Chapter 4

Continuous Maps

4.1 Continuity

Definition 4.1. Let (M, d) and (N, p) be two metric spaces; A € M and f: A — N be a

map. For a given xg € A’, we say that b € N is the limit of f at x, written

lim f(x)=b or f(x)—>basz— xg,
T—T0

if for every sequence {z;}i2; < A\{zo} converging to z, the sequence { f (xk)}zo:l converges
to b.

Proposition 4.2. Let (M,d) and (N, p) be two metric spaces, A< M and f: A — N be a
map. Then lim f(x) = b if and only if
T—To

Ve>0,30=0(xg,e) >03p(f(x),b) < e whenever 0 < d(x,x9) < andxz € A.

Proof. “=" Assume the contrary that 3¢ > 0 such that for all § > 0, there exists x5 € A
with
0 <d(xs,xg) <0 and p(f(xs),b) =¢.

In particular, letting § = %, we can find {x;}72, < A\{zo} such that

1
0 < d(xy,z0) < z and  p(f(zy),b) =¢.

Then xp — xo as k — o but f(xy) % b as k — o0, a contradiction.

104



§4.1 Continuity 105

“<" Let {z}72, < A\{zo} be such that zy — 2y as k — o, and € > 0 be given. By

assumption,
36 = d(xg,e) > 03 p(f(z),b) < e whenever 0 < d(z,z9) <dand x € A.
Since xp — xg as k — 00, IN > 0 3 d(xy, x9) < 0 if k = N. Therefore,
p(f(xg),b) <e Yk=N
which suggests that klgglo f(zx) = 0. o

Remark 4.3. Let (M,d) = (N,p) = (R,|-]), A = (a,b), and f : (A — N. We write
lim f(z) and hr?, f(z) for the limit lim f(z) and lin% f(z), respectively, if the later exist.

Following this notation, we have

lim f(x)=L<Ve>0,30>03|f(x)— Ll <eif0<z—a<dandz e (a,b),

r—at

lim f(z) =L<Ve>0,36 >03|f(z) — Ll <eif0<b—2x <0 and z € (a,b).

r—b—

Definition 4.4. Let (M,d) and (N, p) be two metric spaces, A € M, and f : A > N

be a map. For a given xy € A, f is said to be continuous at x if either xy € A\A’ or

Jim f(x) = f(xo)

R™ — R"
Example 4.5. The identity map f: 7 is continuous at each point of R™.

Example 4.6. The function f : (0,00) — R defined by f(x) = % is continuous at each
point of (0, o).

Proposition 4.7. Let (M,d) and (N, p) be two metric spaces, A< M, and f: A — N be

a map. Then f is continuous at xg € A if and only if
Ve>0,30 =0d(xg,e) > 03 p(f(x), f(xg)) <& whenever x € D(xy,d) N A.
Proof. Case 1: If o € A, then f is continuous at z if and only if
Ve> 0,30 =0d(xg,e) > 03 p(f(x), f(xg)) < & whenever x € D(xg,d) n A\{xo}.
Since p(f(xo), f(x0)) = 0 < &, we find that the statement above is equivalent to that

Ve > 0,30 =d(xg,e) > 03 p(f(x), f(xg)) < &€ whenever z € D(xg,0) n A.
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Case 2: Let 25 A\A'.

“=" then 36 > 0 such that D(zg,) n A = {zo}. Therefore, for this particular 6, we

must have
p(f(x), f(xg)) =0 < e whenever z € D(xg,0) N A.

“<" We note that if xy € A\ A’, f is defined to be continuous at zg. In other
words,

f is continuous at each isolated point. =

Remark 4.8. We remark here that Proposition 4.7 suggests that f is continuous at xg € A
if and only if
Ve>0,306 >053 f(D(zo,0) n A) < D(f(xg),¢).

f(D(xp,0) N A) \

Remark 4.9. In general the number § in Proposition 4.7 also depends on the function f.
For a function f : A — R which is continuous at xy € A, let J(f, zg,€) denote the largest
6 > 0 such that if 2 € D(zo,8) N A, then p(f(x), f(z0)) < &. In other words,

6(fizo,e) =sup {6 > 0|p(f(2), f(w)) < e if x € D(xg,0) N A}.

This number provides another way for the understanding of the uniform continuity (in
Section 4.5) and the equi-continuity (in Section 5.5). See Remark 4.51 and Remark 5.51 for
further details.

Definition 4.10. Let (M,d) and (N, p) be metric spaces, and A< M. Amap f: A—> N

is said to be continuous on the set B € A if f is continuous at each point of B.

Theorem 4.11. Let (M,d) and (N, p) be metric spaces, A< M, and f : A — N be a map.

Then the following assertions are equivalent:
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1. f is continuous on A.

2. For each open setV < N, f~Y(V) < A is open relative to A; that is, f~1(V)=U N A

for some U open in M.

3. For each closed set E = N, f~Y(FE) < A is closed relative to A; that is, f~'(E) = FnA

for some F closed in M.

Proof. 1t should be clear that 2 < 3 (left as an exercise); thus we show that 1 < 2. Before
proceeding, we recall that B < f~(f(B)) for all B< A and f(f~'(B)) < Bfor all B< N.

“l = 2" Let ae f~'(V). Then f(a) € V. Since V is open in (N, p), €,y > 0 such that
D(f(a),ef@)) < V. By continuity of f (and Remark 4.8), there exists J, > 0 such
that

f(D(a,d.) n A) € D(f(a),250)) -
Therefore, by Proposition 0.16, for each a € f~1(V), 34, > 0 such that
D(a,8,) n A< f7H(f(D(a,00) n A)) = fH(D(f(a),epw)) = f7H(V).  (4.1.1)

Let Y = |J Df(a,0,). Then U is open (since it is the union of arbitrarily many
acf=H(V)
open balls), and

(a) U 2 f~1(V) since U contains-every center of balls whose union forms U;

b) UnAc f~HV) by (4.1.1).
Therefore, U N A= f1(V).

“2=1" Let a € A and ¢ > 0 be given. Define V = D(f(a),e). By assumption there exists
U open in (M,d) such that f~1(V) =U n A. Since a € f~1(V), a € U; thus by the
openness of U, 36 > 0 such that D(a,d) < U. Therefore, by Proposition 0.16 we have

f(D(a,8) nA) < fUNA) = F(f' (V) €V = D(f(a),e)
which suggests that f is continuous at a for all a € A; thus f is continuous on A. o
Example 4.12. Let f : R” — R™ be continuous. Then {z € R"| | f(z)[2 < 1} is open since

{zeR"|[f(z)]> <1} = F7(D(0,1)).
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Remark 4.13. For a function f of two variable or more, it is important to distinguish the
continuity of f and the continuity in each variable (by holding all other variables fixed). For
example, let f : R?> — R be defined by

f(:v,y):{

Observe that f(0,0) = 1, but f is not continuous at (0,0). In fact, for any 6 > 0, f(z,y) =0
for infinitely many values of (z,y) € D((0,0),0); that is, |f(z,y) — f(0,0)] = 1 for such

values. However if we consider the function g(z) = f(z,0) = 1 or the function h(y) =

1 if either x =0 or y =0,
0 ifx+#0andy#0.

f(0,y) = 1, then g, h are continuous. Note also that ( l)iH%o f(z,y) does not exists but
x?y g b
lim(lim f(x,y)) = hH(l)O = 0.

z—0 y—0

4.2 Operations on Continuous Maps

Definition 4.14. Let (M, d) be a metric space, (V, | -||) be a (real) normed space, A < M,
and f,g: A — V be maps, h : A — R be a function. The maps f + g, f — g and hf,
mapping from A to V), are defined by

(f +9)(x) = f(z) +9(z) VreAd,
(f —9)(@) = f(z) —g(z) VreA,
(hf)(z) = hz)f(x) VoeA.

The map % : A\{x € A|h(z) =0} — V is defined by

(i)(x):% Vee A\{re Al h(x) =0}.

Proposition 4.15. Let (M,d) be a metric space, (V,|-|) be a (real) normed space, A < M,
and f,g: A — YV be maps, h : A — R be a function. Suppose that xg € A', and lim f(x) = a,
T—x0

lim g(z) =0, lim h(z) =c. Then
T—>T0

T—T
lim (f +g)(z) =a+0b,
r—x0
xr—x0

lim (hf)(z) = ca,
T—TQ
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Corollary 4.16. Let (M,d) be a metric space, (V,|-|) be a (real) normed space, A < M,
and f,g: A— YV be maps, h : A — R be a function. Suppose that f,qg, h are continuous at

xg € A. Then the maps f+ g, f —g and hf are continuous at xqy, and 7 is continuous at
xo if h(xg) # 0.

Corollary 4.17. Let (M,d) be a metric space, (V,| - |) be a (real) normed space, A < M,
and f,g: A —V be continuous maps, h : A — R be a continuous function. Then the maps
% is continuous on A\{x € A|h(x) = 0}.

Definition 4.18. Let (M,d), (N,p) and (P,r) be metric space, A < M, B < N, and
f:A— N, g: B — P bemaps such that f(A) € B. The composite function go f : A — P

is the map defined by

f+g, f—gandhf are continuous on A, and

Figure 4.1: The composition of functions

Theorem 4.19. Let (M;d), (N,p) and (P,r) be metric space, A < M, B < N, and
f:A— N, g: B— P bemaps such that f(A) € B. Suppose that f is continuous at xy,
and g is continuous at f(xg). Then the composite function go f : A — P is continuous at

.
Proof. Let € > 0 be given. Since g is continuous at f(zg), 37 > 0 such that
9(D(f(xo),r) n B) < D((g° f)(z0).¢) -
Since f is continuous at x, 39 > 0 such that
F(D(wo,8) N A) = D(f(wo),7) .
Since f(A) < B, f(D(xo,8) n A) < D(f(z0),7) n B; thus
(g0 f)(D(wo,0) n A) € g(D(f(x0).7) 0 B) = D((g© f)(xo),€) - D
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Corollary 4.20. Let (M,d), (N,p) and (P,r) be metric space, A < M, B < N, and
f:A— N, g: B — P be continuous maps such that f(A) < B. Then the composite

function go f : A — P is continuous on A.

Alternative Proof of Corollary 4.20. Let W be an open set in (P,r). By Theorem 4.11,
there exists V open in (N, p) such that g7'(W) = V n B. Since V is open in (N, p), by
Theorem 4.11 again there exists U open in (M, d) such that f~*(V) =U n A. Then

(go YW =fgo W) =f"(VnB)=f'V)n f(B)=U~nAn f(B),
while the fact that f(A) € B further suggests that
(g0 /)W) =t n A.

Therefore, by Theorem 4.11 we find that (g o f) is continuous on A. o

4.3 Images of Compact Sets under Continuous Maps

Theorem 4.21. Let (M,d) and (N, p) be metric spaces, A < M, and f : A — N be a

continuous map.
1. If K € A is compact, then f (K) is compact in (N, p).

2. Moreover, if (N, p) = (Ry||), then there exist xo,x1 € K such that
f(xg) = inf f(K mf{f ’xeK} and f(:tl):supf(K):sup{f(meeK}.

Proof. 1. Let {V,}aer be an open cover of f(K). Since V, is open, by Theorem 4.11 there
exists U, open-in (M,d) such that f~1(V,) =U, n A. Since f(K) S (J Va,
ael
Kcf™ f- 1 =An UZ/{

el ael

Q

which implies that {{,}aes is an open cover of K. Therefore,

el gl <waKcAn|Jua={]f

aed a€eJ

thus f(K) < | f(f < U Va

aeJ aeJ
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2. By 1, f(K) is compact; thus sequentially compact. Corollary 3.5 then implies that
inf f(K) e f(K) and sup f(K) € f(K). o

Alternative Proof of Part 1. Let {y,}>_, be asequence in f(K). Then there exists {z,}°_; <
K such that y, = f(z,). Since K is sequentially compact, there exists a convergent subse-
quence {x,, }5>, with limit z € K. Let y = f(z) € f(K). By the continuity of f,

which implies that the sequence {y,, }120:1 converges to y € f(K). Therefore, f(K) is sequen-

tially compact. O

Corollary 4.22 (The Extreme Value Theorem (& 32 ) ). Let f :]a,b] — R be contin-
uous. Then f attains its maxzimum and minimum in [a,b]; that is, there are xy € [a,b] and
x1 € [a,b] such that

f(zo) =inf{f(z)|z € [a,b]} and f(z1)=sup{f(z)|z € [a,b]}. (4.3.1)

Proof. The Heine-Borel Theorem suggests that [a,;0] is a compact set in R; thus Theorem
4.21 implies that f([a, b]) must be compact in R. By the Heine-Borel Theorem again f(|a, b))

is closed and bounded, so

inf f([a,b]) € f(fa,b]) 'and sup f([a,b]) € f([a,b])
which further imply (4.3.1). o

Remark 4.23. If f attains its maximum (or minimum) on a set B, we use max { f(z) |z €
B} (or min{f(z) |z € B}) to denote sup { f(z)|z € B} (or inf{f(z) |z € B}). Therefore,

(4.3.1) can be rewritten as

f(zo) =min{f(z)|z € [a,b]} and f(z1)=max{f(z)|z € [a,b]}.

Example 4.24. Two norms | - | and || - || on a real vector space V are called equivalent if

there are positive constants C'; and C5 such that
Cilz| < [zl < Colz|  VaeV.

We note that equivalent norms on a vector space V induce the same topology; that is, if | - |

and || - || are equivalent norms on V, then U is open in the normed space (V,| - |) if and
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only if ¢/ is open in the normed space (V, || - ||). In fact, let & be an open set in (V, | - |).
Then for any x € U, there exists r > 0 such that

D”.H(SL’,T) = {yE V‘ HI—yH < ’f’} cUu.

Let § = Cyr. Then if z € Dy(z,6) = {y € V| |z — y|| <},

1 1
lr =zl < glle =zl <5 - Cr=r

Ch

which implies that Dy (x,6) < Dy (x,r) < U. Therefore, U is open in (V.|| - |[). Similarly,
if i is open in (V, || - ||), then the inequality ||z[| < Cs|x| suggests that ¢ is open in (V, ||-|).
Claim: Any two norms on R" are equivalent.

Proof of claim: Tt suffices to show that any norm | - || on R" is equivalent to the two-norm
|- |2 (check). Let {ex}r_; be the standard basis of R"; that is,

e, =(0,---,0,1,0,---,0).
——
(k — 1) zeros

n n

Every z € R"™ can be written as © =" m;e;;-and |z|s = 4 /D) ;|2 By the definition of
i=1 =1

norms and the Cauchy-Schwarz inequality,

| <D lzalllesl < 22y | 3 leill®; (4.3.2)
=1 i=1

thus letting Cy =41 . [ei]? we have |z| < Col|zs.
i=1
On the other hand, define f : R® — R by

f@) =zl = | Y aiei
i=1
Because of (4.3.2), f is continuous on R". In fact, for x,y € R",

[f(@) = f)| = l=] = Iyl| < |z =yl < Collz =y

which guarantees the continuity of f on R". Let S"! = {z € R"||z|, = 1}. Then S" ' is a
compact set in (R", | - [|2) (since it is closed and bounded); thus by Theorem 4.21 f attains
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its minimum on S"~! at some point a = (ay, - - , a,). Moreover, f(a) > 0 (since if f(a) = 0,
a=0¢S" ). Then for all z € R", ﬁ e S"~1: thus
Zi2
T
f(m) = f(a).

The inequality above further implies that f(a)|z|2 < f(x) = |z||; thus letting C; = f(a) we

have O |z]» < |z].
Remark 4.25.

1. Let f: R — R be defined by f(z) = 0. Then f is continuous.” Note that {0} < R is
compact (.- closed and bounded), but f~*({0}) = R is not compact.

2. Let f: R — R be defined by f(z) = 2. Then f is continuous. Note that C' = {1} is
connected, but f~1(C) = {1, -1} is not connected.

Remark 4.26.

1. If K is not compact, then Theorem 4.21 is not true. Consider the following counter
example: K = (0,1), f : K — R defined by f(z) = % Then f(K) is unbounded.

2. If f is not continuous, then Theorem 4.21 is not true either.

(a) Counter example 1: f+ K =10,1] — R defined by

1 if x #0,
flr,y) =49 @
0 ifx=0.
Then f(K) is unbounded = Az, € K 3 f(z;) = sup f(K).
(b) Counter-example 2: f :[0,1] — R by

x ifx#1,
f<x’y):{0 if x =1.

Then there is no z; € [0, 1] such that f(z;) = sup f(z) = 1.
z€[0,1]

Example 4.27 (An example show that xg,z; in Theorem 4.21 are not unique). Let f :
[—2,2] — R be defined by f(x) = (z? — 1)

1. Critical point: f'(z) =2(z* - 1) -2z =0< 2 =0, +1.
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2. Comparison: f(0) =1, f(1) = f(=1) =0, f(2) = f(—=2) =9. Then

f@) = f(-2)= sup f(x) and f(1)=f(-1)= inf f(z).

xe[—2,2] z€[—2,2]

Corollary 4.28. Let (M,d) be a metric space, K < M be a compact set, and f : K — R

be continuous. Then the set
{m e K ‘ f(z) is the maximum of f on K}
15 a non-empty compact set.
Proof. Let M = sup f(K). Then the set defined above is f~1({M}), and
1. f~1({M}) is non-empty by Theorem 4.21;
2. f71({M}) is closed since {M} is a closed set in (R,|-|) and f is continuous on K.

Lemma 3.11 suggests that f~!({M}) is compact. o
4.4 Images of Connected and Path Connected Sets un-
der Continuous Maps

Definition 4.29. Let (M,d) be a metric space. A subset A < M is said to be path

connected if for every z,y € A, there exists a continuous map ¢ : [0,1] — A such that

©(0) =z and ¢(1) = y.

Figure 4.2: Path connected sets

Example 4.30. A set A in a vector space V is called convex if for all z,y € A, the line

segment joining x and y, denoted by Ty, lies in A. Then a convex set in a normed space is
path connected. In fact, for x,y € A, define ¢(t) =ty + (1 — t)x. Then
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L o¢:[0,1] 77 < A, p(0) =z, p(1) = y;

2. ¢ :]0,1] — A is continuous.

TY = 90([0’ ”)

Figure 4.3: Convex sets

Example 4.31. A set S in a vector space V is called star-shaped if there exists p € S
such that for any ¢ € S, the line segment joining p and ¢ lies in S. A star-shaped set in a

normed space is path connected. In fact, for x,y € S, define

2p+ (1—2t)x  ~ifte [0
o(t) =

)
17 2 )
(2t —1)y+ (2=2)p ifte [5,1} .
Then

L p:[0,1]] >apupy < S, p(0) =2, (1) = y;

2. ¢ :]0,1] — A is continuous.

Theorem 4.32. Let (M,d) be a metric space, and A < M. If A is path connected, then A

is connected.
Proof. Assume the contrary that there are two open sets V; and Vs, such that
LAYV nVo=g; 2. AnVi#J;, 3. AnVa#g; 4 AV, u)s.

Since A is path connected, for x € A n'V; and y € A n Vs, there exists ¢ : [0,1] — A such
that ¢(0) = z and ¢(1) = y. By Theorem 4.11, there exist U; and U, open in (R, |- |) such
that = '(V1) =U; N [0,1] and (V) = Uy 1 [0, 1]. Therefore,

0,1]=¢ A e ' M) v W) st v,

Since 0 € Uy, 1 € Uy, and [0, 1] nUy nUs = "1 (AN V) 0 Vy) = &, we conclude that [0, 1]

is disconnected, a contradiction. O
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Example 4.33. Let A = {(x,sin%) |z €(0,1]} U ({0} x [-1,1]). Then A is connected in
(R%,| - |2), but A is not path connected.

To see this, we assume the contrary that A is path connected such that there is a
continuous function ¢ : [0,1] — A such that ¢(0) = (zo,y0) € {(m,sin %) |z € (0,1)}
and ¢(1) = (0,0) € {0} x [-1,1]. Let t, = inf{t € [0,1]|p(t) € {0} x [~1,1]}. In other
words, at t = to the path touches 0 x [—1,1] for the “first time”. By the continuity of ¢,

o(te) € {0} x [~1,1]. Since ¢(0) ¢ {0} x [=1,1], ([0,20)) < {(x,sin 1) ‘x e (0, 1)}.

Suppose that ¢(to) = (0, 7) for some § € [-1,1], and (t) = (z(t),sin %) for 0 <t < to.
By the continuity of ¢, there exists 6 > 0 such that if |t —to| < d, |p(t) — ¢(to)| < 1. In

particular,

(1) + (m%- —>2 <1  Vite(to=dt).

On the other hand, since ¢ is continuous, x(t) is continuous on [0, ty); thus by the fact that

[0,t0) is connected, x([0, to)) is connected. Therefore, z([0,ty)) = (0, Z] for some z > 0. Since

tlintq z(t) = 0, there exists {t,};2 € [0, o) such that ¢, — t; asn — o0 and | sin o) —gl = 1.
oto n

For n » 1, t, € (ty — 0,19) but

1 2
PO
x(tn)” + Smm(tn) 7

a contradiction.

On the other hand, A is the closure of the connected set B = {(az, sin %) ) x € (0, 1)} (the

. 1 .
connectedness of B follows from the fact that the function 1 (z) = (,sin ~) is continuous
=

on the connected set (0, 1)) Therefore, by Problem 9 of Exercise 8, A = B is connected.

Theorem 4.34. Let (M,d) and (N, p) be metric spaces, A < M, and f : A — N be a

continuous map.
1. If C < A is connected, then f(C) is connected in (N, p).
2. If C < A is path connected, then f(C') is path connected in (N, p).

Proof. 1. Suppose that there are two open sets V; and V; in (N, p) such that
(a) f(C)nVinVa=; (b) f(C)n V1 # T; (¢) f(C)nVy # &5 (d) f(C) ViUV,
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By Theorem 4.11, there are U; and Uy open in (M, d) such that f~'(V;) = U; n A and
fH (V) =Us n A. By (d),

CcfifiCNcfrWVuftWV)=U vlth)nACU V.
Moreover, by (a) we find that

Cothnly=Cn(UnA)nUs 0 A)=Cn fHV) A L)
SO A VIV, =

which implies C nU; nUs = . Finally, (b) implies that for some = € C, f(x) € V.
Therefore, x € f_l(Vl) = U; n A which suggests that = e U;; thus C nU; # .

Similarly, C' n Uy # . Therefore, C' is disconnected which is a contradiction.

2. Let y1,y2 € f(C). Then Fz1, x5 € C such that f(x1) =y and f(x3) = y,. Since C is
path connected, 37 : [0, 1] — C such that r.is continuous on [0, 1] and r(0) = z; and
r(1) = x9. Let ¢ :[0,1] — f(C) be defined by ¢ = for. By Corollary 4.20 ¢ is
continuous on [0, 1], and ¢(0) = y; and ¢(1) = y». o

Corollary 4.35 (The Intermediate Value Theorem (* B & 32 ) ). Let f : [a,b] = R be
continuous. If f(a) # f(b), then for all d in between f(a) and f(b), there exists ¢ € (a,b)
such that f(c) = d.

Proof. The closed interval [a, b] is connected by Theorem 3.38, so Theorem 4.34 implies that
f([a,b]) must be connected in R. By Theorem 3.38 again, if d is in between f(a) and f(b),
then d belongs to f([a, b]). Therefore, for some c € (a,b) we have f(c) = d. o

Example 4.36. Let-f : [0, 1] — [0, 1] be continuous. Then 3¢ € [0, 1] 3 f(zo) = xo.
Proof. Let g(z) =« — f(x). Then
1. g(0)=0or g(1)=0=a2y=0or 1.
2. g(0) #0or g(1) # 0= ¢(0) < 0 and g(1) > 0. Since g : [0,1] — R is continuous,
Jxg€[0,1] 2 g(zg) =0=Fz0 € (0,1) > f(xg) = xo. o

Remark 4.37. Such an x4 in Example 4.36 is called a fixed-point of f.
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Example 4.38. Let f : [1,2] — [0,3] be continuous, and f(1) = 0 and f(2) = 3. Then
31'0 € [1,2] =) f(f[fo) = Xy.

Proof. Let g(x) =« — f(x). Then g : [1,2] — R is continuous. Moreover,

thus 3z € (1,2) 3 g(zg) = 0. o

Example 4.39. Let p be a cubic polynomial; that is, p(z) = azz®+ asz® +-a124 ag for some

ag,ai,as € R and a3 # 0. Then p has a real root zq (that is, 3¢ € R such that p(zq) = 0).

Proof. Note that p is obviously continuous and R is connected.- Write

_ 3 a2 a1 ao
p(x) = as (1 + asx + azx? [ a3w3) '

Now lim izoifn>0andﬁsf'50,so

T—+00 BCI}‘”
. as al ag
1422 —1
xliri{lw ( K asx \ agx? a3x3)
Moreover,
4 3 oo ifa>0,
lim azx® = .
T—0 —oo if a < 0.
Suppose that @ > 0. Then lim az® = o0 and lim az® = —0 = Jr,y e Rop(x) <0 <
T—>00 T—>—0
p(y). By Corollary 4.35 3r € R 3 p(r) = 0. The case that a < 0 is similar. o

4.5 Uniform Continuity (#23 :#& 5 )

Definition 4.40. Let (M, d) and (N, p) be metric spaces, A € M, and f : A — N be

a map. For a set B € A, f is said to be uniformly continuous on B if for any

two sequences {,}° 1, {yn}i"; € B with the property that lim d(z,,y,) = 0, one has
n—0o0

T}I_{IOIO p(f(xn)a f(yn)) = 0.

Proposition 4.41. Let (M,d) and (N, p) be metric spaces, A< M, and f: A — N be a

map. If [ is uniformly continuous on A, then f is continuous on A.
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Proof. Let xg € An A’, and {zx}72, < A be a sequence such that z;, — 29 as k — 0.
Let {yx}i_; be a constant sequence with value xo; that is, y, = o for all k € N. Then

{yr}ie, € A and d(xy, yx) — 0 as k — oo. By the uniform continuity of f on A,

lim p(f(l“k)»f(l’o)) = ]}L%P(f(xk)a f(yk)) =0

k—0o0

which implies that f is continuous on x;. =

Example 4.42. Let f :[0,1] — R be the Dirichlet function; that is,

)0 ifze@,
ﬂ@{1imeP

and B =Q n[0,1]. Then f is continuous nowhere in [0, 1], but f*is uniformly continuous
on B. However, the proposition above guarantees that if f is unifermly continuous on A,
then f must be continuous on A (Check why the proof of Proposition 4.41 does not go
through if B is a proper subset of A).

Example 4.43. The function f(x) = |z| is uniformly continuous on R.

Proof. By the triangle inequality,

f(x) = Fy)| =l = lyl| < |z —yl;

thus if {z,}r , and {y,}/°, are sequences in R and lim |z, — y,| = 0, by the Sandwich
n—0oo
lemma we must have lim |f(z;) = f(y.)| = 0. =
n—o0

Example 4.44. The function f: (0,00) — R defined by f(z) = 1 uniformly continuous
X

on [a,o0) for all'a > 0. However, it is not uniformly continuous on (0, o).

Proof. Let {z,}>. and {y,}r_, be sequences in [a,0) such that lim |z, — y,| = 0. Then
n—o0

1 1 |Tn — Ynl

f(@n) = Flya) = |— — —| = < Lo =l

0 0
Tn Yn |xnyn‘ a? -~ W

which implies that f is uniformly continuous on [a,o0) if @ > 0. However, by choosing

1
x, = — and y, = —, we find that
n 2n

ra—wal = - but ()~ flu) =n > 1:

thus f cannot be uniformly continuous on (0, o). o
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Remark 4.45. Let (M,d) and (N, p) be metric spaces, A< M, and f: BS A— N be a

map. Then the following four statements are equivalent:

(1) f is not uniformly continuous on B.

(2) Iz}, {yntr, € B> hm d(:cn,yn) = 0 and limsup p(f(2,), f(ya)) > 0.

n—ao0

(3) Hanhiis, {nbiis € B 3 lim d(z,y,) = 0 and lim p(f(za), f(ya)) > 0.

n—00

(4) de>0sYn> Ovzlxmyne B and d(xmyn) < % 9p(f<wn)af(yn>) =€

Example 4.46. Let f: R — R defined by f(x) = z%. Then f is continuous in R but not
1

uniformly continuous on R. Let e =1, z, =n, and y, =n + .
n

1

o ‘>1 Vn>0.

f(@n) = flyn)| = 0> = (n+ =)°| = |[n* = n® =1~

4n?

Example 4.47. The function f(z) = sin(z?) is not uniform continuous on R.

Proof. Let € =1, x, = 2n+/7 + £ and y,, = 2n./m — £ Then

.9 o , 5 T T , y T T
- — |sin (4 i ~ sin (4
| sin(z?) — sin(y.)| ‘Sln( n°mw + 3 + 64n2) sin (4n 5 T 6an e
thus if n is large enough, |sin(z2) — sin(y2)| > 1. o

Example 4.48. The function f : (0,1) — R defined by f(z) = sin L is not uniformly
x

continuous.

T\ -1 Ty —1
Proof. Let e =1, z, = (2n7r + 5) and vy, = (2n7r — 5) . Then

}sini—sini‘ =2,
In Yn

T 1 1
while |x,, — = = < = for all n e N. o
| n yn| An2r2 — %2 (4n2 _ i)ﬂ- n

Theorem 4.49. Let (M,d) and (N, p) be metric spaces, A< M, and f : A — N be a map.

For a set B< A, f is uniformly continuous on B if and only if

Ve>0,30>0 ap(f(x),f(y)) < & whenever d(z,y) <6 and z,y € B.
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Proof. “<” Suppose the contrary that f is not uniformly continuous on B. Then there are

two sequences {x,}>_;, {y,}°_; in B such that

lim d(2y,y,) =0 but limsup p(f(zn), f(ya)) > 0.

k—o0 n—0o0

Let € = %lim sup p( flzn), f (yn)) Then by the definition of the limit and the limit

n—00
superior (or Proposition 1.121) we conclude that there exist subsequences {x,, }7,

and {y,, }72, such that
p(f (@), f(Yn,)) = limsup p(f (zn), f(yn)) —e =20

n—0o0

while klim d(zn,, Yn,) = 0, a contradiction.
—00

. 1 .
Suppose the contrary that there exists € > 0 such that for all § = — > 0, there exist
n

two points z,, and y,, € B such that

d(@p, Yn) < % but p(f(%z)a f(%t)) = €.

These points form two sequences {z,}> ;, {y,}°, in B such that nh_r)glo d(xp,yn) = 0,

while the limit of p(f(zy), f(yx)), if exists, does not converges to zero as n — 0. As

a consequence, f is not uniformly continuous on B, a contradiction. o

Remark 4.50. The theorem above provides another way (the blue color part) of defining
the uniform continuity of a function over a subset of its domain. Moreover, according to
this alternative definition,if f A — N is uniformly continuous on B € A, then
0 €
Ve>0,30> OSVbeM,f(D(b,i) N B) < D(C’§> for some ce N ;

that is, the diameter of the image, under f, of subsets of B whose diameter is not greater
than ¢ is not greater thane (& B ® E /&7 4216 0 e+ & &4 S lic f priEd 218 > &%
el P NE S § AT €) .

Remark 4.51. In terms of the number 0(f,z, ) defined in Remark 4.9, the uniform conti-

nuity of a function f: A — N is equivalent to that

df(e) = inf 6(f,z,e) >0 Ve>0.

TEA

The function d(-) is the inverse of the modulus of continuity of (a uniform continuous)

function f.
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Theorem 4.52. Let (M,d) and (N, p) be metric spaces, A< M, and f : A — N be a map.

If K < A is compact and f is continuous on K, then f is uniformly continuous on K.

Proof. Let ¢ > 0 be given. Since f is continuous on K,

Vae K,36 =6(a) > 03 p(f(x), f(a) < g whenever x € D(a,0) n A.

Then {D(a, 5(2(1))} is an open cover of K; thus
aeK

N
I{ay, - ,aN}gKaKQUD(ai,%),
=1

where 0; = 0(a;). Let 6 = %min{él, -+ ,0n}. Then § > 0, and if 1,75 € K and d(zq,x2) <

0, there must be j =1,--- , N such that z1, 2z, € B(a;, ;) In fact, since z; € D(aj, Ej) for
some j =1,---, N, then

S
d(z2,a;) < d(xq,22) + d(x1,a;) < 6+ EJ < 0.

Therefore, z1, 29 € D(a;,d;) n A for some j =1,---, N; thus
5

P (e0). Jr2)) < pUEGED @) + p(fa2), flag) < 5 +5 =< :

Alternative proof. Assume thecontrary that f is not uniformly continuous on K. Then ((3)

of Remark 4.45 implies that) there are sequences {z,}>_; and {y,}_, in K such that

lim d(zn5y,) =0 but  lim p(f(zn), f(ya)) > 0.

n—0 n—ao0

Since K is (sequentially) compact, there exist convergent subsequences {z,, }72, and {y,, },

with limits z,y € K. On the other hand, lim d(x,,y,) = 0, we must have = y; thus by
n—0o0

the continuity of f (on K),

0=p(f(2), f(x)) = lim p(f(zn,), f(Yn,)) = Um p(f(2a), f(ya)) >0,

k—o0 n— 00

a contradiction. o

Lemma 4.53. Let (M,d) and (N, p) be metric spaces, A< M, and f : A — N be uniformly

continuous. If {x}, < A is a Cauchy sequence, so is {f(mk)}zo:l
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Proof. Let {x}2; be a Cauchy sequence in (M, d), and € > 0 be given. Since f: A - N

is uniformly continuous,
36>0>5 p(f(a:),f(y)) < & whenever d(z,y) < d and z,y € A.

For this particular 6, 3N > 0 3 d(xg, x¢) < d if k,£ = N. Therefore,
p(f(xr), flwe) <eif k> N, D

Corollary 4.54. Let (M,d) and (N,p) be metric spaces, A < M, and f : A — N be
uniformly continuous. If N is complete, then f has a unique extension to a continuous
function on A; that is, 3g: A — N such that

(1) g is uniformly continuous on A;

(2) g(x) = f(x) for all z € A;
(3) if h: A — N is a continuous map satisfying (1) and (2), then h = g.

Proof. Let © € A\A. Then 3{z;}?*, < A such that z;, — = as k — oo. Since {23},
is Cauchy, by Lemma 4.53 { f (:vk)}zozl is a Cauchy sequence in (N, p); thus is convergent.
Moreover, if {z;}72, € A is another sequence converging to x, we must have d(zg, zx) — 0
as k — oo; thus p(f(zx), f(z)) —.0 as k— o0, so the limit of {f(a:k)}zo:l and {f(zk)}zozl

must be the same.
Define g : A — N by
f(x) if reA,
g\r) =

]}im f(z) ifz e A\A, and {3}, € A converging to z as k — 0.
—00

Then the argument above shows that g is well-defined, and (2), (3) hold.

Let € > 0 be given. Since f : A — N is uniformly continuous,
30> 03 p(f(2), f(y) < % whenever d(z,y) < 2§ and z,y € A.

Suppose that x,5 € A such that d(z,y) < 6. Let {m}7,, {vx}, € A be sequences
converging to x and y, respectively. Then 3 N > 0 such that

3

3 o(Flun), aly)) <

Wl M

d(xg,x) < g,d(yk,y) < g and p(f(:vk),g(:v)) <
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In particular, due to the triangle inequality,
) )
d(zn, yn) < d(zn,x) +d(z,y) + d(y,yn) < 3 +0+ 5= 20 ;

thus p(f(zn), f(yn)) < g As a consequence,

p(9(),9()) < p(g(@), flan)) + p(flan), flun)) +o(flun), f(¥)) < s+ s+ - =¢c. o

4.6 Differentiation of Functions of One Variable

Definition 4.55. A function f : (a,b) — R is said to be differentiable at x if there exists

a number m such that

lim f(x) = f(zo) — m(x — x0)

X0 r — X

=0.

The (unique) number m is usually denoted by f’(z¢), and is called the derivative of f at

Zo.

Remark 4.56. The derivative of f at xo can be computed by

f,(fEO) — lim f(l‘) B f(xO) )

T=X0 r — 2o

Remark 4.57. By the definition of the limit of functions, f : (a,b) — R is differentiable at
xg € (a,b) if and only if there exists m € R, denoted by f'(x¢), such that

Ve>0,36 > 03]f(x) = f(zo) — f(w0)(z — z0)| < |z — mol if [z — zo| < 4.

Definition 4.58. A function f : (a,b) — R is said to be differentiable (on (a,b)) if f is

differentiable at each z( € (a, b).

Proposition 4.59. Suppose that a function f : (a,b) — R s differentiable at xo. Then f

18 continuous at xg.

Proof. For x # xo, f(x)— f(xo) = flz) = fao) (x — x); thus Proposition 4.15 implies that
Tr — X
lim (f(z) — f(z)) = lim w ~im (2 — x9) = f'(20) -0=0. o
T—T0 T—To — Xy T—T0

Theorem 4.60. Suppose that functions f, g : (a,b) — R are differentiable at zo, and k € R

is a constant. Then
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—_

- (kf)(20) = kf'(x0).

2. (f£9)(w0) = f'(20) £ g'(w0).

w

- (f9) (zo) = f'(x0)g(x0) + f(20)g'(w0).

n (‘;)/(l‘o) _ f’(ivo)g(x(;)(a;))f;(lfo)g'(mo)

Theorem 4.61 (Chain Rule). Suppose that a function f : (a,b) — R is differentiable at x,
and g : (¢, d) — R is differentiable at yo = f(xo) € (¢,d). Then go f is differentiable at x,
and

(g0 f) (o) = g'(f(x0))f (o)

Proof. Let ¢ > 0 be given. Since f : (a,b) — R is differentiable at =y and g : (¢,d) - R is
differentiable at yo = f(z0),

36, > 03 |f(z) — f(20) — F(w0) (& — m0)| < min {1, m}u o] if |z — 20| < &1
and

’ E‘y_y0’ .
365> 03 g(y) — 9(y0) — ¢ Wo) (¥ — wo)| < S+ o)) if [y — yo| < b

Moreover, by Proposition 4.59 f is continuous at xg; thus
305 > 03 |f(x) — flwo)| < 0z if | — 20| < &5 and x € (a,b).

Let § = min{dy, d3}, and denote f(x) by y. Then if |z — x¢| < &, we have |y — yo| < d2 and

(g0 /)(x) =(go f)(z0) = ¢'(yo) [ (x0)(z — x0)| = |9(y) — 9(¥o) — ¢’ (o) [ (x0) (x — o))
= |9(y) = 9(y0) — 9'(¥0) (¥ — y0) + g'(y0) (f(x) — f(wo) — f'(x0) (2 — wo)]
6|f(x) - f($0)| + |g,<y0)|2(5|$—330|

~

2(1 + | f'(wo)]) 1+ [g'(yo)])
€ B , B o
< m(@ ol + | f' (xo)||v — wol) + 2|9U Zo| = elz — ol -
By Remark 4.57, g o f is differentiable at xq with derivative ¢'(f(xo))f'(zo). o

Proposition 4.62. If f : (a,b) — R is differentiable at zo € (a,b) and f attains a local
minimum or mazimum at xo, then f'(xy) = 0.
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Proof. W.L.O.G. we assume that f attains its local minimum at zo. Then f(z) — f(zo) =0

for all x € I, where I is an open interval containing xy. Therefore,

o) — i L@ ZIE) @) = fa)
T—To T — o ToTy T — X
and
o) — i LD =S 0) ) = fla)
T—=To T — X J:—>a:§ T — Xo
As a consequence, f'(z) = 0. o

Theorem 4.63 (Rolle). Suppose that a function f : [a,b] — R is continuous, and is
differentiable on (a,b). If f(a) = f(b), then ¢ € (a,b) such that f'(c).= 0.

Proof. By the Extreme Value Theorem, there exists zo and 'y in [a, b] such that

f(zo) = min f([a,b]) and f(x;).= max f([a,b]).
Case 1. f(x¢) = f(x1), then f is constant on [a,b]; thus f'(x) = 0 for all x € (a,b).

Case 2. One of f(zg) and f(zq) is different from f(a). W.L.O.G. we may assume that
f(zo) # f(a). Then zg € (a,b), and f attains its global minimum at 9. By Proposi-

tion
4.62, f'(x9) = 0. o
Theorem 4.64 (Cauchy’s Mean Value Theorem). Suppose that functions f,g : [a,b] — R

are continuous, and fyg (a;0) — R are differentiable. If g(a) # g(b) and g'(x) # 0 for all

x € (a,b), then there ewists c € (a,b) such that

Proof. Consider the function

h(z) = (f(2) = £(a)) (9(b) — g(a)) — (f(b) = f(a)) (9(z) — 9(a))

Then h : [a,b] — R is continuous, and is differentiable on (a, b). Moreover, h(b) = h(a) = 0.
By Rolle’s theorem, there exists ¢ € (a,b) such that

I'(c) = f'(c)(g(b) — g(a)) — (f(b) — f(a))g'(c) = 0. :
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Corollary 4.65 (Mean Value Theorem). Suppose that a function f :[a,b] — R is continu-
ous, and f : (a,b) — R is differentiable. Then there exists c € (a,b) such that

f(0) — f(a)

/ —

f (C> - b —a :

Proof. Apply the Cauchy Mean Value Theorem for the case that g(z) = . =

Corollary 4.66. Suppose that a function f : [a,b] — R is continuous and f'(x) =0 for all

x € (a,b). Then f is constant.

Proof. Let x € (a,b) be given. By Mean Value Theorem, there exists ¢ € (a;&) such that

J(@) ~ fla) = F'(e)(x —a) = 0.
Therefore, f(x) = f(a); thus for all z € (a,b), f(z) = f(a). Now by continuity, f(b) =
lim f(2) = f(a). .
Corollary 4.67 (L’Hospital’s rule). Let f, g : (a,b) — R be differentiable functions. Suppose

/
that for some xqg € (a,b), f(xg) = g(xo) =0, ¢'(x) # O-for all x # xo, and the limit lim g,g;
Tr—>T0
f(z)

exists. Then the limit lim —— also exists, and

z—z0 g() /
lim M = lim f(z)

@) )
Proof. We first note that g(z) # g(xq) for all x # z; since if not, the Mean Value Theorem

implies that the existence of ¢ in between x and z( such that ¢’(¢c) = 0 which contradicts
to the condition that ¢'(x) # 0 for-all x # z5. By Cauchy’s Mean Value Theorem, for all

x € (a,b) and x # xq, there exists £ = £(x) in between = and zy such that

f) _ @)~ ) _ )

9(z)  g(z) —g(zo) (&)
Since £ — ¢ as ¥ — xy, we have

(OB (S B )

= lim ) o

vy g(x) oo g'(E) w0 g'()

Theorem 4.68 (Taylor). Suppose that for some k € N, f : (a,b) — R be (k + 1)-times
differentiable and c € (a,b). Then for all x € (a,b), there exists d in between ¢ and x such
that

J (k+1)!
where fY9) denotes the j-th derivative of f.

EFO) (e . (k+1)
f(x) = Z f .!( )(x — ) + f—@l)(x o)D),
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Proof. Let g(x) = f(z) — Zk: f(j?(c) (x —c¢)?, and h(z) = (x — ¢)*L. Then for 1 < j <k,

99(e) = h(e) =0

thus by the Cauchy mean value theorem (Theorem 4.64), there exists & in between x and

¢, & in between & and ¢, - -+, &1 in between & and c such that

g(x) —9(0) _ (&) _ g(€) ~d(0) _ g"&) _
W)~ h(x) —h(e) ~ W(€)  W(&)—W(e)  W(&)

W& _ gW(6) —gW(e) _ g® V() _ FED G
MG~ hOE) —hB(e) ~ hETE) (Rl

Letting d = &1 we conclude the theorem. O

Example 4.69. A function f : [a,b] — R is said to be Lipschitz continuous if 3M > 0
such that

|f(z1) = fz2)] < M|zy — 23|~ Vg, 25 € [a,0].

If the derivative of a differentiable function f : (a,b) — R is bounded; that is, 3M > 0
5 |f'(z)] < M for all x € (a,b), then the Mean Value Theorem implies that f is Lipschitz

continuous. A Lipschitz continuous function must be uniformly continuous.

increasing

decreasing
strictly increasing (
strictly decreasing

Definition 4.70. A function f : (a,b) — R is said to be n (a,b))

if f(z1)

f(zg) if a <1 < x9 < b. f is said to be monotone if f is either increasing

AN\AV/AN

vV

or decreasing on (a,b), and strictly monotone if f is either strictly increasing or strictly

decreasing.

Theorem 4.71. Suppose that f : (a,b) — R is differentiable.
1. f is increasing on (a,b) if and only if f'(x) =0 for all x € (a,b).
2. f is decreasing on (a,b) if and only if f'(x) <0 for all x € (a,b).

3. If f'(x) > 0 for all z € (a,b), then f is strictly increasing.
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4. If f'(xz) <0 for all x € (a,b), then f is strictly decreasing.

Theorem 4.72 (Inverse Function Theorem). Let f : (a,b) — R be differentiable, and f'
be sign-definite; that is, f'(x) > 0 for all x € (a,b) or f'(x) < 0 for all x € (a,b). Then
f:(a,b) = f((a,b)) is a bijection, and f~1, the inverse function of f, is differentiable on
f((a,b)), and

Y (f () = ﬁ Ve (ab). (4.6.1)
Proof. W.L.O.G. we assume that f'(x) > 0 for all z € (a,b). By Theorem 4.71 f is strictly
increasing; thus f~! exists.
Claim: f~': f((a,b)) — (a,b) is continuous.
Proof of claim: Let yo = f(zo) € f((a,b)), and € > 0 be given. Then f((xg —e,2¢ +¢€)) =
(f(zo —¢), f(mo +¢)) since f is continuous on (a,b) and (zo = &,we+ ) is connected. Let

6 = min{f (o) — f(zo —€), f(zo + €) — f(0)}. Then § > 0, and

(yo — 6,40+ 6) = (f(wo) = 8, f(xo) + 6) = f((xo — €, 20+ €));

thus by the injectivity of f,

F (o —8,90+0) < fFH(f((x0— € 20 +€))) = (z0—€,20+€) = (f(yo) —&, f (o) +¢) -
The inclusion above implies that f~! is continuous at yj.
Writing y = f(z) and z = f~(y). Then if yo = f(x0) € f((a,b)),

f7H) =) -
Y—Y f(@) — f(2o)

Since f~!is continuous on f((a;b)), x — z¢ as y — yo; thus

lim F1W) = 7 (o) = lim i = L
y—vo Y—Y z—ao f(x) = f(wo) /(o)
which implies that f~! is differentiable at yj. o

4.7 Integration of Functions of One Variable

Definition 4.73. Let A < R be a bounded subset. A collection P of finitely many points
{xo, 1, -+ ,x,} is called a partition of A if infA =2 <2y < -+ < 2,1 <z, = sup A.
The mesh size of the partition P, denoted by |P|, is defined by

|P| = max {z) — zp_1 | k=1, ,n}.



130 CuAPTER 4. Continuous Maps

Definition 4.74. Let A < R be a bounded subset, and f : A — R be a bounded function.
For any partition P = {xg, 1, -+ ,z,} of A, the upper sum and the lower sum of f

with respect to the partition P, denoted by U(f, P) and L(f,P) respectively, are numbers
defined by

n n—1

U(f,P)=2, sw [@)(@—z1)=), sup [(&)(wr—),
k=1 IE[I;C,L:EH k=0 xe[xk,xk+1}
n n—1

L(f,P)=>), inf fla)(zx—m)=), inf fa)(ze =),

zE[T_1,2t] TE[T, T 1]

k=1 k=0
where f is an extension of f given by
[ @) wea,
= 4.7.1
o ={ 7 (4.7,

The two numbers

f(z)dz = inf{U(f,P) | P isa partition of A},

S

and

f(z)dz = sup{L(f,P)| P is a partition of A}
A

are called the upper integral and lower integral of f over A, respective. The function

f is said to be Riemann (Darboux) integrable (over A) if f f(z)dx = f f(z)dz, and
A A

in this case, we express.the upper and lower integral as | f(z)dz, called the integral of f
A

over A. The upper integral, the lower integral, and the integral of f over [a,b] sometimes

7 b b
are also denoted by ff(x)dx, ff(x)dx, and ff(a:)da:

b b
Example 4.75. f f(x)dx and f f(x)dx are not always the same. For example, define
Fi0.1] > Rby
1 ifze[0,1\Q,

f(g“"):{ 0 ifzel0,1]n Q.

Let P={0 =29 <2 < --- < 2, = 1} be any partition on [0,1]. Then for any k =
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0,1,---,n—1, sup f(x)=1land inf f(x)=0; thus

z€[Tg,Tpa1] T€[TE, Tpt1]
n—1 n
U(f,P)y=2, sup  f@)(wx—wpa) = ) (@ —wp1)
k=0 €[z, Tht1) 0

=(r1—zo)+(r2a—21)+ -+ (xp—2p1) =, —20=1-0=1

and
n

L(f,P) =) 0(x; — zi1) = 0.

i=1
As a consequence,

51
J f(z)dz = inf {U(f,P) |P is a partition on [0,1]} =1,

0

Jl f(z)dz = sup {L(f,P) | P is a partition on [0, 1]} = 0;

0

hence f is not Riemann integrable over [0, 1].

b
Example 4.76. Suppose [ : [a,b] — R is integrable and f > 0 on [a, b], then f f(z)dx = 0.

Reason: Since f = 0 on [a,b] = sup  f(x) = 0 for £k = 0,1,...,n — 1. Therefore,
€@, L)

U(f,P) = 0 for all partition P on [a, b}, so
b b
J f(x)dx = J f(z)de =inf{U(f,P) | P is a partition on [a,b]} > 0.

Definition 4.77. A partition P’ of a bounded set A < R is said to be a refinement of
another partition P if P < P’
Proposition 4.78. Let A < R be a bounded subset, and f: A — R be a bounded function.
If P and P’ are partitions of A and P’ is a refinement of P, then

L(f,P) < L(f,P) <U(f,P") <U(f.P).

Proof. Let f be the extension of f given by (4.7.1). Suppose that P = {zg, z1,--- ,2,}, P’ =
{vo,y1,** ,Ym}, and P < P’. For any fixed k =0,1,--- ;n — 1, either P’ n (zg, Tp11) = &
or P n (zg, tpa1) # .

L If P (ag, xk41) = O, then z = yp and zx41 = Y1 for some €. Therefore,

sup  f(2)(@per —xk) = sup f(2)(yera — ye)-

€T, T4 1] €Yo, Yes1]
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2. P 0 (0p, Tpg1) = Yot Yegas - - 7y€+p}7 then z; =y, and w41 = yoypy1. Therefore,
p+1 _ _
sup f@)(Weri = Yerio1) = sup f(2)(Yer1 — ye)
im1 Z€[Yeri—1,Yeti] z€[ye,ye+1]
+  sup  f(2)(Yer2 — Yoy1) + - F sup J (@) (Yerpr1 — Yesp)
TE[Yet1,Ye+2] TE[Yetp Yetp+1]
< sup f(@)(Yerr —ye) + sup f(@)(Yera — Yey1) +
(XK, Tht1] z€[z),TEt1)
+ sup f(x)(yz+p+1 - y£+p) = Sup f($)<$k+1 N xk) .
z€[T,Tpt1) z€[T),Tht1)

In either case,

> sup (@) (ye —ye1) < sup fla) (@ — @)

[ye—1,9e]S[zr,Th41] T€[Ye—1,Ye] TE[Tg,Tpq1]

As a consequence,

m—1 -

U(f,P') = Z sup [ (@) (Yo — ye) 2 F(@)(ye = ye-r)

(=0 TEWyeye+1] k=0 [ye_1,y0]S [Tk, Th11]

n—1

gz sup  f(2)(zper — 1) = U(f,P).

k=0 €[k TR11]

Similarly, L(f, P) < L(f, P’); thus the fact that L(f, P") < U(f,P’) concludes the proposi-

tion. o

Corollary 4.79. Let f : [a,b] = R be a function bounded by M ; that is, | f(x)| < M for all
a < x <b. Then for all partitions Py and Py of [a,b],

b
ML) SLULPY < f f(x)de f J(2)de < U(f,P2) < M(b—a).

b b
Proof. Tt suffices to show that J flz)dr < f f(z)dz. By the definition of infimum and

supremum, for any given ¢ > 0, 3 partitions P and P such that

a

b b b =b
J f(x)dx—%<L(f,75)< f f(z)dx and f fx)dz <U(f,P) < f f(x)dx—i—%.
Let P =P U P. Then P is a refinement of both P and 75; thus

fbf(x)dx—% < L(f,P) < L(f,P) <U(f,P) < U(f,73) < fbf(x)d:c—l—%.
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b b
Since € > 0 is given arbitrarily, we must have J f(x)dr < J f(x)dz. o

Proposition 4.80 (Riemann’s condition). Let A € R be a bounded set, and f : A — R be

a bounded function. Then f is Riemann integrable over A if and only if
Ve > 0,3 a partition P of AsU(f,P)— L(f,P) <e¢

Proof. “=7" Let € > 0 be given. Since f is integrable over A,
inf U(f,P)= sup ,P) = J
P: Partition of A (f ) P: Partition of A f A f

thus there exist P; and P, partitions of A, such that
JAf(x)dx - g < L(f,P1) < Lf(x)dx <U(f,Pq) < Lf(m)dx—l— g

Let P =P, U P,. Then P is a refinement of P; and Ps; thus

ff d:c——<L(f,731 ff

U(f,P) <U(f, P2) < L fla)de + %
which implies that U(f,P) — L(f,P) < e.
<" We note that for any partition P of A,
L(f,P)< L f(z)dr < L f(x)dz < U(f,P);

so we have that for all partition P of A,

Lf(x)dw— Lf(x)dx <U(f,P)— L(f,P).

Let € > 0 be given. By choosing P so that U(f,P) — L(f,P) < &, we conclude that

L f(a)de — _L Fa)dr < <.

Since € > 0 is given arbitrarily, j f(x)dx = j f(x)dx; thus f is Riemann integrable
A A

over A. - o
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Proposition 4.81. Suppose that f,g : [a,b] — R are Riemann integrable, and k € R. Then

b b
1. kf is Riemann integrable, and J (kf)(x)dx = kf f(z)dx
b b b
2. f+ g are Riemann integrable, and J (f £9)(v)dx = f f(x)dz + J g(z)dx

b b
3. If f < g forall x € [a,b], then f f(z)dx < Jg(x)dx.

a

4. If f is also Riemann integrable over [b,c|, then f is Riemann integrable over [a,c],

and

Cf(x)dx: bf(w)dw—i— cf(x)dx. (4.7.2)
a a b

[(#ai] < [1sar

5. The function |f| is also Riemann integrable, and

Proof. 1. Case 1. k = 0. We note that
inf (kf)(z)=k inf f(x) and sup (kf)(z)=k sup f(x).
me[xi—lvxi} xe[xi—l’mi] a:e[:tifl,xi] IE[IZ',LIZ‘]
Then
L(kf,P) =) inf (kf)(z)(x; = zi)

=Yk nf  f(@)(w = wia) = KL(SP).
3 TE|Ti—1,T4

Similarly, U(kf, P) = kU(f,P) for every partition P. So

f (kf)()da sip LLP) =k sw  L(f.P)

P: Partition of [a, ] ‘P: Partition of [a, ]
_ k:f fla)da = f fla

b
(kf)(x)dx = kJ f(x)dx. Hence kf is integrable and

Lb(kﬁ(x)dx = Lb(k:f)(:c)d:c = kf fla)de =k f b f(o)dx

b
Similarly, j

a
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Case 2. k < 0. We have
inf (kf)(x)=k sup f(z) and sup (kf)(z)=Fk inf f(z).

ze[wi—1,2i] TE[Ti—1,24] TE[Ti—1,24] welri1,xi

Then L(kf,P)=kU(f,P) and U(kf,P) = kL(f,P); thus

f (kf)(z)dx = sup L(kf,P) = sup kU(f,P)

P: Partition of [a, b] ‘P: Partition of [a, b]
b b
P: Partilt%n of [a, b] <f’ P) L f(il') z Ja f(ill') T

b
(kf)(x)dx = kj f(x)dx. Hence kf is Riemann integrable over [a, b] and

Lb(kf)(x)dx = _Lb(kf)(x)dx = kLb f(x)de = kLbf(x)dx

2. We prove the case of summation. For ant partition P, we have

7b
Similarly, f

a

n

L(f+g.P)=>, inf (f+g)(z)(z;— i)

i—1 xe [xi,1 ,l‘i}

n

> 0 A =) £33 o i)
= L(f,P) + L(g,P).
Similarly, U(f + g,P) < U(f,P) + U(g, P). Therefore,
L(f,P)+ L(g,P) < L(f+9,P)<U(f+9.P) <U(f,P)+ U(g,P).  (4.7.3)
Let € > 0 be given. By Proposition 4.80, 3P, P, partitions of [a, b] such that

U(f, Pl) —L(f, 731) < and U(g,P2> —L(g,Pg) <

NN
DO | ™

Let P = Pl U PQ. By (473),

= (U(f,P) = L(f,P)) + (Ulg,P) — L(g,P))
< (U, P1) = L(f,P1) + (U(g, P2) — L(g, P2)) <

Do ™
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By Proposition 4.80, f + ¢ is Riemann integrable over |a, b].

To see J (f +9)(z)de = J f(x)dx + J x)dx, we note that by Proposition 4.78,

U<f7 ) f7 )—|—U(f,7)1 (f,P1)<L(f, )
ff dx—l—— Jf dx—l——

b
and similarly, U(g, P) < J g(x)dx + g Therefore, by (4.7.3),

f (f + 9)(x)de = j (f + 9)(@)dz < U(f + g, P)

U(f,P)+U(g,P Jf dx+f z)d + €. (4.7.4)

On the other hand,

L(,P) > U(f,P)~E > ff ) — £

and )
L(g.P) >Ulg,P) = 5 > [ gla)dr—5:

hence by (4.7.3),

| (4 g)a)da = f
S Lb

f

a

+g)(z)dz = L(f + 9,P) = L(f,P) + L(g,P)
) ’ (4.7.5)

(
flx dm+J g(z)dx — €.

By (4.7.4) and (4.7.5),
b b
Jf d:zc—I—J )d:p—5<J(f+g)( )dx < f dx—i—fg(x)quhe.

b b b
Since € > 0 is arbitrary, f (f+9g)(x)dx = f f(z)dx + f g(x)da.

a a

3. Let P={a=x9 <x; <+ <z, =0b} be a partition of [a,b]. Define

m;(f)= inf f(z) and m(g)= inf g().

xE[2; 1,24 x€E[Ti1,24]



§4.7 Integration of Functions of One Variable 137

Since f(x) < g(x) on [a,b], m;(f) < m;(g). As a consequence, for any partition P,

n

L(f,P) = D mi(f)(wi — wi1) < Zmi(g)(x@- —zi1) = L(g,P);

=1

thus taking the infimum over all partition P,
fbf(x)dx = fbf(w)dﬂﬁ = sup L(f,P) < sup L{g, P) =
4. Let € > 0 be given. Since f is Riemann integrable of [a,b] and [b, ], there exist a
partition P; over [a,b] and a partition Py of [b, ¢| such that
U(f,P) = L(f,P) <5 and U(f,P2) = L(f, P2) < 5
Let P =Py U Py. Then P is a partition of [a, ¢] such that
U(f,P) = L(f,P) = U(f,P1) + U(f, P2) = L(f, Pr) = L(f, P2) < €.

Therefore, Proposition 4.80 implies that f is Riemann integrable over [a, ¢].

c b c
Now we show that j flz)dz = f f(z)dz + J f(z)dz. To simplify the notation,
a a b

we let . , .
A:fﬂ@@,B:jﬂ@m,osz@m.
Let € > 0 be given. ThC(Len 3 partition P i {xo, 1, 20} i)f [a, ¢] such that
A<SU(f,P)<A+e.
Let P’ =P u {b}. Then P’ is a refinement of P. Moreover,
U(f,P)=U(f,P1) + U(f,P2),

where P; = P’ nfa,b] and Py = P’ N [b, ¢] are partitions of [a, b] and [b, ¢| whose union
is P. Therefore,
B+C<U(f,P)+U(f,P) =U(f,P)<U(f,P)<A+e.
On the other hand, 3 partition P; of [a,b] and partition Py of [b, ¢] such that
B<U@PQ<B+gam_C<UmPg<O+§
Let P = P; U Py. Then P is a partition of [a, c|. Therefore,
A<SU(f,P)=U(f,P1)+U(f,P:) < B+C+e.

Therefore, Ve >0, B+ C <A+cand A< B+ C+¢;thus A= B+ C.
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5. Note that for any interval [a, 3],

sup [/(2)| = inf [/(x)| < sup f(@)~ inf f(2); (Check)

z€[a,B] zela,f] z€[a,B] z€[o,B

thus for any partition P of [a, b],

Therefore, Proposition 4.80 implies that |f| is Riemann integrable over [a,b]. More-

over, since —|f(x)| < f(x) < |f(z)| for all z € [a, b], by 3 we have

[ 1rene < [ e [ it D

Remark 4.82. The proof of 4 in Proposition 4.81 in fact also shows that if a < b < ¢, then

£Cf(x)dx = £bf(a:)da: + fcf(x)dx.

b

Similar proof also implies that

b

J:f(a:)dx = _Lbf(x)dx + JC f(z)dz.

a b

Remark 4.83. If a < b, we let the number J f(x)dx denote the number —J f(z)dz. Then
b a

(4.7.2) holds for all a, b, c € R.

Example 4.84. Let f :{0,1] — R be defined by

1 ifxeQ,
f<x)_{ 1 ifzeQt.
Then f(z) is not Riemann integrable over [0,1] since U(f,P) = 1 and L(f,P) = —1.

However |f(z)| = 1, thus |f| is Riemann integrable. In other words, if |f| is integrable, we

cannot know whether f is integrable or not.
Theorem 4.85. If f : [a,b] — R is continuous, then f is Riemann integrable.

Proof. Let € > 0 be given. Theorem 4.52 implies that

€

35>09|f($)—f(y)|<2(b—a)

whenever |x — y| < 0 and z,y € [a, b] .
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Let P be a partition with mesh size less than 0. Then

n

U(f.P)=L(f,P)=),( suwp [flz)— inf f(z))(zx—251)

k=1 x€[TK_1,2k] z€[Tp_1,7k]
€ “ c
S (7p — 741) = (T, —x0) < €;
2@—&)2% 2(b — a)
thus by Proposition 4.80 f is Riemann integrable over [a, b]. G

Corollary 4.86. If f : (a,b) — R is continuous and [ is bounded on [a,b], then f is

Riemann integrable over [a, b].

Proof. Let |f(z)| < M for all x € [a, b], and € > 0 be given. Since f : [CH—SiM’b_éSiM] —-R
is continuous, by Theorem 4.85 f is Riemann integrable; thus
L £ 5 €
3P': partition of [a + m’b - SW} sU(f,P")—L(f,P) < 5

Let P =P’ U {a,b}. Then

U(f’P) - L(f7,P>

€ € €
< sup f(z)— in f(®))—+ =+ sup f(x)— inf f(x))——
(xe[a’aJrsEM] ( ) rela,a+g57 ( ))8M 2 (xe[bgngb] ( ) xe[b—g57,0] ( )) SM
€ € €
<2M - — + =4+ 2M - —= =¢;
s T2 e ¢
thus Proposition 4.80 implies that f is Riemann integrable over [a, b]. =

Corollary 4.87. If f : [a,b] — R is bounded and is continuous at all but finitely many

points of [a,b], then f is Riemann integrable.

Proof. Let {cy,--- ,cn} be the collection of all discontinuities of f in (a,b) such that ¢; <
g < -+ <cy. Let a =c¢yand b = cyyq. Then for all k = 0,1,--- N, f: (¢, Cre1) i8
continuous and f : [¢k, cgy1] is bounded; thus f is Riemann integrable by Corollary 4.87.

Finally, 4 of Proposition 4.81 implies that f is Riemann integrable over |[a, b]. =
Theorem 4.88. Any increasing or decreasing function on [a,b] is Riemann integrable.

Proof. Let f : |a,b] — R be a monotone function, and € > 0 be given. W.L.O.G. we may
assume that f(b) # f(a). Let P = {xo, 21, -+ ,x,} be a partition of [a, b] with mesh size
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less than ;. Then
a

U(f,P)—L(f,P) = Z ( sup  f(z)— inf  f(2))(zk — z-1)

k=1 2€[rr—1,7k] TE[TK—1,Tk]
< ;1 |f (k) — f(ﬂck—l)‘m =|f(b) - f(a)‘m =c;

thus Proposition 4.80 implies that f is Riemann integrable over [a, b]. =

Definition 4.89. A continuous function F : [a.b] — R is called an anti-derivative (¥ ¥ S#c) of
f :la,b] = R if F is differentiable on (a,b) and F'(x) = f(x) for all z € (a;b).

Theorem 4.90 (Fundamental Theorem of Calculus (A » 2 > 232 ) ). Let f : [a,b] - R

be continuous. Then f has an anti-derivative F', and

J F@)dz = F(b) — F(a).

b
Moreover, if G is any other anti-derivative of f, we also have f f(z)dx = G(b) — G(a).

T

Proof. Define F(x) = f f(y)dy, where the integral of f over [a,z] is well-defined because
of continuity of f on [a,(?v]. We first show that F is differentiable on (a, b).

Let g € (a,b) and € > 0 be given. Since [a,b] is compact,
361 > 03 |f(z)—fly)| < % whenever |z —y| < §; and z,y € [a,b] .

Let 6 = min{dy, zo — a,b — zo}. By 4 of Proposition 4.81, if x, z¢ € (a, b),

E) fly)dy = f fy)dy — on Fy)dy = F(x) — F(x) ;

thus if 0 < |z — x| < 4,

F(x)—F 1 v 1 v
HE ) e = | = [t pta)| = [ = [ () = e
1 max{xzg,z} p 1 max{zo,z} gd
= - < S .
|[E - "L‘U| min{zg,z} ‘f(y) f(x(])’ Y |ZL‘ - l'0| min{zg,z} 2 y=e
F(x) — F(xo)

= f(xo) for all zy € (a,b), so F'(z) = f(zx) for all x € (a,b).

Therefore, lim
T—x0 r — Xo
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Next we show that F' is continuous at * = a and x = b. This is simply because of the

boundedness of f on [a,b] which implies that

max | f(x)] - limsupj 1dt =0

xe[a b] z—at

limsup |F(z) —

z—at z—at

and

limsup |F(z) —

r—b— r—b—

b
< max | f(z)] - limsupf 1ldt =0.

Z‘E[a b] x—b—

T

Therefore, F' is an anti-derivative of f.
Now suppose that G is another anti-derivative of f. Then (G = F)(x) = 0 for all
€ (a,b). By Corollary 4.66, (G — F)(z) = (G — F)(a) for all x € [a,b]; thus G(b) — G(a) =
F(b) — F(a). o

Example 4.91. If f is only integrable but not continuous, then the function

_ J Crdt

is not necessarily differentiable. For example, consider

0 if0<x <1,
ﬂ@_{liﬂ<x<2

Then
0 ifo<z<l,

ﬂ@:{x—1ﬁ1<x<2

so F' is continuous on [0, 2]-but not differentiable at x = 1.

Theorem 4.92. Let f :|a,b] — R be differentiable. If f' is Riemann integrable over [a,b],
b
MMﬁffqu:ﬂM—fmy

Proof. Let P = {xg,x1,- - x,} be a partition of [a,b]. Since f : [a,b] — R is differentiable,
by the Mean Value Theorem there exists {&;,--- ,&,} with the property that xp < {11 <
Zryq for all £ =0,1---  n—1 such that

F (&) (@rgr — xr) = flaper) — f(zy) Vk=0,1,--- ,n—1.

Therefore,

n—1 n—1 n—1

Z inf f'(2)(zh41 —21) < Z F(Ehr1) (Thg1 — 1) < Z sup  f(2) (T — 7%) -

jmo PR TEL1 k=0 k=0 TE[Tk Tpt1]



142 CuAPTER 4. Continuous Maps

Since :Z:: I (Eps1)(Tpgr — 1) = :Z]: (f (k1) = f(zx)) = f(b) — f(a), the inequality above

implies_that
L(f',P) < f(b) — f(a) < U(f',P) for all partitions P of [a, ] ;

thus by the definition of the upper and the lower integrals,

b ~b
j f@)de < F(b) — f(a) < f f(@)da.

a

We then conclude the theorem by the identity

b b b
Jf’(x)dx = jf’(x)dx = ff’(x)dx
since f’ is Riemann integrable. o

Definition 4.93. Let P = {xg, 21, - ,2,} be a partition of a bounded set A < R. A
collection of points {1, ,&,} is called a sample set for the partition P if & € [z)_1, x]
forall k=1,--- n.

Let f: A — R be a bounded function with extension f given by (4.7.1). A Riemann
sum of f for the partition P = {a = xg < 23 < --- < x, = b} of A is a sum which takes the

form
n—1

D) (whn — o),

k=0
where the set = = {&y, &1, -+, &, 1} is a sample set for P.

Theorem 4.94 (Darboux). Let f : A — R be a bounded function with extension f given by
(4.7.1). Then f is Riemann integrable over A if and only if there exists 1 € R such that for
every given € > 0, there exists 6 > 0 such that if P is a partition of A satisfying |P| < 9,
then any Riemann sum of f for the partition P lies in the interval (1 —e,1+¢€). In other
words, f is Riemann integrable over A if and only if for every given ¢ > 0, there ewvists § > 0

such that there exists I € R such that

n—1

‘ Z FEin)(zpn — ) = 1] < ¢ (4.7.6)
k=0
whenever P = {xg,x1, -+ ,x,} is a partition of A satisfying |P|| < § and {&1,&s, -+ ,En} is

a sample set for P.
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Proof. “<” Suppose the right-hand side statement is true. Let ¢ > 0 be given. Then there
exists § > 0 such that if P is a partition of A satisfying |P| < 4, then for all sets of

sample points {1, -+ ,&,} with respect to P, we must have

n—1
‘ Z F(&esr) (mpgr — ) — 1| < Z :
k=0

Let P = {xo,21, -+ ,x,} be a partition of A with |[P| < 4. Choose sets of sample
points {&1, -+, &} and {n,- - ,n,} with respect to P such that

_ e _ _
a su r)——m< < su T);
(a) L f(z) e f(&1) e f(2)
b) inf fl@)+ > [ > inf  f(a):
( ) ze[xlkl?zk—o—l] f(x) 4($n - xO) f(nk—H) 306[331151301@4-1} f(l’)
Then
n—1 _ n—1 | .
U(f,P)= 2 sup [ (@) (@pr1 — a) < Z [f(£k+1> + 47_] (Thi1 — k)
k=0 TE€[TE Tkt 1] =0 (xn xo)
n—1 n—1
7 € € € €
= I;)f(fkﬂ)(xkﬂ — xg) + m;($k+l —ap) <1+ 1 +Z =1+ 3
and
n—1 - n—1 _
L(f,P) = inf . _ _
(/,P) ]CZ—;) a:e[xlkr,lxkﬂ} @) (@t = ) > kz_;) [ (h+1) 4(zp — xo)] (41 = 1)

DN ™

n—1 i
_ . ) )
— kzzlof(ﬁkﬂ)(xkﬂ — ) — 4(%_%);::0(35“1 —ap) > 1— 11" I—

As a consequence, I—%<L(f,77) < U(f,P) <I+%; thus U(f,P) — L(f,P) < e.

“="” Let € > 0 be given, and [ = j f(z)dz. Since f is Riemann integrable over A, there
A
exists a partition Py = {yo, y1, - , Ym} of A such that U(f, P;)—L(f,P1) < % Define

5—min{\ —Yols [y2 = wils -+ s [ym — | - }
= Y= Yols b2 =l fYm = Ymeth R A — it f(A) 1 1) S

If P ={xg,x1, - ,x,} is a partition of A with |P| < J, then at most 2m intervals
of the form [z, xj41] contains one of these y;’s, and each such interval [z, z411] can

only contain one of these y;’s. Let P' =P u P.
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Claim: U(f,P) —U(f,P') <

Proof of claim: We note that

€
5

n—1

U(f,P)= ), sup f() @ — )
k=0 TEITk>Th41

= Z sup  f(x)(@ps1 — xp) + 2 sup  f(@)(Th1 — z1)

O<k<n—1 with TE[Tk,Th+1] O<k<n—1 with TE[Tk,Tpt1]
Pioleg,zp41]=9 Pioleg,zgy1]#2

and

u(f,P)y= ), sup  f(2)(wre1 — )

O<k<n—1 with TE[Tk,Tt1]
Piolzg,zp41]1=0

+ ) [ sup  f(x)(y; — xx) +  supf(x)(@r — y5) ] -

o<ks<n—1 with ~ TE[TL,Y;] TE[yY; Trt1]
Pinlzg g 1]=y;
Therefore,

U(f,P) = U(f,P") < (sup f(A) —inf f(A)) D) (2xs1 — 25)

0<k<n—1 with
”Plr\[zk,zk+l];&g

< 2m(sup f(A) — inf f(A))d < g

On the other hand, the inequality U(f, P1) — L(f,P1) < % implies that
U(f,P)—1<5.
As a consequence,
U(f,P)—1<U(f,P)—1+U(f, P) —U(f,P) <e.

Therefore, for any sample set {{1, -+ ,&,} with respect to P,

n—1

Z f(§k+1)($k+1 —x,) <U(f,P)<I+e.

k=0
Similar argument can be used to show that

n—1

D F (&) (@i — 1) = L(f,P) > T —¢;

k=0

thus (4.7.6) is established. o
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Theorem 4.95 (Change of Variable Formula). Let g : [a,b] — R be a one-to-one continu-
ously differentiable function, and f : g([a,b]) — R be Riemann integrable. Then (f o g)g’ is

also Riemann integrable, and

[ @—ff o)) do
9([a,b])

Proof. We only prove the case that f is continuous on g([a,b]), and the general case is
covered by Theorem 8.65 (which will be proved in detail).

W.L.O.G. we can assume that ¢'(z) = 0 for all z € [a, b] so that g([a,b]) = [g(a), g(D)].
Let F' be an anti-derivative of f. Then F' is differentiable, and the chain rule implies that

d
o (Fog)(@)=(F'og)z)g'(z) = (f o g)(z)g'(z)-
Therefore, the fundamental theorem of Calculus implies that
b d
[ dy—f Flu)dy = Plalv) = Flgla)) = | (P og)la)ds

:f (f o g)(x)g (z)dx. .

4.8 Exercises

§4.1 Continuity

Started from this section, for all n.e N R" always denotes the normed space (R™, || - [2).

Problem 4.1. Use whatever methods you know to find the following limits:

1. lim (1—|—81n2x)i' 2. lim (\/1+a:—|—x2—\/1—:v+x2);
xr—0t Tr—>—00
: secT5h. ; i in—1 x .

3. iLII%(Q—x) 2 4 ‘rpli{{.l()x(g — Sln T_i_l)7

5. hmx(e‘l—( x )x) 6. lim( o’ 1 )% where a > 0 and a # 1.
T—0 x+17 ) e x(a—1)7

Problem 4.2. Complete the following.

1. Find a function f : R? — R such that

lim lim f(z,y) and  lim lim f(z,y)

exist but are not equal.
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. Find a function f : R? — R such that the two limits above exist and are equal but f

is not continuous.

Find a function f : R? — R that is continuous on every line through the origin but is

not continuous.

Problem 4.3. Complete the following.

1.

2.

3.

2 —>
Show that the projection map f : (;Rw . Hj is continuous.

Show that if i/ < R is open, then A = {(:U, y) € R? | T € L{} is open.

Give an example of a continuous function f : R — R and an open set 4 < R such
that f(U) is not open.

Problem 4.4. Show that f: A — R™, where A € R", is continuous if and only if for every
B c A,

f(cl(B) nA) ccl(f(B)).

Problem 4.5. Let || - | be a norm on'R";and f : R" — R be defined by f(z) = |z||. Show
that f is continuous on (R", | - [|2).
Hint: Show that |f(z) — f(y)| < €|z =yll2 for some fixed constant C' > 0.

Problem 4.6. Let T': R® — R™ satisfy T'(z +y) = T'(z) + T'(y) for all z,y € R".

1.

Show that T'(rxz) = rT'(z) for all r € Q and x € R™.

. Suppose that T is continuous on R™. Show that 7' is linear; that is, T'(cx + y) =

cT'(x)+T(y) for all ce R, z,y € R™.

Suppose that T' is continuous at some point xg in R™. Show that 7" is continuous on
R™.
Suppose that T'is bounded on some open subset of R”. Show that 7" is continuous on

R™.

Suppose that T is bounded from above (or below) on some open subset of R"™. Show

that T" is continuous on R™.
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6. Construct a T': R — R which is discontinuous at every point of R, but T'(z + y) =
T(z)+ T(y) for all x,y € R.

Problem 4.7. Let (M,d) be a metric space, A < M, and f: A — R. For a € A’, define

liminf f(z) = Tl_i)r(% inf { f(z) |a: € D(a,r) n A\{a}},

r—a

limsup f(z) = rliI(I)IJr sup{ f(z) |z € D(a,r) n A\{a}}.

r—a

Complete the following.

1. Show that both liminf f(z) and limsup f(z) exist (which may be +o0), and

r—a T—a

liminf f(z) < limsup f(z).

r—a r—a

Furthermore, there exist sequences {z,}r_, {yn}ie_y € A\{a} such that {x,}> , and

{yn}*_, both converge to a, and

lim f(z,) = liminf f(z) and lim f(y,) = limsup f(z).

n—0o0 T—a n—0o0 r—a
2. Let {z,,})°, < A\{a} be a convergent sequence with limit a. Show that

liminf f(x) <Jiminf f(z,) < limsup f(y,) < limsup f(z).

z—=a R n—00 T—a

3. Show that lim f(z) = ¢ if and only if

r—a

liminf f(z) = limsup f(z) = (.

T—a T—a

4. Show that liminf f(x) = ¢ € R if and only if the following two conditions hold:

r—a

(a) for all € > 0, there exists § > 0 such that { —e < f(x) for all z € D(a, ) n A\{a};
(b) for all ¢ > 0 and ¢ > 0, there exists x € D(a,d) n A\{a} such that f(z) < /{+e.

Formulate a similar criterion for limsup and for the case that ¢ = +co.
5. Compute the liminf and limsup of the following functions at any point of R.
if teQ°,

0
(a) flx) = ; if(l,’:]%With(p,g):17q>07p7é0'
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r ifre@Q,
—x ifzeQt.

®) ) = |

Problem 4.8. Let (M, d) be a metric space, and A € M. A function f: A — R is called
liminf f(z) = f(a),

lower semi-continuous . :
- - at a € A if . and is called lower/upper
upper semi-continuous limsup f(x) < f(a),

Tr—a

semi-continuous on A if f is lower/uppser semi-continuous at a for all a € A.

1. Show that if f : A — R is lower semi-continuous on A, then f~!((—co,r]) is closed
relative to A. Also show that if f : A — R is upper semi-continuous on A, then

f7Y([r,0)) is closed relative to A.

2. Show that f is lower semi-continuous at a if and only if for all convergent sequences
{z,} 2, € Aand {r,}r, < R satisfying f(x,) < r, for all n € N, we have
f( lim :zrn) < limr,.
n—aoo n—0oo

3. Let {fa}aezr be a family of lower semi-continuous functions on A. Prove that f(x) =

sup fo(x) is lower semi-continuous on A.
ael

4. Let f: A — R be given. Define

f*(x) = limsup f(y) and f«(x) = liminf f(y).

Yy—x Yy—z

Show that f* is upper semi-continuous and f, is lower semi-continuous, and fi(x) <
f(x) < f*(x) for all x € A. Moreover, if g is a lowe semi-continuous function on A
such that g(z) < f(z) for all x € A, then g < f,.

§4.2 Operations on Continuous Maps

Problem 4.9.

Problem 4.10.

§4.3 Images of Compact Sets under Continuous Maps
Problem 4.11. Complete the following.

1. Show that if f : R® — R™ is continuous, and B < R" is bounded, then f(B) is
bounded.
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2. If f: R — R is continuous and K € R is compact, is f~!(K) necessarily compact?
3. If f: R — R is continuous and C' < R is connected, is f~!(C) necessarily connected?

Problem 4.12. Consider a compact set K < R™ and let f : K — R™ be continuous and
one-to-one. Show that the inverse function f=' : f(K) — K is continuous. How about if K

is not compact but connected?

Problem 4.13. Let (M, d) be a metric space, K < M be compact, and f: K — R be lower
semi-continuous (see Problem 4.8 for the definition). Show that f attains its minimum on
K.

§4.4 Images of Connected and Path Connected Sets under Continuous Maps

Problem 4.14. Let D < R" be an open connected set, where n > 1. If a,b and c are any
three points in D, show that there is a path in G which connects a and b without passing
through c. In particular, this shows that D is path connected and D is not homeomorphic

to any subset of R.
Problem 4.15.
§4.5 Uniform Continuity

Problem 4.16. Check if the following functions on uniformly continuous.

1. f:(0,0) — R defined by_f(z) = sinlog .
2. f:(0,1) - R defined by f(x) = xsin%.
3. f:(0,00) — R defined by f(x)=+/.
4. f:R — R defined by f(z) = cos(z?).
5. f:R — R defined by f(x) = cos®z.
6. f: R — R defined by f(z) = zsinz.
Problem 4.17. Find all positive numbers a and b such that the function f(z) = Sllrfib) is

uniformly continuous on [0, ).
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Problem 4.18. Find all positive numbers a and b such that the function f(z,y) = |z|*|y|°
is uniformly continuous on R2.

Problem 4.19. Let f : R” — R™ be continuous, and lim f(z) = b exists for some b € R™.

|z|—00
Show that f is uniformly continuous on R".

Problem 4.20. Suppose that f : R" — R™ is uniformly continuous. Show that there exists
a > 0 and b > 0 such that | f(z)|gm < a|z|g~ + b.

Problem 4.21. Let f(z) = anzg be a rational function define on R, where p and ¢ are two
p\T

polynomials. Show that f is uniformly continuous on R if and only if the degree of ¢ is not

more than the degree of p plus 1.

Problem 4.22. Suppose that f : R — R is a continuous periodic function; that is, 3p > 0
such that f(z 4+ p) = f(x) for all z € R (and f is continuous). Show that f is uniformly

continuous on R.

Problem 4.23. Let (a,b) € R be an open interval, and f : (a,b) — R™ be a function.

Show that the following three statements are equivalent.
1. f is uniformly continuous on (a,b).

2. f is continuous on (a,b), and both limits lim+ f(x) and linbﬂ_ f(x) exist.

r—a

f(z) = fy)

3. For all £ > 0, there exists N > 0 such that | f(z) — f(y)| < & whenever ’
r—y

N.

E

Problem 4.24. Suppose that f : [a,b] — R is Hélder continuous with exponent «;
that is, there exist M > 0 and « € (0, 1] such that

|f(z1) = f(z2)] < M|zy — 29|* V1,72 € [0,].

Show that f is uniformly continuous on [a,b]. Show that f : [0,00) — R defined by

f(z) = /z is Holder continuous with exponent 3

Problem 4.25. A function f : A x B — R™, where A € R and B < RP?, is said to be

separately continuous if for each zy € A, the map g(y) = f(zo,y) is continuous and for
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yo € B, h(z) = f(x,y0) is continuous. f is said to be continuous on A uniformly with

respect to B if
Ve>0,36 >05|f(x,y) — f(zo,y)|, < € whenever |z — zo[s <6 and y € B.

Show that if f is separately continuous and is continuous on A uniformly with respect to

B, then f is continuous on A x B.

Problem 4.26. Let (M,d) be a metric space, A € M, and f,g : A = R be uniformly
continuous on A. Show that if f and g are bounded, then fg is uniformly continuous on A.

Does the conclusion still hold if f or g is not bounded?
§4.6 Differentiation of Functions of One Variable

Problem 4.27. Show that f : (a,b) — R is differentiable at xy-€ (a,b) if and only if there
exists m € R, denoted by f’(x¢), such that

Ve>0,36>03|f(z) — flzo) — [(wo)(x = mg)| < ]z — mo| whenever |z —z| <.

Problem 4.28. Suppose that f,g: R — Rare differentiable, and f > 0. Find dif(x)g(x).
X

Problem 4.29. Suppose « and f are real numbers, § > 0 and f : [-1,1] — R is defined

by

r*sin(z7?) ifz # 0,

fm:{ 0 ifz=0.

Prove the following statements.
1. f is continuous if-and only if a > 0.
2. f'(0) exists if and only if o > 1.
3. f'is bounded if and only if o > 1 + 3.
4. f'is continuous if and only if a > 1+ .
5. f"(0) exists if and only if a > 2 4 .
6. f” is bounded if and only if a > 2 + 2.

7. f” is continuous if and only if o > 2 4 2[3.
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Problem 4.30 (The inverse statement of the chain rule). Let f : (a,b) — R be continuous
and g : (¢,d) — R be differentiable at yo = f(z0) € (¢, d). Show that if (go f) is differentiable
at xg and g’(yo) # 0, then f is differentiable at z.

Problem 4.31. Let f : R — R be a polynomial, and f has a double root at a and b. Show
that f'(z) has at least three roots in [a, b].

Problem 4.32. Let f : R — R be differentiable. Assume that for all z e R, 0 < f'(z) <
f(z). Show that g(x) = e~ * f(z) is decreasing. If f vanishes at some point, conclude that f

is zero.

Problem 4.33. Let f : R — R be twice differentiable. Suppose that f(z + h) — f(z) =
hf'(z + 6h) for all x,h € R, where 0 is independent of h. “Show that f is a quadratic

polynomial.

Problem 4.34. Let f be a differentiable function defined on some interval I of R. Prove
that f’ maps connected subsets of I into connected set; that is, f’ has the intermediate

value property.

Problem 4.35. Let f : R — R be a polynomial, and f has a double root at a and b. Show
that f’(z) has at least three roots in [a, b].

Problem 4.36. Let f: [—1,1] — R be a function such that z* + f(z)? =1 for all |z| < 1.
Define C' = {x } |z| < 1, f is continuous at x} Show that C' contains at least 2 points and
C' n(—1,1) is an open set. Hence if f is continuous at more than 2 points, it is continuous
at uncountably many points.

Problem 4.37. Let f,g : R — R be differentiable functions. Suppose that lim f(z) =

r—00

!/
lim g(z) = 0, ¢'(z) # 0 for all z € R, and the limit lim géi; exists. Show that the limit
T—00 T—0
lim =) also exists, and
v g(7)

lim Jo) lim J'@)

a—w g(x) e g'(x)

Problem 4.38. Let f,g: (a,b) — R be differentiable functions. Show that if lim flz) =
/(=) f(z)

: B , Lo : :
wll)r(%g(x) = o, g'(z) # 0 for all z € (a,b), and the limit wlirg e exists, then wll)rg o)
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exists and

lim /(@) = lim I'(z)

roat g(z)  wmat g(2)

/
Hint: Let L = lim ;Eg and € > 0 be given. Choose ¢ € (a,b) such that

—L‘<§ Va<z<ec.

Then for a < x < ¢, the Cauchy mean value theorem implies that for some £ € (z,¢) such

that
@) = 1) _ £1©)

g(x) —glc)  g'(€)
Show that there exists § > 0 such that ¢ +J < ¢ and

fle) = fle)  flz)) _ e Ve (a,a+0)

g(x) —glc)  glx)l 2

and then conclude (x).

Problem 4.39. Let f : (a,b) — R be k-times differentiable, and ¢ € (a,b). Let hy : (a,b) —
R be given by

hele) = fla) s S I oy

VE

Jj=0

Show that lim %) _ .

Tr—C (.’E — C)k

Problem 4.40. Two metric spaces (M, d) and (N, p) are called homeomorphics if there

exists a continous map f : M — N, called a homeomorphism between M and N, such

that f is one-to-one and onto, and its inverse f~! is also continuous. Homeomorphic metric
spaces have the same topological properties. In the following problems, (M,d) and (N, p)

are two metric spaces.

1. Suppose that M is compact, and f : M — N is one-to-one and onto. Show that f is

a homeomorphism between M and N.

2. Suppose that f is a homeomorphism between M and N. Show that the restriction of
f to any subset A € M establishes a homeomorphism between A and f(A).

3. Determine which of the following pairs of metric spaces is homeomorphic.
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4. Let I < R be an interval and f : I — R be a one-to-one continuous function. Show

that f must be strictly monotonic in I and f is a homeomorphism between [ and
f{).

IfI <R"forn>1and f: I — R”is continuous and one-to-one, can we still assert
that f is homeomorphism between I and f(1)?

§4.7 Integration of Functions of One Variable

Problem 4.41. Let f : [a,b] — R be.a bounded function, and P,, denote the division of

[a, b] into 2" equal sub-intervals. Show that f is Riemann integrable over [a, b] if and only if

n—0o0

Problem 4.42. Let f,g: [a,b] — R be functions, where ¢ is continuous, and f be non-

negative, bounded, Riemann integrable over [a,b]. Show that
1. fg is Riemann integrable.

2. 3z € (a,b) such that
b b
[ s@atarie = gtao) [ s

Problem 4.43. Let f : [a,b] — R be differentiable and assume that f’ is Riemann inte-
b
erable. Prove that f Fi@) de = f(b) — f(a).

Hint: Use the Mean Value Theorem.
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Problem 4.44. Suppose that f : [a,b] — R is Riemann integrable, m < f(z) < M for all

x € [a,b], and ¢ : [m, M] — R is continuous. Show that ¢o f is Riemann integrable on [a, b].

Problem 4.45 (True or False). Determine whether the following statements are true or

false.

1.

If it is true, prove it. Otherwise, give a counter-example.

Let f: R*\{(0,0)} — R satisfy lim f(z,ax™) =0 foralla e R, n e Nand lim f(0,y) =
T—> y—

0. Then lim x,y) =0.
(r,y)—>(0,0)f< v)

There exists a function f : R — R which is continuous only at three points of R.

Let f: R — R. Then f is continuous on R if and only if its graph-{(z, f(x)) \x € R}

is closed in R2.

Let I; and I5 be open intervals in R. Then f : I} — I is a diffeomorphism if and only
if f is differentiable and f'(x) # 0 for all x € I;.

Let f : [a,b] — R be a function. If f*is Riemann integrable, then f is Riemann

integrable.

Let f : [a,b] — R be a function. If f is Riemann integrable, then +/f is Riemann

integrable.

Let f(z) = sin% be defined on (0,1]. Then no matter how we define f(0), f is always

Riemann integrable on [0, 1].
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