Chapter 3

Compact and Connected Sets.

3.1 Compactness (緊緻性)

Definition 3.1. Let (M, d) be a metric space. A subset $K \subseteq M$ is called *sequentially compact* if every sequence in K has a subsequence that converges to a point in K.

Example 3.2. Any closed and bounded set in $(\mathbb{R}, |\cdot|)$ is sequentially compact.

Proof. Let $\{x_k\}_{k=1}^{\infty}$ be a sequence in a closed and bounded set S. Then $\{x_k\}_{k=1}^{\infty}$ is also bounded; thus by Bolzano-Weierstrass property of \mathbb{R} , there exists a subsequence $\{x_{k_j}\}_{j=1}^{\infty}$ converging to a point $x \in \mathbb{R}$. Since S is closed, $x \in S$; thus S is sequentially compact.

Proposition 3.3. Let (M, d) be a metric space, and $K \subseteq M$ be sequentially compact. Then K is closed and bounded.

Proof. For closedness, assume that $\{x_k\}_{k=1}^{\infty} \subseteq K$ and $x_k \to x$ as $k \to \infty$. By the definition of sequential compactness, there exists $\{x_{k_j}\}_{j=1}^{\infty}$ converging to a point $y \in K$. By Proposition 2.72, x = y; thus $x \in K$.

For boundedness, assume the contrary that $\forall (x_0, B) \in M \times \mathbb{R}^+$, there exists $y \in K$ such that $d(x_0, y) > B$. In particular, there exists

$$x_k \in K, d(x_k, x_0) > 1 + d(x_{k-1}, x_0) \quad \forall k \in \mathbb{N}.$$

Then any subsequence of $\{x_k\}_{k=1}^{\infty}$ cannot be Cauchy since $d(x_k, x_\ell) > 1$ for all $k, \ell \in \mathbb{N}$; thus $\{x_k\}_{k=1}^{\infty}$ has no convergent subsequence, a contradiction.

Remark 3.4. Example 3.2 and Proposition 3.3 together suggest that in $(\mathbb{R}, |\cdot|)$,

sequentially compact \Leftrightarrow closed and bounded).

Corollary 3.5. If $K \subseteq \mathbb{R}$ is sequentially compact, then $\inf K \in K$ and $\sup K \in K$.

Proof. By Proposition 3.3, K must be closed and bounded. Therefore, $\inf K \in \mathbb{R}$. Then for each $n \in \mathbb{N}$, there exists $x_n \in K$ such that $\inf K \leq x_n < \inf K + \frac{1}{n}$. Since $\{x_n\}_{n=1}^{\infty}$ is a bounded sequence in \mathbb{R} , the Bolzano-Weierstrass theorem (Theorem 1.100) implies that there is a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ and $x \in \mathbb{R}$ such that $\lim_{k \to \infty} x_{n_k} = x$. Note that $x = \inf K$, and by the closedness of $K, x \in K$. The proof of $\sup K \in K$ is similar.

Definition 3.6. Let (M, d) be a metric space, and $A \subseteq M$. A **cover** of A is a collection of sets $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$ whose union contains A; that is,

$$A \subseteq \bigcup_{\alpha \in I} \mathcal{U}_{\alpha}$$

It is an **open cover** of A if \mathcal{U}_{α} is open for all $\alpha \in I$. A **subcover** of a given cover is a sub-collection $\{\mathcal{U}_{\alpha}\}_{\alpha \in J}$ of $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$ whose union also contains A; that is,

$$A \subseteq \bigcup_{\alpha \in J} \mathcal{U}_{\alpha} , \quad J \subseteq I .$$

It is a *finite subcover* if $\#J < \infty$.

Definition 3.7. Let (M, d) be a metric space. A subset $K \subseteq M$ is called *compact* if <u>every</u> open cover of K possesses a finite subcover; that is, $K \subseteq M$ is compact if

$$\forall \text{ open cover } \left\{ \mathcal{U}_{\alpha} \right\}_{\alpha \in I} \text{ of } K, \exists J \subseteq I, \#J < \infty \ni K \subseteq \bigcup_{\alpha \in J} \mathcal{U}_{\alpha} .$$

Example 3.8. Consider $\mathbb{R} \times \{0\}$ in the normed space $(\mathbb{R}^2, \|\cdot\|_2)$. For $x \in \mathbb{R}$, then $\{D((x,0),1)\}_{x\in\mathbb{R}}$ is an open cover of $\mathbb{R} \times \{0\}$; that is,

Figure 3.1: An open cover of the x-axis

However, there is no finite subcover; thus $\mathbb{R} \times \{0\}$ is not compact.

Example 3.9. Consider (0, 1] in the normed space $(\mathbb{R}, |\cdot|)$. Let $I_k = (\frac{1}{k}, 2)$. Then $\{I_k\}_{k=1}^{\infty}$ is an open cover of (0, 1]; that is,

$$(0,1] \subseteq \bigcup_{k=1}^{\infty} \left(\frac{1}{k},2\right).$$

However, there is no finite subcover since

$$\frac{1}{N+1} \notin \bigcup_{k=1}^{N} \left(\frac{1}{k}, 2\right).$$

Therefore, (0, 1] is not compact.

Lemma 3.10. Let (M,d) be a metric space, and $K \subseteq M$ be compact. Then K is closed. In other words, compact subsets of metric spaces are closed.

Proof. Suppose the contrary that $\exists \{x_k\}_{k=1}^{\infty} \subseteq K, x_k \to x \text{ as } k \to \infty$, but $x \notin K$. For $y \in K$, define the open ball \mathcal{U}_y by

$$\mathcal{U}_y = D\left(y, \frac{1}{2}d(x, y)\right).$$

Then $\{\mathcal{U}_y\}_{y\in K}$ is an open cover of K; that is, $K \subseteq \bigcup_{y\in K} \mathcal{U}_y$. Since K is compact, there exist $\{y_1, \cdots, y_n\} \subseteq K$ such that

$$K \subseteq \bigcup_{i=1}^{n} \mathcal{U}_{y_i} = \bigcup_{i=1}^{n} D\left(y_i, \frac{1}{2}d(x, y_i)\right).$$

Let
$$r = \frac{1}{2} \min \left\{ d(x, y_1), \cdots, d(x, y_n) \right\} > 0$$
. Then if $d(x, z) < r$,
 $d(z, y_i) \ge d(x, y_i) - d(x, z) > d(x, y_i) - r > d(x, y_i) - \frac{1}{2} d(x, y_i) = \frac{1}{2} d(x, y_i)$

which implies that $D(x,r) \cap \mathcal{U}_{y_i} = \emptyset$ for all $i = 1, \cdots, n$.

On the other hand, since $x_k \to x$ as $k \to \infty$, $\exists N > 0$ such that

$$d(x_k, x) < r \quad \forall \, k \ge N \, .$$

In particular, $x_N \in D(x,r) \cap K$; thus $x_N \notin \mathcal{U}_{y_i}$ for all $i = 1, \dots, n$, which contradicts to that $\{\mathcal{U}_{y_i}\}_{i=1}^n$ is a cover of K.

Lemma 3.11. Let (M, d) be a metric space, and $K \subseteq M$ be compact. If $F \subseteq K$ is closed, then F is compact. In other words, closed subsets of compact sets are compact.

Proof. Let $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$ be an open cover of F. Then $\{\mathcal{U}_{\alpha}\}_{\alpha \in I} \cup \{F^{\complement}\}$ is an open cover of K; thus possessing a finite subcover of K. Therefore, we must have

$$K \subseteq \bigcup_{i=1}^n \mathcal{U}_{\alpha_i} \cup F^{\complement}$$

for some $\alpha_i \in I$. In particular, $F \subseteq \bigcup_{i=1}^n \mathcal{U}_{\alpha_i} \cup F^{\complement}$, so $F \subseteq \bigcup_{i=1}^n \mathcal{U}_{\alpha_i}$.

Definition 3.12. Let (M, d) be a metric space. A subset $A \subseteq M$ is called *totally bounded* if for each r > 0, there exists $\{x_1, \dots, x_N\} \subseteq M$ such that

$$A \subseteq \bigcup_{i=1}^N D(x_i, r) \, .$$

Proposition 3.13. Let (M, d) be a metric space, and $A \subseteq M$ be totally bounded. Then A is bounded. In other words, totally bounded sets are bounded.

Proof. By total boundedness, there exists $\{y_1, \dots, y_N\} \subseteq M$ such that $A \subseteq \bigcup_{i=1}^N D(y_i, 1)$. Let $x_0 = y_1$ and $R = \max \{d(x_0, y_2), \dots, d(x_0, y_N)\} + 1$. Then if $z \in A, z \in D(y_j, 1)$ for some $j = 1, \dots, N$, and

$$d(z, x_0) \leq d(z, y_j) + d(y_j, x_0) < 1 + d(x_0, y_j) \leq R$$

which implies that $A \subseteq D(x_0, R)$. Therefore, A is bounded.

Example 3.14. In a general metric space (M, d), a bounded set might not be totally bounded. For example, consider the metric space (M, d) with the discrete metric, and $A \subseteq M$ be a set having infinitely many points. Then A is bounded since $A \subseteq D(x, 2)$ for any $x \in M$; however, A is not totally bounded since A cannot be covered by finitely many balls with radius $\frac{1}{2}$.

Example 3.15. Every bounded set in $(\mathbb{R}^n, \|\cdot\|_2)$ is totally bounded **(Check!)**. In particular, the set $\{1\} \times [1,2]$ in $(\mathbb{R}^2, \|\cdot\|)$ is totally bounded.

On the other hand, let $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$d(x,y) = \begin{cases} |x_1 - y_1| & \text{if } x_2 = y_2, \\ |x_1 - y_1| + |x_2 - y_2| + 1 & \text{if } x_2 \neq y_2. \end{cases} \text{ where } x = (x_1, x_2) \text{ and } y = (y_1, y_2).$$

Then (\mathbb{R}^2, d) is also a metric space (exercise). The set $\{1\} \times [1, 2]$ is not totally bounded. In fact, consider open ball with radius $\frac{1}{2}$:

$$y \in D\left(x, \frac{1}{2}\right) \Leftrightarrow d(x, y) < \frac{1}{2} \Leftrightarrow |x_1 - y_1| < \frac{1}{2} \text{ and } x_2 = y_2$$
$$\Leftrightarrow y_1 \in \left(x_1 - \frac{1}{2}, x_1 + \frac{1}{2}\right) \text{ and } x_2 = y_2.$$

In other words,

$$D(x, \frac{1}{2}) = (x_1 - \frac{1}{2}, x_1 + \frac{1}{2}) \times \{x_2\}$$

thus one cannot cover $\{1\} \times [1,2]$ by the union of finitely many balls with radius $\frac{1}{2}$.

Proposition 3.16. Let (M, d) be a metric space, and $T \subseteq M$ be totally bounded. If $S \subseteq T$, then S is totally bounded. In other words, subsets of totally bounded sets are totally bounded.

Proof. Let r > 0 be given. By the total boundedness of T, there exists $\{x_1, \dots, x_N\} \subseteq M$ such that

$$S \subseteq T \subseteq \bigcup_{i=1}^{N} D(x_i, r) \,.$$

Proposition 3.17. Let (M, d) be a metric space, and $A \subseteq M$. Then A is totally bounded if and only if $\forall r > 0$, $\exists \{y_1, \dots, y_N\} \subseteq A$ such that $A \subseteq \bigcup_{i=1}^N D(y_i, r)$.

Proof. It suffices to show the "only if" part. Let r > 0 be given. Since A is totally bounded,

$$\exists \{y_1, \cdots, y_N\} \subseteq M \ni A \subseteq \bigcup_{i=1}^N D(y_i, \frac{r}{2}).$$

W.L.O.G., we may assume that for each $i = 1, \dots, N$, $D(y_i, \frac{r}{2}) \cap A \neq \emptyset$. Then for each $i = 1, \dots, N$, there exists $x_i \in D(y_i, \frac{r}{2}) \cap A$ which suggests that

$$A \subseteq \bigcup_{i=1}^{N} D\left(y_i, \frac{r}{2}\right) \subseteq \bigcup_{i=1}^{N} D(x_i, r)$$

since $D(y_i, \frac{r}{2}) \subseteq D(x_i, r)$ for all $i = 1, \dots, N$.

Lemma 3.18. Let (M,d) be a metric space, and $K \subseteq M$. If K is either compact or sequentially compact, then K is totally bounded.

Proof. Suppose first that K is compact. Let r > 0 be given, then $\{D(x,r)\}_{x \in K}$ is an open cover of K. Since K is compact, there exists a finite subcover; thus $\exists \{x_1, \dots, x_N\} \subseteq K$ such that

$$K \subseteq \bigcup_{i=1}^{N} D(x_i, r) \,.$$

Therefore, K is totally bounded.

Now we assume that K is sequentially compact. Suppose the contrary that there is an r > 0 such that any finite set $\{y_1, \dots, y_n\} \subseteq K$, $K \not \equiv \bigcup_{i=1}^n D(y_i, r)$. This implies that we can choose a sequence $\{x_k\}_{k=1}^{\infty} \subseteq K$ such that

$$x_{k+1} \in K \setminus \bigcup_{i=1}^k D(x_i, r)$$
.

Then $\{x_k\}_{k=1}^{\infty}$ is a sequence in K without convergent subsequence since $d(x_k, x_\ell) > r$ for all $k, \ell \in \mathbb{N}$.

Theorem 3.19. Let (M, d) be a metric space, and $K \subseteq M$. Then the following three statements are equivalent:

- 1. K is compact.
- 2. K is sequentially compact.
- 3. K is totally bounded and (K, d) is complete.

Proof. We show that $1 \Rightarrow 3 \Rightarrow 2 \Rightarrow 1$ to conclude the theorem.

"1 \Rightarrow 3": By Lemma 3.18, it suffices to show the completeness of (K, d). Let $\{x_k\}_{k=1}^{\infty}$ be a Cauchy sequence in K. Suppose that $\{x_k\}_{k=1}^{\infty}$ does not converge in K. Then

$$\forall y \in K, \exists \delta_y > 0 \ni \# \{ k \in \mathbb{N} \mid x_k \in D(y, \delta_y) \} < \infty$$
(3.1.1)

for otherwise there is a subsequence of $\{x_k\}_{k=1}^{\infty}$ that converges to x which will suggests the convergence of the Cauchy sequence. The collection $\{D(y, \delta_y)\}_{y \in K}$ then is an open cover of K; thus possesses a finite subcover $\{D(y_i, \delta_{y_i})\}_{i=1}^{N}$. In particular, $\{x_k\}_{k=1}^{\infty} \subseteq \bigcup_{i=1}^{N} D(y_i, \delta_{x_i})$ or

$$\#\{k \in \mathbb{N} \mid x_k \in \bigcup_{i=1}^N D(y_i, \delta_{y_i})\} = \infty$$

which contradicts to (3.1.1).

"3 \Rightarrow 2": The proof of this step is similar to the proof of the Bolzano-Weierstrass Theorem in \mathbb{R} (Theorem 1.100) that we proceed as follows. Let $\{x_k\}_{k=1}^{\infty}$ be a sequence in $T_0 \equiv K$. Since K is totally bound, there exist $\{y_1^{(1)}, \cdots, y_{N_1}^{(1)}\} \subseteq K$ such that

$$T_0 \equiv K \subseteq \bigcup_{i=1}^{N_1} D(y_i^{(1)}, 1)$$

One of these $D(y_i^{(1)}, 1)$'s must contain infinitely many x_k 's; that is, $\exists 1 \leq \ell_1 \leq N_1$ such that $\#\{k \in \mathbb{N} \mid x_k \in D(y_{\ell_1}^{(1)}, 1)\} = \infty$. Define $T_1 = K \cap D(y_{\ell_1}^{(1)}, 1)$. Then T_1 is also totally bounded by Proposition 3.16, so there exist $\{y_1^{(2)}, \cdots, y_{N_2}^{(2)}\} \subseteq T_1$ such that

$$T_1 \subseteq \bigcup_{i=1}^{N_2} D(y_i^{(2)}, \frac{1}{2})$$

Suppose that $\#\left\{k \in \mathbb{N} \mid x_k \in D\left(y_{\ell_2}^{(2)}, \frac{1}{2}\right)\right\} = \infty$ for some $1 \leq \ell_2 \leq N_2$. Define $T_2 = T_1 \cap D\left(y_{\ell_2}^{(2)}, \frac{1}{2}\right)$. We continue this process, and obtain that for all $n \in \mathbb{N}$,

(1) $\exists \left\{ y_1^{(n)}, \cdots, y_{N_n}^{(n)} \right\} \subseteq T_{n-1}$ such that

$$T_{n-1} \subseteq \bigcup_{i=1}^{N_n} D\left(y_i^{(n)}, \frac{1}{n}\right).$$

(2) $T_n = T_{n-1} \cap D(y_{\ell_n}^{(n)}, \frac{1}{n})$, where $1 \leq \ell_n \leq N_n$ is chosen so that $\#\{k \in \mathbb{N} \mid x_k \in D(y_{\ell_n}^{(n)}, \frac{1}{n})\} = \infty.$

$$\#\{k \in \mathbb{N} \mid x_k \in D(y_{\ell_n}^{(n)}, \frac{1}{n})\} = \infty.$$
(3.1.2)

Pick an $k_1 \in \{k \in \mathbb{N} \mid x_k \in D(y_{\ell_1}^{(1)}, 1)\}$, and $k_j \in \{k \in \mathbb{N} \mid x_k \in D(y_{\ell_j}^{(j)}, \frac{1}{j})\}$ such that $k_j > k_{j-1}$ for all $j \ge 2$. We note such k_j always exists because of (3.1.2). Then $\{x_{k_j}\}_{j=1}^{\infty}$ is a subsequence of $\{x_k\}_{k=1}^{\infty}$, and $x_{k_j} \in T_j \subseteq K$ for all $j \in \mathbb{N}$. Claim: $\{x_{k_j}\}_{j=1}^{\infty}$ is a Cauchy sequence.

Proof of claim: Let $\varepsilon > 0$ be given, and N > 0 be large enough so that $\frac{1}{N} < \frac{\varepsilon}{2}$. Since if $j \ge N$, we must have $x_{k_j} \in D(y_{\ell_N}^{(N)}, \frac{1}{N})$, we conclude that if $n, m \ge N$, by triangle inequality

$$d(x_{k_n}, x_{k_m}) \leq d(x_{k_n}, y_{\ell_N}^{(N)}) + d(x_{k_m}, y_{\ell_N}^{(N)}) < \frac{1}{N} + \frac{1}{N} < \varepsilon.$$

Since (K, d) is complete, the Cauchy sequence $\{x_{k_j}\}_{j=1}^{\infty}$ converges to a point in K.

"2 \Rightarrow 1": Let $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$ be an open cover of K.

Claim: there exists r > 0 such that for each $x \in K$, $D(x, r) \subseteq \mathcal{U}_{\alpha}$ for some $\alpha \in I$.

Proof of claim: Suppose the contrary that for all k > 0, there exists $x_k \in K$ such that $D(x_k, \frac{1}{k}) \notin \mathcal{U}_{\alpha}$ for all $\alpha \in I$. Then $\{x_k\}_{k=1}^{\infty}$ is a sequence in K; thus by the assumption of sequential compactness, there exists a subsequence $\{x_{k_j}\}_{j=1}^{\infty}$ converging in K. Suppose that $x_{k_j} \to x$ as $j \to \infty$, and $x \in \mathcal{U}_{\beta}$ for some $\beta \in I$. Then

- (1) there is r > 0 such that $D(x, r) \subseteq \mathcal{U}_{\beta}$ since \mathcal{U}_{β} is open.
- (2) there exists N > 0 such that $d(x_{k_j}, x) < \frac{r}{2}$ for all $j \ge N$.

Choose $j \ge N$ such that $\frac{1}{k_j} < \frac{r}{2}$. Then $D(x_{k_j}, \frac{1}{k_j}) \subseteq D(x, r) \subseteq \mathcal{U}_{\beta}$, a contradiction.

By Lemma 3.18, there exists $\{x_1, \dots, x_N\} \subseteq K$ such that $K \subseteq \bigcup_{i=1}^N D(x_i, r)$. For each $1 \leq i \leq N$, the claim above implies that there exists $\alpha_i \in I$ such that $D(x_i, r) \subseteq \mathcal{U}_{\alpha_i}$. Then $\bigcup_{i=1}^N D(x_i, r) \subseteq \bigcup_{i=1}^N \mathcal{U}_{\alpha_i}$ which suggests that

$$K \subseteq \bigcup_{i=1}^{N} \mathcal{U}_{\alpha_i}$$

Remark 3.20.

- 1. The equivalency between 1 and 2 is sometimes called the Bolzano-Weistrass Theorem.
- 2. A number r > 0 satisfying the claim in the step "2 \Rightarrow 1" is called a Lebesgue number for the cover $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$. The supremum of all such r is called the **Lebesgue number** for the cover $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$.

Alternative Proof of Theorem 3.19. In this proof we show that $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$ to conclude the theorem.

"1 \Rightarrow 2": Assume the contrary that K is not sequentially compact. Then there is a sequence $\{x_k\}_{k=1}^{\infty} \subseteq K$ that does not have a convergent subsequence with a limit in K. Therefore, for each $x \in K$, there exists $\delta_x > 0$ such that

$$\#\{k \in \mathbb{N} \mid x_k \in D(x, \delta_x)\} < \infty$$

for otherwise x is a cluster point of $\{x_k\}_{k=1}^{\infty}$ so Proposition 2.72 guarantees the existence of a subsequence of $\{x_k\}_{k=1}^{\infty}$ converging to x. Since $\{D(x, \delta_x)\}_{x \in K}$ is an open cover of K, by the compactness of K there exists $\{y_1, \dots, y_N\} \subseteq K$ such that

$$\{x_k\}_{k=1}^{\infty} \subseteq K \subseteq \bigcup_{i=1}^{N} D(y_i, \delta_{y_i})$$

while this is impossible since $\#\{k \in \mathbb{N} \mid x_k \in D(y_i, \delta_{y_i})\} < \infty$ for all $i = 1, \dots N$.

"2 \Rightarrow 3": By Lemma 3.18, it suffices to show that (K, d) is complete. Let $\{x_k\}_{k=1}^{\infty} \subseteq K$ be a Cauchy sequence. By sequential compactness of K, there is a subsequence $\{x_{k_j}\}_{j=1}^{\infty}$ converging to a point $x \in K$. By Proposition 2.81, $\{x_k\}_{k=1}^{\infty}$ also converges to x; thus every Cauchy sequence in (K, d) converges to a point in K.

" $3 \Rightarrow 1$ ": We first prove the following

Claim: If $\{\mathcal{V}_{\alpha}\}_{\alpha\in I}$ is an open cover of a totally bounded set A such that there is no finite subcover, then for all r > 0, there exists $x \in A$ such that $A \cap D(x, r)$ does not admit a finite subcover.

Proof of claim: Let r > 0 be given. Since A is totally bounded, by Proposition 3.17 there exists $\{a_1, \cdots, a_N\} \subseteq A$ such that $A \subseteq \bigcup_{j=1}^N D(a_j, r)$. If for each $j = 1, \cdots, N$, $A \cap D(a_i, r)$ can be covered by finitely many \mathcal{V}_{α} 's, then A itself can be covered by finitely many \mathcal{V}_{α} 's, a contradiction. Therefore, at least one $A \cap D(a_j, r)$ does not admit a finite subcover.

Now assume the contrary that there exists an open cover $\{\mathcal{U}_{\alpha}\}_{\alpha\in I}$ of K such that there is no finite subcover. Let $\varepsilon_n = 2^{-n}$. Since K is totally bounded, by the claim there exists $x_1 \in K$ such that $K \cap D(x_1, \varepsilon_1)$ which does not admit a finite subcover. By Proposition 3.16, $K \cap D(x_1, \varepsilon_1)$ is totally bounded, so there must be an $x_2 \in$ $K \cap D(x_1, \varepsilon_1)$ such that $K \cap D(x_1, \varepsilon_1) \cap D(x_2, \varepsilon_2)$ cannot be covered by the union of finitely many \mathcal{U}_{α} . We continuous this process, and obtain a sequence $\{x_k\}_{k=1}^{\infty}$ such that

- (1) $x_{k+1} \in K \cap \bigcap_{i=1}^{k} D(x_i, \varepsilon_i)$ (which implies that $d(x_{k+1}, x_k) < \varepsilon_k$); (2) $K \cap \bigcap_{i=1}^{k} D(x_i, \varepsilon_i)$ cannot be covered by the union of finitely many \mathcal{U}_{α} .

Then similar to Example 1.105, we find that $\{x_k\}_{k=1}^{\infty}$ is a Cauchy sequence in (K, d). By the completeness of $K, x_k \to x$ as $k \to \infty$ for some $x \in K$.

Since $\{\mathcal{U}_{\alpha}\}_{\alpha\in I}$ is an open cover of $K, x \in \mathcal{U}_{\beta}$ for some $\beta \in I$. Since \mathcal{U}_{β} is open, $\exists r > 0$ such that $D(x,r) \subseteq \mathcal{U}_{\beta}$. For this particular r, there exists N > 0 such that $d(x_k, x) < \frac{r}{2}$. Therefore, if $k \ge N$ such that $\varepsilon_k < \frac{r}{2}$,

$$D(x_k, \varepsilon_k) \subseteq D(x, r) \subseteq \mathcal{U}_\beta$$

which contradicts to (2).

Example 3.21. Let (M, d) be a metric space, and $\{x_k\}_{k=1}^{\infty}$ be a convergent sequence with limit x. Let $A = \{x_1, x_2, \dots\} \cup \{x\}$. Then A is compact.

Definition 3.22. Let (M, d) be a metric space. A subset $A \subseteq M$ is called *pre-compact* if \overline{A} is compact. Let $\mathcal{U} \subseteq M$ be an open set, a subset A of \mathcal{U} is said to be *compactly contained* in \mathcal{U} , denoted by $A \subset \mathcal{U}$, if A is pre-compact and $\overline{A} \subseteq \mathcal{U}$.

Example 3.23. Let (M, d) be a complete metric space, and $A \subseteq M$ be totally bounded. Then \overline{A} is compact. In other words, in a complete metric space, totally bounded sets are pre-compact.

(Hint: Use the total boundedness equivalence to show compactness.)

Definition 3.24. Let (M, d) be a metric space, and $A \subseteq M$. A collection of closed sets $\{F_{\alpha}\}_{\alpha \in I}$ is said to have the *finite intersection property* for the set A if the intersection of any finite number of F_{α} with A is non-empty; that is, $\{F_{\alpha}\}_{\alpha \in I}$ has the finite intersection property for A if

$$A \cap \bigcap_{\alpha \in J} F_{\alpha} \neq \emptyset$$
 for all $J \subseteq I$ and $\#J < \infty$.

Theorem 3.25. Let (M,d) be a metric space, and $K \subseteq M$. The K is compact if and only if every collection of closed sets with the finite intersection property for K has non-empty intersection with K; that is,

$$K \cap \bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$$
 for all $\{F_{\alpha}\}_{\alpha \in I}$ having the finite intersection property for K.

Proof. It can be proved by contradiction, and is left as an exercise.

Example 3.26. Let $A = (0,1) \subseteq \mathbb{R}$, and $K_j = \left[-1, \frac{1}{j}\right]$. Take $K_{j_1}, K_{j_2}, \cdots, K_{j_n}$, where $j_1 < j_2 < \cdots < j_n$. Then $\bigcap_{\ell=1}^n K_{j_\ell} \cap A = \left[-1, \frac{1}{j_n}\right] \cap (0,1) \neq \emptyset$. However $x \in \bigcap_{j=1}^\infty K_j \Leftrightarrow -1 \leqslant x \leqslant \frac{1}{j}$ for all $j \in \mathbb{N}$. So $\bigcap_{j=1}^\infty K_j = [-1,0]$; thus $\bigcap_{j=1}^\infty K_j \cap A = \emptyset$. Therefore, (0,1) is not compact.

Example 3.27. Let X be the collection of all bounded real sequences; that is,

$$X = \left\{ \{x_k\}_{k=1}^{\infty} \subseteq \mathbb{R} \mid \text{for some } M > 0, |x_k| \leq M \text{ for all } k \right\}$$

The number $\sup_{k\geq 1} |x_k| \equiv \sup\{|x_1|, |x_2|, \cdots, |x_k|, \cdots\} < \infty$ is denoted by $\|\{x_k\}_{k=1}^{\infty}\|$. For example, if $x_k = \frac{(-1)^k}{k}$, then $\|\{x_k\}_{k=1}^{\infty}\| = 1$. Then $(X, \|\cdot\|)$ is a complete normed space (left as

an exercise). Define

$$A = \left\{ \{x_k\}_{k=1}^{\infty} \in X \mid |x_k| \leq \frac{1}{k} \right\},$$

$$B = \left\{ \{x_k\}_{k=1}^{\infty} \in X \mid x_k \to 0 \text{ as } k \to \infty \right\},$$

$$C = \left\{ \{x_k\}_{k=1}^{\infty} \in X \mid \text{the sequence } \{x_k\}_{k=1}^{\infty} \text{ converges} \right\},$$

$$D = \left\{ \{x_k\}_{k=1}^{\infty} \in X \mid \sup_{k \ge 1} |x_k| = 1 \right\} \quad \text{(the unit sphere in } (X, \|\cdot\|)).$$

The closedness of A (which implies the completeness of $(A, \|\cdot\|)$) is left as an exercise. We show that A is totally bounded.

Let r > 0 be given. Then $\exists N > 0 \ni \frac{1}{N} < r$. Define

$$E = \left\{ \{x_k\}_{k=1}^{\infty} \middle| x_1 = \frac{i_1}{N+1}, x_2 = \frac{i_2}{N+1}, \cdots, x_{N-1} = \frac{i_{N-1}}{N+1} \text{ for some} \\ i_1, \cdots, i_{N-1} = -N, -N+1, \cdots, N-1, N, \text{ and } x_k = 0 \text{ if } k \ge N+1 \right\}.$$

Then

1.
$$\#E < \infty$$
. In fact, $\#E = (2N+1)^{N-1} < \infty$.
2. $A \subseteq \bigcup_{\{x_k\}_{k=1}^{\infty} \in E} D(\{x_k\}_{k=1}^{\infty}, \frac{1}{N}) \subseteq \bigcup_{\{x_k\}_{k=1}^{\infty} \in E} D(\{x_k\}_{k=1}^{\infty}, r)$

Therefore, A is totally bounded.

On the other hand, B and C are not compact since they are not bounded; thus not totally bounded by Proposition 3.13. D is bounded but not totally bounded. In fact, D cannot be covered by the union of finitely many balls with radius $\frac{1}{2}$ since each ball with radius $\frac{1}{2}$ contains at most one of the points from the subset $\left\{\left\{x_{j}^{(k)}\right\}_{j=1}^{\infty}\right\}_{k=1}^{\infty} \subseteq D$, where for each k

$$\{x_j^{(k)}\}_{j=1}^{\infty} = \{\underbrace{0,\cdots,0}_{(k-1) \text{ terms}}, 1, 0, \cdots\};$$

that is, $x_j^{(k)} = \delta_{kj}$, the kronecker delta.

3.1.1 The Heine-Borel theorem

Theorem 3.28. In the Euclidean space $(\mathbb{R}^n, \|\cdot\|_2)$, a subset K is compact if and only if it is closed and bounded.

Proof. By Proposition 3.13 and Theorem 3.19, it is clear that K is closed and bounded if K is compact (in any metric space). It remains to show the direction " \Leftarrow ". Nevertheless, by Theorem 2.83 closed subsets of a complete metric space must be complete, so it suffices to show that a bounded set in $(\mathbb{R}^n, \|\cdot\|_2)$ is totally bounded.

Let r > 0 be given. By the boundedness of K, for some M > 0 we have $||x||_2 \leq M$ for all $x \in K$; thus $K \subseteq [-M, M]^n$. Choose N > 0 so that $\frac{\sqrt{nM}}{N} < r$, and define

$$E = \left\{ \left(\frac{Mi_1}{N}, \cdots, \frac{Mi_n}{N}\right) \middle| i_1, i_2, \cdots, i_n \in \left\{ -N, -N+1, \cdots, N-1, N \right\} \right\}.$$

Then $\#E = (2N+1)^n < \infty$, and

$$K \subseteq [-M, M]^n \subseteq \bigcup_{x \in E} D(x, r) \,.$$

Alternative Proof of " \Leftarrow ". Let $\{x_k\}_{k=1}^{\infty} \subseteq K$ be a sequence. Since $K \subseteq \mathbb{R}^n$, we can write $x_k = (x_k^{(1)}, x_k^{(2)}, \cdots, x_k^{(n)}) \in \mathbb{R}^n$. Since K is bounded, then all the sequence $\{x_k^{(j)}\}_{k=1}^{\infty}$, $j = 1, 2, \cdots, n$, are bounded; that is, $-M_j \leq x_k^{(j)} \leq M_j$ for all $k \in \mathbb{N}$. Applying the Bolzano-Weierstrass property (Theorem 1.100) to the sequence $\{x_k^{(1)}\}_{k=1}^{\infty}$, we obtain a sequence $\{x_{k_j}^{(1)}\}_{j=1}^{\infty}$ with $x_{k_j}^{(1)} \to y^{(1)}$ as $j \to \infty$. Now $\{x_{k_j}^{(2)}\}_{j=1}^{\infty}$ has a subsequence $\{x_{k_{j_\ell}}^{(2)}\}_{\ell=1}^{\infty}$ converges, say $x_{k_{j_\ell}}^{(2)} \to y^{(2)}$ as $\ell \to \infty$.

Continuing in this way, we obtain a subsequence of $\{x_k\}_{k=1}^{\infty}$ that converges to $y = (y^{(1)}, y^{(2)}, \dots, y^{(n)})$. Since K is close, $y \in K$; thus K is sequentially compact which is equivalent to the compactness of K.

Corollary 3.29. A bounded set A in the Euclidean space $(\mathbb{R}^n, \|\cdot\|_2)$ is pre-compact. In particular, if $\{x_k\}_{k=1}^{\infty}$ is a bounded sequence in \mathbb{R}^n , there exists a convergent subsequence $\{x_{k_j}\}_{j=1}^{\infty}$ (the sentence in blue color is again called the **Bolzano-Weierstrass theorem**).

Example 3.30. Let $A = \{0\} \cup \{1, \frac{1}{2}, \cdots, \frac{1}{n}, \cdots\}$. Then A is compact in $(\mathbb{R}, |\cdot|)$. **Example 3.31.** Let $A = [0, 1] \cup (2, 3] \subseteq (\mathbb{R}, |\cdot|)$. Since A is not closed, A is not compact.

3.1.2 The nested set property

Theorem 3.32. Let $\{K_n\}_{n=1}^{\infty}$ be a sequence of non-empty compact sets in a metric space (M, d) such that $K_n \supseteq K_{n+1}$ for all $n \in \mathbb{N}$. Then there is at least one point in $\bigcap_{n=1}^{\infty} K_n$; that is,

$$\bigcap_{n=1}^{\infty} K_n \neq \emptyset.$$

Proof. Assume the contrary that $\bigcap_{n=1}^{\infty} K_n = \emptyset$. Then $\bigcup_{n=1}^{\infty} K_n^{\complement} = (\bigcap_{n=1}^{\infty} K_n)^{\complement} = M$. Since K_n^{\complement} is open, $\{K_n^{\complement}\}_{n=1}^{\infty}$ is an open cover of K_1 ; thus by compactness of K_1 , there exists $J \subseteq \mathbb{N}$, $\#J < \infty$ such that

$$K_1 \subseteq \bigcup_{n \in J} K_n^{\complement} = \left(\bigcap_{n \in J} K_n\right)^{\complement}.$$

Therefore, $K_1 \cap \bigcap_{n \in J} K_n = \emptyset$ which implies that $K_{\max J} = \emptyset$, a contradiction.

Alternative Proof. By assumption, $\{K_n\}_{n=2}^{\infty}$ has the finite intersection property for K_1 . Since K_1 is compact, by Theorem 3.25,

$$K_1 \cap \bigcap_{n=2}^{\infty} K_n \neq \emptyset.$$

Corollary 3.33. Let $\{\mathcal{U}_k\}_{k=1}^{\infty}$ be a collection of open sets in a metric space (M, d) such that $\mathcal{U}_k \subseteq \mathcal{U}_{k+1}$ for all $k \in \mathbb{N}$ and $\mathcal{U}_k^{\complement}$ is compact. Then $\bigcup_{k=1}^{\infty} \mathcal{U}_k \neq M$.

Proof. This is proved by letting $K_n = \mathcal{U}_n^{\complement}$, and applying Theorem 3.32.

Remark 3.34. If the compactness is removed from the condition, then the intersection might be empty. Suppose that the metric space under consideration is $(\mathbb{R}, |\cdot|)$.

- 1. If the closedness condition is removed, then $\mathcal{U}_k = \left(0, \frac{1}{k}\right)$ has empty intersection.
- 2. If the boundedness condition is removed, then $F_k = [k, \infty)$ has empty intersection.

3.2 Connectedness (連通性)

Definition 3.35. Let (M, d) be a metric space, and $A \subseteq M$. Two non-empty open sets \mathcal{U} and \mathcal{V} are said to separate A if

1. $A \cap \mathcal{U} \cap \mathcal{V} = \emptyset$; 2. $A \cap \mathcal{U} \neq \emptyset$; 3. $A \cap \mathcal{V} \neq \emptyset$; 4. $A \subseteq \mathcal{U} \cup \mathcal{V}$.

We say that A is **disconnected** or **separated** if such separation exists, and A is **connected** if no such separation exists.

Proposition 3.36. Let (M, d) be a metric space. A subset $A \subseteq M$ is disconnected if and only if $A = A_1 \cup A_2$ with $A_1 \cap \overline{A}_2 = \overline{A}_1 \cap A_2 = \emptyset$ for some non-empty A_1 and A_2 .

Proof. " \Rightarrow " Suppose that there exist \mathcal{U}, \mathcal{V} non-empty open sets such that 1-4 in Definition 3.35 hold. Let $A_1 = A \cap \mathcal{U}$ and $A_2 = A \cap \mathcal{V}$. By 1, $A_1 \subseteq \mathcal{V}^{\complement}$; thus by the definition of the closure of sets, $\overline{A}_1 \subseteq \mathcal{V}^{\complement}$. This implies that $\overline{A}_1 \cap A_2 = \emptyset$. Similarly, $\overline{A}_2 \cap A_1 = \emptyset$.

" \Leftarrow " Let $\mathcal{U} = \overline{A}_2^{\complement}$ and $\mathcal{V} = \overline{A}_1^{\complement}$ be two open sets. Then $\mathcal{V} \cap A_1 = \mathcal{U} \cap A_2 = \emptyset$; thus

$$A \cap \mathcal{U} \cap \mathcal{V} = (A_1 \cup A_2) \cap \mathcal{U} \cap \mathcal{V} = (A_1 \cap \mathcal{U}) \cap \mathcal{V} = \mathcal{U} \cap (A_1 \cap \mathcal{V}) = \emptyset.$$

Moreover, 2-4 in Definition 3.35 also hold since $A_1 \subseteq \mathcal{U}$ and $A_2 \subseteq \mathcal{V}$.

Corollary 3.37. Let (M, d) be a metric space. Suppose that a subset $A \subseteq M$ is connected, and $A = A_1 \cup A_2$, where $A_1 \cap \overline{A_2} = \overline{A_1} \cap A_2 = \emptyset$. Then A_1 or A_2 is empty.

Theorem 3.38. A subset A of the Euclidean space $(\mathbb{R}, |\cdot|)$ is connected if and only if it has the property that if $x, y \in A$ and x < z < y, then $z \in A$.

Proof. " \Rightarrow " Suppose that there exist $x, y \in A, x < z < y$ but $z \notin A$. Then $A = A_1 \cup A_2$, where

$$A_1 = A \cap (-\infty, z)$$
 and $A_2 = A \cap (z, \infty)$.

Since $x \in A_1$ and $y \in A_2$, A_1 and A_2 are non-empty. Moreover, $\overline{A}_1 \cap A_2 = A_1 \cap \overline{A}_2 = \emptyset$; thus by Proposition 3.36, A is disconnected, a contradiction.

"⇐" Suppose that A is not connected. Then there exist non-empty sets A_1 and A_2 such that $A = A_1 \cup A_2$ with $\bar{A}_1 \cap A_2 = A_1 \cap \bar{A}_2 = \emptyset$. Pick $x \in A_1$ and $y \in A_2$. W.L.O.G., we may assume that x < y. Define $z = \sup(A_1 \cap [x, y])$. Claim: $z \in \bar{A}_1$.

Proof of claim: By definition, for any n > 0 there exists $x_n \in A_1 \cap [x, y]$ such that $z - \frac{1}{n} < x_n \leq z$. Therefore, $x_n \to z$ as $n \to \infty$ which implies that $z \in \overline{A_1}$. Since $z \in \overline{A_1}, z \notin A_2$. In particular, $x \leq z < y$.

- (a) If $z \notin A_1$, then x < z < y and $z \notin A$, a contradiction.
- (b) If $z \in A_1$, then $z \notin \overline{A}_2$; thus $\exists r > 0$ such that $(z r, z + r) \subseteq \overline{A}_2^{\complement}$. Then for all $z_1 \in (z, z + r)$, $z < z_1 < y$ and $z_1 \notin A_2$. Then $x < z_1 < y$ and $z_1 \notin A$, a contradiction.

3.3 Subspace Topology

Let (M, d) be a metric space, and $N \subseteq M$ be a subset. Then (N, d) is a metric space, and the topology of (N, d) is called the **subspace topology** of (N, d).

Remark 3.39. The topology of a metric is the collection of all open sets of that metric space.

Proposition 3.40. Let (M, d) be a metric space, and $N \subseteq M$. A subset $\mathcal{V} \subseteq N$ is open in (N, d) if and only if $\mathcal{V} = \mathcal{U} \cap N$ for some open set \mathcal{U} in (M, d).

Proof. " \Rightarrow " Let $\mathcal{V} \subseteq N$ be open in (N, d). Then $\forall x \in \mathcal{V}, \exists r_x > 0$ such that

$$D_N(x, r_x) \equiv \left\{ y \in \mathbb{N} \, \big| \, d(x, y) < r_x \right\} \subseteq \mathcal{V}.$$

In particular, $\mathcal{V} = \bigcup_{x \in \mathcal{V}} D_N(x, r_x)$. Note that $D_N(x, r) = D(x, r) \cap N$; thus if $\mathcal{U} = \bigcup_{x \in \mathcal{V}} D(x, r_x)$, then \mathcal{U} is open in (M, d), and

$$\mathcal{V} = \bigcup_{x \in \mathcal{V}} D(x, r_x) \cap N = \mathcal{U} \cap N.$$

"⇐" Suppose that $\mathcal{V} = \mathcal{U} \cap N$ for some open set \mathcal{U} in (M, d). Let $x \in \mathcal{V}$. Then $x \in \mathcal{U}$; thus $\exists r > 0$ such that $D(x, r) \subseteq \mathcal{U}$. Therefore,

$$D_N(x,r) \equiv \left\{ y \in N \, \middle| \, d(x,y) < r \right\} = D(x,r) \cap N \subseteq \mathcal{U} \cap N = \mathcal{V};$$

hence \mathcal{V} is open in (N, d).

Corollary 3.41. Let (M, d) be a metric space, and $N \subseteq M$. Let (M, d) be a metric space, and $N \subseteq M$. A subset $E \subseteq N$ is closed in (N, d) if and only if $E = F \cap N$ for some closed set F in (M, d).

Definition 3.42. Let (M, d) be a metric space, and $N \subseteq M$. A subset A is said to be open open closed relative to N if $A \cap N$ is closed in the metric space (N, d). compact compact

Theorem 3.43. Let (M,d) be a metric space, and $K \subseteq N \subseteq M$. Then K is compact in (M,d) if and only if K is compact in (N,d).

Proof. " \Rightarrow " Let $\{\mathcal{V}_{\alpha}\}_{\alpha \in I}$ be an open cover of K in (N, d). By Proposition 3.40, there are open sets \mathcal{U}_{α} in (M, d) such that $\mathcal{V}_{\alpha} = \mathcal{U}_{\alpha} \cap N$ for all $\alpha \in I$. Then $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$ is also an open cover of K; thus possesses a finite subcover; that is, $\exists J \subseteq I, \#J < \infty$ such that $K \subseteq \bigcup_{\alpha \in J} \mathcal{U}_{\alpha}$ which, together with the fact that $K \subseteq N$, implies that

$$K \subseteq \left(\bigcup_{\alpha \in J} \mathcal{U}_{\alpha}\right) \cap N = \bigcup_{\alpha \in J} (\mathcal{U}_{\alpha} \cap N) = \bigcup_{\alpha \in J} \mathcal{V}_{\alpha}.$$

"⇐" Let $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$ be an open cover of K in (M, d). Letting $\mathcal{V}_{\alpha} = \mathcal{U}_{\alpha} \cap N$, by Proposition 3.40 we find that $\{\mathcal{V}_{\alpha}\}_{\alpha \in I}$ is an open cover of K in (N, d). Since K is compact in (N, d), there exists $J \subseteq I$, $\#J < \infty$ such that $K \subseteq \bigcup_{\alpha \in J} \mathcal{V}_{\alpha}$; thus

$$K \subseteq \bigcup_{\alpha \in J} \mathcal{U}_{\alpha} \,.$$

Remark 3.44. Another way to look at Theorem 3.43 is using the sequential compactness equivalence. Let $\{x_k\}_{k=1}^{\infty} \subseteq K$ be a sequence. By sequential compactness of K in either (M, d) or (N, d), there exists $\{x_{k_j}\}_{j=1}^{\infty}$ and $x \in K$ such that $x_{k_j} \to x$ as $j \to \infty$. As long as the metric d used in different space are identical, the concept of convergence of a sequence are the same; thus compactness in (M, d) or (N, d) are the same.

Example 3.45. Let (M, d) be $(\mathbb{R}, |\cdot|)$, and $N = \mathbb{Q}$. Consider the set $F = [0, 1] \cap \mathbb{Q}$. By Corollary 3.41 F is closed in $(\mathbb{Q}, |\cdot|)$. However, F is not compact in $(\mathbb{Q}, |\cdot|)$ since F is not complete. We can also apply Theorem 3.43 to see this: if $F \subseteq \mathbb{Q}$ is compact in $(\mathbb{Q}, |\cdot|)$, then F is compact in $(\mathbb{R}, |\cdot|)$ which is clearly not the case since F is not closed in $(\mathbb{R}, |\cdot|)$.

Remark 3.46. Let (M, d) be a metric space. By Proposition 3.36 a subset $A \subseteq M$ is disconnected if and only if there exist two subsets $\mathcal{U}_1, \mathcal{U}_2$ of A, open relative to A, such that $A = \mathcal{U}_1 \cup \mathcal{U}_2$ and $\mathcal{U}_1 \cap \mathcal{U}_2 = \emptyset$ (one choice of $(\mathcal{U}_1, \mathcal{U}_2)$ is $\mathcal{U}_1 = A \setminus \overline{A}_1$ and $\mathcal{U}_2 = A \setminus \overline{A}_2$, where A_1 and A_2 are given by Proposition 3.36). Note that \mathcal{U}_1 and \mathcal{U}_2 are also closed relative to A.

Given the observation above, if A is a connected set and E is a subset of A such that E is closed and open relative to A, then $E = \emptyset$ or E = A.

3.4 Exercises

§3.1 Compactness

Problem 3.1. Let (M, d) be a metric space.

- 1. Show that the union of a finite number of compact subsets of M is compact.
- 2. Show that the intersection of an arbitrary collection of compact subsets of M is compact.

Problem 3.2. A metric space (M, d) is said to be separable if there is a countable subset A which is dense in M. Show that every compact set is separable.

Problem 3.3. Given $\{a_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$ a bounded sequence. Define

 $A = \left\{ x \in \mathbb{R} \mid \text{there exists a subsequence } \left\{ a_{k_j} \right\}_{j=1}^{\infty} \text{ such that } \lim_{j \to \infty} a_{k_j} = x \right\}.$

Show that A is a non-empty compact set in \mathbb{R} . Furthermore, $\limsup_{k \to \infty} a_k = \sup_{k \to \infty} A$ and $\liminf_{k \to \infty} a_k = \inf_{k \to \infty} A$.

Problem 3.4. Let (M, d) be a compact metric space; that is, M itself is a compact set. If $\{F_k\}_{k=1}^{\infty}$ is a sequence of closed sets such that $\operatorname{int}(F_k) = \emptyset$, then $M \setminus \bigcup_{k=1}^{\infty} F_k \neq \emptyset$.

Problem 3.5. Let $d : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$d(x,y) = \begin{cases} |x_1 - y_1| & \text{if } x_2 = y_2, \\ |x_1 - y_1| + |x_2 - y_2| + 1 & \text{if } x_2 \neq y_2. \end{cases} \text{ where } x = (x_1, x_2) \text{ and } y = (y_1, y_2).$$

- 1. Show that d is a metric on \mathbb{R}^2 . In other words, (\mathbb{R}^2, d) is a metric space.
- 2. Find D(x,r) with r < 1, r = 1 and r > 1.
- 3. Show that the set $\{c\} \times [a, b] \subseteq (\mathbb{R}^2, d)$ is closed and bounded.
- 4. Examine whether the set $\{c\} \times [a, b] \subseteq (\mathbb{R}^2, d)$ is compact or not.

Problem 3.6. Let (M, d) be a complete metric space, and $A \subseteq M$ be totally bounded. Show that cl(A) is compact.

Problem 3.7. Let $\{x_k\}_{k=1}^{\infty}$ be a convergent sequence in a metric space, and $x_k \to x$ as $k \to \infty$. Show that the set $A \equiv \{x_1, x_2, \dots, \} \cup \{x\}$ is compact by

1. showing that A is sequentially compact; and

- 2. showing that every open cover of A has a finite subcover; and
- 3. showing that A is totally bounded and complete.

Problem 3.8. Let Y be the collection of all sequences $\{y_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$ such that $\sum_{k=1}^{\infty} |y_k|^2 < \infty$. In other words,

$$Y = \left\{ \{y_k\}_{k=1}^{\infty} \mid y_k \in \mathbb{R} \text{ for all } k \in \mathbb{N}, \ \sum_{k=1}^{\infty} |y_k|^2 < \infty \right\}$$

Define $\|\cdot\|: Y \to \mathbb{R}$ by

$$\|\{y_k\}_{k=1}^{\infty}\| = \left(\sum_{k=1}^{\infty} |y_k|^2\right)^{\frac{1}{2}}.$$

- 1. Show that $\|\cdot\|$ is a norm on Y. The normed space $(Y, \|\cdot\|)$ usually is denoted by ℓ^2 .
- 2. Show that $\|\cdot\|$ is induced by an inner product.
- 3. Show that $(Y, \|\cdot\|)$ is complete.
- 4. Let $B = \{y \in Y \mid ||y|| \le 1\}$. Is E compact or not?

Problem 3.9. Let A, B be two non-empty subsets in \mathbb{R}^n . Define

$$d(A, B) = \inf \{ \|x - y\|_2 \, | \, x \in A, y \in B \}$$

to be the distance between A and B. When $A = \{x\}$ is a point, we write d(A, B) as d(x, B).

- (1) Prove that $d(A, B) = \inf \{ d(x, B) \mid x \in A \}.$
- (2) Show that $|d(x_1, B) d(x_2, B)| \leq ||x_1 x_2||_2$ for all $x_1, x_2 \in \mathbb{R}^n$.
- (3) Define $B_{\varepsilon} = \{x \in \mathbb{R}^n \mid d(x, B) < \varepsilon\}$ be the collection of all points whose distance from B is less than ε . Show that B_{ε} is open and $\bigcap_{\varepsilon>0} B_{\varepsilon} = \operatorname{cl}(B)$.
- (4) If A is compact, show that there exists $x \in A$ such that d(A, B) = d(x, B).
- (5) If A is closed and B is compact, show that there exists $x \in A$ and $y \in B$ such that d(A, B) = d(x, y).
- (6) If A and B are both closed, does the conclusion of (5) hold?

Problem 3.10. Let $\mathcal{K}(n)$ denote the collection of all non-empty compact sets in \mathbb{R}^n . Define the Hausdorff distance of $K_1, K_2 \in \mathcal{K}(n)$ by

$$d^{H}(K_{1}, K_{2}) = \max\left\{\sup_{x \in K_{2}} d(x, K_{1}), \sup_{x \in K_{1}} d(x, K_{2})\right\},\$$

in which d(x, K) is the distance between x and K given in Problem 3.9. Show that $(\mathcal{K}(n), d^H)$ is a metric space.

Problem 3.11. Let $M = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\}$ with the standard metric $\|\cdot\|_2$. Show that $A \subseteq M$ is compact if and only if A is closed.

- **Problem 3.12.** 1. Let $\{x_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$ be a sequence in $(\mathbb{R}, |\cdot|)$ that converges to x and let $A_k = \{x_k, x_{k+1}, \cdots\}$. Show that $\{x\} = \bigcap_{k=1}^{\infty} \overline{A_k}$. Is this true in any metric space?
 - 2. Suppose that $\{K_j\}_{j=1}^{\infty}$ is a sequence of comapct non-empty sets satisfying the nested set property; that is, $K_j \supseteq K_{j+1}$, and diameter $(K_j) \to 0$ as $j \to \infty$, where

diameter
$$(K_j) = \sup \{ d(x, y) \mid x, y \in K_j \}.$$

Show that there is exactly one point in $\bigcap_{j=1}^{\infty} K_j$.

§3.2 Connectedness

Problem 3.13. Let (M,d) be a metric space, and $A \subseteq M$. Show that A is disconnected (not connected) if and only if there exist non-empty closed set F_1 and F_2 such that

1.
$$A \cap F_1 \cap F_2 = \emptyset$$
; 2. $A \cap F_1 \neq \emptyset$; 3. $A \cap F_2 \neq \emptyset$; 4. $A \subseteq F_1 \cup F_2$.

Problem 3.14. Prove that if A is connected in a metric space (M, d) and $A \subseteq B \subseteq \overline{A}$, then B is connected.

Problem 3.15. Let (M, d) be a metric space, and $A \subseteq M$ be a subset. Suppose that A is connected and contain more than one point. Show that $A \subseteq A'$.

Problem 3.16. Show that the Cantor set C defined in Problem 2.11 is totally disconnected; that is, if $x, y \in C$, and $x \neq y$, then $x \in \mathcal{U}$ and $y \in \mathcal{V}$ for some open sets \mathcal{U} , \mathcal{V} separate C.

Problem 3.17. Let F_k be a nest of connected compact sets (that is, $F_{k+1} \subseteq F_k$ and F_k is connected for all $k \in \mathbb{N}$). Show that $\bigcap_{k=1}^{\infty} F_k$ is connected. Give an example to show that compactness is an essential condition and we cannot just assume that F_k is a nest of closed connected sets.

Problem 3.18. Let $\{A_k\}_{k=1}^{\infty}$ be a family of connected subsets of M, and suppose that A is a connected subset of M such that $A_k \cap A \neq \emptyset$ for all $k \in \mathbb{N}$. Show that the union $(\bigcup_{k \in \mathbb{N}} A_k) \cup A$ is also connected.

Problem 3.19. Let $A, B \subseteq M$ and A is connected. Suppose that $A \cap B \neq \emptyset$ and $A \cap B^{\complement} \neq \emptyset$. \emptyset . Show that $A \cap \partial B \neq \emptyset$.

Problem 3.20. Given (M, d) a metric space and $A \subseteq M$ a non-empty subset. A maximal connected subset of A is called a *connected component* of A.

- 1. Let $a \in A$. Show that there is a unique connected components of A containing a.
- 2. Show that any two distinct connected components of A are disjoint. Therefore, A is the disjoint union of its connected components.
- 3. Show that every connected component of A is a closed subset of A.
- 4. If A is open, prove that every connected component of A is also open. Therefore, when $M = \mathbb{R}^n$, show that A has at most countable infinite connected components.
- 5. Find the connected components of the set of rational numbers or the set of irrational numbers in \mathbb{R} .

Problem 3.21 (True or False). Determine whether the following statements are true or false. If it is true, prove it. Otherwise, give a counter-example.

- 1. There exists a non-zero dimensional normed vector space in which some compact nonzero dimensional linear subspace exists.
- 2. There exists a set $A \subseteq (0,1]$ which is compact in (0,1] (in the sense of subspace topology), but A is not compact in \mathbb{R} .
- 3. Let $A \subseteq \mathbb{R}^n$ be a non-empty set. Then a subset B of A is compact in A if and only if B is closed and bounded in A.