Chapter 3

Compact and Connected Sets

3.1 Compactness (?f?(t*_)

Definition 3.1. Let (M,d) be a metric space. A subset K" < M is called sequentially

compact if every sequence in K has a subsequence that converges to a point in K.

Example 3.2. Any closed and bounded set.in (R, | -|) is sequentially compact.

Proof. Let {x;}7, be a sequence in a closed and bounded set S. Then {z;};, is also
bounded; thus by Bolzano-Weierstrass property of R, there exists a subsequence {xkj};ozl
converging to a point € R.-Since S is closed, z € S; thus S is sequentially compact. =

Proposition 3.3. Let (M, d) be a metric space, and K < M be sequentially compact. Then
K is closed and bounded.

Proof. For closedness, assume that {z};>; € K and x; — x as k — co0. By the definition of

sequential compactness, there exists {:vkj}oo converging to a point y € K. By Proposition

j=1
2.72, x = y; thus v € K.
For boundedness, assume the contrary that V (zg, B) € M x R, there exists y € K such
that d(xg,y) > B. In particular, there exists

x € K, d(zy,x0) > 1+ d(xp—1,20) YEkeN.
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84 CuAPTER 2. Point-Set Topology of Metric spaces

Then any subsequence of {xy}}”; cannot be Cauchy since d(xy,z,) > 1 for all k, ¢ € N; thus

{z1}72; has no convergent subsequence, a contradiction. o

Remark 3.4. Example 3.2 and Proposition 3.3 together suggest that in (R, |- ),
sequentially compact < closed and bounded..

Corollary 3.5. If K < R is sequentially compact, then inf K € K and sup K € K.

Proof. By Proposition 3.3, K must be closed and bounded. Therefore, inf K € R. Then
for each n € N, there exists x,, € K such that inf K < z, < inf K + L. Since {zp,}r is
a bounded sequence in R, the Bolzano-Weierstrass theorem (Theoremnl 100) implies that
there is a subsequence {xnk} o, and z.€ R such that hm D Ty, = T. Note that x = inf K,

and by the closedness of K, x € K. The proof of sup K e K is similar. =

Definition 3.6. Let (M, d) be ametric space, and A € M. A cover of A is a collection of

sets {L{a}ae ; whose union contains A; that is,
Ac U U, .
ael

It is an open cover of A if U, is open for all a € I. A subcover of a given cover is a

sub-collection {L{a}ae g of {Z/la}ae ; whose union also contains A; that is,

Ac Uua, Jc 1

aeJ

It is a finite subcover if #.J < 0.

Definition 3.7. Let (M, d) be a metric space. A subset K € M is called compact if every

open cover of K possesses a finite subcover; that is, K < M is compact if

Y open cover {L{a}ad of K.3J<c I, #J<w>sK < UUO"

aeJ
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Example 3.8. Consider R x {0} in the normed space (R? | - |]2). For z € R, then
{D((z,0), )} g 15 an open cover of R x {0}; that is,

R x {0} < | D((x,0),1)

zeR

Figure 3.1: An open cover of the z-axis

However, there is no finite subcover; thus R x {0} is not compact.

Example 3.9. Consider (0, 1] in the normed space (R, |- |). Let I}, = (%,

is an open cover of (0, 1]; that is,

2). Then {I}7,

0
Olgu

k=1

However, there is no finite subcover since

Therefore, (0, 1] is not compact.

Lemma 3.10. Let (M,d) be a metric space, and K = M be compact. Then K is closed.

In other words, compact subsets of metric spaces are closed.

Proof. Suppose the contrary that 3 {xx};>; € K, vy, > v as k — o, but z ¢ K. For y € K,
define the open ball U, by

1
Then {Z/{ } . 1s an open cover of K that is, K < J U,. Since K is compact, there exist

yeK

{y1," - ,yn} S K such that

QUZ/{ U yl,— (z,91)) -
=1 =1
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Let r = %min {d(z, 1), ,d(z,y,)} > 0. Then if d(z,2) <r,

1 1
d(zayi) = d<xayz) - d(‘ra Z) > d<1’71/z) -—r> d('rvyl) - §d<xayz) = Qd(%yz)

which implies that D(z,r) nU,, = F foralli=1,---  n.

U, o
/ . Uy, s
1 \ld( ’ \
1 ' l’,yl) I
! Ys \|2 -1|\4/y1 1
1 ] ’
‘\ Ed(x7 y3) ' ’,
. , - - ~_ _ -
~ 4 rr
~ . - ' 1 l
R N Qd(x7y2)
1
r ‘Y2
UZIZ

On the other hand, since x, — = as k — oo, 34V > 0 such that
d(xp,z) <r Vk=N.

In particular, xy € D(z,r) n K; thus zy ¢ U,, for all i = 1,---  n, which contradicts to

that {in}?zl is a cover of K. o

Lemma 3.11. Let (M, d) be a metric space, and K < M be compact. If F < K s closed,

then F' is compact. In other words, closed subsets of compact sets are compact.

Proof. Let {Ua}ael be an open cover of F'. Then {Z/{a}ad U {F"} is an open cover of K;

thus possessing a finite subcover of K. Therefore, we must have

KQO%NFC
=1

for some a; € I. In particular, F < |JU,, U F*, s0 F < | U,,. o
=1 =1

1

Definition 3.12. Let (M, d) be a metric space. A subset A < M is called totally bounded

if for each r > 0, there exists {z1,--- ,xy} S M such that

N
Ac| D).
=1
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Proposition 3.13. Let (M,d) be a metric space, and A < M be totally bounded. Then A

is bounded. In other words, totally bounded sets are bounded.

N
Proof. By total boundedness, there exists {y1, -+ ,yn} S M such that A < [ J D(y;,1). Let
i=1

zo = y1 and R = max {d(zo,y2), -+ ,d(zo,yn)} + 1. Then if z € A, z € D(y;,1) for some
j=1,---,N, and

d(z, o) < d(z,y;) + d(y;,z0) < 1+ d(xo,y;) < R
which implies that A € D(z, R). Therefore, A is bounded. o

Example 3.14. In a general metric space (M,d), a bounded set might not be totally
bounded. For example, consider the metric space (M,d) with the discrete metric, and
A € M be a set having infinitely many points. Then A is bounded since A € D(x,2) for
any x € M; however, A is not totally bounded since A cannot be covered by finitely many

balls with radius %

Example 3.15. Every bounded set in (R™, |-||2) is totally bounded (Check!). In particular,
the set {1} x [1,2] in (R?,| - |) is totally bounded.
On the other hand, let d : R? x R? — R be defined by
71 — 1 if x2 =ys,

d(xay) = where z = (531,332) and y = (ylayZ)'
|21 — 1| + |22 =yl +1 if 2o # yo.

Then (R?, d) is also a metric space (exercise). The set {1} x [1,2] is not totally bounded. In

fact, consider open ball with radius 3

1 1 1
yeD(m,i) @d(x,y)<§©|x1—y1| <§andx2:y2

1 1
<y € (:1:1—5,3314—5) and zo = ¥ .

In other words,
1 1
D(a:, %) = (xl — 5 + 5) X {xa};

thus one cannot cover {1} x [1,2] by the union of finitely many balls with radius %

Proposition 3.16. Let (M,d) be a metric space, and T = M be totally bounded. If S < T,
then S is totally bounded. In other words, subsets of totally bounded sets are totally bounded.



88 CuAPTER 2. Point-Set Topology of Metric spaces

Proof. Let r > 0 be given. By the total boundedness of T, there exists {1, -+ ,xny} & M
such that

N
S_TQUD(xi,T). o
i=1

Proposition 3.17. Let (M,d) be a metric space, and A < M. Then A is totally bounded
N

if and only if Vr >0, H{yr, - ,yn} S A such that A < | J D(y;,r).
i=1

Proof. 1t suffices to show the “only if” part. Let » > 0 be given. Since A is totally bounded,

N
El{yh?yN}gMaAgUD(ylag)
=1

W.L.O.G., we may assume that for each i = 1,--- | N, D(yz-, g) N A # . Then for each
1=1,---, N, there exists z; € D(yi, g) N A which suggests that

N N
i=1 i=1
since D(yi,g) < D(x;,r) foralli=1,--- N. O

Lemma 3.18. Let (M,d) be a metric space, and K < M. If K is either compact or
sequentially compact, then K is totally bounded..

Proof. Suppose first that K is compact. Let » > 0 be given, then {D(m, r)}meK is an open
cover of K. Since K is compact, there exists a finite subcover; thus 3{zy, -+ ,an} € K
such that

N
K c UD(.CEZ,?“) .
i=1

Therefore, K is totally bounded.

Now we assume that K is sequentially compact. Suppose the contrary that there is an
n

r > 0 such that any finite set {y1,--- ,y,} € K, K &€ |J D(y;, 7). This implies that we can
i=1

choose a sequence {zy};; < K such that

k
Tr41 € K\UD(%‘Z,T) .

=1

Then {x}72, is a sequence in K without convergent subsequence since d(xy, z;) > r for all
k, /e N. u]
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Theorem 3.19. Let (M,d) be a metric space, and K < M. Then the following three

statements are equivalent:
1. K is compact.
2. K is sequentially compact.
3. K is totally bounded and (K,d) is complete.
Proof. We show that 1 = 3 = 2 = 1 to conclude the theorem.

“l = 3”: By Lemma 3.18, it suffices to show the completeness of (K, d). Let {zx}, be a

Cauchy sequence in K. Suppose that {xy}>; does not converge.in K. Then
Vye K,38, > 03 #{keN|z, e D(y,6,)} <o (3.1.1)

for otherwise there is a subsequence of {z};~, that converges to x which will suggests

the convergence of the Cauchy sequence. The collection { D(y, 5y)}y€ 5 then is an open

cover of K'; thus possesses a finite subcover {D(yi, (5%.) }Z]il In particular, {zx}7, <

N
U D (yi, 5@-) or

1=1
N
#{k eN|aye| Dy, d,)} =0
i=1
which contradicts to (3.1.1).

“3 = 27: The proof of this step is similar to the proof of the Bolzano-Weierstrass Theorem
in R (Theorem 1.100) that we proceed as follows. Let {z;}72; be a sequence in Ty = K.
Since K is totally bound, there exist {yil), o y](\}l)} € K such that

Ny
Ty=Kc| D", 1).
i=1
One of these D(yi(l), 1)’s must contain infinitely many xj’s; that is, 31 < ¢; < N; such

that #{k € N |z € D(yéll),l)} = . Define T} = K n D(yéll),l). Then T; is also
totally bounded by Proposition 3.16, so there exist {y?), e ,yj(vi)} c T} such that

Yo
nielJow”. ;).
i=1
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Suppose that #{k € N}xk € D(yg), %)} = oo for some 1 < fy < Ny. Define Ty, =

1
1 N D(yé2 , 7) We continue this process, and obtain that for all n € N,

1) 3 {y§”), - ,y](@} < T,_1 such that
-1& U D
(2) T, =Tp_1 N D(ylg:), %), where 1 < ¢,, < N,, is chosen so that
#{keN|ape DY, )} = . (3.1.2)

Pick an ky € {k € N|z; € D(yéll),l)}, and k; € {k € N|a; € D(yg , 1)} such that
kj > k;j_; for all j > 2. We note such k; always exists because of (3 1.2). Then

{x, }]0021 is a subsequence of {7}, and zg, € T; € K for all j € N.

Claim: {xkj};il is a Cauchy sequence.

Proof of claim: Let € > 0 be given, and N > 0 be large enough so that % < % Since

(N i) we conclude that if n,m > N, by triangle

if 7 > N, we must have T; € D(ygN "N/

inequality

1 1
d('rknaka) < d(xkn;yég)) + d(ka,yég)) < N + N < €.

Since (K, d) is complete, the Cauchy sequence {a:kj}jozl converges to a point in K.

“2=17": Let {L{a}ad be an open cover of K.

Claim: there exists r > 0 such that for each z € K, D(z,r) < U, for some o € I.

Proof of claim: Suppose the contrary that for all £ > 0, there exists x; € K such
that D(iL‘k, 1) & U, for all @ € I. Then {z4}2, is a sequence in K; thus by the

assumption of sequential compactness, there exists a subsequence {xk }OO converging
in K. Suppose that z;, — x as j — o0, and x € Ug for some 3 € I. Then

(1) there is r > 0 such that D(z,r) < Uz since Up is open.

(2) there exists N > 0 such that d(xy;,z) < g for all j > N.
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Choose j = N such that ki < g Then D(zy,, k:i) < D(z,r) < Us, a contradiction.
J J

By Lemma 3.18, there exists {z1, -+ ,2xy} € K such that K < U D(x;,r). For each
1< N the Clalm above implies that there exists a; € Such that D(z;,r) S U,y,.
Then U D(x;,r) < U U, which suggests that

i=1 i=1

N
KQUUQZ.. o

Remark 3.20.
1. The equivalency between 1 and 2 is sometimes called the Bolzano-Weistrass Theorem.

2. A number r > 0 satisfying the claim in the step “2 = 1” is called a Lebesgue number
for the cover {L[a}ae ;- The supremum of all such 7 is called the Lebesgue number
for the cover {L{a}ae s

Alternative Proof of Theorem 3.19. In this proof we show that 1 = 2 = 3 = 1 to conclude

the theorem.

“1 = 2”7: Assume the contrary that K is not sequentially compact. Then there is a se-
quence {xp}>; € K that does not have a convergent subsequence with a limit in K.

Therefore, for each x € K, there exists d, > 0 such that
#{k e N|zye D(x,6,)} <

for otherwise x'is a cluster point of {4 }72; so Proposition 2.72 guarantees the existence
of a subsequence of {zy}2; converging to . Since {D(m, 55'?)}9[;61( is an open cover of

K, by the compactness of K there exists {y;,---,yn} S K such that

N
(nfits € K < |J D5

while this is impossible since #{k eN ‘ Tk € D(yi, 5%)} <wforallz=1,---N.

“2 = 3”7 By Lemma 3.18, it suffices to show that (K, d) is complete. Let {z;};2; < K be
a Cauchy sequence. By sequential compactness of K, there is a subsequence {:L‘kj }20:1
converging to a point z € K. By Proposition 2.81, {z;}, also converges to z; thus

every Cauchy sequence in (K, d) converges to a point in K.
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“3 = 17: We first prove the following

Claim: If {V,}aer is an open cover of a totally bounded set A such that there is no
finite subcover, then for all » > 0, there exists z € A such that A n D(x,r) does not

admit a finite subcover.

Proof of claim: Let r > 0 be given. Since A is totally bounded, by Proposition 3.17

N

there exists {a1, -+ ,an} < A such that A < |J D(a;,r). If for each j =1,---, N,
j=1

A n D(a;,r) can be covered by finitely many V,’s, then A itself can be covered by

finitely many V,’s, a contradiction. Therefore, at least one An D(a;,r) does not admit

a finite subcover.

Now assume the contrary that there exists an open cover {Ua}ae; of K such that
there is no finite subcover. Let ¢, = 27". Since K is totally bounded, by the claim
there exists x; € K such that K n D(x1,e1) which dees not admit a finite subcover.
By Proposition 3.16, K n D(z,£1) is totally bounded, so there must be an x5 €
K n D(xq,e1) such that K n D(z1,e1) N D(z3,22) cannot be covered by the union
of finitely many U,. We continuous this proecess, and obtain a sequence {zy}72; such
that

k
(1) zx1 € K 0 () D(x;,&;) (which-implies that d(zgy1, 2x) < €);
i=1

k
(2) K n () D(z;,¢;) cannot be covered by the union of finitely many U,.

i=1

Then similar to Example 1.105, we find that {z;}72, is a Cauchy sequence in (K, d).

By the completeness of K, x;, — x as k — oo for some z € K.

Since {U,}aer is an open cover of K, x € Ug for some S € I. Since Uz is open,
3r > 0 such that D(x,r) < Ugz. For this particular r, there exists N > 0 such that
d(zy, ) < g Therefore, if £ > N such that ¢, < g,

D(xy,er) € D(x,1) < Up

which contradicts to (2). =

Example 3.21. Let (M, d) be a metric space, and {x};2; be a convergent sequence with

limit x. Let A = {x1, 29, -} U {z}. Then A is compact.
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Definition 3.22. Let (M, d) be a metric space. A subset A € M is called pre-compact
if A is compact. Let &/ < M be an open set, a subset A of U is said to be compactly
contained in U, denoted by AccU, if A is pre-compact and A < U.

Example 3.23. Let (M,d) be a complete metric space, and A € M be totally bounded.
Then A is compact. In other words, in a complete metric space, totally bounded sets are
pre-compact.

(Hint: Use the total boundedness equivalence to show compactness.)

Definition 3.24. Let (M, d) be a metric space, and A € M. A collection of closed sets
{F,}aer is said to have the finite intersection property for the set A if the intersection
of any finite number of F, with A is non-empty; that is, {F,, }ac; has the finite intersection
property for A if
AmﬂFa#Qforalljgland#J<oo.
ae]

Theorem 3.25. Let (M,d) be a metric space, and K. M. The K is compact if and only
if every collection of closed sets with the finite intersection property for K has non-empty

intersection with K; that is,

K n ﬂ F, # & for all {F,}acr having the finite intersection property for K.

ael

Proof. 1t can be proved by contradiction, and is left as an exercise. O

Example 3.26. Let A =(0,1) € R, and k; = [ — 1,;}. Take K,,,K,,, - , K,, where

J2s T T

n 0
J1 <J2 <+ <Jp Then N K;, nA= [—1,,i} N (0,1) # &. However z € [ K; <
=1 =1

n j
0 0
-l1<z< ; for all j € N. So (| K; = [-1,0]; thus () K; n A = &. Therefore, (0,1) is not
j=1 j=1

compact.

Example 3.27. Let X be the collection of all bounded real sequences; that is,
X = {{z1};2, = R|for some M > 0, |x)| < M for all k}.

The number sup |zi| = sup{|z1], |22], -, |zx|, -+ } < o0 is denoted by |{z)}i2,[. For exam-
=
—1)k

ple, if x), = (k)’ then H{mk}leu = 1. Then (X, | -|) is a complete normed space (left as
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an exercise). Define

1
A={{ohils e X ||l < £},
B={{z}jL, € X |z > 0as k — o},
C = {{z1};2, € X | the sequence {z;};2, converges},

D = {{xx}jL, € X | sup |zg| = 1}  (the unit sphere in (X, | - [)).
k=1

The closedness of A (which implies the completeness of (A, |- |)) is left as an exercise. We
show that A is totally bounded.
Let » > 0 be given. Then 3N > 03 % < r. Define

i i9 IN—1
E = {{xk}le‘xlz o L RRE 2 A S for some
i iy = —N,—N 41, N— 1N, andxkzoifk>N+1}.
Then

1. #E < 0. In fact, #E = (2N + 1)V < 0.

2. Ac U D({xk}le,%)g U "Dz}, r).

{xk}?zleE {xk}leeE

Therefore, A is totally bounded.
On the other hand, B and C' are not compact since they are not bounded; thus not
totally bounded by Proposition 3.13. D is bounded but not totally bounded. In fact, D

1
cannot be covered by the union of finitely many balls with radius = since each ball with

a0
radius % contains at-most one of the points from the subset {{xgk)}jo_l} < D, where for
=1) k=1
each k
(K)yoo )
{$j j:l_{()?"'a()? 1707"'}7
—_——

(k —1) terms

that is, xg-k) = Oy;, the kronecker delta.

3.1.1 The Heine-Borel theorem

Theorem 3.28. In the Euclidean space (R",| - |2), a subset K is compact if and only if it

1s closed and bounded.
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Proof. By Proposition 3.13 and Theorem 3.19, it is clear that K is closed and bounded if
K is compact (in any metric space). It remains to show the direction “<=”. Nevertheless,
by Theorem 2.83 closed subsets of a complete metric space must be complete, so it suffices
to show that a bounded set in (R™, | - |2) is totally bounded.

Let 7 > 0 be given. By the boundedness of K, for some M > 0 we have |z]|, < M for

all x € K; thus K < [-M, M]". Choose N > 0 so that \/ﬁNM < r, and define

E:{(%, 71\?;.71)‘2‘1%‘27“' ,inE{—N,—N+1,"' 7N_17N}}'

Then #F = (2N + 1)" < o0, and
Kc[-MM]"c | ] D(,r). o
weE
Alternative Proof of “=7". Let {zx};,; € K be a sequence. Since K < R", we can write
T = ($,§1),x,(€2), e ,xé")) e R". Since K is bounded, then-all the sequence {xk)}k 1
Jj = 1,2,---  n, are bounded; that is, —M; < a:,(C) < M, for all k € N. Applying the
Bolzano-Weierstrass property (Theorem 1.100) to the sequence {x,il)},zozl, we obtain a se-
quence {x]%)}jil with x%) — yM as j — 0. Now {xl(ci)}j'oﬂ has a subsequence {a:](ji}?;l
converges, say a:gjz — y® as £ — 0.
Continuing in this way, we obtain a subsequence of {z;}72, that converges to y =
(yM,y@ ... y™). Since K is close, y € K; thus K is sequentially compact which is

equivalent to the compactness of K. O

Corollary 3.29. A bounded set. A in the Fuclidean space (R",| - |2) is pre-compact. In
particular, if {zg}{, is a bounded sequence in R™, there exists a convergent subsequence

{xk } (the sentence in blue color is again called the Bolzano- Weierstrass theorem).

Example 3.30. Let A = {0} u {1 -+ }. Then A is compact in (R, |- ).
Example 3.31. Let A=[0,1] u (2, 3] c (]R, | -]). Since A is not closed, A is not compact.

3.1.2 The nested set property

Theorem 3.32. Let {K,}°, be a sequence of non-empty compact sets in a metric space
e}

(M, d) such that K,, 2 K, 1 for all n € N. Then there is at least one point in (| K,; that
n=1

18,

Ars o
n=1
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0 0 0
Proof. Assume the contrary that (| K, = &. Then |J K} = () Kn)C = M. Since K
n=1 n=1

n=1
is an open cover of K7i; thus by compactness of Ky, there exists J < N,

Kic | K = (K

neJ neJ

Therefore, K n (| K, = & which implies that K..; = &, a contradiction. o

neJ

is open, {Kg}le
#J < oo such that

Alternative Proof. By assumption, { K, }*_, has the finite intersection property for K;. Since

K is compact, by Theorem 3.25,

o0
Kmﬂf(ﬂs@. 5
n=2

Corollary 3.33. Let {Uy}}2, be a collection of open sets in a.metric space (M,d) such that
Q0

U, < Uy for all k € N and L{,E is compact. Then | J Uy # M.
k=1

Proof. This is proved by letting K,, = U¢, and applying Theorem 3.32. =

Remark 3.34. If the compactness is removed from the condition, then the intersection

might be empty. Suppose that the metric space under consideration is (R, |- |).
e 1 : .
1. If the closedness condition is removed, then U, = (0, E) has empty intersection.

2. If the boundedness condition is removed, then Fy = [k, c0) has empty intersection.

3.2 Connectedness (:#id )

Definition 3.35. Let (M, d) be a metric space, and A € M. Two non-empty open sets U

and V are said to separate A if
. AnUNY =T; 2. AnlU # T ; 3.ANYV #J,; 4. AcUUV.

We say that A is disconnected or separated if such separation exists, and A is connected

if no such separation exists.

Proposition 3.36. Let (M,d) be a metric space. A subset A = M is disconnected if and
only if A= Ay U Ay with Ay N Ay = A1 N Ay = & for some non-empty Ay and As.
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Proof. “=" Suppose that there exist &, V non-empty open sets such that 1-4 in Definition
3.35 hold. Let Ay = AnlU and Ay = An V. By 1, A; < V; thus by the definition of
the closure of sets, A; < V°. This implies that A; N Ay = . Similarly, A, N A, = .

“<" Let U = A§ and V = A} be two open sets. Then V n A} =U n Ay = J; thus
AnUnNVY=A V) nUNV=(AnU)nV=Un(AnV)=C.
Moreover, 2-4 in Definition 3.35 also hold since A; € U and A, < V. o

Corollary 3.37. Let (M,d) be a metric space. Suppose that a subset-A < M 1is connected,
and A= A; U Ay, where Ay N Ay = Ay n Ay = . Then Ay or Ay is empty.

Theorem 3.38. A subset A of the Euclidean space (R, |- |) is connected if and only if it
has the property that if x,y € A and v < z <y, then z € A.

Proof. “=" Suppose that there exist z,y € A,z < z<y but 2z ¢ A. Then A = A; U A,,
where
Ay =An(—w0,2) and Ay =An(z,0).
Since z € A; and y € A,, Ay and A, are non-empty. Moreover, A; N Ay = AjnAy = F;

thus by Proposition 3.36, A is disconnected, a contradiction.

“<” Suppose that A is not connected. Then there exist non-empty sets A; and A, such
that A = Al U A2 with 1211 M Ag = Al N AQ = @ Pick z € Al and Y € AQ. WLOG,

we may assume that z <y. Define z = sup(4; n [z,y]) .
Claim: z € Ay

Proof of claim: By definition, for any n > 0 there exists z,, € A1 N [z,y] such that

1 C . . -
z — — < x, < z. Therefore, x,, — z as n — oo which implies that z € A;.
n

Since z € Ay, z ¢ Ay. In particular, = < z < y.

(a) If z ¢ Ay, then x < z <y and z ¢ A, a contradiction.
(b) If z € Ay, then z ¢ Ay; thus 3r > 0 such that (z —r,z +r) < AS. Then for
all 21 € (z,z+71), 2 <z <yand z; ¢ Ay. Thenz < z; <y and z; ¢ A, a

contradiction. 5
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3.3 Subspace Topology

Let (M, d) be a metric space, and N € M be a subset. Then (NN, d) is a metric space, and
the topology of (IV,d) is called the subspace topology of (N, d).

Remark 3.39. The topology of a metric is the collection of all open sets of that metric

space.

Proposition 3.40. Let (M,d) be a metric space, and N < M. A subsetV < N is open in
(N,d) if and only if V =U n N for some open set U in (M,d).

Proof. “=7" Let V < N be open in (N,d). Then Vz € V, 3r, > 0 such that
Dy(z,ry) ={ye N|d(z,y) <r,} & V.

In particular, V = | J Dn(z,r,). Note that Dy(z,7). = D(z,r) n N; thus if U =
eV

U D(z, ), then U is open in (M, d), and

eV

V:UD(x,rx)mN:L{mN.
eV

“«<" Suppose that V =U n N for'some open set U in (M,d). Let x € V. Then x € U; thus
37 > 0 such that D(z,r) <U. Therefore,

Dy(z,r)={ye N|d(z,y) <r}=D(x,r)nNSUNN =V;
hence V is open in (N, d). o

Corollary 3.41. Let (M,d) be a metric space, and N < M. Let (M,d) be a metric space,
and N € M. A subset E < N is closed in (N,d) if and only if E = F n N for some closed
set F'in (M, d).

Definition 3.42. Let (M,d) be a metric space, and N < M. A subset A is said to be
open open
closed relative to N if An N is closed in the metric space (NN, d).

compact compact

Theorem 3.43. Let (M,d) be a metric space, and K =€ N < M. Then K is compact in
(M, d) if and only if K is compact in (N, d).
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Proof. “=" Let {Va}aer be an open cover of K in (IN,d). By Proposition 3.40, there are
open sets U, in (M, d) such that V, = U, n N for all a € I. Then {U,}ses is also an
open cover of K; thus possesses a finite subcover; that is, 3.J < I, #J < o such that
K < |J U, which, together with the fact that K < N, implies that

Ke(Jt) N =t N =V

aeJ aeJ aeJ

“<" Let {Uy}aer be an open cover of K in (M,d). Letting V, = U, n N, by Proposition
3.40 we find that {V,}aer is an open cover of K in (N,d). Since K is compact in
(N,d), there exists J < I, #.J < o such that K < | V,; thus

aed

KQUUQ. o

Remark 3.44. Another way to look at Theorem 3.43 is using the sequential compactness
equivalence. Let {zx}2, € K be a sequence. By sequential compactness of K in either
(M,d) or (N,d), there exists {xy, }jil
the metric d used in different space are identical, the concept of convergence of a sequence

and z € K such that x;, — z as j — c0. As long as

are the same; thus compactness in (M,d) or (N, d) are the same.

Example 3.45. Let (M, d) be (R,|-|), and N = Q. Consider the set F' = [0,1] n Q. By
Corollary 3.41 F is closed in (Q, |- |). However, F' is not compact in (Q, | - |) since F is not
complete. We can also apply - Theorem 3.43 to see this: if ' € Q is compact in (Q,]|-|),

then F'is compact in (R, |+ |) which is clearly not the case since F' is not closed in (R, |- |).

Remark 3.46. Let (M,d) be a metric space. By Proposition 3.36 a subset A < M is
disconnected if and only if there exist two subsets U;, Us of A, open relative to A, such that
A=U, vy and Uy N Uy = I (one choice of (Uy,Us) is Uy = A\A; and Uy = A\ Ay, where
Ay and Ay are given by Proposition 3.36). Note that Uy and Uy are also closed relative to
A.

Given the observation above, if A is a connected set and E is a subset of A such that F
is closed and open relative to A, then £ = § or ' = A.

3.4 Exercises

§3.1 Compactness
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Problem 3.1. Let (M, d) be a metric space.
1. Show that the union of a finite number of compact subsets of M is compact.

2. Show that the intersection of an arbitrary collection of compact subsets of M is com-

pact.

Problem 3.2. A metric space (M, d) is said to be separable if there is a countable subset

A which is dense in M. Show that every compact set is separable.

Problem 3.3. Given {a;}{_; < R a bounded sequence. Define

. 0 v
A= {x eR ‘ there exists a subsequence {akj }j:1 such that ]h_)r& ap; = x} .

Show that A is a non-empty compact set in R. Furthermore , limsupa; = sup A and
k—o0

liminfa; = inf A.
k—o0

Problem 3.4. Let (M, d) be a compact metric space; that is, M itself is a compact set. If
e}

{Fi.}_, is a sequence of closed sets such that int(F)) = &, then M\ | Fy # &.
k=1

Problem 3.5. Let d : R? x R? — R be defined by

1 — Y1 if wo = yo,
d(z,y) = | | ‘ where x = (21, 25) and y = (y1,y2).
|21 — 1| + |22 =0l + 1 if 2o # yo.

1. Show that d is a metric on R?. In other words, (R?,d) is a metric space.
2. Find D(x,r) withr<1,r=1and r > 1.

3. Show that the set {c} x [a,b] = (R?,d) is closed and bounded.

4. Examine whether the set {c} x [a,b] < (R?d) is compact or not.

Problem 3.6. Let (M,d) be a complete metric space, and A € M be totally bounded.
Show that cl(A) is compact.

Problem 3.7. Let {z}72, be a convergent sequence in a metric space, and x, — x as

k — co. Show that the set A = {z1, x5, -+ ,} U {z} is compact by

1. showing that A is sequentially compact; and
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2. showing that every open cover of A has a finite subcover; and

3. showing that A is totally bounded and complete.

e¢]
Problem 3.8. Let Y be the collection of all sequences {y}?_; < R such that Y, |y|? < oo.
k=1

In other words,

0
Y = {{yehizi |yr e R for all k e N, Z lye|> < 0}
k=1

Define |- | : Y — R by

ftzal = ()

. Show that || - || is a norm on Y. The normed space (Y, || - ||) usually is denoted by ¢2.

—_

[\]

. Show that || - | is induced by an inner product.

w

. Show that (Y, | - |) is complete.

W

. Let B={yeY||y| <1}. Is E compact or not?
Problem 3.9. Let A, B be two non-empty subsets in R". Define
d(A, By=1inf{|x — y|»| v € A,y € B}
to be the distance between A-and B. When A = {x} is a point, we write d(A, B) as d(z, B).
(1) Prove that d(A, B) = inf{d(z, B) |z € A}.
(2) Show that |d(z1, B) — d(x2, B)| < |z1 — 22> for all 21,z € R™.
(3) Define B. = {z € R"|d(z, B) < €} be the collection of all points whose distance from

B is less than €. Show that B. is open and (] B. = cl(B).

e>0

(4) If A is compact, show that there exists = € A such that d(A, B) = d(z, B).

(5) If A is closed and B is compact, show that there exists x € A and y € B such that
d(A, B) = d(z,y).

(6) If A and B are both closed, does the conclusion of (5) hold?
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Problem 3.10. Let K(n) denote the collection of all non-empty compact sets in R™. Define
the Hausdorff distance of K, Ky € K(n) by

d"(Ky, K,) = max{ sup d(z, K1), sup d(nyK2)} )

zeKo reKq

in which d(z, K) is the distance between z and K given in Problem 3.9. Show that (K(n), d)

is a metric space.

Problem 3.11. Let M = {(z,y) € R?*|2* + y* < 1} with the standard metric | - 5. Show
that A € M is compact if and only if A is closed.

Problem 3.12. 1. Let {z}72, < R be a sequence in (R, |- |) that converges to x and let

o __
Ay = {xk, Tg41, - - - }. Show that {z} = (] Ag. Is this true in-any metric space?
k=1
2. Suppose that {K;}72, is a sequence of comapct non-empty sets satisfying the nested
set property; that is, K; 2 K}, and diameter(K;) — 0 as j — o, where
diameter(K;) = sup {d(z,y) |z, y € K;}.
[oe}
Show that there is exactly one point in [ Kj.
j=1
§3.2 Connectedness
Problem 3.13. Let (M, d) be a metric space, and A € M. Show that A is disconnected

(not connected) if and only if there exist non-empty closed set F} and F, such that
1.AﬂF1ﬂF2:®; QAﬂFl#@, 3AﬁF27’5@, 4. Ac FLUF,.

Problem 3.14. Prove that if A is connected in a metric space (M,d) and A € B < A,

then B is connected.

Problem 3.15. Let (M, d) be a metric space, and A € M be a subset. Suppose that A is

connected and contain more than one point. Show that A < A’

Problem 3.16. Show that the Cantor set C' defined in Problem 2.11 is totally disconnected;
that is, if z,y € C, and x # y, then x € U and y € V for some open sets U, V separate C.
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Problem 3.17. Let Fj be a nest of connected compact sets (that is, Fp.1 S Fy and Fj

a0

is connected for all k£ € N). Show that (] Fj is connected. Give an example to show that
k=1

compactness is an essential condition and we cannot just assume that Fj, is a nest of closed

connected sets.

Problem 3.18. Let {A}}2, be a family of connected subsets of M, and suppose that A
is a connected subset of M such that Ay " A # ¢ for all £k € N. Show that the union

( U Ak) u A is also connected.
keN

Problem 3.19. Let A, B € M and A is connected. Suppose that An B # ¢ and An B" #
5. Show that A n 0B # .

Problem 3.20. Given (M, d) a metric space and A € M a non-empty subset. A maximal

connected subset of A is called a connected component of A.

1. Let a € A. Show that there is a unique connected components of A containing a.

2. Show that any two distinct connected components of A are disjoint. Therefore, A is

the disjoint union of its connected components.
3. Show that every connected component of A is a closed subset of A.

4. If A is open, prove that every connected component of A is also open. Therefore,

when M = R", show that“A has at most countable infinite connected components.

5. Find the connected components of the set of rational numbers or the set of irrational

numbers in R.

Problem 3.21 (True or False). Determine whether the following statements are true or

false. If it is true, prove it. Otherwise, give a counter-example.

1. There exists a non-zero dimensional normed vector space in which some compact non-

zero dimensional linear subspace exists.

2. There exists a set A < (0,1] which is compact in (0,1] (in the sense of subspace

topology), but A is not compact in R.

3. Let A < R" be a non-empty set. Then a subset B of A is compact in A if and only if
B is closed and bounded in A.



