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Chapter 3

Compact and Connected Sets

3.1 Compactness（緊緻性）

Definition 3.1. Let (M,d) be a metric space. A subset K Ď M is called sequentially
compact if every sequence in K has a subsequence that converges to a point in K.

Example 3.2. Any closed and bounded set in (R, | ¨ |) is sequentially compact.

Proof. Let txku8
k=1 be a sequence in a closed and bounded set S. Then txku8

k=1 is also
bounded; thus by Bolzano-Weierstrass property of R, there exists a subsequence

␣

xkj
(8

j=1

converging to a point x P R. Since S is closed, x P S; thus S is sequentially compact. ˝

Proposition 3.3. Let (M,d) be a metric space, and K Ď M be sequentially compact. Then
K is closed and bounded.

Proof. For closedness, assume that txku8
k=1 Ď K and xk Ñ x as k Ñ 8. By the definition of

sequential compactness, there exists
␣

xkj
(8

j=1
converging to a point y P K. By Proposition

2.72, x = y; thus x P K.
For boundedness, assume the contrary that @ (x0, B) P M ˆR+, there exists y P K such

that d(x0, y) ą B. In particular, there exists

xk P K, d(xk, x0) ą 1 + d(xk´1, x0) @ k P N.
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84 CHAPTER 2. Point-Set Topology of Metric spaces

•
x0

•x1

•x2

•x3

1

1

Then any subsequence of txku8
k=1 cannot be Cauchy since d(xk, xℓ) ą 1 for all k, ℓ P N; thus

txku8
k=1 has no convergent subsequence, a contradiction. ˝

Remark 3.4. Example 3.2 and Proposition 3.3 together suggest that in (R, | ¨ |),

sequentially compact ô closed and bounded .

Corollary 3.5. If K Ď R is sequentially compact, then infK P K and supK P K.

Proof. By Proposition 3.3, K must be closed and bounded. Therefore, infK P R. Then
for each n P N, there exists xn P K such that infK ď xn ă infK +

1

n
. Since txnu8

n=1 is
a bounded sequence in R, the Bolzano-Weierstrass theorem (Theorem 1.100) implies that
there is a subsequence

␣

xnk

(8

k=1
and x P R such that lim

kÑ8
xnk

= x. Note that x = infK,
and by the closedness of K, x P K. The proof of supK P K is similar. ˝

Definition 3.6. Let (M,d) be a metric space, and A Ď M . A cover of A is a collection of
sets

␣

Uα
(

αPI
whose union contains A; that is,

A Ď
ď

αPI

Uα .

It is an open cover of A if Uα is open for all α P I. A subcover of a given cover is a
sub-collection

␣

UαuαPJ of
␣

Uα
(

αPI
whose union also contains A; that is,

A Ď
ď

αPJ

Uα , J Ď I .

It is a finite subcover if #J ă 8.

Definition 3.7. Let (M,d) be a metric space. A subset K Ď M is called compact if every
open cover of K possesses a finite subcover; that is, K Ď M is compact if

@ open cover
␣

Uα
(

αPI
of K, D J Ď I,#J ă 8 Q K Ď

ď

αPJ

Uα .
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Example 3.8. Consider R ˆ t0u in the normed space (R2, } ¨ }2). For x P R, then
␣

D
(
(x, 0), 1

)(
xPR is an open cover of R ˆ t0u; that is,

R ˆ t0u Ď
ď

xPR

D
(
(x, 0), 1

)
.

•
(x, 0)

D
(
(x, 0), 1

)

Figure 3.1: An open cover of the x-axis

However, there is no finite subcover; thus R ˆ t0u is not compact.

Example 3.9. Consider (0, 1] in the normed space (R, | ¨ |). Let Ik =
(1
k
, 2
)
. Then tIku8

k=1

is an open cover of (0, 1]; that is,

(0, 1] Ď

8
ď

k=1

(1
k
, 2
)
.

However, there is no finite subcover since

1

N + 1
R

N
ď

k=1

(1
k
, 2
)
.

Therefore, (0, 1] is not compact.

Lemma 3.10. Let (M,d) be a metric space, and K Ď M be compact. Then K is closed.
In other words, compact subsets of metric spaces are closed.

Proof. Suppose the contrary that D txku8
k=1 Ď K, xk Ñ x as k Ñ 8, but x R K. For y P K,

define the open ball Uy by
Uy = D

(
y,

1

2
d(x, y)

)
.

Then
␣

Uy
(

yPK
is an open cover of K; that is, K Ď

Ť

yPK

Uy. Since K is compact, there exist

ty1, ¨ ¨ ¨ , ynu Ď K such that

K Ď

n
ď

i=1

Uyi =
n
ď

i=1

D
(
yi,

1

2
d(x, yi)

)
.
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Let r = 1

2
min

␣

d(x, y1), ¨ ¨ ¨ , d(x, yn)
(

ą 0. Then if d(x, z) ă r,

d(z, yi) ě d(x, yi) ´ d(x, z) ą d(x, yi) ´ r ą d(x, yi) ´
1

2
d(x, yi) =

1

2
d(x, yi)

which implies that D(x, r) X Uyi = H for all i = 1, ¨ ¨ ¨ , n.

r

1
2
d(x, y1)

1
2
d(x, y2)

Uy1

Uy2

Uy3

1
2
d(x, y3)

x

y1

y2

y3

On the other hand, since xk Ñ x as k Ñ 8, DN ą 0 such that

d(xk, x) ă r @ k ě N .

In particular, xN P D(x, r) X K; thus xN R Uyi for all i = 1, ¨ ¨ ¨ , n, which contradicts to
that

␣

Uyi
(n

i=1
is a cover of K. ˝

Lemma 3.11. Let (M,d) be a metric space, and K Ď M be compact. If F Ď K is closed,
then F is compact. In other words, closed subsets of compact sets are compact.

Proof. Let
␣

Uα
(

αPI
be an open cover of F . Then

␣

Uα
(

αPI
Y tF Au is an open cover of K;

thus possessing a finite subcover of K. Therefore, we must have

K Ď

n
ď

i=1

Uαi
Y F A

for some αi P I. In particular, F Ď
n
Ť

i=1

Uαi
Y F A, so F Ď

n
Ť

i=1

Uαi
. ˝

Definition 3.12. Let (M,d) be a metric space. A subset A Ď M is called totally bounded
if for each r ą 0, there exists tx1, ¨ ¨ ¨ , xNu Ď M such that

A Ď

N
ď

i=1

D(xi, r) .
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Proposition 3.13. Let (M,d) be a metric space, and A Ď M be totally bounded. Then A

is bounded. In other words, totally bounded sets are bounded.

Proof. By total boundedness, there exists ty1, ¨ ¨ ¨ , yNu Ď M such that A Ď
N
Ť

i=1

D(yi, 1). Let

x0 = y1 and R = max
␣

d(x0, y2), ¨ ¨ ¨ , d(x0, yN)
(

+ 1. Then if z P A, z P D(yj, 1) for some
j = 1, ¨ ¨ ¨ , N , and

d(z, x0) ď d(z, yj) + d(yj, x0) ă 1 + d(x0, yj) ď R

which implies that A Ď D(x0, R). Therefore, A is bounded. ˝

Example 3.14. In a general metric space (M,d), a bounded set might not be totally
bounded. For example, consider the metric space (M,d) with the discrete metric, and
A Ď M be a set having infinitely many points. Then A is bounded since A Ď D(x, 2) for
any x P M ; however, A is not totally bounded since A cannot be covered by finitely many
balls with radius 1

2
.

Example 3.15. Every bounded set in (Rn, }¨}2) is totally bounded (Check!). In particular,
the set t1u ˆ [1, 2] in (R2, } ¨ }) is totally bounded.

On the other hand, let d : R2 ˆ R2 Ñ R be defined by

d(x, y) =

#

|x1 ´ y1| if x2 = y2 ,

|x1 ´ y1| + |x2 ´ y2| + 1 if x2 ‰ y2 .
where x = (x1, x2) and y = (y1, y2).

Then (R2, d) is also a metric space (exercise). The set t1u ˆ [1, 2] is not totally bounded. In
fact, consider open ball with radius 1

2
:

y P D
(
x,

1

2

)
ô d(x, y) ă

1

2
ô |x1 ´ y1| ă

1

2
and x2 = y2

ô y1 P
(
x1 ´

1

2
, x1 +

1

2

)
and x2 = y2 .

In other words,
D
(
x,

1

2

)
=

(
x1 ´

1

2
, x1 +

1

2

)
ˆ tx2u ;

thus one cannot cover t1u ˆ [1, 2] by the union of finitely many balls with radius 1

2
.

Proposition 3.16. Let (M,d) be a metric space, and T Ď M be totally bounded. If S Ď T ,
then S is totally bounded. In other words, subsets of totally bounded sets are totally bounded.
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Proof. Let r ą 0 be given. By the total boundedness of T , there exists tx1, ¨ ¨ ¨ , xNu Ď M

such that

S Ď T Ď

N
ď

i=1

D(xi, r) . ˝

Proposition 3.17. Let (M,d) be a metric space, and A Ď M . Then A is totally bounded

if and only if @ r ą 0, Dty1, ¨ ¨ ¨ , yNu Ď A such that A Ď
N
Ť

i=1

D(yi, r).

Proof. It suffices to show the “only if” part. Let r ą 0 be given. Since A is totally bounded,

D ty1, ¨ ¨ ¨ , yNu Ď M Q A Ď

N
ď

i=1

D
(
yi,

r

2

)
.

W.L.O.G., we may assume that for each i = 1, ¨ ¨ ¨ , N , D
(
yi,

r

2

)
X A ‰ H. Then for each

i = 1, ¨ ¨ ¨ , N , there exists xi P D
(
yi,

r

2

)
X A which suggests that

A Ď

N
ď

i=1

D
(
yi,

r

2

)
Ď

N
ď

i=1

D(xi, r)

since D
(
yi,

r

2

)
Ď D(xi, r) for all i = 1, ¨ ¨ ¨ , N . ˝

Lemma 3.18. Let (M,d) be a metric space, and K Ď M . If K is either compact or
sequentially compact, then K is totally bounded..

Proof. Suppose first that K is compact. Let r ą 0 be given, then
␣

D(x, r)
(

xPK
is an open

cover of K. Since K is compact, there exists a finite subcover; thus D tx1, ¨ ¨ ¨ , xNu Ď K

such that

K Ď

N
ď

i=1

D(xi, r) .

Therefore, K is totally bounded.
Now we assume that K is sequentially compact. Suppose the contrary that there is an

r ą 0 such that any finite set ty1, ¨ ¨ ¨ , ynu Ď K, K Ę
n
Ť

i=1

D(yi, r). This implies that we can

choose a sequence txku8
k=1 Ď K such that

xk+1 P Kz

k
ď

i=1

D(xi, r) .

Then txku8
k=1 is a sequence in K without convergent subsequence since d(xk, xℓ) ą r for all

k, ℓ P N. ˝
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Theorem 3.19. Let (M,d) be a metric space, and K Ď M . Then the following three
statements are equivalent:

1. K is compact.

2. K is sequentially compact.

3. K is totally bounded and (K, d) is complete.

Proof. We show that 1 ñ 3 ñ 2 ñ 1 to conclude the theorem.

“1 ñ 3”: By Lemma 3.18, it suffices to show the completeness of (K, d). Let txku8
k=1 be a

Cauchy sequence in K. Suppose that txku8
k=1 does not converge in K. Then

@ y P K, D δy ą 0 Q #
␣

k P N |xk P D(y, δy)
(

ă 8 (3.1.1)

for otherwise there is a subsequence of txku8
k=1 that converges to x which will suggests

the convergence of the Cauchy sequence. The collection
␣

D(y, δy)
(

yPK
then is an open

cover of K; thus possesses a finite subcover
␣

D
(
yi, δyi

)(N
i=1

. In particular, txku8
k=1 Ď

N
Ť

i=1

D
(
yi, δxi

)
or

#
␣

k P N
ˇ

ˇxk P

N
ď

i=1

D(yi, δyi)
(

= 8

which contradicts to (3.1.1).

“3 ñ 2”: The proof of this step is similar to the proof of the Bolzano-Weierstrass Theorem
in R (Theorem 1.100) that we proceed as follows. Let txku8

k=1 be a sequence in T0 ” K.
Since K is totally bound, there exist

␣

y
(1)
1 , ¨ ¨ ¨ y

(1)
N1

(

Ď K such that

T0 ” K Ď

N1
ď

i=1

D(y
(1)
i , 1) .

One of these D(y
(1)
i , 1)’s must contain infinitely many xk’s; that is, D 1 ď ℓ1 ď N1 such

that #
␣

k P N
ˇ

ˇxk P D(y
(1)
ℓ1
, 1)

(

= 8 . Define T1 = K X D(y
(1)
ℓ1
, 1). Then T1 is also

totally bounded by Proposition 3.16, so there exist
␣

y
(2)
1 , ¨ ¨ ¨ , y

(2)
N2

(

Ď T1 such that

T1 Ď

N2
ď

i=1

D
(
y
(2)
i ,

1

2

)
.
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Suppose that #
␣

k P N
ˇ

ˇxk P D
(
y
(2)
ℓ2
,
1

2

)(
= 8 for some 1 ď ℓ2 ď N2. Define T2 =

T1 X D
(
y
(2)
ℓ2
,
1

2

)
. We continue this process, and obtain that for all n P N,

(1) D
␣

y
(n)
1 , ¨ ¨ ¨ , y

(n)
Nn

(

Ď Tn´1 such that

Tn´1 Ď

Nn
ď

i=1

D
(
y
(n)
i ,

1

n

)
.

(2) Tn = Tn´1 X D(y
(n)
ℓn
,
1

n

)
, where 1 ď ℓn ď Nn is chosen so that

#
␣

k P N
ˇ

ˇxk P D
(
y
(n)
ℓn
,
1

n

)(
= 8 . (3.1.2)

Pick an k1 P
␣

k P N
ˇ

ˇxk P D
(
y
(1)
ℓ1
, 1)

(

, and kj P
␣

k P N
ˇ

ˇxk P D
(
y
(j)
ℓj
,
1

j

)(
such that

kj ą kj´1 for all j ě 2. We note such kj always exists because of (3.1.2). Then
␣

xkj
(8

j=1
is a subsequence of txku8

k=1, and xkj P Tj Ď K for all j P N.

Claim:
␣

xkj
(8

j=1
is a Cauchy sequence.

Proof of claim: Let ε ą 0 be given, and N ą 0 be large enough so that 1

N
ă
ε

2
. Since

if j ě N , we must have xkj P D
(
y
(N)
ℓN
,
1

N

)
, we conclude that if n,m ě N , by triangle

inequality

d
(
xkn , xkm

)
ď d

(
xkn , y

(N)
ℓN

)
+ d

(
xkm , y

(N)
ℓN

)
ă

1

N
+

1

N
ă ε.

Since (K, d) is complete, the Cauchy sequence
␣

xkj
(8

j=1
converges to a point in K.

“2 ñ 1”: Let
␣

Uα
(

αPI
be an open cover of K.

Claim: there exists r ą 0 such that for each x P K, D(x, r) Ď Uα for some α P I.

Proof of claim: Suppose the contrary that for all k ą 0, there exists xk P K such
that D

(
xk,

1

k

)
Ę Uα for all α P I. Then txku8

k=1 is a sequence in K; thus by the
assumption of sequential compactness, there exists a subsequence

␣

xkj
(8

j=1
converging

in K. Suppose that xkj Ñ x as j Ñ 8, and x P Uβ for some β P I. Then

(1) there is r ą 0 such that D(x, r) Ď Uβ since Uβ is open.

(2) there exists N ą 0 such that d(xkj , x) ă
r

2
for all j ě N .
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Choose j ě N such that 1

kj
ă
r

2
. Then D

(
xkj ,

1

kj

)
Ď D(x, r) Ď Uβ, a contradiction.

By Lemma 3.18, there exists tx1, ¨ ¨ ¨ , xNu Ď K such that K Ď
N
Ť

i=1

D(xi, r). For each

1 ď i ď N , the claim above implies that there exists αi P I such that D(xi, r) Ď Uαi
.

Then
N
Ť

i=1

D(xi, r) Ď
N
Ť

i=1

Uαi
which suggests that

K Ď

N
ď

i=1

Uαi
. ˝

Remark 3.20.

1. The equivalency between 1 and 2 is sometimes called the Bolzano-Weistrass Theorem.

2. A number r ą 0 satisfying the claim in the step “2 ñ 1” is called a Lebesgue number
for the cover

␣

Uα
(

αPI
. The supremum of all such r is called the Lebesgue number

for the cover
␣

Uα
(

αPI
.

Alternative Proof of Theorem 3.19. In this proof we show that 1 ñ 2 ñ 3 ñ 1 to conclude
the theorem.

“1 ñ 2”: Assume the contrary that K is not sequentially compact. Then there is a se-
quence txku8

k=1 Ď K that does not have a convergent subsequence with a limit in K.
Therefore, for each x P K, there exists δx ą 0 such that

#
␣

k P N
ˇ

ˇxk P D(x, δx)
(

ă 8

for otherwise x is a cluster point of txku8
k=1 so Proposition 2.72 guarantees the existence

of a subsequence of txku8
k=1 converging to x. Since

␣

D(x, δx)
(

xPK
is an open cover of

K, by the compactness of K there exists ty1, ¨ ¨ ¨ , yNu Ď K such that

txku8
k=1 Ď K Ď

N
ď

i=1

D
(
yi, δyi

)
while this is impossible since #

␣

k P N
ˇ

ˇxk P D
(
yi, δyi

)(
ă 8 for all i = 1, ¨ ¨ ¨N .

“2 ñ 3”: By Lemma 3.18, it suffices to show that (K, d) is complete. Let txku8
k=1 Ď K be

a Cauchy sequence. By sequential compactness of K, there is a subsequence
␣

xkj
(8

j=1

converging to a point x P K. By Proposition 2.81, txku8
k=1 also converges to x; thus

every Cauchy sequence in (K, d) converges to a point in K.
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“3 ñ 1”: We first prove the following

Claim: If tVαuαPI is an open cover of a totally bounded set A such that there is no
finite subcover, then for all r ą 0, there exists x P A such that A X D(x, r) does not
admit a finite subcover.

Proof of claim: Let r ą 0 be given. Since A is totally bounded, by Proposition 3.17

there exists ta1, ¨ ¨ ¨ , aNu Ď A such that A Ď
N
Ť

j=1

D(aj, r). If for each j = 1, ¨ ¨ ¨ , N ,

A X D(aj, r) can be covered by finitely many Vα’s, then A itself can be covered by
finitely many Vα’s, a contradiction. Therefore, at least one AXD(aj, r) does not admit
a finite subcover.

Now assume the contrary that there exists an open cover tUαuαPI of K such that
there is no finite subcover. Let εn = 2´n. Since K is totally bounded, by the claim
there exists x1 P K such that K X D(x1, ε1) which does not admit a finite subcover.
By Proposition 3.16, K X D(x1, ε1) is totally bounded, so there must be an x2 P

K X D(x1, ε1) such that K X D(x1, ε1) X D(x2, ε2) cannot be covered by the union
of finitely many Uα. We continuous this process, and obtain a sequence txku8

k=1 such
that

(1) xk+1 P K X
k
Ş

i=1

D(xi, εi) (which implies that d(xk+1, xk) ă εk);

(2) K X
k
Ş

i=1

D(xi, εi) cannot be covered by the union of finitely many Uα.

Then similar to Example 1.105, we find that txku8
k=1 is a Cauchy sequence in (K, d).

By the completeness of K, xk Ñ x as k Ñ 8 for some x P K.

Since tUαuαPI is an open cover of K, x P Uβ for some β P I. Since Uβ is open,
D r ą 0 such that D(x, r) Ď Uβ. For this particular r, there exists N ą 0 such that
d(xk, x) ă

r

2
. Therefore, if k ě N such that εk ă

r

2
,

D(xk, εk) Ď D(x, r) Ď Uβ

which contradicts to (2). ˝

Example 3.21. Let (M,d) be a metric space, and txku8
k=1 be a convergent sequence with

limit x. Let A = tx1, x2, ¨ ¨ ¨ u Y txu. Then A is compact.
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Definition 3.22. Let (M,d) be a metric space. A subset A Ď M is called pre-compact
if sA is compact. Let U Ď M be an open set, a subset A of U is said to be compactly
contained in U , denoted by AĂĂU , if A is pre-compact and sA Ď U .

Example 3.23. Let (M,d) be a complete metric space, and A Ď M be totally bounded.
Then sA is compact. In other words, in a complete metric space, totally bounded sets are
pre-compact.
(Hint: Use the total boundedness equivalence to show compactness.)

Definition 3.24. Let (M,d) be a metric space, and A Ď M . A collection of closed sets
tFαuαPI is said to have the finite intersection property for the set A if the intersection
of any finite number of Fα with A is non-empty; that is, tFαuαPI has the finite intersection
property for A if

A X
č

αPJ

Fα ‰ H for all J Ď I and #J ă 8.

Theorem 3.25. Let (M,d) be a metric space, and K Ď M . The K is compact if and only
if every collection of closed sets with the finite intersection property for K has non-empty
intersection with K; that is,

K X
č

αPI

Fα ‰ H for all tFαuαPI having the finite intersection property for K.

Proof. It can be proved by contradiction, and is left as an exercise. ˝

Example 3.26. Let A = (0, 1) Ď R, and Kj =
[

´ 1,
1

j

]
. Take Kj1 , Kj2 , ¨ ¨ ¨ , Kjn , where

j1 ă j2 ă ¨ ¨ ¨ ă jn. Then
n
Ş

ℓ=1

Kjℓ X A =
[

´ 1,
1

jn

]
X (0, 1) ‰ H. However x P

8
Ş

j=1

Kj ô

´1 ď x ď
1

j
for all j P N. So

8
Ş

j=1

Kj = [´1, 0]; thus
8
Ş

j=1

Kj XA = H. Therefore, (0, 1) is not

compact.

Example 3.27. Let X be the collection of all bounded real sequences; that is,

X =
␣

txku8
k=1 Ď R

ˇ

ˇ for some M ą 0, |xk| ď M for all k
(

.

The number sup
kě1

|xk| ” supt|x1|, |x2|, ¨ ¨ ¨ , |xk|, ¨ ¨ ¨ u ă 8 is denoted by
›

›txku8
k=1

›

›. For exam-

ple, if xk =
(´1)k

k
, then

›

›txku8
k=1

›

› = 1. Then (X, } ¨ }) is a complete normed space (left as
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an exercise). Define

A =
␣

txku8
k=1 P X

ˇ

ˇ |xk| ď
1

k

(

,

B =
␣

txku8
k=1 P X

ˇ

ˇxk Ñ 0 as k Ñ 8
(

,

C =
␣

txku8
k=1 P X

ˇ

ˇ the sequence txku8
k=1 converges

(

,

D =
␣

txku8
k=1 P X

ˇ

ˇ sup
kě1

|xk| = 1
(

(the unit sphere in (X, } ¨ })).

The closedness of A (which implies the completeness of (A, } ¨ })) is left as an exercise. We
show that A is totally bounded.

Let r ą 0 be given. Then DN ą 0 Q
1

N
ă r. Define

E =
!

txku8
k=1

ˇ

ˇ

ˇ
x1 =

i1
N + 1

, x2 =
i2

N + 1
, ¨ ¨ ¨ , xN´1 =

iN´1

N + 1
for some

i1, ¨ ¨ ¨ , iN´1 = ´N ,´N + 1, ¨ ¨ ¨ ,N ´ 1,N , and xk = 0 if k ě N + 1
)

.

Then

1. #E ă 8. In fact, #E = (2N + 1)N´1 ă 8.

2. A Ď
Ť

txku8
k=1PE

D
(
txku8

k=1,
1

N

)
Ď

Ť

txku8
k=1PE

D
(
txku8

k=1, r
)
.

Therefore, A is totally bounded.
On the other hand, B and C are not compact since they are not bounded; thus not

totally bounded by Proposition 3.13. D is bounded but not totally bounded. In fact, D
cannot be covered by the union of finitely many balls with radius 1

2
since each ball with

radius 1

2
contains at most one of the points from the subset

!

␣

x
(k)
j

(8

j=1

)8

k=1
Ď D, where for

each k

tx
(k)
j u8

j=1 = t 0, ¨ ¨ ¨ , 0,
looomooon

(k ´ 1) terms

1, 0, ¨ ¨ ¨ u ;

that is, x(k)j = δkj, the kronecker delta.

3.1.1 The Heine-Borel theorem

Theorem 3.28. In the Euclidean space (Rn, } ¨ }2), a subset K is compact if and only if it
is closed and bounded.



Copy
rig

ht
Prot

ect
ed

§3.1 Compactness 95

Proof. By Proposition 3.13 and Theorem 3.19, it is clear that K is closed and bounded if
K is compact (in any metric space). It remains to show the direction “ð”. Nevertheless,
by Theorem 2.83 closed subsets of a complete metric space must be complete, so it suffices
to show that a bounded set in (Rn, } ¨ }2) is totally bounded.

Let r ą 0 be given. By the boundedness of K, for some M ą 0 we have }x}2 ď M for
all x P K; thus K Ď [´M,M ]n. Choose N ą 0 so that

?
nM

N
ă r, and define

E =
!(Mi1

N
, ¨ ¨ ¨ ,

Min
N

) ˇ
ˇ

ˇ
i1, i2, ¨ ¨ ¨ , in P

␣

´N,´N + 1, ¨ ¨ ¨ , N ´ 1, N
(

)

.

Then #E = (2N + 1)n ă 8, and

K Ď [´M,M ]n Ď
ď

xPE

D(x, r) . ˝

Alternative Proof of “ð”. Let txku8
k=1 Ď K be a sequence. Since K Ď Rn, we can write

xk = (x
(1)
k , x

(2)
k , ¨ ¨ ¨ , x

(n)
k ) P Rn. Since K is bounded, then all the sequence tx

(j)
k u8

k=1,
j = 1, 2, ¨ ¨ ¨ , n, are bounded; that is, ´Mj ď x

(j)
k ď Mj for all k P N. Applying the

Bolzano-Weierstrass property (Theorem 1.100) to the sequence tx
(1)
k u8

k=1, we obtain a se-
quence

␣

x
(1)
kj

(8

j=1
with x

(1)
kj

Ñ y(1) as j Ñ 8. Now
␣

x
(2)
kj

(8

j=1
has a subsequence

␣

x
(2)
kjℓ

(8

ℓ=1

converges, say x(2)kjℓ Ñ y(2) as ℓ Ñ 8.
Continuing in this way, we obtain a subsequence of txku8

k=1 that converges to y =

(y(1), y(2), ¨ ¨ ¨ , y(n)). Since K is close, y P K; thus K is sequentially compact which is
equivalent to the compactness of K. ˝

Corollary 3.29. A bounded set A in the Euclidean space (Rn, } ¨ }2) is pre-compact. In
particular, if txku8

k=1 is a bounded sequence in Rn, there exists a convergent subsequence
␣

xkj
(8

j=1
(the sentence in blue color is again called the Bolzano-Weierstrass theorem).

Example 3.30. Let A = t0u Y
␣

1,
1

2
, ¨ ¨ ¨ ,

1

n
, ¨ ¨ ¨

(

. Then A is compact in (R, | ¨ |).

Example 3.31. Let A = [0, 1] Y (2, 3] Ď (R, | ¨ |). Since A is not closed, A is not compact.

3.1.2 The nested set property

Theorem 3.32. Let tKnu8
n=1 be a sequence of non-empty compact sets in a metric space

(M,d) such that Kn Ě Kn+1 for all n P N. Then there is at least one point in
8
Ş

n=1

Kn; that
is,

8
č

n=1

Kn ‰ H .
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Proof. Assume the contrary that
8
Ş

n=1

Kn = H. Then
8
Ť

n=1

KA
n =

( 8
Ş

n=1

Kn

)A
= M . Since KA

n

is open,
␣

KA
n

(8

n=1
is an open cover of K1; thus by compactness of K1, there exists J Ď N,

#J ă 8 such that
K1 Ď

ď

nPJ

KA
n =

(č
nPJ

Kn

)A
.

Therefore, K1 X
Ş

nPJ

Kn = H which implies that Kmax J = H, a contradiction. ˝

Alternative Proof. By assumption, tKnu8
n=2 has the finite intersection property forK1. Since

K1 is compact, by Theorem 3.25,

K1 X

8
č

n=2

Kn ‰ H . ˝

Corollary 3.33. Let tUku8
k=1 be a collection of open sets in a metric space (M,d) such that

Uk Ď Uk+1 for all k P N and U A
k is compact. Then

8
Ť

k=1

Uk ‰ M .

Proof. This is proved by letting Kn = U A
n, and applying Theorem 3.32. ˝

Remark 3.34. If the compactness is removed from the condition, then the intersection
might be empty. Suppose that the metric space under consideration is (R, | ¨ |).

1. If the closedness condition is removed, then Uk =
(
0,

1

k

)
has empty intersection.

2. If the boundedness condition is removed, then Fk = [k,8) has empty intersection.

3.2 Connectedness（連通性）
Definition 3.35. Let (M,d) be a metric space, and A Ď M . Two non-empty open sets U
and V are said to separate A if

1. A X U X V = H ; 2. A X U ‰ H ; 3. A X V ‰ H ; 4. A Ď U Y V .

We say that A is disconnected or separated if such separation exists, and A is connected
if no such separation exists.

Proposition 3.36. Let (M,d) be a metric space. A subset A Ď M is disconnected if and
only if A = A1 Y A2 with A1 X sA2 = sA1 X A2 = H for some non-empty A1 and A2.
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Proof. “ñ” Suppose that there exist U , V non-empty open sets such that 1-4 in Definition
3.35 hold. Let A1 = AX U and A2 = AX V . By 1, A1 Ď VA; thus by the definition of
the closure of sets, sA1 Ď VA. This implies that sA1 XA2 = H. Similarly, sA2 XA1 = H.

“ð” Let U = sAA
2 and V = sAA

1 be two open sets. Then V X A1 = U X A2 = H; thus

A X U X V = (A1 Y A2) X U X V = (A1 X U) X V = U X (A1 X V) = H .

Moreover, 2-4 in Definition 3.35 also hold since A1 Ď U and A2 Ď V . ˝

Corollary 3.37. Let (M,d) be a metric space. Suppose that a subset A Ď M is connected,
and A = A1 Y A2, where A1 X sA2 = sA1 X A2 = H. Then A1 or A2 is empty.

Theorem 3.38. A subset A of the Euclidean space (R, | ¨ |) is connected if and only if it
has the property that if x, y P A and x ă z ă y, then z P A.

Proof. “ñ” Suppose that there exist x, y P A, x ă z ă y but z R A. Then A = A1 Y A2,
where

A1 = A X (´8, z) and A2 = A X (z,8) .

Since x P A1 and y P A2, A1 and A2 are non-empty. Moreover, sA1XA2 = A1X sA2 = H;
thus by Proposition 3.36, A is disconnected, a contradiction.

“ð” Suppose that A is not connected. Then there exist non-empty sets A1 and A2 such
that A = A1 YA2 with sA1 XA2 = A1 X sA2 = H. Pick x P A1 and y P A2. W.L.O.G.,
we may assume that x ă y. Define z = sup(A1 X [x, y]) .

Claim: z P sA1.

Proof of claim: By definition, for any n ą 0 there exists xn P A1 X [x, y] such that
z ´

1

n
ă xn ď z. Therefore, xn Ñ z as n Ñ 8 which implies that z P sA1.

Since z P sA1, z R A2. In particular, x ď z ă y.

(a) If z R A1, then x ă z ă y and z R A, a contradiction.

(b) If z P A1, then z R sA2; thus D r ą 0 such that (z ´ r, z + r) Ď sAA
2. Then for

all z1 P (z, z + r), z ă z1 ă y and z1 R A2. Then x ă z1 ă y and z1 R A, a
contradiction. ˝
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3.3 Subspace Topology
Let (M,d) be a metric space, and N Ď M be a subset. Then (N, d) is a metric space, and
the topology of (N, d) is called the subspace topology of (N, d).

Remark 3.39. The topology of a metric is the collection of all open sets of that metric
space.

Proposition 3.40. Let (M,d) be a metric space, and N Ď M . A subset V Ď N is open in
(N, d) if and only if V = U X N for some open set U in (M,d).

Proof. “ñ” Let V Ď N be open in (N, d). Then @x P V , D rx ą 0 such that

DN(x, rx) ”
␣

y P N
ˇ

ˇ d(x, y) ă rx
(

Ď V .

In particular, V =
Ť

xPV
DN(x, rx). Note that DN(x, r) = D(x, r) X N ; thus if U =

Ť

xPV
D(x, rx), then U is open in (M,d), and

V =
ď

xPV
D(x, rx) X N = U X N .

“ð” Suppose that V = U XN for some open set U in (M,d). Let x P V . Then x P U ; thus
D r ą 0 such that D(x, r) Ď U . Therefore,

DN(x, r) ”
␣

y P N
ˇ

ˇ d(x, y) ă r
(

= D(x, r) X N Ď U X N = V ;

hence V is open in (N, d). ˝

Corollary 3.41. Let (M,d) be a metric space, and N Ď M . Let (M,d) be a metric space,
and N Ď M . A subset E Ď N is closed in (N, d) if and only if E = F XN for some closed
set F in (M,d).

Definition 3.42. Let (M,d) be a metric space, and N Ď M . A subset A is said to be
open
closed

compact
relative to N if A X N is

open
closed

compact
in the metric space (N, d).

Theorem 3.43. Let (M,d) be a metric space, and K Ď N Ď M . Then K is compact in
(M,d) if and only if K is compact in (N, d).
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Proof. “ñ” Let tVαuαPI be an open cover of K in (N, d). By Proposition 3.40, there are
open sets Uα in (M,d) such that Vα = Uα X N for all α P I. Then tUαuαPI is also an
open cover of K; thus possesses a finite subcover; that is, D J Ď I, #J ă 8 such that
K Ď

Ť

αPJ

Uα which, together with the fact that K Ď N , implies that

K Ď

(
ď

αPJ

Uα
)

X N =
ď

αPJ

(Uα X N) =
ď

αPJ

Vα .

“ð” Let tUαuαPI be an open cover of K in (M,d). Letting Vα = Uα X N , by Proposition
3.40 we find that tVαuαPI is an open cover of K in (N, d). Since K is compact in
(N, d), there exists J Ď I, #J ă 8 such that K Ď

Ť

αPJ

Vα; thus

K Ď
ď

αPJ

Uα . ˝

Remark 3.44. Another way to look at Theorem 3.43 is using the sequential compactness
equivalence. Let txku8

k=1 Ď K be a sequence. By sequential compactness of K in either
(M,d) or (N, d), there exists

␣

xkj
(8

j=1
and x P K such that xkj Ñ x as j Ñ 8. As long as

the metric d used in different space are identical, the concept of convergence of a sequence
are the same; thus compactness in (M,d) or (N, d) are the same.

Example 3.45. Let (M,d) be (R, | ¨ |), and N = Q. Consider the set F = [0, 1] X Q. By
Corollary 3.41 F is closed in (Q, | ¨ |). However, F is not compact in (Q, | ¨ |) since F is not
complete. We can also apply Theorem 3.43 to see this: if F Ď Q is compact in (Q, | ¨ |),
then F is compact in (R, | ¨ |) which is clearly not the case since F is not closed in (R, | ¨ |).

Remark 3.46. Let (M,d) be a metric space. By Proposition 3.36 a subset A Ď M is
disconnected if and only if there exist two subsets U1, U2 of A, open relative to A, such that
A = U1 Y U2 and U1 X U2 = H (one choice of (U1,U2) is U1 = Az sA1 and U2 = Az sA2, where
A1 and A2 are given by Proposition 3.36). Note that U1 and U2 are also closed relative to
A.

Given the observation above, if A is a connected set and E is a subset of A such that E
is closed and open relative to A, then E = H or E = A.

3.4 Exercises
§3.1 Compactness
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Problem 3.1. Let (M,d) be a metric space.

1. Show that the union of a finite number of compact subsets of M is compact.

2. Show that the intersection of an arbitrary collection of compact subsets of M is com-
pact.

Problem 3.2. A metric space (M,d) is said to be separable if there is a countable subset
A which is dense in M . Show that every compact set is separable.

Problem 3.3. Given taku8
k=1 Ď R a bounded sequence. Define

A =
␣

x P R
ˇ

ˇ there exists a subsequence
␣

akj
(8

j=1
such that lim

jÑ8
akj = x

(

.

Show that A is a non-empty compact set in R. Furthermore , lim sup
kÑ8

ak = supA and
lim inf
kÑ8

ak = infA.

Problem 3.4. Let (M,d) be a compact metric space; that is, M itself is a compact set. If
tFku8

k=1 is a sequence of closed sets such that int(Fk) = H, then Mz
8
Ť

k=1

Fk ‰ H.

Problem 3.5. Let d : R2 ˆ R2 Ñ R be defined by

d(x, y) =

#

|x1 ´ y1| if x2 = y2 ,

|x1 ´ y1| + |x2 ´ y2| + 1 if x2 ‰ y2 .
where x = (x1, x2) and y = (y1, y2).

1. Show that d is a metric on R2. In other words, (R2, d) is a metric space.

2. Find D(x, r) with r ă 1, r = 1 and r ą 1.

3. Show that the set tcu ˆ [a, b] Ď (R2, d) is closed and bounded.

4. Examine whether the set tcu ˆ [a, b] Ď (R2, d) is compact or not.

Problem 3.6. Let (M,d) be a complete metric space, and A Ď M be totally bounded.
Show that cl(A) is compact.

Problem 3.7. Let txku8
k=1 be a convergent sequence in a metric space, and xk Ñ x as

k Ñ 8. Show that the set A ” tx1, x2, ¨ ¨ ¨ , u Y txu is compact by

1. showing that A is sequentially compact; and
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2. showing that every open cover of A has a finite subcover; and

3. showing that A is totally bounded and complete.

Problem 3.8. Let Y be the collection of all sequences tyku8
k=1 Ď R such that

8
ř

k=1

|yk|2 ă 8.
In other words,

Y =
␣

tyku8
k=1

ˇ

ˇ yk P R for all k P N,
8
ÿ

k=1

|yk|2 ă 8
(

.

Define } ¨ } : Y Ñ R by
›

›tyku8
k=1

›

› =
( 8
ÿ

k=1

|yk|2
) 1

2
.

1. Show that } ¨ } is a norm on Y . The normed space (Y, } ¨ }) usually is denoted by ℓ2.

2. Show that } ¨ } is induced by an inner product.

3. Show that (Y, } ¨ }) is complete.

4. Let B =
␣

y P Y
ˇ

ˇ }y} ď 1
(

. Is E compact or not?

Problem 3.9. Let A,B be two non-empty subsets in Rn. Define

d(A,B) = inf
␣

}x ´ y}2
ˇ

ˇx P A, y P B
(

to be the distance between A and B. When A = txu is a point, we write d(A,B) as d(x,B).

(1) Prove that d(A,B) = inf
␣

d(x,B)
ˇ

ˇx P A
(

.

(2) Show that
ˇ

ˇd(x1, B) ´ d(x2, B)
ˇ

ˇ ď }x1 ´ x2}2 for all x1, x2 P Rn.

(3) Define Bε =
␣

x P Rn
ˇ

ˇ d(x,B) ă ε
(

be the collection of all points whose distance from
B is less than ε. Show that Bε is open and

Ş

εą0

Bε = cl(B).

(4) If A is compact, show that there exists x P A such that d(A,B) = d(x,B).

(5) If A is closed and B is compact, show that there exists x P A and y P B such that
d(A,B) = d(x, y).

(6) If A and B are both closed, does the conclusion of (5) hold?
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Problem 3.10. Let K(n) denote the collection of all non-empty compact sets in Rn. Define
the Hausdorff distance of K1, K2 P K(n) by

dH(K1, K2) = max
!

sup
xPK2

d(x,K1), sup
xPK1

d(x,K2)
)

,

in which d(x,K) is the distance between x andK given in Problem 3.9. Show that (K(n), dH)

is a metric space.

Problem 3.11. Let M =
␣

(x, y) P R2 |x2 + y2 ď 1
(

with the standard metric } ¨ }2. Show
that A Ď M is compact if and only if A is closed.

Problem 3.12. 1. Let txku8
k=1 Ď R be a sequence in (R, | ¨ |) that converges to x and let

Ak = txk, xk+1, ¨ ¨ ¨ u. Show that txu =
8
Ş

k=1

ĎAk. Is this true in any metric space?

2. Suppose that tKju
8
j=1 is a sequence of comapct non-empty sets satisfying the nested

set property; that is, Kj Ě Kj+1, and diameter(Kj) Ñ 0 as j Ñ 8, where

diameter(Kj) = sup
␣

d(x, y)
ˇ

ˇx, y P Kj

(

.

Show that there is exactly one point in
8
Ş

j=1

Kj.

§3.2 Connectedness

Problem 3.13. Let (M,d) be a metric space, and A Ď M . Show that A is disconnected
(not connected) if and only if there exist non-empty closed set F1 and F2 such that

1. A X F1 X F2 = H ; 2. A X F1 ‰ H ; 3. A X F2 ‰ H ; 4. A Ď F1 Y F2 .

Problem 3.14. Prove that if A is connected in a metric space (M,d) and A Ď B Ď sA,
then B is connected.

Problem 3.15. Let (M,d) be a metric space, and A Ď M be a subset. Suppose that A is
connected and contain more than one point. Show that A Ď A1.

Problem 3.16. Show that the Cantor set C defined in Problem 2.11 is totally disconnected;
that is, if x, y P C, and x ‰ y, then x P U and y P V for some open sets U , V separate C.
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Problem 3.17. Let Fk be a nest of connected compact sets (that is, Fk+1 Ď Fk and Fk

is connected for all k P N). Show that
8
Ş

k=1

Fk is connected. Give an example to show that

compactness is an essential condition and we cannot just assume that Fk is a nest of closed
connected sets.

Problem 3.18. Let tAku8
k=1 be a family of connected subsets of M , and suppose that A

is a connected subset of M such that Ak X A ‰ H for all k P N. Show that the union(
Ť

kPN
Ak

)
Y A is also connected.

Problem 3.19. Let A,B Ď M and A is connected. Suppose that AXB ‰ H and AXBA ‰

H. Show that A X BB ‰ H.

Problem 3.20. Given (M,d) a metric space and A Ď M a non-empty subset. A maximal
connected subset of A is called a connected component of A.

1. Let a P A. Show that there is a unique connected components of A containing a.

2. Show that any two distinct connected components of A are disjoint. Therefore, A is
the disjoint union of its connected components.

3. Show that every connected component of A is a closed subset of A.

4. If A is open, prove that every connected component of A is also open. Therefore,
when M = Rn, show that A has at most countable infinite connected components.

5. Find the connected components of the set of rational numbers or the set of irrational
numbers in R.

Problem 3.21 (True or False). Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.

1. There exists a non-zero dimensional normed vector space in which some compact non-
zero dimensional linear subspace exists.

2. There exists a set A Ď (0, 1] which is compact in (0, 1] (in the sense of subspace
topology), but A is not compact in R.

3. Let A Ď Rn be a non-empty set. Then a subset B of A is compact in A if and only if
B is closed and bounded in A.


