0, t_0)$  such that  $t_n \to t_0$  as  $n \to \infty$  and  $\left| \sin \frac{1}{x(t_n)} - \bar{y} \right| \ge 1$ . For  $n \gg 1$ ,  $t_n \in (t_0 - \delta, t_0)$  but

$$x(t_n)^2 + \left(\sin\frac{1}{x(t_n)} - \bar{y}\right)^2 \ge 1$$

a contradiction.

On the other hand, A is the closure of the connected set  $B = \left\{ \left(x, \sin \frac{1}{x}\right) \mid x \in (0, 1) \right\}$  (the connectedness of B follows from the fact that the function  $\psi(x) = \left(x, \sin \frac{1}{x}\right)$  is continuous on the connected set (0, 1)). Therefore, by Problem 9 of Exercise 8, A = B is connected.

**Theorem 4.34.** Let (M,d) and  $(N,\rho)$  be metric spaces,  $A \subseteq M$ , and  $f : A \to N$  be a continuous map.

- 1. If  $C \subseteq A$  is connected, then f(C) is connected in  $(N, \rho)$ .
- 2. If  $C \subseteq A$  is path connected, then f(C) is path connected in  $(N, \rho)$ .

*Proof.* 1. Suppose that there are two open sets  $\mathcal{V}_1$  and  $\mathcal{V}_2$  in  $(N, \rho)$  such that

(a) 
$$f(C) \cap \mathcal{V}_1 \cap \mathcal{V}_2 = \emptyset$$
; (b)  $f(C) \cap \mathcal{V}_1 \neq \emptyset$ ; (c)  $f(C) \cap \mathcal{V}_2 \neq \emptyset$ ; (d)  $f(C) \subseteq \mathcal{V}_1 \cup \mathcal{V}_2$ 

By Theorem 4.11, there are  $\mathcal{U}_1$  and  $\mathcal{U}_2$  open in (M, d) such that  $f^{-1}(\mathcal{V}_1) = \mathcal{U}_1 \cap A$  and  $f^{-1}(\mathcal{V}_2) = \mathcal{U}_2 \cap A$ . By (d),

$$C \subseteq f^{-1}(f(C)) \subseteq f^{-1}(\mathcal{V}_1) \cup f^{-1}(\mathcal{V}_2) = (\mathcal{U}_1 \cup \mathcal{U}_2) \cap A \subseteq \mathcal{U}_1 \cup \mathcal{U}_2.$$

Moreover, by (a) we find that

$$C \cap \mathcal{U}_1 \cap \mathcal{U}_2 = C \cap (\mathcal{U}_1 \cap A) \cap (\mathcal{U}_2 \cap A) = C \cap f^{-1}(\mathcal{V}_1) \cap f^{-1}(\mathcal{V}_2)$$
$$\subseteq f^{-1}(f(C) \cap \mathcal{V}_1 \cap \mathcal{V}_2) = \emptyset$$

which implies  $C \cap \mathcal{U}_1 \cap \mathcal{U}_2 = \emptyset$ . Finally, (b) implies that for some  $x \in C$ ,  $f(x) \in \mathcal{V}_1$ . Therefore,  $x \in f^{-1}(\mathcal{V}_1) = \mathcal{U}_1 \cap A$  which suggests that  $x \in \mathcal{U}_1$ ; thus  $C \cap \mathcal{U}_1 \neq \emptyset$ . Similarly,  $C \cap \mathcal{U}_2 \neq \emptyset$ . Therefore, C is disconnected which is a contradiction.

2. Let  $y_1, y_2 \in f(C)$ . Then  $\exists x_1, x_2 \in C$  such that  $f(x_1) = y_1$  and  $f(x_2) = y_2$ . Since C is path connected,  $\exists r : [0, 1] \to C$  such that r is continuous on [0, 1] and  $r(0) = x_1$  and  $r(1) = x_2$ . Let  $\varphi : [0, 1] \to f(C)$  be defined by  $\varphi = f \circ r$ . By Corollary 4.20  $\varphi$  is continuous on [0, 1], and  $\varphi(0) = y_1$  and  $\varphi(1) = y_2$ .

**Corollary 4.35** (The Intermediate Value Theorem (中間值定理)). Let  $f : [a,b] \to \mathbb{R}$  be continuous. If  $f(a) \neq f(b)$ , then for all d in between f(a) and f(b), there exists  $c \in (a,b)$  such that f(c) = d.

*Proof.* The closed interval [a, b] is connected by Theorem 3.38, so Theorem 4.34 implies that f([a, b]) must be connected in  $\mathbb{R}$ . By Theorem 3.38 again, if d is in between f(a) and f(b), then d belongs to f([a, b]). Therefore, for some  $c \in (a, b)$  we have f(c) = d.

**Example 4.36.** Let  $f : [0,1] \to [0,1]$  be continuous. Then  $\exists x_0 \in [0,1] \ni f(x_0) = x_0$ .

*Proof.* Let g(x) = x - f(x). Then

1. 
$$g(0) = 0$$
 or  $g(1) = 0 \Rightarrow x_0 = 0$  or 1.

2. 
$$g(0) \neq 0$$
 or  $g(1) \neq 0 \Rightarrow g(0) < 0$  and  $g(1) > 0$ . Since  $g: [0,1] \rightarrow \mathbb{R}$  is continuous,

$$\exists x_0 \in [0,1] \ni g(x_0) = 0 \Rightarrow \exists x_0 \in (0,1) \ni f(x_0) = x_0.$$

**Remark 4.37.** Such an  $x_0$  in Example 4.36 is called a **fixed-point** of f.

**Example 4.38.** Let  $f : [1,2] \rightarrow [0,3]$  be continuous, and f(1) = 0 and f(2) = 3. Then  $\exists x_0 \in [1,2] \ni f(x_0) = x_0$ .

*Proof.* Let g(x) = x - f(x). Then  $g: [1,2] \to \mathbb{R}$  is continuous. Moreover,

$$g(1) = 1 - f(1) = 1, \quad g(2) = 2 - f(2) = -1;$$

thus  $\exists x_0 \in (1, 2) \ni g(x_0) = 0.$ 

**Example 4.39.** Let p be a cubic polynomial; that is,  $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$  for some  $a_0, a_1, a_2 \in \mathbb{R}$  and  $a_3 \neq 0$ . Then p has a real root  $x_0$  (that is,  $\exists x_0 \in \mathbb{R}$  such that  $p(x_0) = 0$ ).

*Proof.* Note that p is obviously continuous and  $\mathbb{R}$  is connected. Write

$$p(x) = a_3 x^3 \left( 1 + \frac{a_2}{a_3 x} + \frac{a_1}{a_3 x^2} + \frac{a_0}{a_3 x^3} \right).$$

Now  $\lim_{x \to \pm \infty} \frac{\alpha}{\beta x^n} = 0$  if n > 0 and  $\beta \neq 0$ , so

$$\lim_{x \to \pm \infty} \left( 1 + \frac{a_2}{a_3 x} + \frac{a_1}{a_3 x^2} + \frac{a_0}{a_3 x^3} \right) = 1$$

Moreover,

$$\lim_{x \to \infty} ax^3 = \begin{cases} \infty & \text{if } a > 0, \\ -\infty & \text{if } a < 0. \end{cases}$$

Suppose that a > 0. Then  $\lim_{x \to \infty} ax^3 = \infty$  and  $\lim_{x \to -\infty} ax^3 = -\infty \Rightarrow \exists x, y \in \mathbb{R} \Rightarrow p(x) < 0 < p(y)$ . By Corollary 4.35  $\exists r \in \mathbb{R} \Rightarrow p(r) = 0$ . The case that a < 0 is similar.

## 4.5 Uniform Continuity (均勻連續)

**Definition 4.40.** Let (M, d) and  $(N, \rho)$  be metric spaces,  $A \subseteq M$ , and  $f : A \to N$  be a map. For a set  $B \subseteq A$ , f is said to be **uniformly continuous on** B if for any two sequences  $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \subseteq B$  with the property that  $\lim_{n\to\infty} d(x_n, y_n) = 0$ , one has  $\lim_{n\to\infty} \rho(f(x_n), f(y_n)) = 0.$ 

**Proposition 4.41.** Let (M, d) and  $(N, \rho)$  be metric spaces,  $A \subseteq M$ , and  $f : A \to N$  be a map. If f is uniformly continuous on A, then f is continuous on A.

Proof. Let  $x_0 \in A \cap A'$ , and  $\{x_k\}_{k=1}^{\infty} \subseteq A$  be a sequence such that  $x_k \to x_0$  as  $k \to \infty$ . Let  $\{y_k\}_{k=1}^{\infty}$  be a constant sequence with value  $x_0$ ; that is,  $y_k = x_0$  for all  $k \in \mathbb{N}$ . Then  $\{y_k\}_{k=1}^{\infty} \subseteq A$  and  $d(x_k, y_k) \to 0$  as  $k \to \infty$ . By the uniform continuity of f on A,

$$\lim_{k \to \infty} \rho(f(x_k), f(x_0)) = \lim_{k \to \infty} \rho(f(x_k), f(y_k)) = 0$$

which implies that f is continuous on  $x_0$ .

**Example 4.42.** Let  $f : [0,1] \to \mathbb{R}$  be the Dirichlet function; that is,

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q}, \\ 1 & \text{if } x \in \mathbb{Q}^{\complement}. \end{cases}$$

and  $B = \mathbb{Q} \cap [0, 1]$ . Then f is continuous **nowhere** in [0, 1], but f is uniformly continuous on B. However, the proposition above guarantees that if f is uniformly continuous on A, then f must be continuous on A (Check why the proof of Proposition 4.41 does not go through if B is a proper subset of A).

**Example 4.43.** The function f(x) = |x| is uniformly continuous on  $\mathbb{R}$ .

*Proof.* By the triangle inequality,

$$|f(x) - f(y)| = ||x| - |y|| \le |x - y|;$$

thus if  $\{x_n\}_{n=1}^{\infty}$  and  $\{y_n\}_{n=1}^{\infty}$  are sequences in  $\mathbb{R}$  and  $\lim_{n \to \infty} |x_n - y_n| = 0$ , by the Sandwich lemma we must have  $\lim_{n \to \infty} |f(x_n) - f(y_n)| = 0$ .

**Example 4.44.** The function  $f: (0, \infty) \to \mathbb{R}$  defined by  $f(x) = \frac{1}{x}$  is uniformly continuous on  $[a, \infty)$  for all a > 0. However, it is not uniformly continuous on  $(0, \infty)$ .

*Proof.* Let  $\{x_n\}_{n=1}^{\infty}$  and  $\{y_n\}_{n=1}^{\infty}$  be sequences in  $[a, \infty)$  such that  $\lim_{n \to \infty} |x_n - y_n| = 0$ . Then

$$|f(x_n) - f(y_n)| = \left|\frac{1}{x_n} - \frac{1}{y_n}\right| = \frac{|x_n - y_n|}{|x_n y_n|} \le \frac{|x_n - y_n|}{a^2} \to 0 \text{ as } n \to \infty$$

which implies that f is uniformly continuous on  $[a, \infty)$  if a > 0. However, by choosing  $x_n = \frac{1}{n}$  and  $y_n = \frac{1}{2n}$ , we find that

$$|x_n - y_n| = \frac{1}{2n}$$
 but  $|f(x_n) - f(y_n)| = n \ge 1;$ 

thus f cannot be uniformly continuous on  $(0, \infty)$ .

**Remark 4.45.** Let (M, d) and  $(N, \rho)$  be metric spaces,  $A \subseteq M$ , and  $f : B \subseteq A \to N$  be a map. Then the following four statements are equivalent:

- (1) f is **not** uniformly continuous on B.
- (2)  $\exists \{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \subseteq B \ni \lim_{n \to \infty} d(x_n, y_n) = 0 \text{ and } \limsup_{n \to \infty} \rho(f(x_n), f(y_n)) > 0.$
- (3)  $\exists \{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \subseteq B \ni \lim_{n \to \infty} d(x_n, y_n) = 0 \text{ and } \lim_{n \to \infty} \rho(f(x_n), f(y_n)) > 0.$

(4) 
$$\exists \varepsilon > 0 \ni \forall n > 0, \exists x_n, y_n \in B \text{ and } d(x_n, y_n) < \frac{1}{n} \ni \rho(f(x_n), f(y_n)) \ge \varepsilon.$$

**Example 4.46.** Let  $f : \mathbb{R} \to \mathbb{R}$  defined by  $f(x) = x^2$ . Then f is continuous in  $\mathbb{R}$  but not uniformly continuous on  $\mathbb{R}$ . Let  $\varepsilon = 1$ ,  $x_n = n$ , and  $y_n = n + \frac{1}{2n}$ ,

$$\left|f(x_n) - f(y_n)\right| = \left|n^2 - (n + \frac{1}{2n})^2\right| = \left|n^2 - n^2 - \frac{1}{4n^2}\right| > 1 \quad \forall n > 0.$$

**Example 4.47.** The function  $f(x) = \sin(x^2)$  is not uniform continuous on  $\mathbb{R}$ .

*Proof.* Let 
$$\varepsilon = 1$$
,  $x_n = 2n\sqrt{\pi} + \frac{\sqrt{\pi}}{8n}$  and  $y_n = 2n\sqrt{\pi} - \frac{\sqrt{\pi}}{8n}$ . Then  
 $\left|\sin(x_n^2) - \sin(y_n^2)\right| = \left|\sin\left(4n^2\pi + \frac{\pi}{2} + \frac{\pi}{64n^2}\right) - \sin\left(4n^2\pi - \frac{\pi}{2} + \frac{\pi}{64n^2}\right)\right| = 2\cos\frac{\pi}{64n^2};$ 

thus if *n* is large enough,  $|\sin(x_n^2) - \sin(y_n^2)| \ge 1$ . **Example 4.48.** The function  $f : (0,1) \to \mathbb{R}$  defined by  $f(x) = \sin \frac{1}{x}$  is not uniformly continuous continuous.

Proof. Let 
$$\varepsilon = 1$$
,  $x_n = \left(2n\pi + \frac{\pi}{2}\right)^{-1}$  and  $y_n = \left(2n\pi - \frac{\pi}{2}\right)^{-1}$ . Then
$$\left|\sin\frac{1}{x_n} - \sin\frac{1}{y_n}\right| = 2,$$

while  $|x_n - y_n| = \frac{\pi}{4n^2\pi^2 - \frac{\pi^2}{4}} = \frac{1}{(4n^2 - \frac{1}{4})\pi} \leq \frac{1}{n}$  for all  $n \in \mathbb{N}$ .

**Theorem 4.49.** Let (M, d) and  $(N, \rho)$  be metric spaces,  $A \subseteq M$ , and  $f : A \to N$  be a map. For a set  $B \subseteq A$ , f is uniformly continuous on B if and only if

$$\forall \varepsilon > 0, \exists \delta > 0 \ni \rho(f(x), f(y)) < \varepsilon \text{ whenever } d(x, y) < \delta \text{ and } x, y \in B.$$

*Proof.* " $\Leftarrow$ " Suppose the contrary that f is not uniformly continuous on B. Then there are two sequences  $\{x_n\}_{n=1}^{\infty}$ ,  $\{y_n\}_{n=1}^{\infty}$  in B such that

$$\lim_{k \to \infty} d(x_n, y_n) = 0 \quad \text{but} \quad \limsup_{n \to \infty} \rho(f(x_n), f(y_n)) > 0$$

Let  $\varepsilon = \frac{1}{2} \limsup_{n \to \infty} \rho(f(x_n), f(y_n))$ . Then by the definition of the limit and the limit superior (or Proposition 1.121) we conclude that there exist subsequences  $\{x_{n_k}\}_{k=1}^{\infty}$  and  $\{y_{n_k}\}_{k=1}^{\infty}$  such that

$$\rho(f(x_{n_k}), f(y_{n_k})) \ge \limsup_{n \to \infty} \rho(f(x_n), f(y_n)) - \varepsilon = \varepsilon > 0$$

while  $\lim_{k \to \infty} d(x_{n_k}, y_{n_k}) = 0$ , a contradiction.

"⇒" Suppose the contrary that there exists  $\varepsilon > 0$  such that for all  $\delta = \frac{1}{n} > 0$ , there exist two points  $x_n$  and  $y_n \in B$  such that

$$d(x_n, y_n) < \frac{1}{n}$$
 but  $\rho(f(x_n), f(y_n)) \ge \varepsilon$ 

These points form two sequences  $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}$  in B such that  $\lim_{n \to \infty} d(x_n, y_n) = 0$ , while the limit of  $\rho(f(x_n), f(y_n))$ , if exists, does not converges to zero as  $n \to \infty$ . As a consequence, f is not uniformly continuous on B, a contradiction.

**Remark 4.50.** The theorem above provides another way (the blue color part) of defining the uniform continuity of a function over a subset of its domain. Moreover, according to this alternative definition, if  $f : A \to N$  is uniformly continuous on  $B \subseteq A$ , then

$$\forall \varepsilon > 0, \exists \delta > 0 \ni \forall b \in M, f\left(D\left(b, \frac{\delta}{2}\right) \cap B\right) \subseteq D\left(c, \frac{\varepsilon}{2}\right) \text{ for some } c \in N;$$

that is, the diameter of the image, under f, of subsets of B whose diameter is not greater than  $\delta$  is not greater than  $\varepsilon$  (在 B 中直徑不超過  $\delta$  的子集合被函數 f 映過去之後,在對 應域中的直徑不會超過  $\epsilon$ ).

**Remark 4.51.** In terms of the number  $\delta(f, x, \varepsilon)$  defined in Remark 4.9, the uniform continuity of a function  $f: A \to N$  is equivalent to that

$$\delta_f(\varepsilon) \equiv \inf_{x \in A} \delta(f, x, \varepsilon) > 0 \qquad \forall \varepsilon > 0.$$

The function  $\delta_f(\cdot)$  is the inverse of the modulus of continuity of (a uniform continuous) function f.

**Theorem 4.52.** Let (M, d) and  $(N, \rho)$  be metric spaces,  $A \subseteq M$ , and  $f : A \to N$  be a map. If  $K \subseteq A$  is compact and f is continuous on K, then f is uniformly continuous on K.

*Proof.* Let  $\varepsilon > 0$  be given. Since f is continuous on K,

$$\forall a \in K, \exists \delta = \delta(a) > 0 \ni \rho(f(x), f(a)) < \frac{\varepsilon}{2} \text{ whenever } x \in D(a, \delta) \cap A.$$

Then  $\left\{ D\left(a, \frac{\delta(a)}{2}\right) \right\}_{a \in K}$  is an open cover of K; thus

$$\exists \{a_1, \cdots, a_N\} \subseteq K \ni K \subseteq \bigcup_{i=1}^N D\left(a_i, \frac{\delta_i}{2}\right),$$

where  $\delta_i = \delta(a_i)$ . Let  $\delta = \frac{1}{2} \min\{\delta_1, \dots, \delta_N\}$ . Then  $\delta > 0$ , and if  $x_1, x_2 \in K$  and  $d(x_1, x_2) < \delta$ , there must be  $j = 1, \dots, N$  such that  $x_1, x_2 \in B(a_j, \delta_j)$ . In fact, since  $x_1 \in D(a_j, \frac{\delta_j}{2})$  for some  $j = 1, \dots, N$ , then

$$d(x_2, a_j) \le d(x_1, x_2) + d(x_1, a_j) < \delta + \frac{\delta_j}{2} < \delta_j$$

Therefore,  $x_1, x_2 \in D(a_j, \delta_j) \cap A$  for some  $j = 1, \dots, N$ ; thus

$$\rho(f(x_1), f(x_2)) \leq \rho(f(x_1), f(a_j)) + \rho(f(x_2), f(a_j)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Alternative proof. Assume the contrary that f is not uniformly continuous on K. Then ((3) of Remark 4.45 implies that) there are sequences  $\{x_n\}_{n=1}^{\infty}$  and  $\{y_n\}_{n=1}^{\infty}$  in K such that

$$\lim_{n \to \infty} d(x_n, y_n) = 0 \quad \text{but} \quad \lim_{n \to \infty} \rho(f(x_n), f(y_n)) > 0.$$

Since K is (sequentially) compact, there exist convergent subsequences  $\{x_{n_k}\}_{k=1}^{\infty}$  and  $\{y_{n_k}\}_{k=1}^{\infty}$  with limits  $x, y \in K$ . On the other hand,  $\lim_{n \to \infty} d(x_n, y_n) = 0$ , we must have x = y; thus by the continuity of f (on K),

$$0 = \rho(f(x), f(x)) = \lim_{k \to \infty} \rho(f(x_{n_k}), f(y_{n_k})) = \lim_{n \to \infty} \rho(f(x_n), f(y_n)) > 0,$$

a contradiction.

**Lemma 4.53.** Let (M, d) and  $(N, \rho)$  be metric spaces,  $A \subseteq M$ , and  $f : A \to N$  be uniformly continuous. If  $\{x_k\}_{k=1}^{\infty} \subseteq A$  is a Cauchy sequence, so is  $\{f(x_k)\}_{k=1}^{\infty}$ .

*Proof.* Let  $\{x_k\}_{k=1}^{\infty}$  be a Cauchy sequence in (M, d), and  $\varepsilon > 0$  be given. Since  $f : A \to N$  is uniformly continuous,

$$\exists \delta > 0 \ni \rho(f(x), f(y)) < \varepsilon$$
 whenever  $d(x, y) < \delta$  and  $x, y \in A$ .

For this particular  $\delta$ ,  $\exists N > 0 \ni d(x_k, x_\ell) < \delta$  if  $k, \ell \ge N$ . Therefore,

$$\rho(f(x_k), f(x_\ell)) < \varepsilon \text{ if } k, \ell \ge N.$$

**Corollary 4.54.** Let (M,d) and  $(N,\rho)$  be metric spaces,  $A \subseteq M$ , and  $f : A \to N$  be uniformly continuous. If N is complete, then f has a unique extension to a continuous function on  $\overline{A}$ ; that is,  $\exists g : \overline{A} \to N$  such that

- (1) g is uniformly continuous on  $\overline{A}$ ;
- (2) g(x) = f(x) for all  $x \in A$ ;
- (3) if  $h: \overline{A} \to N$  is a continuous map satisfying (1) and (2), then h = g.

Proof. Let  $x \in \overline{A} \setminus A$ . Then  $\exists \{x_k\}_{k=1}^{\infty} \subseteq A$  such that  $x_k \to x$  as  $k \to \infty$ . Since  $\{x_k\}_{k=1}^{\infty}$  is Cauchy, by Lemma 4.53  $\{f(x_k)\}_{k=1}^{\infty}$  is a Cauchy sequence in  $(N, \rho)$ ; thus is convergent. Moreover, if  $\{z_k\}_{k=1}^{\infty} \subseteq A$  is another sequence converging to x, we must have  $d(x_k, z_k) \to 0$  as  $k \to \infty$ ; thus  $\rho(f(x_k), f(z_k)) \to 0$  as  $k \to \infty$ , so the limit of  $\{f(x_k)\}_{k=1}^{\infty}$  and  $\{f(z_k)\}_{k=1}^{\infty}$  must be the same.

Define  $g: \overline{A} \to N$  by

$$g(x) = \begin{cases} f(x) & \text{if } x \in A, \\ \lim_{k \to \infty} f(x_k) & \text{if } x \in \overline{A} \setminus A, \text{ and } \{x_k\}_{k=1}^{\infty} \subseteq A \text{ converging to } x \text{ as } k \to \infty. \end{cases}$$

Then the argument above shows that g is well-defined, and (2), (3) hold.

Let  $\varepsilon > 0$  be given. Since  $f : A \to N$  is uniformly continuous,

$$\exists \, \delta > 0 \ni \rho \big( f(x), f(y) \big) < \frac{\varepsilon}{3} \text{ whenever } d(x, y) < 2\delta \text{ and } x, y \in A.$$

Suppose that  $x, y \in \overline{A}$  such that  $d(x, y) < \delta$ . Let  $\{x_k\}_{k=1}^{\infty}, \{y_k\}_{k=1}^{\infty} \subseteq A$  be sequences converging to x and y, respectively. Then  $\exists N > 0$  such that

$$d(x_k, x) < \frac{\delta}{2}, d(y_k, y) < \frac{\delta}{2} \text{ and } \rho(f(x_k), g(x)) < \frac{\varepsilon}{3}, \rho(f(y_k), g(y)) < \frac{\varepsilon}{3} \quad \forall k \ge N.$$

In particular, due to the triangle inequality,

$$d(x_N, y_N) \leq d(x_N, x) + d(x, y) + d(y, y_N) < \frac{\delta}{2} + \delta + \frac{\delta}{2} = 2\delta$$

thus  $\rho(f(x_N), f(y_N)) < \frac{\varepsilon}{3}$ . As a consequence,

$$\rho(g(x),g(y)) \leq \rho(g(x),f(x_N)) + \rho(f(x_N),f(y_N)) + \rho(f(y_N),f(y)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon . \square$$

## 4.6 Differentiation of Functions of One Variable

**Definition 4.55.** A function  $f:(a,b) \to \mathbb{R}$  is said to be **differentiable at**  $x_0$  if there exists a number m such that

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - m(x - x_0)}{x - x_0} = 0.$$

The (unique) number m is usually denoted by  $f'(x_0)$ , and is called the <u>derivative</u> of f at  $x_0$ .

**Remark 4.56.** The derivative of f at  $x_0$  can be computed by

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

**Remark 4.57.** By the definition of the limit of functions,  $f : (a, b) \to \mathbb{R}$  is differentiable at  $x_0 \in (a, b)$  if and only if there exists  $m \in \mathbb{R}$ , denoted by  $f'(x_0)$ , such that

$$\forall \varepsilon > 0, \exists \delta > 0 \ni \left| f(x) - f(x_0) - f'(x_0)(x - x_0) \right| \leq \varepsilon |x - x_0| \text{ if } |x - x_0| < \delta.$$

**Definition 4.58.** A function  $f : (a, b) \to \mathbb{R}$  is said to be <u>differentiable</u> (on (a, b)) if f is differentiable at each  $x_0 \in (a, b)$ .

**Proposition 4.59.** Suppose that a function  $f : (a, b) \to \mathbb{R}$  is differentiable at  $x_0$ . Then f is continuous at  $x_0$ .

*Proof.* For 
$$x \neq x_0$$
,  $f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0)$ ; thus Proposition 4.15 implies that  
$$\lim_{x \to x_0} \left( f(x) - f(x_0) \right) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0) = f'(x_0) \cdot 0 = 0.$$

**Theorem 4.60.** Suppose that functions  $f, g : (a, b) \to \mathbb{R}$  are differentiable at  $x_0$ , and  $k \in \mathbb{R}$  is a constant. Then

1. 
$$(kf)'(x_0) = kf'(x_0).$$
  
2.  $(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0).$   
3.  $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$ 

4. 
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$$
 if  $g(x_0) \neq 0$ .

**Theorem 4.61** (Chain Rule). Suppose that a function  $f : (a, b) \to \mathbb{R}$  is differentiable at  $x_0$ , and  $g : (c, d) \to \mathbb{R}$  is differentiable at  $y_0 = f(x_0) \in (c, d)$ . Then  $g \circ f$  is differentiable at  $x_0$ , and

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

*Proof.* Let  $\varepsilon > 0$  be given. Since  $f : (a, b) \to \mathbb{R}$  is differentiable at  $x_0$  and  $g : (c, d) \to \mathbb{R}$  is differentiable at  $y_0 = f(x_0)$ ,

$$\exists \, \delta_1 > 0 \ni \left| f(x) - f(x_0) - f'(x_0)(x - x_0) \right| \le \min\left\{ 1, \frac{\varepsilon}{2(1 + |g'(y_0)|)} \right\} |x - x_0| \text{ if } |x - x_0| < \delta_1$$

and

$$\exists \, \delta_2 > 0 \, \ni \, \left| g(y) - g(y_0) - g'(y_0)(y - y_0) \right| \leq \frac{\varepsilon |y - y_0|}{2(1 + |f'(x_0)|)} \text{ if } |y - y_0| < \delta_2 \, .$$

Moreover, by Proposition 4.59 f is continuous at  $x_0$ ; thus

$$\exists \delta_3 > 0 \ni |f(x) - f(x_0)| < \delta_2 \text{ if } |x - x_0| < \delta_3 \text{ and } x \in (a, b)$$

Let  $\delta = \min\{\delta_1, \delta_3\}$ , and denote f(x) by y. Then if  $|x - x_0| < \delta$ , we have  $|y - y_0| < \delta_2$  and

$$\begin{aligned} \left| (g \circ f)(x) - (g \circ f)(x_0) - g'(y_0) f'(x_0)(x - x_0) \right| &= \left| g(y) - g(y_0) - g'(y_0) f'(x_0)(x - x_0) \right| \\ &= \left| g(y) - g(y_0) - g'(y_0)(y - y_0) + g'(y_0)(f(x) - f(x_0) - f'(x_0)(x - x_0)) \right| \\ &\leqslant \frac{\varepsilon |f(x) - f(x_0)|}{2(1 + |f'(x_0)|)} + \left| g'(y_0) \right| \frac{\varepsilon |x - x_0|}{2(1 + |g'(y_0)|)} \\ &\leqslant \frac{\varepsilon}{2(1 + |f'(x_0)|)} \left( |x - x_0| + |f'(x_0)| |x - x_0| \right) + \frac{\varepsilon}{2} |x - x_0| = \varepsilon |x - x_0| \,. \end{aligned}$$

By Remark 4.57,  $g \circ f$  is differentiable at  $x_0$  with derivative  $g'(f(x_0))f'(x_0)$ .

**Proposition 4.62.** If  $f : (a,b) \to \mathbb{R}$  is differentiable at  $x_0 \in (a,b)$  and f attains a local minimum or maximum at  $x_0$ , then  $f'(x_0) = 0$ .

*Proof.* W.L.O.G. we assume that f attains its local minimum at  $x_0$ . Then  $f(x) - f(x_0) \ge 0$  for all  $x \in I$ , where I is an open interval containing  $x_0$ . Therefore,

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

and

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

As a consequence,  $f'(x_0) = 0$ .

**Theorem 4.63** (Rolle). Suppose that a function  $f : [a,b] \to \mathbb{R}$  is continuous, and is differentiable on (a,b). If f(a) = f(b), then  $\exists c \in (a,b)$  such that f'(c) = 0.

*Proof.* By the Extreme Value Theorem, there exists  $x_0$  and  $x_1$  in [a, b] such that

$$f(x_0) = \min f([a, b])$$
 and  $f(x_1) = \max f([a, b])$ 

**Case 1.**  $f(x_0) = f(x_1)$ , then f is constant on [a, b]; thus f'(x) = 0 for all  $x \in (a, b)$ .

**Case 2.** One of  $f(x_0)$  and  $f(x_1)$  is different from f(a). W.L.O.G. we may assume that  $f(x_0) \neq f(a)$ . Then  $x_0 \in (a, b)$ , and f attains its global minimum at  $x_0$ . By Proposition

4.62, 
$$f'(x_0) = 0.$$

**Theorem 4.64** (Cauchy's Mean Value Theorem). Suppose that functions  $f, g : [a, b] \to \mathbb{R}$ are continuous, and  $f, g : (a, b) \to \mathbb{R}$  are differentiable. If  $g(a) \neq g(b)$  and  $g'(x) \neq 0$  for all  $x \in (a, b)$ , then there exists  $c \in (a, b)$  such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \,.$$

*Proof.* Consider the function

$$h(x) \equiv (f(x) - f(a))(g(b) - g(a)) - (f(b) - f(a))(g(x) - g(a)).$$

Then  $h : [a, b] \to \mathbb{R}$  is continuous, and is differentiable on (a, b). Moreover, h(b) = h(a) = 0. By Rolle's theorem, there exists  $c \in (a, b)$  such that

$$h'(c) = f'(c)(g(b) - g(a)) - (f(b) - f(a))g'(c) = 0.$$

**Corollary 4.65** (Mean Value Theorem). Suppose that a function  $f : [a, b] \to \mathbb{R}$  is continuous, and  $f : (a, b) \to \mathbb{R}$  is differentiable. Then there exists  $c \in (a, b)$  such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

*Proof.* Apply the Cauchy Mean Value Theorem for the case that g(x) = x.

**Corollary 4.66.** Suppose that a function  $f : [a, b] \to \mathbb{R}$  is continuous and f'(x) = 0 for all  $x \in (a, b)$ . Then f is constant.

*Proof.* Let  $x \in (a, b)$  be given. By Mean Value Theorem, there exists  $c \in (a, x)$  such that

$$f(x) - f(a) = f'(c)(x - a) = 0.$$

Therefore, f(x) = f(a); thus for all  $x \in (a, b)$ , f(x) = f(a). Now by continuity,  $f(b) = \lim_{x \to b^-} f(x) = f(a)$ .

 $\lim_{x \to b^{-}} f(x) = f(a).$ Corollary 4.67 (L'Hôspital's rule). Let  $f, g: (a, b) \to \mathbb{R}$  be differentiable functions. Suppose that for some  $x_0 \in (a, b), f(x_0) = g(x_0) = 0, g'(x) \neq 0$  for all  $x \neq x_0$ , and the limit  $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$  exists. Then the limit  $\lim_{x \to x_0} \frac{f(x)}{g(x)}$  also exists, and

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

*Proof.* We first note that  $g(x) \neq g(x_0)$  for all  $x \neq x_0$  since if not, the Mean Value Theorem implies that the existence of c in between x and  $x_0$  such that g'(c) = 0 which contradicts to the condition that  $g'(x) \neq 0$  for all  $x \neq x_0$ . By Cauchy's Mean Value Theorem, for all  $x \in (a, b)$  and  $x \neq x_0$ , there exists  $\xi = \xi(x)$  in between x and  $x_0$  such that

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)}$$

Since  $\xi \to x_0$  as  $x \to x_0$ , we have

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{\xi \to x_0} \frac{f'(\xi)}{g'(\xi)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \,.$$

**Theorem 4.68** (Taylor). Suppose that for some  $k \in \mathbb{N}$ ,  $f : (a, b) \to \mathbb{R}$  be (k + 1)-times differentiable and  $c \in (a, b)$ . Then for all  $x \in (a, b)$ , there exists d in between c and x such that

$$f(x) = \sum_{j=0}^{k} \frac{f^{(j)}(c)}{j!} (x-c)^{j} + \frac{f^{(k+1)}(d)}{(k+1)!} (x-c)^{(k+1)},$$

where  $f^{(j)}$  denotes the *j*-th derivative of *f*.

*Proof.* Let  $g(x) = f(x) - \sum_{i=0}^{k} \frac{f^{(j)}(c)}{j!} (x-c)^{j}$ , and  $h(x) = (x-c)^{k+1}$ . Then for  $1 \le j \le k$ ,  $q^{(j)}(c) = h^{(j)}(c) = 0$ :

thus by the Cauchy mean value theorem (Theorem 4.64), there exists  $\xi_1$  in between x and  $c, \xi_2$  in between  $\xi_1$  and  $c, \dots, \xi_{k+1}$  in between  $\xi_k$  and c such that

$$\frac{g(x)}{h(x)} = \frac{g(x) - g(c)}{h(x) - h(c)} = \frac{g'(\xi_1)}{h'(\xi_1)} = \frac{g'(\xi_1) - g'(c)}{h'(\xi_1) - h'(c)} = \frac{g''(\xi_2)}{h''(\xi_2)} = \cdots$$
$$= \frac{g^{(k)}(\xi_k)}{h^{(k)}(\xi_k)} = \frac{g^{(k)}(\xi_k) - g^{(k)}(c)}{h^{(k)}(\xi_k) - h^{(k)}(c)} = \frac{g^{(k+1)}(\xi_{k+1})}{h^{(k+1)}(\xi_k)} = \frac{f^{(k+1)}(\xi_{k+1})}{(k+1)!}.$$

Letting  $d = \xi_{k+1}$  we conclude the theorem.

**Example 4.69.** A function  $f : [a, b] \to \mathbb{R}$  is said to be **Lipschitz continuous** if  $\exists M > 0$ such that

$$|f(x_1) - f(x_2)| \le M |x_1 - x_2|$$
  $\forall x_1, x_2 \in [a, b].$ 

If the derivative of a differentiable function  $f:(a,b)\to\mathbb{R}$  is bounded; that is,  $\exists M>0$  $\exists |f'(x)| \leq M$  for all  $x \in (a, b)$ , then the Mean Value Theorem implies that f is Lipschitz continuous. A Lipschitz continuous function must be uniformly continuous.

**Definition 4.70.** A function  $f: (a, b) \to \mathbb{R}$  is said to be  $\frac{\frac{\text{increasing}}{\text{decreasing}}}{\frac{\text{strictly increasing}}{\text{strictly decreasing}}}$  (on (a, b)) if  $f(x_1) \stackrel{\leq}{<} f(x_2)$  if  $a < x_1 < x_2 < b$ . f is said to be  $\underline{\text{monotone}}$  if f is either increasing increasing

or decreasing on (a, b), and strictly monotone if f is either strictly increasing or strictly decreasing.

**Theorem 4.71.** Suppose that  $f : (a, b) \to \mathbb{R}$  is differentiable.

- 1. f is increasing on (a, b) if and only if  $f'(x) \ge 0$  for all  $x \in (a, b)$ .
- 2. f is decreasing on (a, b) if and only if  $f'(x) \leq 0$  for all  $x \in (a, b)$ .
- 3. If f'(x) > 0 for all  $x \in (a, b)$ , then f is strictly increasing.

4. If f'(x) < 0 for all  $x \in (a, b)$ , then f is strictly decreasing.

**Theorem 4.72** (Inverse Function Theorem). Let  $f : (a,b) \to \mathbb{R}$  be differentiable, and f' be sign-definite; that is, f'(x) > 0 for all  $x \in (a,b)$  or f'(x) < 0 for all  $x \in (a,b)$ . Then  $f : (a,b) \to f((a,b))$  is a bijection, and  $f^{-1}$ , the inverse function of f, is differentiable on f((a,b)), and

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)} \quad \forall x \in (a, b).$$
 (4.6.1)

*Proof.* W.L.O.G. we assume that f'(x) > 0 for all  $x \in (a, b)$ . By Theorem 4.71 f is strictly increasing; thus  $f^{-1}$  exists.

Claim:  $f^{-1}: f((a, b)) \to (a, b)$  is continuous.

Proof of claim: Let  $y_0 = f(x_0) \in f((a, b))$ , and  $\varepsilon > 0$  be given. Then  $f((x_0 - \varepsilon, x_0 + \varepsilon)) = (f(x_0 - \varepsilon), f(x_0 + \varepsilon))$  since f is continuous on (a, b) and  $(x_0 - \varepsilon, x_0 + \varepsilon)$  is connected. Let  $\delta = \min\{f(x_0) - f(x_0 - \varepsilon), f(x_0 + \varepsilon) - f(x_0)\}$ . Then  $\delta > 0$ , and

$$(y_0 - \delta, y_0 + \delta) = (f(x_0) - \delta, f(x_0) + \delta) \subseteq f((x_0 - \varepsilon, x_0 + \varepsilon));$$

thus by the injectivity of f,

$$f^{-1}((y_0 - \delta, y_0 + \delta)) \subseteq f^{-1}(f((x_0 - \varepsilon, x_0 + \varepsilon))) = (x_0 - \varepsilon, x_0 + \varepsilon) = (f^{-1}(y_0) - \varepsilon, f^{-1}(y_0) + \varepsilon)$$

The inclusion above implies that  $f^{-1}$  is continuous at  $y_0$ .

Writing y = f(x) and  $x = f^{-1}(y)$ . Then if  $y_0 = f(x_0) \in f((a, b))$ ,  $f^{-1}(y) - f^{-1}(y_0) \qquad x - x_0$ 

$$\frac{f(y) - f(y_0)}{y - y_0} = \frac{x - x_0}{f(x) - f(x_0)}.$$

Since  $f^{-1}$  is continuous on  $f((a, b)), x \to x_0$  as  $y \to y_0$ ; thus  $\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)}$ 

$$\lim_{y \to y_0} \frac{f'(y) - f'(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$

which implies that  $f^{-1}$  is differentiable at  $y_0$ .

### 4.7 Integration of Functions of One Variable

**Definition 4.73.** Let  $A \subseteq \mathbb{R}$  be a bounded subset. A collection  $\mathcal{P}$  of finitely many points  $\{x_0, x_1, \dots, x_n\}$  is called a **partition** of A if  $\inf A = x_0 < x_1 < \dots < x_{n-1} < x_n = \sup A$ . The **mesh size** of the partition  $\mathcal{P}$ , denoted by  $\|\mathcal{P}\|$ , is defined by

$$\|\mathcal{P}\| = \max \{x_k - x_{k-1} \mid k = 1, \cdots, n\}.$$

**Definition 4.74.** Let  $A \subseteq \mathbb{R}$  be a bounded subset, and  $f : A \to \mathbb{R}$  be a bounded function. For any partition  $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$  of A, the **upper sum** and the **lower sum** of f with respect to the partition  $\mathcal{P}$ , denoted by  $U(f, \mathcal{P})$  and  $L(f, \mathcal{P})$  respectively, are numbers defined by

$$U(f,\mathcal{P}) = \sum_{k=1}^{n} \sup_{x \in [x_{k-1},x_k]} \bar{f}(x)(x_k - x_{k-1}) = \sum_{k=0}^{n-1} \sup_{x \in [x_k,x_{k+1}]} \bar{f}(x)(x_{k+1} - x_k),$$
$$L(f,\mathcal{P}) = \sum_{k=1}^{n} \inf_{x \in [x_{k-1},x_k]} \bar{f}(x)(x_k - x_{k-1}) = \sum_{k=0}^{n-1} \inf_{x \in [x_k,x_{k+1}]} \bar{f}(x)(x_{k+1} - x_k),$$

where  $\overline{f}$  is an extension of f given by

$$\bar{f}(x) = \begin{cases} f(x) & x \in A, \\ 0 & x \notin A. \end{cases}$$
(4.7.1)

The two numbers

$$\overline{\int}_{A} f(x) dx \equiv \inf \left\{ U(f, \mathcal{P}) \, \big| \, \mathcal{P} \text{ is a partition of } A \right\},\$$

and

$$\underline{\int}_{A} f(x) dx \equiv \sup \left\{ L(f, \mathcal{P}) \, \middle| \, \mathcal{P} \text{ is a partition of } A \right\}$$

are called the **<u>upper integral</u>** and **<u>lower integral</u>** of f over A, respective. The function f is said to be <u>**Riemann (Darboux) integrable**</u> (over A) if  $\int_{A}^{-} f(x)dx = \int_{A}^{-} f(x)dx$ , and in this case, we express the upper and lower integral as  $\int_{A}^{-} f(x)dx$ , called the <u>integral</u> of f over A. The upper integral, the lower integral, and the integral of f over [a, b] sometimes are also denoted by  $\int_{a}^{b} f(x)dx$ ,  $\int_{a}^{b} f(x)dx$ , and  $\int_{a}^{b} f(x)dx$ .

**Example 4.75.**  $\int_{a}^{b} f(x) dx$  and  $\overline{\int}_{a}^{b} f(x) dx$  are not always the same. For example, define  $f: [0,1] \to \mathbb{R}$  by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \setminus \mathbb{Q}, \\ 0 & \text{if } x \in [0,1] \cap \mathbb{Q}. \end{cases}$$

Let  $\mathcal{P} = \{0 = x_0 < x_1 < \cdots < x_n = 1\}$  be any partition on [0, 1]. Then for any k =

$$0, 1, \dots, n-1, \sup_{x \in [x_k, x_{k+1}]} f(x) = 1 \text{ and } \inf_{x \in [x_k, x_{k+1}]} f(x) = 0; \text{ thus}$$
$$U(f, \mathcal{P}) = \sum_{k=0}^{n-1} \sup_{x \in [x_k, x_{k+1}]} f(x)(x_k - x_{k-1}) = \sum_{k=0}^n (x_k - x_{k-1})$$
$$= (x_1 - x_0) + (x_2 - x_1) + \dots + (x_n - x_{n-1}) = x_n - x_0 = 1 - 0 = 1$$

and

$$L(f, \mathcal{P}) = \sum_{i=1}^{n} 0(x_i - x_{i-1}) = 0$$

As a consequence,

$$\begin{split} & \overline{\int}_{0}^{1} f(x) dx = \inf \left\{ U(f, \mathcal{P}) \, \middle| \, \mathcal{P} \text{ is a partition on } [0, 1] \right\} = 1 \,, \\ & \underline{\int}_{0}^{1} f(x) dx = \sup \left\{ L(f, \mathcal{P}) \, \middle| \, \mathcal{P} \text{ is a partition on } [0, 1] \right\} = 0 \,; \end{split}$$

**Example 4.76.** Suppose  $f : [a, b] \to \mathbb{R}$  is integrable and  $f \ge 0$  on [a, b], then  $\int_a^b f(x)dx \ge 0$ . Reason: Since  $f \ge 0$  on  $[a, b] \Rightarrow \sup_{x \in [x_k, x_{k+1}]} f(x) \ge 0$  for  $k = 0, 1, \dots, n-1$ . Therefore,  $U(f, \mathcal{P}) \ge 0$  for all partition  $\mathcal{P}$  on [a, b] so  $U(f, \mathcal{P}) \ge 0$  for all partition  $\mathcal{P}$  on [a, b],

$$\int_{a}^{b} f(x)dx = \int_{a}^{\overline{b}} f(x)dx = \inf\{U(f, \mathcal{P}) \mid \mathcal{P} \text{ is a partition on } [a, b]\} \ge 0$$

**Definition 4.77.** A partition  $\mathcal{P}'$  of a bounded set  $A \subseteq \mathbb{R}$  is said to be a **refinement** of another partition  $\mathcal{P}$  if  $\mathcal{P} \subseteq \mathcal{P}'$ .

**Proposition 4.78.** Let  $A \subseteq \mathbb{R}$  be a bounded subset, and  $f : A \to \mathbb{R}$  be a bounded function. If  $\mathcal{P}$  and  $\mathcal{P}'$  are partitions of A and  $\mathcal{P}'$  is a refinement of  $\mathcal{P}$ , then

$$L(f, \mathcal{P}) \leq L(f, \mathcal{P}') \leq U(f, \mathcal{P}') \leq U(f, \mathcal{P}).$$

*Proof.* Let  $\overline{f}$  be the extension of f given by (4.7.1). Suppose that  $\mathcal{P} = \{x_0, x_1, \cdots, x_n\}, \mathcal{P}' =$  $\{y_0, y_1, \cdots, y_m\}$ , and  $\mathcal{P} \subseteq \mathcal{P}'$ . For any fixed  $k = 0, 1, \cdots, n-1$ , either  $\mathcal{P}' \cap (x_k, x_{k+1}) = \emptyset$ or  $\mathcal{P}' \cap (x_k, x_{k+1}) \neq \emptyset$ 

1. If  $\mathcal{P}' \cap (x_k, x_{k+1}) = \emptyset$ , then  $x_k = y_\ell$  and  $x_{k+1} = y_{\ell+1}$  for some  $\ell$ . Therefore,

$$\sup_{x \in [x_k, x_{k+1}]} \bar{f}(x)(x_{k+1} - x_k) = \sup_{x \in [y_\ell, y_{\ell+1}]} \bar{f}(x)(y_{\ell+1} - y_\ell).$$

## 2. If $\mathcal{P}' \cap (x_k, x_{k+1}) = \{y_{\ell+1}, y_{\ell+2}, \cdots, y_{\ell+p}\}$ , then $x_k = y_\ell$ and $x_{k+1} = y_{\ell+p+1}$ . Therefore,

$$\sum_{i=1}^{p+1} \sup_{x \in [y_{\ell+i-1}, y_{\ell+i}]} \overline{f}(x)(y_{\ell+i} - y_{\ell+i-1}) = \sup_{x \in [y_{\ell}, y_{\ell+1}]} \overline{f}(x)(y_{\ell+1} - y_{\ell}) + \sup_{x \in [y_{\ell+1}, y_{\ell+2}]} \overline{f}(x)(y_{\ell+2} - y_{\ell+1}) + \dots + \sup_{x \in [y_{\ell+p}, y_{\ell+p+1}]} \overline{f}(x)(y_{\ell+p+1} - y_{\ell+p}) \leq \sup_{x \in [x_k, x_{k+1}]} \overline{f}(x)(y_{\ell+1} - y_{\ell}) + \sup_{x \in [x_k, x_{k+1}]} \overline{f}(x)(y_{\ell+2} - y_{\ell+1}) + \dots + \sup_{x \in [x_k, x_{k+1}]} \overline{f}(x)(y_{\ell+p+1} - y_{\ell+p}) = \sup_{x \in [x_k, x_{k+1}]} \overline{f}(x)(x_{k+1} - x_k).$$

In either case,

se,  

$$\sum_{[y_{\ell-1},y_{\ell}]\subseteq [x_k,x_{k+1}]} \sup_{x\in [y_{\ell-1},y_{\ell}]} \overline{f}(x)(y_{\ell}-y_{\ell-1}) \leqslant \sup_{x\in [x_k,x_{k+1}]} \overline{f}(x)(x_{k+1}-x_k)$$

As a consequence,

$$U(f, \mathcal{P}') = \sum_{\ell=0}^{m-1} \sup_{x \in [y_{\ell}, y_{\ell+1}]} \bar{f}(x)(y_{\ell+1} - y_{\ell}) = \sum_{k=0}^{m-1} \sum_{[y_{\ell-1}, y_{\ell}] \subseteq [x_k, x_{k+1}]} \bar{f}(x)(y_{\ell} - y_{\ell-1})$$
  
$$\leq \sum_{k=0}^{n-1} \sup_{x \in [x_k, x_{k+1}]} \bar{f}(x)(x_{k+1} - x_k) = U(f, \mathcal{P}).$$

Similarly,  $L(f, \mathcal{P}) \leq L(f, \mathcal{P}')$ ; thus the fact that  $L(f, \mathcal{P}') \leq U(f, \mathcal{P}')$  concludes the proposition.

**Corollary 4.79.** Let  $f : [a, b] \to \mathbb{R}$  be a function bounded by M; that is,  $|f(x)| \leq M$  for all  $a \leq x \leq b$ . Then for all partitions  $\mathcal{P}_1$  and  $\mathcal{P}_2$  of [a, b],

$$-M(b-a) \leq L(f, \mathcal{P}_1) \leq \int_a^b f(x) dx \leq \int_a^b f(x) dx \leq U(f, \mathcal{P}_2) \leq M(b-a).$$

*Proof.* It suffices to show that  $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} f(x) dx$ . By the definition of infimum and supremum, for any given  $\varepsilon > 0$ ,  $\exists$  partitions  $\mathcal{P}$  and  $\mathcal{P}$  such that

$$\underline{\int}_{a}^{b} f(x)dx - \frac{\varepsilon}{2} < L(f, \overline{\mathcal{P}}) \leq \underline{\int}_{a}^{b} f(x)dx \quad \text{and} \quad \overline{\int}_{a}^{b} f(x)dx \leq U(f, \widetilde{\mathcal{P}}) < \overline{\int}_{a}^{b} f(x)dx + \frac{\varepsilon}{2}$$

Let  $\mathcal{P} = \overline{\mathcal{P}} \cup \widetilde{\mathcal{P}}$ . Then  $\mathcal{P}$  is a refinement of both  $\overline{\mathcal{P}}$  and  $\widetilde{\mathcal{P}}$ ; thus

$$\underline{\int}_{a}^{b} f(x)dx - \frac{\varepsilon}{2} < L(f, \overline{\mathcal{P}}) \leq L(f, \mathcal{P}) \leq U(f, \mathcal{P}) \leq U(f, \widetilde{\mathcal{P}}) < \overline{\int}_{a}^{b} f(x)dx + \frac{\varepsilon}{2}.$$

Since  $\varepsilon > 0$  is given arbitrarily, we must have  $\int_{a}^{b} f(x) dx \leq \overline{\int}_{a}^{b} f(x) dx$ .

**Proposition 4.80** (Riemann's condition). Let  $A \subseteq \mathbb{R}$  be a bounded set, and  $f : A \to \mathbb{R}$  be a bounded function. Then f is Riemann integrable over A if and only if

$$\forall \varepsilon > 0, \exists a \text{ partition } \mathcal{P} \text{ of } A \ni U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon$$

*Proof.* " $\Rightarrow$ " Let  $\varepsilon > 0$  be given. Since f is integrable over A,

$$\inf_{\mathcal{P}: \text{ Partition of } A} U(f, \mathcal{P}) = \sup_{\mathcal{P}: \text{ Partition of } A} L(f, \mathcal{P}) = \int_{A} f(x) dx;$$

thus there exist  $\mathcal{P}_1$  and  $\mathcal{P}_2$ , partitions of A, such that

$$\int_{A} f(x)dx - \frac{\varepsilon}{2} < L(f, \mathcal{P}_{1}) \leq \int_{A} f(x)dx \leq U(f, \mathcal{P}_{2}) < \int_{A} f(x)dx + \frac{\varepsilon}{2}$$

Let  $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ . Then  $\mathcal{P}$  is a refinement of  $\mathcal{P}_1$  and  $\mathcal{P}_2$ ; thus

$$\int_{A} f(x)dx - \frac{\varepsilon}{2} < L(f, \mathcal{P}_{1}) \leq L(f, \mathcal{P}) \leq \int_{A} f(x)dx$$
$$\leq U(f, \mathcal{P}) \leq U(f, \mathcal{P}_{2}) < \int_{A} f(x)dx + \frac{\varepsilon}{2}$$

which implies that  $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon$ . " $\Leftarrow$ " We note that for any partition  $\mathcal{P}$  of A,

$$L(f, \mathcal{P}) \leq \int_{A} f(x) dx \leq \overline{\int}_{A} f(x) dx \leq U(f, \mathcal{P});$$

so we have that for all partition  $\mathcal{P}$  of A,

$$\overline{\int}_{A}^{-} f(x)dx - \int_{A}^{-} f(x)dx < U(f, \mathcal{P}) - L(f, \mathcal{P})$$

Let  $\varepsilon > 0$  be given. By choosing  $\mathcal{P}$  so that  $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon$ , we conclude that

$$\bar{\int}_{A} f(x) dx - \int_{A} f(x) dx < \varepsilon.$$

Since  $\varepsilon > 0$  is given arbitrarily,  $\int_A f(x) dx = \int_A f(x) dx$ ; thus f is Riemann integrable over A.

**Proposition 4.81.** Suppose that  $f, g : [a, b] \to \mathbb{R}$  are Riemann integrable, and  $k \in \mathbb{R}$ . Then

- 1. kf is Riemann integrable, and  $\int_{a}^{b} (kf)(x)dx = k \int_{a}^{b} f(x)dx$ .
- 2.  $f \pm g$  are Riemann integrable, and  $\int_{a}^{b} (f \pm g)(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$ .
- 3. If  $f \leq g$  for all  $x \in [a, b]$ , then  $\int_a^b f(x) dx \leq \int_a^b g(x) dx$ .
- 4. If f is also Riemann integrable over [b, c], then f is Riemann integrable over [a, c], and

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx.$$
(4.7.2)

5. The function |f| is also Riemann integrable, and  $\left|\int_{a}^{b} f(x)dx\right| \leq \int_{a}^{b} |f(x)|dx$ .

*Proof.* 1. Case 1.  $k \ge 0$ . We note that

$$\inf_{x \in [x_{i-1}, x_i]} (kf)(x) = k \inf_{x \in [x_{i-1}, x_i]} f(x) \text{ and } \sup_{x \in [x_{i-1}, x_i]} (kf)(x) = k \sup_{x \in [x_{i-1}, x_i]} f(x).$$

Then

$$L(kf, \mathcal{P}) = \sum_{i=1}^{n} \inf_{x \in [x_{i-1}, x_i]} (kf)(x)(x_i - x_{i-1})$$
  

$$= \sum_{i=1}^{n} k \inf_{x \in [x_{i-1}, x_i]} f(x)(x_i - x_{i-1}) = kL(f, \mathcal{P}).$$
  
Similarly,  $U(kf, \mathcal{P}) = kU(f, \mathcal{P})$  for every partition  $\mathcal{P}$ . So  

$$\int_{a}^{b} (kf)(x)dx = \sup_{\mathcal{P}: \text{ Partition of } [a, b]} L(kf, \mathcal{P}) = k \sup_{\mathcal{P}: \text{ Partition of } [a, b]} L(f, \mathcal{P})$$
  

$$= k \int_{a}^{b} f(x)dx = k \int_{a}^{b} f(x)dx.$$
  
Similarly,  $\overline{\int}_{a}^{b} (hf)(x) dx = h \int_{a}^{b} f(x)dx.$ 

Similarly,  $\overline{\int}_{a}^{b}(kf)(x)dx = k \int_{a}^{b} f(x)dx$ . Hence kf is integrable and  $\int_{a}^{b}(kf)(x)dx = \int_{a}^{b}(kf)(x)dx = k \int_{a}^{b} f(x)dx = k \int_{a}^{b} f(x)dx$ . Case 2. k < 0. We have

$$\inf_{x \in [x_{i-1}, x_i]} (kf)(x) = k \sup_{x \in [x_{i-1}, x_i]} f(x) \quad \text{and} \quad \sup_{x \in [x_{i-1}, x_i]} (kf)(x) = k \inf_{x \in [x_{i-1}, x_i]} f(x) \,.$$

Then  $L(kf, \mathcal{P}) = kU(f, \mathcal{P})$  and  $U(kf, \mathcal{P}) = kL(f, \mathcal{P})$ ; thus

$$\int_{a}^{b} (kf)(x)dx = \sup_{\mathcal{P}: \text{ Partition of } [a,b]} L(kf,\mathcal{P}) = \sup_{\mathcal{P}: \text{ Partition of } [a,b]} kU(f,\mathcal{P})$$
$$= k \inf_{\mathcal{P}: \text{ Partition of } [a,b]} U(f,\mathcal{P}) = k \int_{a}^{b} f(x)dx = k \int_{a}^{b} f(x)dx$$

Similarly,  $\overline{\int}_{a}^{b}(kf)(x)dx = k \int_{a}^{b} f(x)dx$ . Hence kf is Riemann integrable over [a, b] and  $\int_{a}^{b} (kf)(x)dx = \int_{a}^{b} (kf)(x)dx = k \int_{a}^{b} f(x)dx = k \int_{a}^{b} f(x)dx$ .

2. We prove the case of summation. For ant partition  $\mathcal{P}$ , we have

$$L(f+g,\mathcal{P}) = \sum_{i=1}^{n} \inf_{x \in [x_{i-1},x_i]} (f+g)(x)(x_i - x_{i-1})$$
  

$$\geq \sum_{i=1}^{n} \inf_{x \in [x_{i-1},x_i]} f(x)(x_i - x_{i-1}) + \sum_{i=1}^{n} \inf_{x \in [x_{i-1},x_i]} g(x)(x_i - x_{i-1})$$
  

$$= L(f,\mathcal{P}) + L(g,\mathcal{P}).$$

Similarly,  $U(f + g, \mathcal{P}) \leq U(f, \mathcal{P}) + U(g, \mathcal{P})$ . Therefore,

$$L(f,\mathcal{P}) + L(g,\mathcal{P}) \leq L(f+g,\mathcal{P}) \leq U(f+g,\mathcal{P}) \leq U(f,\mathcal{P}) + U(g,\mathcal{P}).$$
(4.7.3)

Let  $\varepsilon > 0$  be given. By Proposition 4.80,  $\exists \mathcal{P}_1, \mathcal{P}_2$  partitions of [a, b] such that

$$U(f, \mathcal{P}_1) - L(f, \mathcal{P}_1) < \frac{\varepsilon}{2}$$
 and  $U(g, \mathcal{P}_2) - L(g, \mathcal{P}_2) < \frac{\varepsilon}{2}$ 

Let  $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ . By (4.7.3),

$$\begin{split} U(f+g,\mathcal{P}) - L(f+g,\mathcal{P}) &\leq (U(f,\mathcal{P}) + U(g,\mathcal{P})) - (L(f,\mathcal{P}) + L(g,\mathcal{P})) \\ &= (U(f,\mathcal{P}) - L(f,\mathcal{P})) + (U(g,\mathcal{P}) - L(g,\mathcal{P})) \\ &\leq (U(f,\mathcal{P}_1) - L(f,\mathcal{P}_1)) + (U(g,\mathcal{P}_2) - L(g,\mathcal{P}_2)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \,. \end{split}$$

By Proposition 4.80, f + g is Riemann integrable over [a, b].

To see 
$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
, we note that by Proposition 4.78,  
 $U(f,\mathcal{P}) \leq L(f,\mathcal{P}) + U(f,\mathcal{P}_{1}) - L(f,\mathcal{P}_{1}) < L(f,\mathcal{P}) + \frac{\varepsilon}{2}$   
 $\leq \int_{a}^{b} f(x)dx + \frac{\varepsilon}{2} = \int_{a}^{b} f(x)dx + \frac{\varepsilon}{2}$   
and similarly,  $U(g,\mathcal{P}) < \int_{a}^{b} g(x)dx + \frac{\varepsilon}{2}$ . Therefore, by (4.7.3),

$$\int_{a}^{b} (f+g)(x)dx = \overline{\int}_{a}^{b} (f+g)(x)dx \leq U(f+g,\mathcal{P})$$
$$\leq U(f,\mathcal{P}) + U(g,\mathcal{P}) < \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx + \varepsilon.$$
(4.7.4)

On the other hand,

$$L(f,\mathcal{P}) > U(f,\mathcal{P}) - \frac{\varepsilon}{2} \ge \int_{a}^{b} f(x)dx - \frac{\varepsilon}{2}$$

and

$$L(g, \mathcal{P}) > U(g, \mathcal{P}) - \frac{\varepsilon}{2} \ge \int_{a}^{b} g(x) dx - \frac{\varepsilon}{2};$$

hence by (4.7.3),

$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} (f+g)(x)dx \ge L(f+g,\mathcal{P}) \ge L(f,\mathcal{P}) + L(g,\mathcal{P})$$
$$> \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx - \varepsilon.$$
(4.7.5)

By (4.7.4) and (4.7.5),

$$\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx - \varepsilon < \int_{a}^{b} (f+g)(x)dx < \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx + \varepsilon.$$

Since  $\varepsilon > 0$  is arbitrary,  $\int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$ .

3. Let  $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}$  be a partition of [a, b]. Define

$$m_i(f) = \inf_{x \in [x_{i-1}, x_i]} f(x)$$
 and  $m_i(g) = \inf_{x \in [x_{i-1}, x_i]} g(x)$ .

Since  $f(x) \leq g(x)$  on  $[a, b], m_i(f) \leq m_i(g)$ . As a consequence, for any partition  $\mathcal{P}$ ,

$$L(f, \mathcal{P}) = \sum_{i=1}^{n} m_i(f)(x_i - x_{i-1}) \leq \sum_{i=1}^{n} m_i(g)(x_i - x_{i-1}) = L(g, \mathcal{P});$$

thus taking the infimum over all partition  $\mathcal{P}$ ,

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx = \sup_{\mathcal{P}} L(f,\mathcal{P}) \leqslant \sup_{\mathcal{P}} L(g,\mathcal{P}) = \int_{a}^{b} g(x)dx = \int_{a}^{b} g(x)dx.$$

4. Let  $\varepsilon > 0$  be given. Since f is Riemann integrable of [a, b] and [b, c], there exist a partition  $\mathcal{P}_1$  over [a, b] and a partition  $\mathcal{P}_2$  of [b, c] such that

$$U(f, \mathcal{P}_1) - L(f, \mathcal{P}_1) < \frac{\varepsilon}{2}$$
 and  $U(f, \mathcal{P}_2) - L(f, \mathcal{P}_2) < \frac{\varepsilon}{2}$ 

Let  $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ . Then  $\mathcal{P}$  is a partition of [a, c] such that

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) = U(f,\mathcal{P}_1) + U(f,\mathcal{P}_2) - L(f,\mathcal{P}_1) - L(f,\mathcal{P}_2) < \varepsilon.$$

Therefore, Proposition 4.80 implies that f is Riemann integrable over [a, c].

Now we show that  $\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$ . To simplify the notation, we let

$$A = \int_{a}^{c} f(x)dx, \quad B = \int_{a}^{b} f(x)dx, \quad C = \int_{b}^{c} f(x)dx.$$

$$U(f, \mathcal{P}') = U(f, \mathcal{P}_1) + U(f, \mathcal{P}_2),$$

Let  $\varepsilon > 0$  be given. Then  $\exists$  partition  $\mathcal{P} = \{x_0, x_1, \cdots, x_n\}$  of [a, c] such that  $A \leq U(f, \mathcal{P}) < A + \varepsilon$ . Let  $\mathcal{P}' = \mathcal{P} \cup \{b\}$ . Then  $\mathcal{P}'$  is a refinement of  $\mathcal{P}$ . Moreover,  $U(f, \mathcal{P}') = U(f, \mathcal{P}_1) + U(f, \mathcal{P}_2)$ , where  $\mathcal{P}_1 = \mathcal{P}' \cap [a, b]$  and  $\mathcal{P}_2 = \mathcal{P}' \cap [b, c]$  are partitions of [a, b] and [b, c] whose union is  $\mathcal{P}$ . Therefore. is  $\mathcal{P}$ . Therefore,

$$B + C \leq U(f, \mathcal{P}_1) + U(f, \mathcal{P}_2) = U(f, \mathcal{P}') \leq U(f, \mathcal{P}) < A + \varepsilon$$

On the other hand,  $\exists$  partition  $\mathcal{P}_1$  of [a, b] and partition  $\mathcal{P}_2$  of [b, c] such that

$$B \leq U(f, \mathcal{P}_1) < B + \frac{\varepsilon}{2}$$
 and  $C \leq U(f, \mathcal{P}_2) < C + \frac{\varepsilon}{2}$ .

Let  $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ . Then  $\mathcal{P}$  is a partition of [a, c]. Therefore,

$$A \leq U(f, \mathcal{P}) = U(f, \mathcal{P}_1) + U(f, \mathcal{P}_2) < B + C + \varepsilon$$

Therefore,  $\forall \varepsilon > 0$ ,  $B + C < A + \varepsilon$  and  $A < B + C + \varepsilon$ ; thus A = B + C.

5. Note that for any interval  $[\alpha, \beta]$ ,

$$\sup_{x \in [\alpha,\beta]} |f(x)| - \inf_{x \in [\alpha,\beta]} |f(x)| \leq \sup_{x \in [\alpha,\beta]} f(x) - \inf_{x \in [\alpha,\beta]} f(x); \quad (\mathbf{Check!})$$

thus for any partition  $\mathcal{P}$  of [a, b],

$$U(|f|, \mathcal{P}) - L(|f|, \mathcal{P}) \leq U(f, \mathcal{P}) - L(f, \mathcal{P})$$

Therefore, Proposition 4.80 implies that |f| is Riemann integrable over [a, b]. Moreover, since  $-|f(x)| \leq f(x) \leq |f(x)|$  for all  $x \in [a, b]$ , by 3 we have

$$-\int_{a}^{b} |f(x)| dx \leq \int_{a}^{b} f(x) dx \leq \int_{a}^{b} |f(x)| dx.$$

**Remark 4.82.** The proof of 4 in Proposition 4.81 in fact also shows that if a < b < c, then

$$\overline{\int}_{a}^{c} f(x)dx = \overline{\int}_{a}^{b} f(x)dx + \overline{\int}_{b}^{c} f(x)dx.$$

Similar proof also implies that

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx.$$

**Remark 4.83.** If a < b, we let the number  $\int_{b}^{a} f(x)dx$  denote the number  $-\int_{a}^{b} f(x)dx$ . Then (4.7.2) holds for all  $a, b, c \in \mathbb{R}$ . **Example 4.84.** Let  $f : [0,1] \to \mathbb{R}$  be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ -1 & \text{if } x \in \mathbb{Q}^{\complement}. \end{cases}$$

Then f(x) is not Riemann integrable over [0,1] since U(f,P) = 1 and L(f,P) = -1. However  $|f(x)| \equiv 1$ , thus |f| is Riemann integrable. In other words, if |f| is integrable, we cannot know whether f is integrable or not.

**Theorem 4.85.** If  $f : [a, b] \to \mathbb{R}$  is continuous, then f is Riemann integrable.

*Proof.* Let  $\varepsilon > 0$  be given. Theorem 4.52 implies that

$$\exists \, \delta > 0 \; \ni \left| f(x) - f(y) \right| < \frac{\varepsilon}{2(b-a)} \text{ whenever } \left| x - y \right| < \delta \text{ and } x, y \in [a,b] \, .$$

Let  $\mathcal{P}$  be a partition with mesh size less than  $\delta$ . Then

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) = \sum_{k=1}^{n} \left( \sup_{x \in [x_{k-1}, x_k]} f(x) - \inf_{x \in [x_{k-1}, x_k]} f(x) \right) (x_k - x_{k-1})$$
  
$$\leq \frac{\varepsilon}{2(b-a)} \sum_{k=1}^{n} (x_k - x_{k-1}) = \frac{\varepsilon}{2(b-a)} (x_n - x_0) < \varepsilon;$$

thus by Proposition 4.80 f is Riemann integrable over [a, b].

**Corollary 4.86.** If  $f : (a,b) \to \mathbb{R}$  is continuous and f is bounded on [a,b], then f is Riemann integrable over [a,b].

*Proof.* Let  $|f(x)| \leq M$  for all  $x \in [a, b]$ , and  $\varepsilon > 0$  be given. Since  $f : \left[a + \frac{\varepsilon}{8M}, b - \frac{\varepsilon}{8M}\right] \to \mathbb{R}$  is continuous, by Theorem 4.85 f is Riemann integrable; thus

$$\exists \mathcal{P}': \text{ partition of } \left[a + \frac{\varepsilon}{8M}, b - \frac{\varepsilon}{8M}\right] \ni U(f, \mathcal{P}') - L(f, \mathcal{P}') < \frac{\varepsilon}{2}$$

Let  $\mathcal{P} = \mathcal{P}' \cup \{a, b\}$ . Then

$$\begin{split} U(f,\mathcal{P}) &- L(f,\mathcal{P}) \\ &< \big(\sup_{x \in [a,a+\frac{\varepsilon}{8M}]} f(x) - \inf_{x \in [a,a+\frac{\varepsilon}{8M}]} f(x)\big) \frac{\varepsilon}{8M} + \frac{\varepsilon}{2} + \big(\sup_{x \in [b-\frac{\varepsilon}{8M},b]} f(x) - \inf_{x \in [b-\frac{\varepsilon}{8M},b]} f(x)\big) \frac{\varepsilon}{8M} \\ &\leqslant 2M \cdot \frac{\varepsilon}{8M} + \frac{\varepsilon}{2} + 2M \cdot \frac{\varepsilon}{8M} = \varepsilon \,; \end{split}$$

thus Proposition 4.80 implies that f is Riemann integrable over [a, b].

**Corollary 4.87.** If  $f : [a,b] \to \mathbb{R}$  is bounded and is continuous at all but finitely many points of [a,b], then f is Riemann integrable.

*Proof.* Let  $\{c_1, \dots, c_N\}$  be the collection of all discontinuities of f in (a, b) such that  $c_1 < c_2 < \dots < c_N$ . Let  $a = c_0$  and  $b = c_{N+1}$ . Then for all  $k = 0, 1, \dots, N$ ,  $f : (c_k, c_{k+1})$  is continuous and  $f : [c_k, c_{k+1}]$  is bounded; thus f is Riemann integrable by Corollary 4.87. Finally, 4 of Proposition 4.81 implies that f is Riemann integrable over [a, b].

**Theorem 4.88.** Any increasing or decreasing function on [a, b] is Riemann integrable.

*Proof.* Let  $f : [a, b] \to \mathbb{R}$  be a monotone function, and  $\varepsilon > 0$  be given. W.L.O.G. we may assume that  $f(b) \neq f(a)$ . Let  $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$  be a partition of [a, b] with mesh size

less than  $\frac{\varepsilon}{|f(b) - f(a)|}$ . Then

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) = \sum_{k=1}^{n} \left( \sup_{x \in [x_{k-1},x_k]} f(x) - \inf_{x \in [x_{k-1},x_k]} f(x) \right) (x_k - x_{k-1})$$
  
$$< \sum_{k=1}^{n} \left| f(x_k) - f(x_{k-1}) \right| \frac{\varepsilon}{|f(b) - f(a)|} = |f(b) - f(a)| \frac{\varepsilon}{|f(b) - f(a)|} = \varepsilon;$$

thus Proposition 4.80 implies that f is Riemann integrable over [a, b].

**Definition 4.89.** A continuous function  $F : [a,b] \to \mathbb{R}$  is called an **anti-derivative** (反導函數) of  $f : [a,b] \to \mathbb{R}$  if F is differentiable on (a,b) and F'(x) = f(x) for all  $x \in (a,b)$ .

**Theorem 4.90** (Fundamental Theorem of Calculus (微積分基本定理)). Let  $f : [a, b] \rightarrow \mathbb{R}$  be continuous. Then f has an anti-derivative F, and

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Moreover, if G is any other anti-derivative of f, we also have  $\int_a^b f(x)dx = G(b) - G(a)$ .

*Proof.* Define  $F(x) = \int_{a}^{x} f(y) dy$ , where the integral of f over [a, x] is well-defined because of continuity of f on [a, x]. We first show that F is differentiable on (a, b).

Let  $x_0 \in (a, b)$  and  $\varepsilon > 0$  be given. Since [a, b] is compact,

$$\exists \, \delta_1 > 0 \ni \left| f(x) - f(y) \right| < \frac{\varepsilon}{2} \text{ whenever } |x - y| < \delta_1 \text{ and } x, y \in [a, b].$$

Let  $\delta = \min\{\delta_1, x_0 - a, b - x_0\}$ . By 4 of Proposition 4.81, if  $x, x_0 \in (a, b)$ ,  $\int_{-\infty}^{x} f(a) da = \int_{-\infty}^{x} f(a) da = \int_{-\infty}^{x_0} f(a) da = E(x) - E(x)$ .

$$\int_{x_0}^x f(y)dy = \int_a^x f(y)dy - \int_a^{x_0} f(y)dy = F(x) - F(x_0);$$

thus if  $0 < |x - x_0| < \delta$ ,

$$\begin{aligned} \left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| &= \left| \frac{1}{x - x_0} \int_{x_0}^x f(y) dx - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x \left( f(y) - f(x_0) \right) dy \right| \\ &\leqslant \frac{1}{|x - x_0|} \int_{\min\{x_0, x\}}^{\max\{x_0, x\}} |f(y) - f(x_0)| dy \leqslant \frac{1}{|x - x_0|} \int_{\min\{x_0, x\}}^{\max\{x_0, x\}} \frac{\varepsilon}{2} dy < \varepsilon \,. \end{aligned}$$

Therefore,  $\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$  for all  $x_0 \in (a, b)$ , so F'(x) = f(x) for all  $x \in (a, b)$ .

Next we show that F is continuous at x = a and x = b. This is simply because of the boundedness of f on [a, b] which implies that

$$\limsup_{x \to a^+} \left| F(x) - F(a) \right| = \limsup_{x \to a^+} \left| \int_a^x f(t) dt \right| \le \max_{x \in [a,b]} \left| f(x) \right| \cdot \limsup_{x \to a^+} \int_a^x 1 dt = 0$$

and

$$\limsup_{x \to b^-} \left| F(x) - F(b) \right| = \limsup_{x \to b^-} \left| \int_x^b f(t) dt \right| \le \max_{x \in [a,b]} \left| f(x) \right| \cdot \limsup_{x \to b^-} \int_x^b 1 dt = 0$$

Therefore, F is an anti-derivative of f.

Now suppose that G is another anti-derivative of f. Then (G - F)'(x) = 0 for all  $x \in (a, b)$ . By Corollary 4.66, (G - F)(x) = (G - F)(a) for all  $x \in [a, b]$ ; thus G(b) - G(a) = (G - F)(a)F(b) - F(a).

**Example 4.91.** If f is only integrable but not continuous, then the function

$$F(x) = \int_{a}^{x} f(t)dt$$

is not necessarily differentiable. For example, consider

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1, \\ 1 & \text{if } 1 < x \le 2. \end{cases}$$
$$F(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1, \\ x - 1 & \text{if } 1 \le x \le 2. \end{cases}$$

Then

so F is continuous on 
$$[0, 2]$$
 but not differentiable at  $x = 1$ .

**Theorem 4.92.** Let  $f : [a,b] \to \mathbb{R}$  be differentiable. If f' is Riemann integrable over [a,b], then  $\int_a^b f'(x)dx = f(b) - f(a)$ .

*Proof.* Let  $\mathcal{P} = \{x_0, x_1, \cdots, x_n\}$  be a partition of [a, b]. Since  $f : [a, b] \to \mathbb{R}$  is differentiable, by the Mean Value Theorem there exists  $\{\xi_1, \dots, \xi_n\}$  with the property that  $x_k < \xi_{k+1} < \xi_{k+1}$  $x_{k+1}$  for all  $k = 0, 1 \cdots, n-1$  such that

$$f'(\xi_{k+1})(x_{k+1}-x_k) = f(x_{k+1}) - f(x_k) \qquad \forall k = 0, 1, \cdots, n-1.$$

Therefore,

$$\sum_{k=0}^{n-1} \inf_{x \in [x_k, x_{k+1}]} f'(x)(x_{k+1} - x_k) \leq \sum_{k=0}^{n-1} f'(\xi_{k+1})(x_{k+1} - x_k) \leq \sum_{k=0}^{n-1} \sup_{x \in [x_k, x_{k+1}]} f'(x)(x_{k+1} - x_k).$$

Since  $\sum_{k=0}^{n-1} f'(\xi_{k+1})(x_{k+1} - x_k) = \sum_{k=0}^{n-1} (f(x_{k+1}) - f(x_k)) = f(b) - f(a)$ , the inequality above implies that

$$L(f', \mathcal{P}) \leq f(b) - f(a) \leq U(f', \mathcal{P})$$
 for all partitions  $\mathcal{P}$  of  $[a, b]$ ;

thus by the definition of the upper and the lower integrals,

$$\int_{a}^{b} f'(x)dx \leqslant f(b) - f(a) \leqslant \int_{a}^{b} f'(x)dx.$$

We then conclude the theorem by the identity

$$\underline{\int}_{a}^{b} f'(x) dx = \overline{\int}_{a}^{b} f'(x) dx = \int_{a}^{b} f'(x) dx$$

since f' is Riemann integrable.

**Definition 4.93.** Let  $\mathcal{P} = \{x_0, x_1, \cdots, x_n\}$  be a partition of a bounded set  $A \subseteq \mathbb{R}$ . A collection of points  $\{\xi_1, \dots, \xi_n\}$  is called a **<u>sample set</u>** for the partition  $\mathcal{P}$  if  $\xi_k \in [x_{k-1}, x_k]$ for all  $k = 1, \cdots, n$ .

Let  $f: A \to \mathbb{R}$  be a bounded function with extension  $\overline{f}$  given by (4.7.1). A **Riemann** sum of f for the partition  $\mathcal{P} = \{a = x_0 < x_1 < \dots < x_n = b\}$  of A is a sum which takes the form form

$$\sum_{k=0}^{n-1} \bar{f}(\xi_k) (x_{k+1} - x_k)$$

where the set  $\Xi = \{\xi_0, \xi_1, \cdots, \xi_{n-1}\}$  is a sample set for  $\mathcal{P}$ .

**Theorem 4.94** (Darboux). Let  $f : A \to \mathbb{R}$  be a bounded function with extension  $\overline{f}$  given by (4.7.1). Then f is Riemann integrable over A if and only if there exists  $I \in \mathbb{R}$  such that for every given  $\varepsilon > 0$ , there exists  $\delta > 0$  such that if  $\mathcal{P}$  is a partition of A satisfying  $\|\mathcal{P}\| < \delta$ , then any Riemann sum of f for the partition  $\mathcal{P}$  lies in the interval  $(I - \varepsilon, I + \varepsilon)$ . In other words, f is Riemann integrable over A if and only if for every given  $\varepsilon > 0$ , there exists  $\delta > 0$ such that there exists  $I \in \mathbb{R}$  such that

$$\sum_{k=0}^{n-1} \bar{f}(\xi_{k+1})(x_{k+1} - x_k) - \mathbf{I} \Big| < \varepsilon$$
(4.7.6)

whenever  $\mathcal{P} = \{x_0, x_1, \cdots, x_n\}$  is a partition of A satisfying  $\|\mathcal{P}\| < \delta$  and  $\{\xi_1, \xi_2, \cdots, \xi_N\}$  is a sample set for  $\mathcal{P}$ .

*Proof.* " $\Leftarrow$ " Suppose the right-hand side statement is true. Let  $\varepsilon > 0$  be given. Then there exists  $\delta > 0$  such that if  $\mathcal{P}$  is a partition of A satisfying  $\|\mathcal{P}\| < \delta$ , then for all sets of sample points  $\{\xi_1, \dots, \xi_n\}$  with respect to  $\mathcal{P}$ , we must have

$$\left|\sum_{k=0}^{n-1} \bar{f}(\xi_{k+1})(x_{k+1} - x_k) - \mathbf{I}\right| < \frac{\varepsilon}{4}$$

Let  $\mathcal{P} = \{x_0, x_1, \cdots, x_n\}$  be a partition of A with  $\|\mathcal{P}\| < \delta$ . Choose sets of sample points  $\{\xi_1, \dots, \xi_n\}$  and  $\{\eta_1, \dots, \eta_n\}$  with respect to  $\mathcal{P}$  such that

(a) 
$$\sup_{x \in [x_k, x_{k+1}]} \overline{f}(x) - \frac{\varepsilon}{4(x_n - x_0)} < \overline{f}(\xi_{k+1}) \leq \sup_{x \in [x_k, x_{k+1}]} \overline{f}(x);$$
  
(b) 
$$\inf_{x \in [x_k, x_{k+1}]} \overline{f}(x) + \frac{\varepsilon}{4(x_n - x_0)} > \overline{f}(\eta_{k+1}) \geq \inf_{x \in [x_k, x_{k+1}]} \overline{f}(x).$$
  
Then  

$$n-1$$

Then

$$U(f,\mathcal{P}) = \sum_{k=0}^{n-1} \sup_{x \in [x_k, x_{k+1}]} \bar{f}(x)(x_{k+1} - x_k) < \sum_{k=0}^{n-1} \left[\bar{f}(\xi_{k+1}) + \frac{\varepsilon}{4(x_n - x_0)}\right](x_{k+1} - x_k)$$
$$= \sum_{k=0}^{n-1} \bar{f}(\xi_{k+1})(x_{k+1} - x_k) + \frac{\varepsilon}{4(x_n - x_0)} \sum_{k=0}^{n-1} (x_{k+1} - x_k) < \mathbf{I} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \mathbf{I} + \frac{\varepsilon}{2}$$

and

$$L(f,\mathcal{P}) = \sum_{k=0}^{n-1} \inf_{x \in [x_k, x_{k+1}]} \bar{f}(x)(x_{k+1} - x_k) > \sum_{k=0}^{n-1} \left[ \bar{f}(\eta_{k+1}) - \frac{\varepsilon}{4(x_n - x_0)} \right] (x_{k+1} - x_k)$$
  
=  $\sum_{k=0}^{n-1} \bar{f}(\eta_{k+1})(x_{k+1} - x_k) - \frac{\varepsilon}{4(x_n - x_0)} \sum_{k=0}^{n-1} (x_{k+1} - x_k) > I - \frac{\varepsilon}{4} - \frac{\varepsilon}{4} = I - \frac{\varepsilon}{2}.$   
As a consequence,  $I - \frac{\varepsilon}{2} < L(f, \mathcal{P}) \le U(f, \mathcal{P}) < I + \frac{\varepsilon}{2};$  thus  $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon.$ 

" $\Rightarrow$ " Let  $\varepsilon > 0$  be given, and  $I = \int_A \overline{f}(x) dx$ . Since f is Riemann integrable over A, there exists a partition  $\mathcal{P}_1 = \{y_0, y_1, \cdots, y_m\}$  of A such that  $U(f, \mathcal{P}_1) - L(f, \mathcal{P}_1) < \frac{\varepsilon}{2}$ . Define

$$\delta = \min\left\{ |y_1 - y_0|, |y_2 - y_1|, \cdots, |y_m - y_{m-1}|, \frac{\varepsilon}{4m(\sup f(A) - \inf f(A) + 1)} \right\}.$$

If  $\mathcal{P} = \{x_0, x_1, \cdots, x_n\}$  is a partition of A with  $\|\mathcal{P}\| < \delta$ , then at most 2m intervals of the form  $[x_k, x_{k+1}]$  contains one of these  $y_j$ 's, and each such interval  $[x_k, x_{k+1}]$  can only contain one of these  $y_j$ 's. Let  $\mathcal{P}' = \mathcal{P} \cup \mathcal{P}_1$ .

 $\label{eq:Claim:} Claim: \, U(f,\mathcal{P}) - U(f,\mathcal{P}') < \frac{\varepsilon}{2}.$ 

Proof of claim: We note that m 1

$$U(f,\mathcal{P}) = \sum_{k=0}^{n-1} \sup_{x \in [x_k, x_{k+1}]} \bar{f}(x)(x_{k+1} - x_k)$$
  
= 
$$\sum_{\substack{0 \le k \le n-1 \text{ with} \\ \mathcal{P}_1 \cap [x_k, x_{k+1}] = \emptyset}} \sup_{x \in [x_k, x_{k+1}]} \bar{f}(x)(x_{k+1} - x_k) + \sum_{\substack{0 \le k \le n-1 \text{ with} \\ \mathcal{P}_1 \cap [x_k, x_{k+1}] \neq \emptyset}} \sup_{x \in [x_k, x_{k+1}]} \bar{f}(x)(x_{k+1} - x_k)$$

and

$$U(f, \mathcal{P}') = \sum_{\substack{0 \le k \le n-1 \text{ with} \\ \mathcal{P}_1 \cap [x_k, x_{k+1}] = \emptyset}} \sup_{x \in [x_k, x_{k+1}]} \overline{f}(x)(x_{k+1} - x_k) + \sum_{\substack{0 \le k \le n-1 \text{ with} \\ \mathcal{P}_1 \cap [x_k, x_{k+1}] = y_j}} \left[ \sup_{x \in [x_k, y_j]} \overline{f}(x)(y_j - x_k) + \sup_{x \in [y_j, x_{k+1}]} \overline{f}(x)(x_{k+1} - y_j) \right].$$

Therefore,

$$U(f, \mathcal{P}) - U(f, \mathcal{P}') \leq \left(\sup f(A) - \inf f(A)\right) \sum_{\substack{0 \leq k \leq n-1 \text{ with} \\ \mathcal{P}_1 \cap [x_k, x_{k+1}] \neq \emptyset}} (x_{k+1} - x_k)$$
$$< 2m \left(\sup f(A) - \inf f(A)\right) \delta \leq \frac{\varepsilon}{2}.$$

On the other hand, the inequality  $U(f, \mathcal{P}_1) - L(f, \mathcal{P}_1) < \frac{\varepsilon}{2}$  implies that  $U(f, \mathcal{P}_1) - \mathbf{I} < \frac{\varepsilon}{2}.$ 

$$U(f, \mathcal{P}_1) - \mathbf{I} < \frac{\varepsilon}{2}$$

As a consequence,

$$U(f, \mathcal{P}) - \mathbf{I} \leq U(f, \mathcal{P}) - \mathbf{I} + U(f, \mathcal{P}_1) - U(f, \mathcal{P}') < \varepsilon$$

Therefore, for any sample set  $\{\xi_1, \dots, \xi_n\}$  with respect to  $\mathcal{P}$ ,

$$\sum_{k=0}^{n-1} \bar{f}(\xi_{k+1})(x_{k+1} - x_k) \leq U(f, \mathcal{P}) < \mathbf{I} + \varepsilon$$

Similar argument can be used to show that

$$\sum_{k=0}^{n-1} \bar{f}(\xi_{k+1})(x_{k+1}-x_k) \ge L(f,\mathcal{P}) > \mathbf{I} - \varepsilon;$$

thus (4.7.6) is established.

**Theorem 4.95** (Change of Variable Formula). Let  $g : [a,b] \to \mathbb{R}$  be a one-to-one continuously differentiable function, and  $f : g([a,b]) \to \mathbb{R}$  be Riemann integrable. Then  $(f \circ g)g'$  is also Riemann integrable, and

$$\int_{g([a,b])} f(y) \, dy = \int_a^b f(g(x)) |g'(x)| \, dx \, .$$

*Proof.* We only prove the case that f is continuous on g([a, b]), and the general case is covered by Theorem 8.65 (which will be proved in detail).

W.L.O.G. we can assume that  $g'(x) \ge 0$  for all  $x \in [a, b]$  so that g([a, b]) = [g(a), g(b)]. Let F be an anti-derivative of f. Then F is differentiable, and the chain rule implies that

$$\frac{d}{dx}(F \circ g)(x) = (F' \circ g)(x)g'(x) = (f \circ g)(x)g'(x).$$

Therefore, the fundamental theorem of Calculus implies that

$$\int_{g([a,b])} f(y) dy = \int_{g(a)}^{g(b)} f(y) dy = F(g(b)) - F(g(a)) = \int_{a}^{b} \frac{d}{dx} (F \circ g)(x) dx$$
$$= \int_{a}^{b} (f \circ g)(x) g'(x) dx.$$

# 4.8 Exercises

### §4.1 Continuity

Started from this section, for all  $n \in \mathbb{N} \mathbb{R}^n$  always denotes the normed space  $(\mathbb{R}^n, \|\cdot\|_2)$ .

Problem 4.1. Use whatever methods you know to find the following limits:

1. 
$$\lim_{x \to 0^{+}} (1 + \sin 2x)^{\frac{1}{x}};$$
  
3. 
$$\lim_{x \to 1} (2 - x)^{\sec \frac{\pi x}{2}};$$
  
5. 
$$\lim_{x \to \infty} x \left( e^{-1} - \left(\frac{x}{x+1}\right)^{x} \right);$$
  
6. 
$$\lim_{x \to \infty} \left( \frac{a^{x} - 1}{x(a-1)} \right)^{\frac{1}{x}}, \text{ where } a > 0 \text{ and } a \neq 1.$$

Problem 4.2. Complete the following.

1. Find a function  $f : \mathbb{R}^2 \to \mathbb{R}$  such that

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) \quad \text{and} \quad \lim_{y \to 0} \lim_{x \to 0} f(x, y)$$

exist but are not equal.

- 2. Find a function  $f : \mathbb{R}^2 \to \mathbb{R}$  such that the two limits above exist and are equal but f is not continuous.
- 3. Find a function  $f : \mathbb{R}^2 \to \mathbb{R}$  that is continuous on every line through the origin but is not continuous.

Problem 4.3. Complete the following.

- 1. Show that the projection map  $f: \begin{array}{c} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto x \end{array}$  is continuous.
- 2. Show that if  $\mathcal{U} \subseteq \mathbb{R}$  is open, then  $A = \{(x, y) \in \mathbb{R}^2 \mid x \in \mathcal{U}\}$  is open.
- 3. Give an example of a continuous function  $f : \mathbb{R} \to \mathbb{R}$  and an open set  $\mathcal{U} \subseteq \mathbb{R}$  such that  $f(\mathcal{U})$  is not open.

**Problem 4.4.** Show that  $f : A \to \mathbb{R}^m$ , where  $A \subseteq \mathbb{R}^n$ , is continuous if and only if for every  $B \subseteq A$ ,

$$f(\operatorname{cl}(B) \cap A) \subseteq \operatorname{cl}(f(B)).$$

**Problem 4.5.** Let  $\|\cdot\|$  be a norm on  $\mathbb{R}^n$ , and  $f: \mathbb{R}^n \to \mathbb{R}$  be defined by  $f(x) = \|x\|$ . Show that f is continuous on  $(\mathbb{R}^n, \|\cdot\|_2)$ .

**Hint**: Show that  $|f(x) - f(y)| \leq C ||x - y||_2$  for some fixed constant C > 0.

**Problem 4.6.** Let  $T : \mathbb{R}^n \to \mathbb{R}^m$  satisfy T(x+y) = T(x) + T(y) for all  $x, y \in \mathbb{R}^n$ .

- 1. Show that T(rx) = rT(x) for all  $r \in \mathbb{Q}$  and  $x \in \mathbb{R}^n$ .
- 2. Suppose that T is continuous on  $\mathbb{R}^n$ . Show that T is linear; that is, T(cx + y) = cT(x) + T(y) for all  $c \in \mathbb{R}$ ,  $x, y \in \mathbb{R}^n$ .
- 3. Suppose that T is continuous at some point  $x_0$  in  $\mathbb{R}^n$ . Show that T is continuous on  $\mathbb{R}^n$ .
- 4. Suppose that T is bounded on some open subset of  $\mathbb{R}^n$ . Show that T is continuous on  $\mathbb{R}^n$ .
- 5. Suppose that T is bounded from above (or below) on some open subset of  $\mathbb{R}^n$ . Show that T is continuous on  $\mathbb{R}^n$ .

6. Construct a  $T : \mathbb{R} \to \mathbb{R}$  which is discontinuous at every point of  $\mathbb{R}$ , but T(x+y) = T(x) + T(y) for all  $x, y \in \mathbb{R}$ .

**Problem 4.7.** Let (M, d) be a metric space,  $A \subseteq M$ , and  $f : A \to \mathbb{R}$ . For  $a \in A'$ , define

$$\liminf_{x \to a} f(x) = \lim_{r \to 0^+} \inf \left\{ f(x) \, \big| \, x \in D(a, r) \cap A \setminus \{a\} \right\},$$
$$\limsup_{x \to a} f(x) = \lim_{r \to 0^+} \sup \left\{ f(x) \, \big| \, x \in D(a, r) \cap A \setminus \{a\} \right\}.$$

Complete the following.

1. Show that both  $\liminf_{x \to a} f(x)$  and  $\limsup_{x \to a} f(x)$  exist (which may be  $\pm \infty$ ), and

$$\liminf_{x \to a} f(x) \le \limsup_{x \to a} f(x)$$

Furthermore, there exist sequences  $\{x_n\}_{n=1}^{\infty}$ ,  $\{y_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$  such that  $\{x_n\}_{n=1}^{\infty}$  and  $\{y_n\}_{n=1}^{\infty}$  both converge to a, and

$$\lim_{n \to \infty} f(x_n) = \liminf_{x \to a} f(x) \quad \text{and} \quad \lim_{n \to \infty} f(y_n) = \limsup_{x \to a} f(x).$$

2. Let  $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$  be a convergent sequence with limit a. Show that

$$\liminf_{x \to a} f(x) \leq \liminf_{n \to \infty} f(x_n) \leq \limsup_{n \to \infty} f(y_n) \leq \limsup_{x \to a} f(x) \,.$$

3. Show that  $\lim_{x \to a} f(x) = \ell$  if and only if

$$\liminf_{x \to a} f(x) = \limsup_{x \to a} f(x) = \ell.$$

4. Show that  $\liminf_{x \to a} f(x) = \ell \in \mathbb{R}$  if and only if the following two conditions hold:

- (a) for all  $\varepsilon > 0$ , there exists  $\delta > 0$  such that  $\ell \varepsilon < f(x)$  for all  $x \in D(a, \delta) \cap A \setminus \{a\}$ ;
- (b) for all  $\varepsilon > 0$  and  $\delta > 0$ , there exists  $x \in D(a, \delta) \cap A \setminus \{a\}$  such that  $f(x) < \ell + \varepsilon$ .

Formulate a similar criterion for limsup and for the case that  $\ell = \pm \infty$ .

5. Compute the limit and limsup of the following functions at any point of  $\mathbb{R}$ .

(a) 
$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q}^{\complement}, \\ \frac{1}{p} & \text{if } x = \frac{q}{p} \text{ with } (p,q) = 1, q > 0, p \neq 0. \end{cases}$$

(b) 
$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ -x & \text{if } x \in \mathbb{Q}^{\complement}. \end{cases}$$

**Problem 4.8.** Let (M, d) be a metric space, and  $A \subseteq M$ . A function  $f : A \to \mathbb{R}$  is called **lower semi-continuous upper semi-continuous** at  $a \in A$  if  $\liminf_{x \to a} f(x) \ge f(a)$ ,  $\limsup_{x \to a} f(x) \le f(a)$ , and is called lower/upper  $\lim_{x \to a} f(x) \le f(a)$ ,

semi-continuous on A if f is lower/uppser semi-continuous at a for all  $a \in A$ .

- 1. Show that if  $f : A \to \mathbb{R}$  is lower semi-continuous on A, then  $f^{-1}((-\infty, r])$  is closed relative to A. Also show that if  $f : A \to \mathbb{R}$  is upper semi-continuous on A, then  $f^{-1}([r, \infty))$  is closed relative to A.
- 2. Show that f is lower semi-continuous at a if and only if for all convergent sequences  $\{x_n\}_{n=1}^{\infty} \subseteq A$  and  $\{r_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$  satisfying  $f(x_n) \leq r_n$  for all  $n \in \mathbb{N}$ , we have

$$f\left(\lim_{n\to\infty}x_n\right)\leqslant\lim_{n\to\infty}r_n$$
.

- 3. Let  $\{f_{\alpha}\}_{\alpha \in \mathcal{I}}$  be a family of lower semi-continuous functions on A. Prove that  $f(x) = \sup_{\alpha \in \mathcal{I}} f_{\alpha}(x)$  is lower semi-continuous on A.
- 4. Let  $f: A \to \mathbb{R}$  be given. Define

$$f^*(x) = \limsup_{y \to x} f(y)$$
 and  $f_*(x) = \liminf_{y \to x} f(y)$ .

Show that  $f^*$  is upper semi-continuous and  $f_*$  is lower semi-continuous, and  $f_*(x) \leq f(x) \leq f^*(x)$  for all  $x \in A$ . Moreover, if g is a lowe semi-continuous function on A such that  $g(x) \leq f(x)$  for all  $x \in A$ , then  $g \leq f_*$ .

### §4.2 Operations on Continuous Maps

#### Problem 4.9.

Problem 4.10.

### §4.3 Images of Compact Sets under Continuous Maps

**Problem 4.11.** Complete the following.

1. Show that if  $f : \mathbb{R}^n \to \mathbb{R}^m$  is continuous, and  $B \subseteq \mathbb{R}^n$  is bounded, then f(B) is bounded.

- 2. If  $f : \mathbb{R} \to \mathbb{R}$  is continuous and  $K \subseteq \mathbb{R}$  is compact, is  $f^{-1}(K)$  necessarily compact?
- 3. If  $f : \mathbb{R} \to \mathbb{R}$  is continuous and  $C \subseteq \mathbb{R}$  is connected, is  $f^{-1}(C)$  necessarily connected?

**Problem 4.12.** Consider a compact set  $K \subseteq \mathbb{R}^n$  and let  $f : K \to \mathbb{R}^m$  be continuous and one-to-one. Show that the inverse function  $f^{-1} : f(K) \to K$  is continuous. How about if K is not compact but connected?

**Problem 4.13.** Let (M, d) be a metric space,  $K \subseteq M$  be compact, and  $f : K \to \mathbb{R}$  be lower semi-continuous (see Problem 4.8 for the definition). Show that f attains its minimum on K.

### §4.4 Images of Connected and Path Connected Sets under Continuous Maps

**Problem 4.14.** Let  $\mathcal{D} \subseteq \mathbb{R}^n$  be an open connected set, where n > 1. If a, b and c are any three points in  $\mathcal{D}$ , show that there is a path in G which connects a and b without passing through c. In particular, this shows that  $\mathcal{D}$  is path connected and  $\mathcal{D}$  is not homeomorphic to any subset of  $\mathbb{R}$ .

Problem 4.15.

### §4.5 Uniform Continuity

Problem 4.16. Check if the following functions on uniformly continuous.

- 1.  $f: (0, \infty) \to \mathbb{R}$  defined by  $f(x) = \sin \log x$ .
- 2.  $f: (0,1) \to \mathbb{R}$  defined by  $f(x) = x \sin \frac{1}{x}$ .
- 3.  $f: (0, \infty) \to \mathbb{R}$  defined by  $f(x) = \sqrt{x}$ .
- 4.  $f : \mathbb{R} \to \mathbb{R}$  defined by  $f(x) = \cos(x^2)$ .
- 5.  $f : \mathbb{R} \to \mathbb{R}$  defined by  $f(x) = \cos^3 x$ .
- 6.  $f : \mathbb{R} \to \mathbb{R}$  defined by  $f(x) = x \sin x$ .

**Problem 4.17.** Find all positive numbers a and b such that the function  $f(x) = \frac{\sin(x^a)}{1+x^b}$  is uniformly continuous on  $[0, \infty)$ .

**Problem 4.18.** Find all positive numbers a and b such that the function  $f(x, y) = |x|^a |y|^b$  is uniformly continuous on  $\mathbb{R}^2$ .

**Problem 4.19.** Let  $f : \mathbb{R}^n \to \mathbb{R}^m$  be continuous, and  $\lim_{|x|\to\infty} f(x) = b$  exists for some  $b \in \mathbb{R}^m$ . Show that f is uniformly continuous on  $\mathbb{R}^n$ .

**Problem 4.20.** Suppose that  $f : \mathbb{R}^n \to \mathbb{R}^m$  is uniformly continuous. Show that there exists a > 0 and b > 0 such that  $||f(x)||_{\mathbb{R}^m} \leq a ||x||_{\mathbb{R}^n} + b$ .

**Problem 4.21.** Let  $f(x) = \frac{q(x)}{p(x)}$  be a rational function define on  $\mathbb{R}$ , where p and q are two polynomials. Show that f is uniformly continuous on  $\mathbb{R}$  if and only if the degree of q is not more than the degree of p plus 1.

**Problem 4.22.** Suppose that  $f : \mathbb{R} \to \mathbb{R}$  is a continuous periodic function; that is,  $\exists p > 0$  such that f(x + p) = f(x) for all  $x \in \mathbb{R}$  (and f is continuous). Show that f is uniformly continuous on  $\mathbb{R}$ .

**Problem 4.23.** Let  $(a,b) \subseteq \mathbb{R}$  be an open interval, and  $f : (a,b) \to \mathbb{R}^m$  be a function. Show that the following three statements are equivalent.

- 1. f is uniformly continuous on (a, b).
- 2. f is continuous on (a, b), and both limits  $\lim_{x \to a^+} f(x)$  and  $\lim_{x \to b^-} f(x)$  exist.
- 3. For all  $\varepsilon > 0$ , there exists N > 0 such that  $|f(x) f(y)| < \varepsilon$  whenever  $\left|\frac{f(x) f(y)}{x y}\right| > N$ .

**Problem 4.24.** Suppose that  $f : [a, b] \to \mathbb{R}$  is <u>Hölder continuous with exponent  $\alpha$ </u>; that is, there exist M > 0 and  $\alpha \in (0, 1]$  such that

$$|f(x_1) - f(x_2)| \leq M |x_1 - x_2|^{\alpha} \quad \forall x_1, x_2 \in [a, b].$$

Show that f is uniformly continuous on [a, b]. Show that  $f : [0, \infty) \to \mathbb{R}$  defined by  $f(x) = \sqrt{x}$  is Hölder continuous with exponent  $\frac{1}{2}$ .

**Problem 4.25.** A function  $f : A \times B \to \mathbb{R}^m$ , where  $A \subseteq \mathbb{R}$  and  $B \subseteq \mathbb{R}^p$ , is said to be separately continuous if for each  $x_0 \in A$ , the map  $g(y) = f(x_0, y)$  is continuous and for  $y_0 \in B, h(x) = f(x, y_0)$  is continuous. f is said to be continuous on A uniformly with respect to B if

$$\forall \, \varepsilon > 0, \exists \, \delta > 0 \ni \left\| f(x,y) - f(x_0,y) \right\|_2 < \varepsilon \text{ whenever } \|x - x_0\|_2 < \delta \text{ and } y \in B \,.$$

Show that if f is separately continuous and is continuous on A uniformly with respect to B, then f is continuous on  $A \times B$ .

**Problem 4.26.** Let (M, d) be a metric space,  $A \subseteq M$ , and  $f, g : A \to \mathbb{R}$  be uniformly continuous on A. Show that if f and g are bounded, then fg is uniformly continuous on A. Does the conclusion still hold if f or g is not bounded?

### §4.6 Differentiation of Functions of One Variable

**Problem 4.27.** Show that  $f:(a,b) \to \mathbb{R}$  is differentiable at  $x_0 \in (a,b)$  if and only if there exists  $m \in \mathbb{R}$ , denoted by  $f'(x_0)$ , such that

$$\forall \varepsilon > 0, \exists \delta > 0 \ni \left| f(x) - f(x_0) - f'(x_0)(x - x_0) \right| \le \varepsilon |x - x_0| \quad \text{whenever} \quad |x - x_0| < \delta \,.$$

**Problem 4.28.** Suppose that  $f, g : \mathbb{R} \to \mathbb{R}$  are differentiable, and  $f \ge 0$ . Find  $\frac{d}{dx} f(x)^{g(x)}$ .

**Problem 4.29.** Suppose  $\alpha$  and  $\beta$  are real numbers,  $\beta > 0$  and  $f : [-1, 1] \to \mathbb{R}$  is defined by

$$f(x) = \begin{cases} x^{\alpha} \sin(x^{-\beta}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Prove the following statements.

- 1. f is continuous if and only if  $\alpha > 0$ .
- 2. f'(0) exists if and only if  $\alpha > 1$ .
- 3. f' is bounded if and only if  $\alpha \ge 1 + \beta$ .
- 4. f' is continuous if and only if  $\alpha > 1 + \beta$ .
- 5. f''(0) exists if and only if  $\alpha > 2 + \beta$ .
- 6. f'' is bounded if and only if  $\alpha \ge 2 + 2\beta$ .
- 7. f'' is continuous if and only if  $\alpha > 2 + 2\beta$ .

**Problem 4.30** (The inverse statement of the chain rule). Let  $f : (a, b) \to \mathbb{R}$  be continuous and  $g : (c, d) \to \mathbb{R}$  be differentiable at  $y_0 = f(x_0) \in (c, d)$ . Show that if  $(g \circ f)$  is differentiable at  $x_0$  and  $g'(y_0) \neq 0$ , then f is differentiable at  $x_0$ .

**Problem 4.31.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a polynomial, and f has a double root at a and b. Show that f'(x) has at least three roots in [a, b].

**Problem 4.32.** Let  $f : \mathbb{R} \to \mathbb{R}$  be differentiable. Assume that for all  $x \in \mathbb{R}$ ,  $0 \leq f'(x) \leq f(x)$ . Show that  $g(x) = e^{-x}f(x)$  is decreasing. If f vanishes at some point, conclude that f is zero.

**Problem 4.33.** Let  $f : \mathbb{R} \to \mathbb{R}$  be twice differentiable. Suppose that  $f(x+h) - f(x) = hf'(x+\theta h)$  for all  $x, h \in \mathbb{R}$ , where  $\theta$  is independent of h. Show that f is a quadratic polynomial.

**Problem 4.34.** Let f be a differentiable function defined on some interval I of  $\mathbb{R}$ . Prove that f' maps connected subsets of I into connected set; that is, f' has the intermediate value property.

**Problem 4.35.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a polynomial, and f has a double root at a and b. Show that f'(x) has at least three roots in [a, b].

**Problem 4.36.** Let  $f : [-1,1] \to \mathbb{R}$  be a function such that  $x^2 + f(x)^2 = 1$  for all  $|x| \leq 1$ . Define  $C = \{x \mid |x| \leq 1, f \text{ is continuous at } x\}$ . Show that C contains at least 2 points and  $C \cap (-1,1)$  is an open set. Hence if f is continuous at more than 2 points, it is continuous at uncountably many points.

**Problem 4.37.** Let  $f, g : \mathbb{R} \to \mathbb{R}$  be differentiable functions. Suppose that  $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0, g'(x) \neq 0$  for all  $x \in \mathbb{R}$ , and the limit  $\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$  exists. Show that the limit  $\lim_{x \to \infty} \frac{f(x)}{g(x)}$  also exists, and

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

**Problem 4.38.** Let  $f, g: (a, b) \to \mathbb{R}$  be differentiable functions. Show that if  $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = \infty$ ,  $g'(x) \neq 0$  for all  $x \in (a, b)$ , and the limit  $\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$  exists, then  $\lim_{x \to a^+} \frac{f(x)}{g(x)}$ 

exists and

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)} \,. \tag{(\star)}$$

**Hint**: Let  $L = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$  and  $\epsilon > 0$  be given. Choose  $c \in (a, b)$  such that

$$\left|\frac{f'(x)}{g'(x)} - L\right| < \frac{\epsilon}{2} \qquad \forall \, a < x < c \,.$$

Then for a < x < c, the Cauchy mean value theorem implies that for some  $\xi \in (x, c)$  such that

$$\frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f'(\xi)}{g'(\xi)} \,.$$

Show that there exists  $\delta > 0$  such that  $a + \delta < c$  and

$$\left|\frac{f(x) - f(c)}{g(x) - g(c)} - \frac{f(x)}{g(x)}\right| < \frac{\epsilon}{2} \qquad \forall x \in (a, a + \delta)$$

and then conclude  $(\star)$ .

**Problem 4.39.** Let  $f : (a, b) \to \mathbb{R}$  be k-times differentiable, and  $c \in (a, b)$ . Let  $h_k : (a, b) \to \mathbb{R}$  be given by

$$h_k(x) = f(x) - \sum_{j=0}^k \frac{f^{(j)}(c)}{j!} (x-c)^j.$$

Show that  $\lim_{x \to c} \frac{h_k(x)}{(x-c)^k} = 0.$ 

**Problem 4.40.** Two metric spaces (M, d) and  $(N, \rho)$  are called <u>homeomorphics</u> if there exists a continuous map  $f: M \to N$ , called a <u>homeomorphism</u> between M and N, such that f is one-to-one and onto, and its inverse  $f^{-1}$  is also continuous. Homeomorphic metric spaces have the same topological properties. In the following problems, (M, d) and  $(N, \rho)$  are two metric spaces.

- 1. Suppose that M is compact, and  $f: M \to N$  is one-to-one and onto. Show that f is a homeomorphism between M and N.
- 2. Suppose that f is a homeomorphism between M and N. Show that the restriction of f to any subset  $A \subseteq M$  establishes a homeomorphism between A and f(A).
- 3. Determine which of the following pairs of metric spaces is homeomorphic.

- (a)  $M = (a, b] \subseteq \mathbb{R}$  and  $N = \mathbb{R}$ .
- (b) M is an open ball in  $\mathbb{R}^n$  and  $N = \mathbb{R}^n$ .
- (c)  $M = \mathbb{R}$  and  $N = \mathbb{R}^n$ .
- (d)  $M = [0,1] \times [0,1] \subseteq \mathbb{R}^2$  and  $N = [0,1] \subseteq \mathbb{R}$ .
- (e)  $M = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$  and  $N = [0, 1] \subseteq \mathbb{R}$ .
- (f)  $M = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$  and  $N = \{(x, y) \in \mathbb{R}^2 \mid x^2 + xy + y^2 = 1\}.$
- (g)  $M = \mathbb{R}^2$  and  $N = \mathbb{R}^3$ .
- 4. Let  $I \subseteq \mathbb{R}$  be an interval and  $f: I \to \mathbb{R}$  be a one-to-one continuous function. Show that f must be strictly monotonic in I and f is a homeomorphism between I and f(I).

If  $I \subseteq \mathbb{R}^n$  for n > 1 and  $f: I \to \mathbb{R}^n$  is continuous and one-to-one, can we still assert that f is homeomorphism between I and f(I)?

### §4.7 Integration of Functions of One Variable

**Problem 4.41.** Let  $f : [a, b] \to \mathbb{R}$  be a bounded function, and  $\mathcal{P}_n$  denote the division of [a, b] into  $2^n$  equal sub-intervals. Show that f is Riemann integrable over [a, b] if and only if

$$\lim_{n \to \infty} U(f, \mathcal{P}_n) = \lim_{n \to \infty} L(f, \mathcal{P}_n) \,.$$

**Problem 4.42.** Let  $f, g : [a, b] \to \mathbb{R}$  be functions, where g is continuous, and f be non-negative, bounded, Riemann integrable over [a, b]. Show that

- 1. fg is Riemann integrable.
- 2.  $\exists x_0 \in (a, b)$  such that

$$\int_a^b f(x)g(x)dx = g(x_0)\int_a^b f(x)dx.$$

**Problem 4.43.** Let  $f : [a, b] \to \mathbb{R}$  be differentiable and assume that f' is Riemann integrable. Prove that  $\int_a^b f'(x) dx = f(b) - f(a)$ .

Hint: Use the Mean Value Theorem.

**Problem 4.44.** Suppose that  $f : [a, b] \to \mathbb{R}$  is Riemann integrable,  $m \leq f(x) \leq M$  for all  $x \in [a, b]$ , and  $\varphi : [m, M] \to \mathbb{R}$  is continuous. Show that  $\varphi \circ f$  is Riemann integrable on [a, b].

**Problem 4.45** (True or False). Determine whether the following statements are true or false. If it is true, prove it. Otherwise, give a counter-example.

- 1. Let  $f : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$  satisfy  $\lim_{x \to 0} f(x, ax^n) = 0$  for all  $a \in \mathbb{R}$ ,  $n \in \mathbb{N}$  and  $\lim_{y \to 0} f(0, y) = 0$ . 0. Then  $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ .
- 2. There exists a function  $f : \mathbb{R} \to \mathbb{R}$  which is continuous only at three points of  $\mathbb{R}$ .
- 3. Let  $f : \mathbb{R} \to \mathbb{R}$ . Then f is continuous on  $\mathbb{R}$  if and only if its graph  $\{(x, f(x)) | x \in \mathbb{R}\}$  is closed in  $\mathbb{R}^2$ .
- 4. Let  $I_1$  and  $I_2$  be open intervals in  $\mathbb{R}$ . Then  $f: I_1 \to I_2$  is a diffeomorphism if and only if f is differentiable and  $f'(x) \neq 0$  for all  $x \in I_1$ .
- 5. Let  $f : [a, b] \to \mathbb{R}$  be a function. If  $f^2$  is Riemann integrable, then f is Riemann integrable.
- 6. Let  $f : [a, b] \to \mathbb{R}$  be a function. If f is Riemann integrable, then  $\sqrt[3]{f}$  is Riemann integrable.
- 7. Let  $f(x) = \sin \frac{1}{x}$  be defined on (0, 1]. Then no matter how we define f(0), f is always Riemann integrable on [0, 1].