Chapter 2

Point-Set Topology of Metric spaces

2.1 Open Sets and the Interior of Sets
Definition 2.1. Let (M, d) be a metric space. For each 2 '€ M and € > 0, the set
D(z,e) ={ye M|d(z,y) <e}

is called the e-disk (c-ball) about x or the disk/ball centered at = with radius .

Figure 2.1: The e-ball about x in a metric space

Example 2.2. (R? | ],) is a normed vector space. Consider z =0,e =landp=1, p =2

and p = oo respectively.
Lop=1: [zl = [z1] + |a2], d(z,y) = |21 — y1] + |22 — 12
2. p=2 |alz = /2% + a3, d(z,y) = /(21— 91)? + (22 — y2)*

3. p = o0 HxHoo = rnax{|a;1|, ‘33'2‘}, d(l’,y) = max{‘xl - y1’7 |33'2 - 3/2’}

95



26 CuAPTER 2. Point-Set Topology of Metric spaces

Figure 2.2: The 1-ball about 0 in R? with different p

Example 2.3. Let (M, d) be a metric space with discrete metric; that is,
1 ifx#uy,
d(z,y) = .
0 ifz=y.
{z} if0<e<1,
M ife>1.
Definition 2.4. Let (M, d) be a metric space. A set U < M is said to be open (in M) if

Then D(x,e) = {

Veeld, de >0 D(z,e) cU.

Example 2.5. The set A = {(x,y) € R2‘O << 1} is open: given (z,y) € A, take
e = min{l — x, z}, then D(z,¢) < A.

Example 2.6. A = {(x,y) € ]Rz‘O <z < 1} is not open: let w = (1,0), then Ve > 0 3
D(u,¢) & A (since (1 + g 0) € D(u,e) but (1+ g 0) ¢ A).

Example 2.7. M = (a,b) x [c,d] v {p}, p ¢ [a,b] X [c,d], and for two points (z1,;) and
(z2,y2) in M, we define the metric as d((z1, 1), (z2,¥2)) = +/(z1 — 2)%> + (y1 — ¥2)?. Then
D(p,e) = {p} if e « 1. Let q = (a+b bia,d — c}. Then D(q,¢) is the

,d), £ < min{

2
shaded region in red color shown in the figure below.
D(q,e) _
d| q P
TN S 1
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Proposition 2.8. Let (M,d) be a metric space. Then every e-disk is open.

Proof. Let D(x,e) be an e-disk. We would like to show that Vy € D(z,e), 36 > 0 3
D(y,0) < D(x,¢). Let 6 =e —d(x,y) > 0. Then if z € D(y, ), we have

d(z,z) < d(z,y) +d(z,y) <6 +d(z,y) =¢;
thus z € D(x,¢). o
Proposition 2.9. Let (M,d) be a metric space.
1. The intersection of finitely many open sets is open.
2. The union of arbitrary family of open sets is open.

3. The empty set & and the universal set M are open.

Proof. 1. Let Uy, Us,--- , Uy be open sets in M, and U = (k]UZ If y € U, then y € U; for
all 1 <i < k. Since Uj; is open, 36; > 0> D(y, ;)< Uliz.lLet(S:min{(Sl,--- , Ok}
Claim: D(y,0) < U.

Proof of claim: Let z € D(y,6). Thend(y,z) <d <9 ifi=1,2,--- k.
:zeD(y,éi)Vi:1,2,~--,k::>zeUZ-ifi:1,2,-~~,k@zeﬁUiEU.
2. Let ¥ = {Ua}Ua open-in M, ae]} be a family of open sets, and U = (J U,. If

ael

y € U, then y € Ug for some € I. Since Up is open, 30 > 0 3 D(y,d) < Ugs; thus
D(y,0) < YU, =U.

a€el

3. ¥ is trivially an open set. Moreover, if y € M, then D(y,1) € M (by definition). o

Corollary 2.10. Let (M,dy) be a metric space with discrete metric. Then every subset of

M is open.
1 1
Proof. Yy e M,{y} = D(y, 5) isanopensetin M. f A< M, A# ¢, then A= D(y, 5)
yeA
which suggests that A is open since it is an arbitrary union of open sets. O

Remark 2.11. Infinite intersection of open sets need not be open:

Q0
1. Take A, = ( — l, l), then (] A, = {0} which is not open.
nn n=1
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1 1 *
2. Let Uy = (-2 — E’Q + E) € R. Then A= (Ui 2 [-2, 2]. Moreover, if = ¢ [—2,2],
k=1

then 4k € N 3 x ¢ U, (Ifx>2 $_2 Ifx < -2, - o2
a0
N Uy =[-2,2].
k=1

, k: 5 , k ) Therefore,

Example 2.12. Let A < R" be open, and B < R". Then A+ B={a+0b|lae A,be B} is

open.

Proof. Let ye A+ B. Then y = a + b for some a € A,b € B. Since A is open, 36 > 0 3
D(a,6) < A.

Claim: D(y,0) < A+ B.

Proof of claim: Let z € D(y,6). Then |z —ylla < d. Since z = b+ (2 — b), if we can show
that 2 —be A, then z € A+ B. Nevertheless, we have

|(z=0) —als =z —a=bls = [z 5yl <9
which implies that z —be D(a,d) < A. o

Definition 2.13. Let (M,d) be a metric space, and A € M be a subset of M. A point
x € A is called an interior point of Aif 36> 03 D(x,c) < A. The interior of A is the
collection of all interior points of A, and is denoted by int(A) or A.

Example 2.14. Let M = R with d(z,y) = |z—y|,and A = [0,1), B = {1,

{0} = {%}ZO:I U {0}. Then'A = (0.1) and B = (¥ since

w\»—-
S|~
—~—
C

1
X

1. If z € (0,1), then 3> 03 D(x,¢) < (0,1) < A.
2. 0 is not an interior point since (—e,¢) N [0,1)" # ¢ Ve > 0.
Remark 2.15. A might be empty.

Theorem 2.16. Let (M, d) be a metric space, and A < M be a subset of M. The interior of
A is the largest open set contained in A. In other words, if U < A is open, then U < int(A).

Proof. Let z€ U. SinceUisopen,35>09D(z,5)§U§A:>z€fi:>U§/i.

To show that A is open, we observe that A= U D(x,e,), where €, > 0 is chosen so that
zeA
D(x,e,) < A if x € A, for the following reason:
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1. “<”: trivial.
2. “D”: Let y e U D(z,e,) =3z € A sye D(z,e,). Then if § = ¢, — d(z,y),
- D(y,d) € D(x,e,) S A=ye A o
Theorem 2.17. Let (M,d) be a metric space. A set A < M is open if and only if A = A.

Example 2.18. Let (M, d) be a metric space, and A and B be two subsets of M.

1. int(A) u int(B) < int(A U B).

Proof. Let x € int(A) u int(B). W.L.O.G. Assume z € int(A), then 37 > 0 such that
D(z,r) < A. Therefore, x € D(z,7) € AU B, so x € int(A U B). o

2. Strict containment might happen because of the following example:
Take A =[0,1], B = [1,2], then int(A) = (0,1), int(B) = (1, 2).
Sine Au B =|0,2], int(A u B) = (0, 2); however, int(A) u int(B) = (0,2)\{1}.
Hence, int(A) v int(B) # int(A U B).

Another example is stated as follows: Let A= Q n[0,1] and B = Q' n [0,1]. Then

(0,1) =1int([0, 1]) = int(A U B) 2 int(A) U int(B) = &.

Example 2.19. In a metric space (M, d), it is not always true that int({y € M |d(z,y) <
R}) = {y eM ‘ d(z,y) < R}. To see this, we consider the discrete metric

1 ifx#uy,
d0<x’y):{0 ifa::g.

Let R=1, and fix xo € M # ¢&. Then
{ye M|do(y,x0) <1} = M = int({y € M | do(y, o) < 1}) = int(M) = M .

Now {y € M |do(y,z9) < 1} = {xo}. As long as M has more than one point, we have
int ({y € M| do(y, x0) < 1}) = M # {wo} = D(x,1).



60 CuAPTER 2. Point-Set Topology of Metric spaces

2.2 Closed Sets, the Closure of Sets, and the Boundary
of Sets

Definition 2.20. Let (M,d) be a metric space. A set F' < M is said to be closed if
F' = M\F is open. In other words,

Fisclosed = Vre F' 3¢ > 053 D(x,e) € F°.

Example 2.21. The set [0,1] < R is closed, and the set (0,1] < R is not open and not

closed.

Example 2.22. Let S = {(z,y) | * +y? < 1}. Take 2z € R?\S, then D(z, 2] — 1) = R*\S.

As a consequence, R?\S is open; thus S is closed.

Example 2.23. Let S = {(z,y)|0 <z < 1,0 < y < 1}. 'Since R*\S is not open, S is not

closed.

Proposition 2.24. Any point in a metric spaceis closed; that is, if (M,d) is a metric space
and A = {z} for some x € M, then A is closed.

Proof. We show that M\{x} is open. Let y € M\{z}. Pick r = %d(m, y) > 0.
Claim: D(y,r) < M\{z}.

Proof of claim: Let z € D(y,r). Then d(z,y) <r = %d(w, y). Then
d(z,z) = d(x,y) —d(y,z) = d(z,y) — %d(az,y) = %d(a:,y) >0=z#u. o
Proposition 2.25. Let (M,d) be a metric space.
1. The union of finitely many closed sets is closed.
2. The intersection of arbitrary family of closed sets is closed.

3. The universal set M and the empty set 5 are closed.
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k
Proof. 1. Let Fy,--- , F}, be closed sets, and F' = (] Fj. Then by De Morgan’s law,
j=1

k

:M\F:M\UFj:ﬁM\F :ﬂ

J=1

kol

k
Since F is closed, ch is open. By Proposition 2.9, (1 ch is open.
j=1

2. Let # = {Fa ‘ F, closed in M, o € [} be a family of closed sets, and F = () F,.

ael

Then by De Morgan’s law,

= M\(\Fa = JM\F.) = | JFS

ael ael ael

which suggests that F* is the union of open sets {Fg} By Proposition 2.9 we

ael’
conclude that F* is open or equivalently, F is closed.

3. M= &, &' = M are both open. o

Corollary 2.26. Any set consists of finitely many points of a metric space is closed.

o0
Example 2.27. Let F, = [— 2 —|— 2 — %] c R. Then B = |J F}, < (—2,2). Moreover, if

k! k=1
€ (—2,2), then 3k > 0, >z € F} (If:z:éO, % < $—2i_2. If x > 0, % < 2_733) Therefore,

0
J Fr = (—2,2). This example suggests that an arbitrary union of closed sets might not be

closed.

Example 2.28. Let-—(M,d) be a metric space, and A = {y1,¥2,...,yx} S M. Define
k
={r e M|d(z,y;) <1 for some y; € A} = |J{xr e M |d(x,y;) <1}. Then B is closed.
i=1

Proof. 1t suffices to show B; = {x € M |d(x,y;) < 1} is closed for i = 1,2,... k since
B = |J F;.. Take z € M\B; (if M\B; = &, then B; = M and B; is closed). Let N = {u €

i=1
M |d(u,z) < d(z,y;) — 1}.

Claim: N < M\B;; that is, M\B; is open.

Proof of claim: Take u e N and compute d(u,y;) = d(yi, 2) — d(u, z) > d(z,y;) — (d(z,y;) —
1) = 1. Hence u ¢ B; = ue M\B;. So N € M\B,. o
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Example 2.29. Let (M,d) be a metric space, A € M be closed, and B < M be finite
(#(B) < o). Then A + B is closed.

Proof. Left as an exercise. =
Definition 2.30. Let (M, d) be a metric space, and A < M.

1. A point z € M is called an accumulation point of A if Ve > 0, D(x,¢) contains
points in A other than z; that is, Ve > 0, D(z,e) n (A\{z}) = (D(x,e)\{z}) n A # .

2. A point z € M is called a limit point of A if Ve > 0, D(x,¢) contains points in A;
that is, Ve > 0, D(z,e) n A # &.

3. A point x € A is called an isolated point (7%= %) if 3¢ > 03 D(x,e) n A = {x}.

4. The derived set of A is the collection of all accumulation points of A, and is denoted
by A’

5. The collection of all limit points of A is denoted by A.
Remark 2.31. 1. An accumulation point. of A needs not to be in A.

2. If A = {z} (that is, a single point), then A has no accumulation point; that is, A’ = .

3. Accumulation points are called cluster points in some books.

4. If x € A, then x is a limit point of A. In other words, A’ < A.

5. If z € A, then z is a limit point of A. In other words, A < A.
Example 2.32. Let A= (0,1) € R, then A’ =[0,1] and A = [0, 1].
Example 2.33. Let A= (0,1) u {2} < R. Then

1. for any z € [0,1],x € A’;

2. 2¢ A’ but 2 is a limit point of A;

3. if x¢[0,1] U {2} then x ¢ A’

Therefore, A’ = [0,1]. Note that sup A = 2; thus sup A might not belong to A’.
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Example 2.34. Let A = {x,}?°; < R consists of a bounded sequence of distinct points.
Then A’ # &.

Proof. By Bolzano-Weierstrass property (Theorem 1.100), A has a convergent subsequence
{xn]. };D:l converging to x € R.
Claim: z € A'.

Proof of claim: Ve > 0,3 K e N> ‘wnj — x‘ < ¢ for j = K. Moreover, x,, € A. =

Example 2.35. In a metric space (M, d), let B(z,r) = {y e M ‘ d(z,y) < 7“}. Is it true
that B(x,r) € D(z,r)’; that is, every point of B(x,r) is an accumulation point of D(z,r)?

Answer: No, take a metric space with discrete metric

1 ifx#uy,
do(ﬂU’y):{O ifx:g.

and M has more than one point. We have D(x,1) = {x}, then D(z,1) = . Also,
B(z,1) =M ¢ & = D(x,1)".

Proposition 2.36. If A < B, then A’ < B'.

Proof. Let x € A’. Then Ve > 0,3y e A,y # x>y € D(x,e) n A. Since A < B, y € B.
Therefore, Ve > 0,3ye B,y #x 2y D(x,e) n Bz e B. o

Example 2.37. Let A be a subset of R™." An interior point of A is an accumulation point
of A(Ac A'if Ac R").

Proof. If z € A, then 37> 0,5 D(x,r) € A. Let ¢ > 0 be given.
1. e =r,D(z,2) n (A\{z}) 2 D(z,r) n (A\{z}) # .
2. ¢ <r,D(x,e) € D(z,r) € A= D(z,¢) n (A\{z}) # &.
Then for all € > 0, D(x,¢) n (A\{z}) # & =z e A’ o

Theorem 2.38. Let (M,d) be a metric space and A < M, then A is closed if and only if
A=A (- BHEEEFELFI BRI EL e 50 T #0F 0 limit points)
Proof. Ais closed & Vye A 3r > 03 D(y,r) € A (or D(y,7) n A = &).
=Vye Al y¢ A (orye AY).
< if ye A, then y € A. =
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Theorem 2.39. Let (M, d) be a metric space and A < M. Then A= AvA' (= (A\A)UA).

Proof. By definition, 1€ A < Ve > 0,D(z,e) n A # .
= If x € A\A, then Ve > 0, D(z,¢) n (A\{z}) # &.
= If x € A\A, then z € A".

Therefore, AA\A < A’ = A< AU A’. On the other hand, we also have (1) A < A and (2)
A" A; thus Au A’ € A. O

Corollary 2.40. Let (M,d) be a metric space, and A < B < M. ~Then A < B. In
particular, if A< B and B is closed, then A < B.

Proposition 2.41. Let (M,d) be a metric space, and A < M. Then A\A’' is the collection
of all isolated points of A.

Proof. Let © € A\A’. Then = € A, but 3¢ > 0 3 D(z,8) n (A\{z}) = . Therefore,
D(z,e) n A = {z} which implies that z is an isolated point. o

Theorem 2.42. Let (M,d) be a metric space, and A < M. Then A’ is closed; that is,
Vy¢e A ,3r >0 D(y,r)n A = .

Proof. Let y ¢ A’. Then 3¢ > 03 D(y,e) 0 (A\{y}) = (D(y,e)\{y}) n A= . Then

Ac(D(y,e)\{y})".

Since D(y,e)\{y} = D(y,e) n {y}* is open, (D(y,s)\{y})C is closed; thus Corollary 2.40
implies that

Ac (D(y,a)\{y})C or equivalently, A n D(y,e)\{y} = &.

Since A = A U A’ the equality above suggests that

A" D(y,e)\{y} = &;
thus the fact that y ¢ A" implies that D(y,e) n A’ = &. o

Definition 2.43. Let (M,d) be a metric space and A < M. The closure of A is the
intersection of closed sets containing A, and is denoted by cl(A). In other word, cl(A) =
(1 F (thus cl(A) is the smallest closed set containing A).

F' closed.
ACF
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Proposition 2.44. Let (M,d) be a metric space, and A < M.
1. Accl(A) (re A= if F 2 A is closed, then z € F).
2. A is closed if and only if A = cl(A).
Proposition 2.45. Let (M, d) be a metric space, and A < M. Then cl(A) = A(= Au A").

Proof. Since A < cl(A) and cl(A) is closed, Corollary 2.40 implies that A < cl(A).

On the other hand, if 1 ¢ AU A’ = A, then 3r > 05 D(z,7) n A = J or in other words,
A < D(x,r)". By the definition of the closure of sets, cl(4) = D(z,r)% or equivalently,
D(x,7) < cl(A)"; thus z ¢ cl(A). Therefore, cl(A) < A. o

Example 2.46. Let A =[0.1) u {2} < R. Find cl(A).
Answer: A" =[0.1], cl(A) = Au A" =[0,1] U {2}.

Example 2.47. cl(A n B) = cl(A) ncl(B).
Answer: No. Take A = [0, 1], B = (1,2]. Since A is closed, then cl(A) = A. Since cl(B) =
[1,2], AnB=. Socl(AnB) = & # {1} = cl(A) ncl(B); thus cl(An B) & cl(A) ncl(B).

Example 2.48. In a metric space (M, d),
z € cl(A) if and only if d(x, A) = inf {d(z,y) |y € A} = 0.

Proof. “<"” Suppose d(z,A) =0. If x € A, thenz € AVA’ =cl(A). Ifz ¢ A, sinced(z, A) =
0,Ve>03ye Asd(x,y) <d(z,A)+e=c. Inother words, (D(z,e)\{z}) n A # .
Therefore, x € A’; thus € A u A" = cl(A).

“=" Suppose x € cl(A). Since A = cl(A), Ve >0, D(z,¢) n A # &. In other words,
Ve>0,dye A ad(z,y) <e.

Therefore, d(z, A) < € for all € > 0 which implies that d(x, A) = 0. o

Example 2.49. A = {% |n=1,2,---}. Find cl(A).
Answer: A" = {0} = cl(A) :AUAII{%‘HZLQ,'--}U{O}.

Example 2.50. A = {(z,y)|z € Q}. Find cl(A).
Answer: A’ =R? = cl(A) = R%



66 CuAPTER 2. Point-Set Topology of Metric spaces

Definition 2.51. Let (M, d) be a metric space. A subset A € M is said to be dense (¢
% ) in another subset B < M if A< B < cl(A).

Example 2.52. The rational numbers Q is dense in the real number system R.

Definition 2.53. Let (M, d) be a metric space, and A € M. The boundary of A, denoted
by bd(A) or dA, is the intersection of A and A® (0A = A n AC).

Remark 2.54. 1. 0A is closed since the closure of a set is closed.

2. By the definition of limit points of a set, we find that z € 0A < Ve > 0, D(xz,e) n A #
& and D(x,e) n A" # .

3. 0A = 0(A°).
Proposition 2.55. Let (M,d) be a metric space, and A < M. Then 0A = A\A

Proof. If x € 0A, then Ve > 0,D(z,¢) n A # &. Therefore, x ¢ A which implies that

A< A\A.
On the other hand, if = € /_1\/1, then Ve > 0,D(z,e) € A. As a consequence, Ve >
0,D(z,e) n A" # &; thus = € AC and this further implies that z € A N AL = 0A. =

Example 2.56. Let M =R, d(z,y) =|r = y|, and A =[0,1] n Q. Then
1. A = [0,1].
(reA,r+leA,T+l—>r:>TeA’.
n n
Ifsel0,1]nQt Fs,ed,s, >s=s€eA.
Ift¢[0,1],3e >03D(t,e) n[0,1]] =F =t ¢ A).
2. A=[0,1)(=AvA). 3. A=g. 4. 0A=0,1].

Example 2.57. Let (M, d) be a metric space with discrete metric, and A € M. Recall that

every point is an open set.
1. Aisopen. 2. Ais also closed since A’ is open. 3. A=A 4. A=g.
5. cl(A)=A=A. 6. 0A=¢.

Remark 2.58. If A € B, then dA & 0B. For example, let A = Q n [0,1] and B = [0, 1].
Then A € B but 0A = (0,1}, 0B = {0, 1}.
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Example 2.59. 0A € A’: take A = {0}, then A" = &, 0A = {0}.

Example 2.60. It is not always true that 0A = d(int(A)). For example, take A = [0,1] U
{2}, then 0A = {0, 1,2},int(A) = (0,1), d(int(A)) = {0, 1}, so A # d(int(A)).

Example 2.61. Let (M, d) be a metric space, and A, B < M. Then

HAUB)C0AULAB and (AN B)< AU B
since
red(AuB) < VYr>0,D(xr)n(AuB)# @ and D(z,7) n (A ~"BY) # &
= Vr>0,D(z,r)n A" # & D(x,r) n B"# &, and one of the following
holds: D(z,r) n A# & or D(z,r)n B #
—zeAnAorzeBn B,
and with A®, B® replacing A, B in the inclusion we just arrive,

(AnB)=0(AnB)"=0A U BY<dA"ULIB" =0AUIB.

2.3 Sequences and Completeness ( % % %)

Definition 2.62. Let (M, d) be a metric space. A sequence in (M, d) is a function f: N —
M, and is denoted by {f(n)}le Write z,, for f(n). A sequence {z,}r_, in M is said to
converge to x if
Ve>0,3dN >0 sd(z,,x) <e whenever n > N.
Ve >0, #{neN|d(z,,z) >} < .
< Ve >0, #{neN‘xn ¢ D(ZE,&‘)} < o0.

As Definition 1.46, one writes lim z,, = x or x,, — x as n — oo to denote that the sequence
n—0o0

{x,}X_, converges to .
Remark 2.63. Let (M, d) be a metric space, A € M be a subset.
x is a limit point of A < Ve >0, D(x,e) n A # .
<Vn>0,3z,€ A, z,€ D(x,

).

< Vn>0, 3z, € A dx,,z) <

SI=3=

< H{x,} € Asx, >rasn — ©
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and

y is an accumulation point of A < Ve >0, D(y,e) n (A\{y}) # .
<Vn >0, Iy, # Y, yn € A, yneD(y,%)-

<Vn>0, 3y, # v, yn € A, d(yn,y) < %
< IH{Yntoer € Ay} 2 Y0 — yasn — .

Remark 2.64. A is closed & A = cl(A) = A < If {2,}°, € Aand 2, — 7 as n — o,
then x € A.

Remark 2.65. The sequence {xj}7~; does not converge to x as k— oo if

3e>03VYN >0, 3k > Nsd(zy,z) >ec<3e>03#{neN|dw, z) =>c} =
<3Je>03#{neN|z, ¢ D(z,e)} = 0.

Proposition 2.66. In R", a sequence of vectors converges if and only if every component

of the vectors converges. In other words, in R™

Componentwise ‘convergence < Convergence.
Proof. Let {vi}2 1, v = (vl(cl), v,(f), e ,U,in)), be a sequence of vectors in R™.
“=7” Suppose v, — v = (v .. ™) as k — 0. Then

Ve >0, 3N >0 3 |lvgy — v|2 < € whenever k > N;

I

thus if & > N,

o2 — 0] < o~z = /() — o) - (o) o <

“<” Assume that v,(:) —u; as k —> oo fori=1,2,--- ,n. Then

Ve>0,3N; >0, 3 \v,(:) —u,| < - whenever k > N;.

Vn
Let N = max{Ny, Ny, -+, N,}. Thenif k > N,

||vk—u||2:\/(U,E})—u1)2—|—'--+(v,(€n)—un)2< — 4+ —=¢ o
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Example 2.67. Let v, = (%, %) € R?. Then v, — (0,0) as k — o0 since

1 1 1
\/(——0)2—1—(——0)2:ﬁ\/k2+1—>0ask—>oo.

Proposition 2.68. Suppose that {vg}, and {wg}, are sequences of vectors in a normed
space (V, | - |), Ak is a sequence in R, and v, — v, wy —> w in V, \y > XA in R as k — oo.
Then

1. vy +w, v+ w as k — 0.
2. AU — Av as k — 0.
1 1 .
3. —vp —> ~vask —> o if \p, #0, A # 0.
A A
Proposition 2.69. Let (M,d) be a metric space.

1. A set A< M is closed if and only if every convergent sequence {zy}_, S A converges

to a limit in A.
2. x € A if and only if there is a sequence {x3}°, € A, 32}, — 1 as k — ©

Proof. “=" Since A is closed, Theorem 2.38 implies that A = A. Let {7}, € A be a

convergent sequence with limit z. Then
Ve>0, 3N > 05 d(xg, x) < e whenever k > N.

Therefore,

Ve>0, D(z,e) n A2 {zp}iy # D

which implies that = € A(= A).
“«<" Assume the contrary that A is not closed. Then
Jrze A" 3Ve >0, D(z,e) £ A"

1 1
Let e = =, @, € D(z,=) n A. Then {z,};2; < A and z, — z as n — o0; thus we
n n

obtain a sequence {x,}> ; which converges to a point z ¢ A, a contradiction. =
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Example 2.70. Suppose {z;} € R™ is such that (i) ||z < 1 (ii) 2 — x as k — oo.
Question 1: |z < 17
Question 2: Can < be replaced by <; that is, is it true that |zx| < 1, x — x as k — oo,
then |z < 17
Answer to Question 1: Yes, consider B(0,1) = {z € R"||z| < 1}. Then B is closed
since if z € BY, 3¢ = |lzs =1 > 0 3 D(z,¢) < B". Since {23}, S B and 2, — z as
k — oo, by Proposition 2.69 x € B; thus |z| < 1.

On the other hand, we can obtain the inequality above by the triangle inequality:

[zllz < flex = 2lz +lzelo < lzx — 2o +1VE> 0= zs < lim [zp—2, +1=1.

Answer to Question 2: No. For example, consider the case n=1, and take z, = 1 — %

Then |z, < 1 and 2y — z =1 as k — o0. However, |z| =1 < 1.

Definition 2.71. A point x in a metric space is said to be a cluster point of a sequence
{wndoey if

Ve>0,#{neN|z,eD(ze)}=cw.
Proposition 2.72. If {z,}> | is a sequence in a metric space (M,d), then
1. xis a cluster point of {x,}_, if and only if Ve >0 and N > 0,3n = N s d(z,,z) <e.
2. x is a cluster point of {w,};, if and only if I{x,,}7, 5 2y, — 7 as j — ©,
3. &, — x as n — © if and only if every subsequence of {x,}>_, converges to x.

4. x, — x as n— © if and only if every proper subsequence of {x,}>_, has a further

subsequence that converges to x.
Proof. See the proof of Proposition 1.109 by changing |- — - | to d(-,-). o
Theorem 2.73. The collection of cluster points of a sequence is closed.

Proof. Let {xy}; € M be a sequence, and A be the collection of cluster points of {xy}7 ;.

If y € A%, then y is not a cluster point of {z}?_,; thus
Je>03#{neN|z,eD(y,e)} <.

If ze D(y,¢e), let r = e —d(y, z) > 0, then D(z,7) < D(y,ec) (Check!). As a consequence,
#{neN|z, e D(z,1)} < .
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Figure 2.3: D(z,e —d(y,z2)) < D(y,¢) if z € D(y,¢)

Therefore, z € A* which implies that D(y,e) € A%; thus A is closed. D

Next we talk about the completeness of a metric space. Recall that the completeness
of an order field is defined by the monotone sequence property (or the least upper bound
property) which relies on the concept of order, so we cannot define the completeness of a
metric space via these two properties. On the other hand, Theorem 1.103 suggests that
when the concept of order is out of scope, the convergence of all Cauchy sequences seems
a good replacement for completeness. This is'in fact how we define the completeness of

general metric spaces. To be more precise, we start with the following

Definition 2.74. Let (M,d) be a metric space. A sequence {z;};>, < M is said to be
Cauchy it

Ve>0, 3N > 0-3d(«,, ) < e whenever n,m > N.

Definition 2.75. A metric space (M, d) is said to be complete if every Cauchy sequence

in M converges to a limit in M.
Definition 2.76. A Banach space is a complete normed vector space.
Definition 2.77. A sequence {z;}2, in a normed space (V, | - |) is said to be bounded if
3B >053 |z < BVkeN.
Definition 2.78. A sequence {z;}{_; in a metric space (M, d) is said to be bounded if
Jzge M and B > 03 d(xg,x0) < BYkeN.

Remark 2.79. Adopting the definition of boundedness in a metric space, a sequence {xy}7

in a nomed space (V, | -|) is bounded if
JzgeVand B> 053 |z —xo| < BVEkeN;

thus |zx| < o] + B = B. Therefore, Definition 2.78 implies Definition 2.77.



72 CuAPTER 2. Point-Set Topology of Metric spaces

Proposition 2.80. A convergent sequence in (M, d) is bounded.
Proof. Let {x1}{, be a convergent sequence in M with limit xy. Then
Ve>0, 3N > 03 d(xg, x9) < € whenever k > N.
Let C' = max {d(:rl,xo),d(xg,xo), e 7d(CCN_1,I0>,€} + 1. Then d(zy,x0) < CVkeN. o
Proposition 2.81.
1. BEvery convergent sequence in (M,d) is Cauchy.

2. If a subsequence of Cauchy sequence converges, then this Cauchy sequence also con-

verges.
Proof. See the proof of Proposition 1.96 and Lemma 1.101 by changing | - | to d(-,-). o

Theorem 2.82. A sequence in R™ converges if and only if the sequence is Cauchy (because

@) _ . | < _ < (8.,
of that max v — wi| < Jup —ufly < \/ﬁlrgaéwk w;).

Theorem 2.83. Let (M,d) be a complete metric.space, and N © M be a closed subset.
Then (N, d) is complete (=% 7 B P 2. B & & & % § ).

Proof. Let {z1}72, < N be Cauchy sequence. Then
Ve>0,3No>035d(zp, ) <eif n,m = N,.

Therefore, {zx};2, is Cauchy in (M,d). By completeness of (M,d), 3z € M 3z, — x as
k — co. Note that '€ N since NN is closed. o

Theorem 2.84. Let (M,d) be a metric space, and A is dense subset of M; that is, A <
M < A. If every Cauchy sequence in A converges in M, then (M,d) is complete.

Proof. Let {x,}?_, be a Cauchy sequence in M. Since A is dense in M, for each n € N there
exists {x,&")}:}:l such that 2" — z, as k — o0, and for each j € N, there exists N(j) > 0
such that

(=, z,) < % Yk = N(j).

Let y, = x%gk) Then

1 1
d(Y, ye) < d(ify\;zk)aifk) + d(z, z¢) + d(ﬂfe,ﬂ?%)(g)) <ztst d(xy, z¢)
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which implies that {y,}>_, is a Cauchy sequence (for kl}m d(yk,ye) = 0). Since {y,}, € A,
H—00

by assumption it converges to some point x € M; thus for a given £ > 0, there exists K > 0

such that

Choose J > 0 such that % < % Then if n > max {K, N(J)},

n n 1
d(zp, ) < d(xn,xgv()n)) + d(xgv()n),x) <5+ g <e. o

2.4 Series of real numbers and vectors

o0
Definition 2.85. Let (V,| - ||) be a normed space. A series Y a; where {z;}72, € V, is
k=1

n
said to conwverge to S € V if the partial sum S, = xg converges to S, and one writes
k=1

18

S:

x, if this is the case.

k=1

Theorem 2.86. Let (V,||-|) be a complete normed space (called Banach space). A series
0

> xy converges if and only if
k=1

Ve>0,3N >053 |zg+ g1+ +2pgp| <€ ifk=N,p=0.
n Q0
Proof. Let S, = >, x) be partial sum of > ;. Then
k=1 k=1
{Sn}2, converges in V < {S,}°_, is Cauchy
<Ve>0,IN>03|S,— S| <eifn,m=>=N
<Ve>0,AN>03|zp1+Tpiot+ -+ an| <cifm>n>=N

<Ve>0,3N>03 |zp+app1+ -+ Tyl <cifk=N+1,p=>0. ©

o0
Corollary 2.87. If > xj converges, then |z — 0 as k — o, and if |xx]| > 0 as k — oo,
. k=1
then >, xy, diverges.
k=1
Proof. Take p =0 in Theorem 2.86. =
ee} e}
Definition 2.88. A series Y. xy, is said to converge absolutely if > |z;|| converges in

k=1 k=1
R. A series that is convergent but not absolutely convergent is said to be conditionally

convergent.
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© (1 k
Example 2.89. > ( k) is conditionally convergent.
k=1
o0 0
Theorem 2.90. In a complete normed space, if >, xp converges absolutely, then . xy
k=1 k=1

COMVETGES.

0 n
Proof. 1f Y} x converges absolutely, then S,, = > |zx| converges in R. Then
k=1 k=1

Ve > 0,3N > 03 [lap] + lanl + -+ lansyl| < 2 i k > N,p > 0.
Therefore, if k = N,p = 0,
|lzk + Zopr + -+ Thapl| < il + -+ [zrap) < e

Theorem 2.91. 1. Geometric series:
T
1—7"

0
(a) If |r| <1, then > r* converges absolutely to
k=1

0
(b) If |r| > 1, then >. r* does not converge (diverge).

k=1
2. Comparison test:
0 a0
() If >, ag converges, ar, = 0, and 0 < b, < ag, then Y. by converges.
k=1 k=1

o0 o0
(b) If >} ay diverges, ar, =0, and ap < by, then > by diverges.
k=1 k=1

3. p-series:
Q0

1
> T converges if p > 1 and diverges if p < 1.
k=1

4. Root test:

Q0
(a) Iflimsup /|xx| < 1, then > x) converges absolutely.
k=1

k—o0
Q0
(b) Iflimsup {/|zy| > 1, then ). zy diverges.
k—o0 k=1

5. Ratio and comparison test:

o0 e}
Let >} ay and ] by be series, and by, > 0 for all k € N.
k= k=1

1
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0 0
(a) limsup — 2 < o0, Y. by is convergent, then Y, ai converges absolutely.
koo DOk k=1 k=1

(b) llm inf bk > 0, Z bi. is divergent, then Z ay diverges.
k=0 O k=1

6. Integral test:

If f is continuous, non-negative, and monotone decreasing on [1,0), then >, f(k)

Q0
converges if and only if the improper integral f f(z)dz < oo.
1

7. Alternative series:

0
Z (—1)kak is convergent if ap = 0, ax \, 0 (that is, ax = apy1,ax — 0 as k — o).

Remark 2.92. By Problem 1.17,

lim inf 2 hm 1nf | ze] < hm 1sUp k] < limsup e :

k=[x | how | T

As a consequence, by the root test we obtain

|1 -

1. if limsup < 1, the series >’z converges absolutely, and
koo |kl k=1
0
. if lim mf‘ Lrt1] > 1, the series > z}, diverges.
k—o0 |xk| k—1
This is called the ratio test.
Example 2.93. Let
1
— if kis odd,
272
T = 1
— if k is even,
32
111111
) w _f1 1111 3 .
that is, {zx}2, = {2 2108 }, be a sequence in R. Then
1. liminf k1] = 0;
k—00 ‘IL’k|

2. liminf {/|zg| =
k—o0

1.
\/gu
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1
3. limsup /|zx| = —;
k—0o0 | ’ \/§
4. limsup k4] =0
k—o0 |.Tk|
Q0
Therefore, Y] x; converges absolutely.
k=1

2.5 Exercises

§2.1 Open Sets and the Interior of Sets

Problem 2.1. Show that every open set in R is the union of at most-countable collection

of disjoint open intervals; that is, if i/ < R is open, then

Z/{ = U(ak,bk) s

keZ

where Z is countable, and (ax, by) N (ag, b)) = G if k # L.

Problem 2.2. Let (M, d) be a metric space, and A € M. An open cover of A is a collection

of open sets whose union contains A; that is, {U;}cr is called an open cover of A if
1. U; is open for all i € 7.

i€l
Show that

1. if {(ak,bk)}zo:l is an open cover of [a,b] < R, then there exists N > 0 such that
N

U (ak’ bk) =2 [CL, b]
k=1
2. Using Exercise 2.1 to show that if {Uy}72; is an open cover of [a, ], then there exists

N
N > 0 such that (J Uy 2 [a,D].
k=1

Problem 2.3. Let A and B be subsets of a metric space (M, d). Show that
1. int(int(A)) = int(A).

2. int(A n B) = int(A) n int(B).
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§2.2 Closed Sets, the Closure of Sets, and the Boundary of Sets

Problem 2.4. Let (M, d) be a metric space, and A € M. Show (by definition) that A is

closed .

Problem 2.5. Let (M,d) be a metric space, and A € M. Show that A’ = A\(A\A’). In
other words, the derived set consists of all limit points that are not isolated points. Also
show that A\A" = A\A'.

Problem 2.6. Let A < R". Define the sequence of sets A as follows: A® = A and
A+ — the derived set of A™) for m e N. Do the following problems.

1. Prove that each A for m € N is a closed set; thus A 2 A®) o ...,

2. Show that if there exists some m € N such that A" is a countable set, then A is

countable.
3. For any given m € N, is there a set A such that AT % &f but A™+D = .
4. Lo%t A be uncountable. Then each A is an uncountable set. Is it possible that
N A™ = ?
m=1
5. Let A= {% + % ’m 1 sk(k = 1) m ke N}. Find AU, A® and A®.
Problem 2.7. Let A and.B be subsets of a metric space (M, d). Show that
L. cl(cl(A)) = cl(A).
2. cl(Au B) =cl(A) ucl(B).
3. cl(An B) ccl(A) ncl(B). Find examples of that cl(A n B) < cl(A) n cl(B).
Problem 2.8. Let (M, d) be a metric space, and A € M be a subset. Show that
0A = (Anc(M\A)) U (cl(A)\A).
Problem 2.9. Let A and B be subsets of a metric space (M, d). Show that

1. 0A = 0(M\A).
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2. 0(0A) < d(A). Find examples of that d(0A) < dA. Also show that d(0A) = dA if A
is closed.
3. (AuB)< dAudB < d(Au B)u Au B. Find examples of that equalities do not
hold.
4. If cl(A) ncl(B) = &, then (A u B) = 0A U 0B.
5. 0(0(0A)) = 0(0A).

Problem 2.10. Let (M, d) be a metric space, and A € M be a subset. Determine which

of the following statements are true.

1.

2.

6.

7.

intA = A\JA.
cl(A) = M\int(M\A).

int(cl(A)) = int(A).

. cl(int(A)) = A.

d(cl(A)) = 0A.
If A is open, then 0A € M\A.

If A is open, then A = cl(A4)\0A. How about if A is not open?

Problem 2.11. Let (M, d) be a metric space. A set A € M is said to be perfect if A = A'.
The Cantor set is constructed by the following procedure: let Ey = [0,1]. Remove the

1 2 . .
segment (g, §)’ and let F; be the union of the intervals

Remove the middle thirds of these intervals, and let Fy be the union of the intervals

0.5). 550 [5 5 [5-1)

Continuing in this way, we obtain a sequence of closed set Ej such that

(a) El;EQQEQQ"';
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(b) E, is the union of 2" intervals, each of length 37".
0
The set C' = () E, is called the Cantor set.
n=1

1. Show that C is a perfect set; that is, C' = C".
2. Show that C' is uncountable.
3. Find int(C).

Problem 2.12. In a metric space (M, d), if subsets satisfy A € S < cl(A), then A is said

to be dense in S. For example, Q is dense in R.
1. Show that if A is dense in S and if S is dense in T', then A is dense in T
2. Show that if A is dense in S and B < S is open, then B < cl(A n B).
§2.3 Sequences and Completeness
Problem 2.13. Show that
1. Every convergent sequence in a metrie space is a Cauchy sequence.

2. If a subsequence of a Cauchy sequence converges to x, then the sequence converges to

x.

3. x is a cluster point-of {z;}72, if and only if Ve > 0 and N > 0, 3k > N with

d(zy, ) <e.
4. x is a cluster point of {x;}2, if and only if there is a subsequence converging to x.
5. xp — x as k — oo if and only if every subsequence of {x)}}2, converges to .

6. vx — x as k — oo if and only if every proper subsequence of {zy};>; has a further

subsequence that converges to .

Problem 2.14. Let (M, d) be a metric space, and N € M. Show that if (IV, d) is complete,
then N is closed.
Remark: Theorem 2.83 states that if (M, d) is a complete metric space and N is a closed

subset of M, then (N,d) is complete. This problem gives a reverse statement.
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n—+1
1 it nis odd,
Problem 2.15. Let a, be defined by a, = n Compute the value
— ifnis even.
3n
of liminf {/a,,, limsup /a,, hm mf @1 and lim sup "+1, and conclude that whether the
n—0o0 n—o0 0 n—00 an
e}
series > a, is convergent or not.
n=1
Hint: You can use lim {/n = lim {/n + 1 = 1 without proving it.

n—o0 n—00

1
Problem 2.16. Let a € R, o > 3 Discuss the absolute convergence or the conditional

(=DF

convergence of the series Z W D

k=2
Problem 2.17. Determine whether the following series converge or not. Also test for their
absolute convergence.

0e]

1. Zsm , a>0;

0
5 Z log(n +1) —logn

)
arctan 2
n=1 n

A ala+1)---(a+n—1)bb+1)(b+n—1)
3 Z 1-2--n-clc+ 1)~ (c+n—-1) ’

n=1

- 1
4. 2 1+ 5t +2n+1);

The a, b, ¢ in (3) are not negative integers.

e}
Problem 2.18. Let {a,}_, < R baasequence. A series Y, b, is said to be a rearrangement
n=1
o0
of the series »] a, if there exists a rearrangement 7 of N; that is, 7 : N — N is bijective,
n=1

o]
such that b, = ar(,). Show that if }; a, converges absolutely, then any rearrangement of

n=1
0 0

the series . a, converges and has the value > a,,.
n=1 n=1
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§

§3.1 Compactness
Problem 2.19. Let (M, d) be a metric space.
1. Show that the union of a finite number of compact subsets of M is compact.

2. Show that the intersection of an arbitrary collection of compact subsets of M is com-

pact.

Problem 2.20. A metric space (M, d) is said to be separable if there is a countable subset

A which is dense in M. Show that every compact set is separable.

Problem 2.21. Given {a;};"; < R a bounded sequence. Define

A= {:p eR ‘ there exists a subsequence {akj}oi such that lim a;. = :17} .
]*1 ]—»CX) J

Show that A is a non-empty compact set in R. Furthermore , limsupa; = sup A and
k—o0
liminfa;, = inf A.
k—00

Problem 2.22. Let (M,d) be a compact metric space; that is, M itself is a compact set.
a0

If {Fi}2 is a sequence of closed sets such that int(Fy) = &J, then M\ |J Fy # &.
k=1

Problem 2.23. Let d : R? x R? >R be defined by

T1— Y1 it zo = ys,
d(z,y) = | | ‘ where x = (21, 25) and y = (y1,y2)-
|z1 —y1| Hlze —yo| + 1 if 2o # yo.

1. Show that d is a metric on R?. In other words, (R?,d) is a metric space.
2. Find D(x,r) withr <1,r=1and r > 1.

3. Show that the set {c} x [a,b] = (R?,d) is closed and bounded.

4. Examine whether the set {c} x [a,b] € (R?, d) is compact or not.

Problem 2.24. Let (M,d) be a complete metric space, and A € M be totally bounded.
Show that cl(A) is compact.

Problem 2.25. Let {z;}{, be a convergent sequence in a metric space, and zp — z as

k — co. Show that the set A = {z1, x5, -+ ,} U {z} is compact by
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1. showing that A is sequentially compact; and
2. showing that every open cover of A has a finite subcover; and

3. showing that A is totally bounded and complete.

Q0

Problem 2.26. Let Y be the collection of all sequences {y;}72; < R such that Y] |yx|* < oo.
k=1

In other words,

e}
Y = {{yk}le ‘ yr € R for all k € N, Z lykl? < oo}.
k=1

Define |- | : Y — R by
0 1
Hurbies | = (Z !yk\z) :

k=1
1. Show that | - | is a norm on Y. The normed space (Y, || -|) usually is denoted by ¢2.
2. Show that | - | is induced by an inner product.
3. Show that (Y, | -||) is complete.
4. Let B={yeY||y| <1}. Is E compact or not?

Problem 2.27 (True or False). Determine whether the following statements are true or

false. If it is true, prove it. Otherwise, give a counter-example.
1. Every open set in a metric space is a countable union of closed sets.
2. Let A < R be bounded from above, then sup A € A’.
3. An infinite union of distinct closed sets cannot be closed.

4. An interior point of a subset A of a metric space (M, d) is an accumulation point of
that set.

5. Let (M,d) be a metric space, and A € M. Then (A’) = A’
6. There exists a metric space in which some unbounded Cauchy sequence exists.

7. Every metric defined in R" is induced from some “norm” in R™.



