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Chapter 2

Point-Set Topology of Metric spaces

2.1 Open Sets and the Interior of Sets

Definition 2.1. Let (M,d) be a metric space. For each x P M and ε ą 0, the set

D(x, ε) =
␣

y P M
ˇ

ˇ d(x, y) ă ε
(

is called the ε-disk (ε-ball) about x or the disk/ball centered at x with radius ε.

M

•x ε

Figure 2.1: The ε-ball about x in a metric space

Example 2.2. (R2, } ¨ }p) is a normed vector space. Consider x = 0, ε = 1 and p = 1, p = 2

and p = 8 respectively.

1. p = 1: }x}1 = |x1| + |x2|, d(x, y) = |x1 ´ y1| + |x2 ´ y2|.

2. p = 2: }x}2 =
a

x21 + x22, d(x, y) =
a

(x1 ´ y1)2 + (x2 ´ y2)2.

3. p = 8: }x}8 = max
␣

|x1|, |x2|
(

, d(x, y) = max
␣

|x1 ´ y1|, |x2 ´ y2|
(

.
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56 CHAPTER 2. Point-Set Topology of Metric spaces

1´1

1

´1

p = 2

1´1

1

´1

p = 8

1´1

1

´1

p = 1

Figure 2.2: The 1-ball about 0 in R2 with different p

Example 2.3. Let (M,d) be a metric space with discrete metric; that is,

d(x, y) =

#

1 if x ‰ y,
0 if x = y.

Then D(x, ε) =

#

txu if 0 ă ε ď 1,
M if ε ą 1.

Definition 2.4. Let (M,d) be a metric space. A set U Ď M is said to be open (in M) if

@x P U , D ε ą 0 Q D(x, ε) Ď U .

Example 2.5. The set A =
␣

(x, y) P R2
ˇ

ˇ 0 ă x ă 1
(

is open: given (x, y) P A, take
ε = mint1 ´ x, xu, then D(x, ε) Ď A.

Example 2.6. A =
␣

(x, y) P R2
ˇ

ˇ 0 ă x ď 1
(

is not open: let u = (1, 0), then @ ε ą 0 Q

D(u, ε) Ę A (since
(
1 +

ε

2
, 0
)

P D(u, ε) but
(
1 +

ε

2
, 0
)

R A).

Example 2.7. M ” (a, b) ˆ [c, d] Y tpu, p R [a, b] ˆ [c, d], and for two points (x1, y1) and
(x2, y2) in M , we define the metric as d

(
(x1, y1), (x2, y2)

)
=
a

(x1 ´ x2)2 + (y1 ´ y2)2. Then
D(p, ε) = tpu if ε ! 1. Let q =

(a+ b

2
, d
)
, ε ă min

␣b´ a

2
, d ´ c

(

. Then D(q, ε) is the
shaded region in red color shown in the figure below.

(
a

q p

D(p, ε) = {p}

D(q, ε)

)
b

c

d
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Proposition 2.8. Let (M,d) be a metric space. Then every ε-disk is open.

Proof. Let D(x, ε) be an ε-disk. We would like to show that @ y P D(x, ε), D δ ą 0 Q

D(y, δ) Ď D(x, ε). Let δ = ε ´ d(x, y) ą 0. Then if z P D(y, δ), we have

d(z, x) ď d(z, y) + d(x, y) ă δ + d(x, y) = ε ;

thus z P D(x, ε). ˝

Proposition 2.9. Let (M,d) be a metric space.

1. The intersection of finitely many open sets is open.

2. The union of arbitrary family of open sets is open.

3. The empty set H and the universal set M are open.

Proof. 1. Let U1, U2, ¨ ¨ ¨ , Uk be open sets in M , and U ”
k
Ş

i=1

Ui. If y P U , then y P Ui for

all 1 ď i ď k. Since Ui is open, D δi ą 0 Q D(y, δi) Ď Ui. Let δ = mintδ1, ¨ ¨ ¨ , δku.

Claim: D(y, δ) Ď U .

Proof of claim: Let z P D(y, δ). Then d(y, z) ă δ ď δi if i = 1, 2, ¨ ¨ ¨ , k.

ñ z P D(y, δi) @ i = 1, 2, ¨ ¨ ¨ , k ñ z P Ui if i = 1, 2, ¨ ¨ ¨ , k ñ z P
k
Ş

i=1

Ui ” U .

2. Let F =
␣

Uα
ˇ

ˇUα open in M , α P I
(

be a family of open sets, and U ”
Ť

αPI

Uα. If

y P U , then y P Uβ for some β P I. Since Uβ is open, D δ ą 0 Q D(y, δ) Ď Uβ; thus
D(y, δ) Ď

Ť

αPI

Uα ” U .

3. H is trivially an open set. Moreover, if y P M , then D(y, 1) Ď M (by definition). ˝

Corollary 2.10. Let (M,d0) be a metric space with discrete metric. Then every subset of
M is open.

Proof. @ y P M, tyu = D
(
y,

1

2

)
is an open set in M . If A Ď M , A ‰ H, then A =

Ť

yPA

D
(
y,

1

2

)
which suggests that A is open since it is an arbitrary union of open sets. ˝

Remark 2.11. Infinite intersection of open sets need not be open:

1. Take An =
(

´
1

n
,
1

n

)
, then

8
Ş

n=1

An = t0u which is not open.
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2. Let Uk = (´2 ´
1

k
, 2 +

1

k
) Ď R. Then A =

8
Ş

k=1

Uk Ě [´2, 2]. Moreover, if x R [´2, 2],

then D k P N Q x R Uk
(
If x ą 2, 1

k
ă

x´ 2

2
. If x ă ´2, 1

k
ă

´x´ 2

2

)
. Therefore,

8
Ş

k=1

Uk = [´2, 2].

Example 2.12. Let A Ď Rn be open, and B Ď Rn. Then A+ B = ta+ b | a P A, b P Bu is
open.

Proof. Let y P A + B. Then y = a + b for some a P A, b P B. Since A is open, D δ ą 0 Q

D(a, δ) Ď A.
Claim: D(y, δ) Ď A+B.
Proof of claim: Let z P D(y, δ). Then }z ´ y}2 ă δ. Since z = b + (z ´ b), if we can show
that z ´ b P A, then z P A+B. Nevertheless, we have

}(z ´ b) ´ a}2 = }z ´ a ´ b}2 = }z ´ y}x ă δ

which implies that z ´ b P D(a, δ) Ď A. ˝

Definition 2.13. Let (M,d) be a metric space, and A Ď M be a subset of M . A point
x P A is called an interior point of A if D ε ą 0 Q D(x, ε) Ď A. The interior of A is the
collection of all interior points of A, and is denoted by int(A) or Å.

Example 2.14. LetM = R with d(x, y) = |x´y|, andA = [0, 1), B =
␣

1,
1

2
,
1

3
, ¨ ¨ ¨ ,

1

n
, ¨ ¨ ¨ uY

t0u =
␣ 1

n

(8

n=1
Y t0u. Then Å = (0.1) and B̊ = H since

1. If x P (0, 1), then D ε ą 0 Q D(x, ε) Ď (0, 1) Ď A.

2. 0 is not an interior point since (´ε, ε) X [0, 1)A
‰ ϕ @ ε ą 0.

Remark 2.15. Å might be empty.

Theorem 2.16. Let (M,d) be a metric space, and A Ď M be a subset of M . The interior of
A is the largest open set contained in A. In other words, if U Ď A is open, then U Ď int(A).

Proof. Let z P U . Since U is open, D δ ą 0 Q D(z, δ) Ď U Ď A ñ z P Å ñ U Ď Å.
To show that Å is open, we observe that Å =

Ť

xPÅ

D(x, εx), where εx ą 0 is chosen so that

D(x, εx) Ď Å if x P Å, for the following reason:
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1. “Ď”: trivial.

2. “Ě”: Let y P
Ť

xPÅ

D(x, εx) ñ D x P Å Q y P D(x, εx). Then if δ = εx ´ d(x, y),

D(y, δ) Ď D(x, εx) Ď A ñ y P
˝

A. ˝

Theorem 2.17. Let (M,d) be a metric space. A set A Ď M is open if and only if A = Å.

Example 2.18. Let (M,d) be a metric space, and A and B be two subsets of M .

1. int(A) Y int(B) Ď int(A Y B).

Proof. Let x P int(A) Y int(B). W.L.O.G. Assume x P int(A), then D r ą 0 such that
D(x, r) Ď A. Therefore, x P D(x, r) Ď A Y B, so x P int(A Y B). ˝

2. Strict containment might happen because of the following example:

Take A = [0, 1], B = [1, 2], then int(A) = (0, 1), int(B) = (1, 2).

Sine A Y B = [0, 2], int(A Y B) = (0, 2); however, int(A) Y int(B) = (0, 2)zt1u.

Hence, int(A) Y int(B) ‰ int(A Y B).

Another example is stated as follows: Let A = Q X [0, 1] and B = QA X [0, 1]. Then

(0, 1) = int([0, 1]) = int(A Y B) Ľ int(A) Y int(B) = H.

Example 2.19. In a metric space (M,d), it is not always true that int
(␣
y P M

ˇ

ˇ d(x, y) ď

R
()

=
␣

y P M
ˇ

ˇ d(x, y) ă R
(

. To see this, we consider the discrete metric

d0(x, y) =

"

1 if x ‰ y,
0 if x = 0.

Let R = 1, and fix x0 P M ‰ H. Then

␣

y P M
ˇ

ˇ d0(y, x0) ď 1
(

=M ñ int
(␣
y P M

ˇ

ˇ d0(y, x0) ď 1
()

= int(M) =M .

Now
␣

y P M
ˇ

ˇ d0(y, x0) ă 1
(

= tx0u. As long as M has more than one point, we have
int

(␣
y P M

ˇ

ˇ d0(y, x0) ď 1
()

=M ‰ tx0u = D(x0, 1).
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2.2 Closed Sets, the Closure of Sets, and the Boundary
of Sets

Definition 2.20. Let (M,d) be a metric space. A set F Ď M is said to be closed if
F A =MzF is open. In other words,

F is closed ô @ x P F A, D ε ą 0 Q D(x, ε) Ď F A .

Example 2.21. The set [0, 1] Ď R is closed, and the set (0, 1] Ď R is not open and not
closed.

Example 2.22. Let S = t(x, y) | x2+ y2 ď 1u. Take z P R2zS, then D(z, }z}2 ´ 1) Ď R2zS.
As a consequence, R2zS is open; thus S is closed.

Example 2.23. Let S =
␣

(x, y)
ˇ

ˇ 0 ă x ď 1, 0 ď y ď 1
(

. Since R2zS is not open, S is not
closed.

Proposition 2.24. Any point in a metric space is closed; that is, if (M,d) is a metric space
and A = txu for some x P M , then A is closed.

Proof. We show that Mztxu is open. Let y P Mztxu. Pick r = 1

2
d(x, y) ą 0.

Claim: D(y, r) Ď Mztxu.

•y

•x

r =
1

2
d(x, y)

Proof of claim: Let z P D(y, r). Then d(z, y) ă r =
1

2
d(x, y). Then

d(z, x) ě d(x, y) ´ d(y, z) ě d(x, y) ´
1

2
d(x, y) =

1

2
d(x, y) ą 0 ñ z ‰ x . ˝

Proposition 2.25. Let (M,d) be a metric space.

1. The union of finitely many closed sets is closed.

2. The intersection of arbitrary family of closed sets is closed.

3. The universal set M and the empty set H are closed.



Copy
rig

ht
Prot

ect
ed

§2.2 Closed Sets, the Closure of Sets, and the Boundary of Sets 61

Proof. 1. Let F1, ¨ ¨ ¨ , Fk be closed sets, and F =
k
Ť

j=1

Fj. Then by De Morgan’s law,

F A =MzF =Mz

k
ď

j=1

Fj =
k
č

j=1

(MzFj) =
k
č

j=1

Fj
A .

Since Fj is closed, FjA is open. By Proposition 2.9,
k
Ş

j=1

Fj
A is open.

2. Let F =
␣

Fα
ˇ

ˇFα closed in M , α P I
(

be a family of closed sets, and F ”
Ş

αPI

Fα.
Then by De Morgan’s law,

F A =Mz
č

αPI

Fα =
ď

αPI

(MzFα) =
ď

αPI

F A
α

which suggests that F A is the union of open sets
␣

F A
α

(

αPI
. By Proposition 2.9 we

conclude that F A is open or equivalently, F is closed.

3. M A = H,HA =M are both open. ˝

Corollary 2.26. Any set consists of finitely many points of a metric space is closed.

Example 2.27. Let Fk =
[

´ 2 +
1

k
, 2 ´

1

k

]
Ď R. Then B =

8
Ť

k=1

Fk Ď (´2, 2). Moreover, if

x P (´2, 2), then D k ą 0, Q x P Fk
(
If x ď 0, 1

k
ă
x+ 2

2
. If x ą 0, 1

k
ă

2 ´ x

2
). Therefore,

8
Ť

k=1

Fk = (´2, 2). This example suggests that an arbitrary union of closed sets might not be
closed.

Example 2.28. Let (M,d) be a metric space, and A = ty1, y2, . . . , yku Ď M . Define

B = tx P M | d(x, yi) ď 1 for some yi P Au =
k
Ť

i=1

tx P M | d(x, yi) ď 1u. Then B is closed.

Proof. It suffices to show Bi = tx P M | d(x, yi) ď 1u is closed for i = 1, 2, . . . , k since

B =
n
Ť

i=1

Fi.. Take z P MzBi (if MzBi = H, then Bi = M and Bi is closed). Let N = tu P

M | d(u, z) ă d(z, yi) ´ 1u.
Claim: N Ď MzBi; that is, MzBi is open.
Proof of claim: Take u P N and compute d(u, yi) ě d(yi, z) ´ d(u, z) ą d(z, yi) ´ (d(z, yi) ´

1) = 1. Hence u R Bi ñ u P MzBi. So N Ď MzBi. ˝
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Example 2.29. Let (M,d) be a metric space, A Ď M be closed, and B Ď M be finite
(#(B) ă 8). Then A+B is closed.

Proof. Left as an exercise. ˝

Definition 2.30. Let (M,d) be a metric space, and A Ď M .

1. A point x P M is called an accumulation point of A if @ ε ą 0, D(x, ε) contains
points in A other than x; that is, @ ε ą 0, D(x, ε)X (Aztxu) = (D(x, ε)ztxu)XA ‰ H.

2. A point x P M is called a limit point of A if @ ε ą 0, D(x, ε) contains points in A;
that is, @ ε ą 0, D(x, ε) X A ‰ H.

3. A point x P A is called an isolated point (孤立點) if D ε ą 0 Q D(x, ε) X A = txu.

4. The derived set of A is the collection of all accumulation points of A, and is denoted
by A1.

5. The collection of all limit points of A is denoted by sA.

Remark 2.31. 1. An accumulation point of A needs not to be in A.

2. If A = txu (that is, a single point), then A has no accumulation point; that is, A1 = H.

3. Accumulation points are called cluster points in some books.

4. If x P A1, then x is a limit point of A. In other words, A1 Ď sA.

5. If x P A, then x is a limit point of A. In other words, A Ď sA.

Example 2.32. Let A = (0, 1) Ď R, then A1 = [0, 1] and sA = [0, 1].

Example 2.33. Let A = (0, 1) Y t2u Ď R. Then

1. for any x P [0, 1], x P A1;

2. 2 R A1, but 2 is a limit point of A;

3. if x R [0, 1] Y t2u then x R A1.

Therefore, A1 = [0, 1]. Note that supA = 2; thus supA might not belong to A1.
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Example 2.34. Let A = txnu8
n=1 Ď R consists of a bounded sequence of distinct points.

Then A1 ‰ H.

Proof. By Bolzano-Weierstrass property (Theorem 1.100), A has a convergent subsequence
␣

xnj

(8

j=1
converging to x P R.

Claim: x P A1.
Proof of claim: @ ε ą 0, DK P N Q

ˇ

ˇxnj
´ x

ˇ

ˇ ă ε for j ě K. Moreover, xnj
P A. ˝

Example 2.35. In a metric space (M,d), let B(x, r) =
␣

y P M
ˇ

ˇ d(x, y) ď r
(

. Is it true
that B(x, r) Ď D(x, r)1; that is, every point of B(x, r) is an accumulation point of D(x, r)?
Answer: No, take a metric space with discrete metric

d0(x, y) =

"

1 if x ‰ y,
0 if x = 0.

and M has more than one point. We have D(x, 1) = txu, then D(x, 1)1 = H. Also,
B(x, 1) =M Ę H = D(x, 1)1.

Proposition 2.36. If A Ď B, then A1 Ď B1.

Proof. Let x P A1. Then @ ε ą 0, D y P A, y ‰ x Q y P D(x, ε) X A. Since A Ď B, y P B.
Therefore, @ ε ą 0, D y P B, y ‰ x Q y P D(x, ε) X B ô x P B1. ˝

Example 2.37. Let A be a subset of Rn. An interior point of A is an accumulation point
of A (Å Ď A1 if A Ď Rn).

Proof. If x P Å, then D r ą 0, Q D(x, r) Ď A. Let ε ą 0 be given.

1. ε ě r,D(x, ε) X (Aztxu) Ě D(x, r) X (Aztxu) ‰ H.

2. ε ă r,D(x, ε) Ď D(x, r) Ď A ñ D(x, ε) X (Aztxu) ‰ H.

Then for all ε ą 0, D(x, ε) X (Aztxu) ‰ H ñ x P A1. ˝

Theorem 2.38. Let (M,d) be a metric space and A Ď M , then A is closed if and only if
A = sA.（一個集合是閉集合若且唯若該集合包含了它所有的 limit points）

Proof. A is closed ô @ y P AA, D r ą 0 Q D(y, r) Ď AA (or D(y, r) X A = H).
ô @ y P AA, y R sA (or y P sAA).
ô if y P sA, then y P A. ˝
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Theorem 2.39. Let (M,d) be a metric space and A Ď M . Then sA = AYA1
(
= (AzA1)YA1

)
.

Proof. By definition, x P sA ô @ ε ą 0, D(x, ε) X A ‰ H.
ñ If x P sAzA, then @ ε ą 0, D(x, ε) X (Aztxu) ‰ H.
ñ If x P sAzA, then x P A1.

Therefore, sAzA Ď A1 ñ sA Ď A Y A1. On the other hand, we also have (1) A Ď sA and (2)
A1 Ď sA; thus A Y A1 Ď sA. ˝

Corollary 2.40. Let (M,d) be a metric space, and A Ď B Ď M . Then sA Ď sB. In
particular, if A Ď B and B is closed, then sA Ď B.

Proposition 2.41. Let (M,d) be a metric space, and A Ď M . Then AzA1 is the collection
of all isolated points of A.

Proof. Let x P AzA1. Then x P A, but D ε ą 0 Q D(x, ε) X (Aztxu) = H. Therefore,
D(x, ε) X A = txu which implies that x is an isolated point. ˝

Theorem 2.42. Let (M,d) be a metric space, and A Ď M . Then A1 is closed; that is,
@ y R A1, D r ą 0 Q D(y, r) X A1 = H.

Proof. Let y R A1. Then D ε ą 0 Q D(y, ε) X (Aztyu) = (D(y, ε)ztyu) X A = H. Then

A Ď
(
D(y, ε)ztyu

)A
.

Since D(y, ε)ztyu = D(y, ε) X tyuA is open,
(
D(y, ε)ztyu

)A is closed; thus Corollary 2.40
implies that

sA Ď
(
D(y, ε)ztyu

)A or equivalently, sA X D(y, ε)ztyu = H .

Since sA = A Y A1, the equality above suggests that

A1 X D(y, ε)ztyu = H ;

thus the fact that y R A1 implies that D(y, ε) X A1 = H. ˝

Definition 2.43. Let (M,d) be a metric space and A Ď M . The closure of A is the
intersection of closed sets containing A, and is denoted by cl(A). In other word, cl(A) =
Ş

F closed.
A Ď F

F (thus cl(A) is the smallest closed set containing A).
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Proposition 2.44. Let (M,d) be a metric space, and A Ď M .

1. A Ď cl(A) (x P A ñ if F Ě A is closed, then x P F ).

2. A is closed if and only if A = cl(A).

Proposition 2.45. Let (M,d) be a metric space, and A Ď M . Then cl(A) = sA(= AYA1).

Proof. Since A Ď cl(A) and cl(A) is closed, Corollary 2.40 implies that sA Ď cl(A).
On the other hand, if x R AYA1 = sA, then D r ą 0 Q D(x, r)XA = H or in other words,

A Ď D(x, r)A. By the definition of the closure of sets, cl(A) Ď D(x, r)A or equivalently,
D(x, r) Ď cl(A)A; thus x R cl(A). Therefore, cl(A) Ď sA. ˝

Example 2.46. Let A = [0.1) Y t2u Ď R. Find cl(A).
Answer: A1 = [0.1], cl(A) = A Y A1 = [0, 1] Y t2u.

Example 2.47. cl(A X B)
?
= cl(A) X cl(B).

Answer: No. Take A = [0, 1], B = (1, 2]. Since A is closed, then cl(A) = A. Since cl(B) =

[1, 2], AXB = H. So cl(AXB) = H ‰ t1u = cl(A)X cl(B); thus cl(AXB) Ř cl(A)X cl(B).

Example 2.48. In a metric space (M,d),

x P cl(A) if and only if d(x,A) ” inf
␣

d(x, y)
ˇ

ˇ y P A
(

= 0.

Proof. “ð” Suppose d(x,A) = 0. If x P A, then x P AYA1 = cl(A). If x R A, since d(x,A) =
0, @ ε ą 0 D y P A Q d(x, y) ă d(x,A) + ε = ε. In other words, (D(x, ε)ztxu)XA ‰ H.
Therefore, x P A1; thus x P A Y A1 = cl(A).

“ñ” Suppose x P cl(A). Since sA = cl(A), @ ε ą 0, D(x, ε) X A ‰ H. In other words,

@ ε ą 0, D y P A Q d(x, y) ă ε.

Therefore, d(x,A) ă ε for all ε ą 0 which implies that d(x,A) = 0. ˝

Example 2.49. A =
␣ 1

n

ˇ

ˇn = 1, 2, ¨ ¨ ¨
(

. Find cl(A).

Answer: A1 = t0u ñ cl(A) = A Y A1 =
␣ 1

n

ˇ

ˇn = 1, 2, ¨ ¨ ¨
(

Y t0u.

Example 2.50. A =
␣

(x, y)
ˇ

ˇx P Q
(

. Find cl(A).
Answer: A1 = R2 ñ cl(A) = R2.
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Definition 2.51. Let (M,d) be a metric space. A subset A Ď M is said to be dense（稠
密）in another subset B Ď M if A Ď B Ď cl(A).

Example 2.52. The rational numbers Q is dense in the real number system R.

Definition 2.53. Let (M,d) be a metric space, and A Ď M . The boundary of A, denoted
by bd(A) or BA, is the intersection of sA and ĎAA (BA = sA X ĎAA).

Remark 2.54. 1. BA is closed since the closure of a set is closed.

2. By the definition of limit points of a set, we find that x P BA ô @ ε ą 0, D(x, ε)XA ‰

H and D(x, ε) X AA ‰ H.

3. BA = B(AA).

Proposition 2.55. Let (M,d) be a metric space, and A Ď M. Then BA = sAzÅ.

Proof. If x P BA, then @ ε ą 0, D(x, ε) X AA ‰ H. Therefore, x R Å which implies that
BA Ď sAzÅ.

On the other hand, if x P sAzÅ, then @ ε ą 0, D(x, ε) Ę A. As a consequence, @ ε ą

0, D(x, ε) X AA ‰ H; thus x P ĎAA and this further implies that x P sA X ĎAA = BA. ˝

Example 2.56. Let M = R, d(x, y) = |x ´ y|, and A = [0, 1] X Q. Then

1. A1 = [0, 1].(
r P A, r +

1

n
P A, r +

1

n
Ñ r ñ r P A1.

If s P [0, 1] X QA. D sn P A, sn Ñ s ñ s P A1.

If t R [0, 1], Dε ą 0 Q D(t, ε) X [0, 1] = H ñ t R A1
)
.

2. sA = [0, 1](= A Y A1). 3. Å = H. 4. BA = [0, 1].

Example 2.57. Let (M,d) be a metric space with discrete metric, and A Ď M . Recall that
every point is an open set.

1. A is open. 2. A is also closed since AA is open. 3. Å = A. 4. A1 = H.

5. cl(A) = sA = A. 6. BA = H.

Remark 2.58. If A Ď B, then BA Ę BB. For example, let A = Q X [0, 1] and B = [0, 1].
Then A Ď B but BA = [0, 1], BB = t0, 1u.
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Example 2.59. BA Ę A1: take A = t0u, then A1 = H, BA = t0u.

Example 2.60. It is not always true that BA = B(int(A)). For example, take A = [0, 1] Y

t2u, then BA = t0, 1, 2u, int(A) = (0, 1), B(int(A)) = t0, 1u, so BA ‰ B(int(A)).

Example 2.61. Let (M,d) be a metric space, and A,B Ď M . Then

B(A Y B) Ď BA Y BB and B(A X B) Ď BA Y BB

since

x P B(A Y B) ô @ r ą 0, D(x, r) X (A Y B) ‰ H and D(x, r) X (AA X BA) ‰ H

ñ @ r ą 0, D(x, r) X AA ‰ H, D(x, r) X BA ‰ H, and one of the following
holds: D(x, r) X A ‰ H or D(x, r) X B ‰ H

ñ x P sA X ĎAA or x P sB X ĎBA ,

and with AA, BA replacing A,B in the inclusion we just arrive,

B(A X B) = B(A X B)A = B(AA Y BA) Ď BAA Y BBA = BA Y BB .

2.3 Sequences and Completeness（完備性）
Definition 2.62. Let (M,d) be a metric space. A sequence in (M,d) is a function f : N Ñ

M , and is denoted by
␣

f(n)
(8

n=1
. Write xn for f(n). A sequence txnu8

n=1 in M is said to
converge to x if

@ ε ą 0, DN ą 0 Q d(xn, x) ă ε whenever n ě N.

ô @ ε ą 0, #
␣

n P N
ˇ

ˇ d(xn, x) ě ε
(

ă 8.

ô @ ε ą 0, #
␣

n P N
ˇ

ˇxn R D(x, ε)
(

ă 8.

As Definition 1.46, one writes lim
nÑ8

xn = x or xn Ñ x as n Ñ 8 to denote that the sequence
txnu8

n=1 converges to x.

Remark 2.63. Let (M,d) be a metric space, A Ď M be a subset.

x is a limit point of A ô @ ε ą 0, D(x, ε) X A ‰ H.

ô @n ą 0, Dxn P A, xn P D(x,
1

n
).

ô @n ą 0, Dxn P A, d(xn, x) ă
1

n
.

ô D txnu8
n=1 Ď A Q xn Ñ x as n Ñ 8
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and

y is an accumulation point of A ô @ ε ą 0, D(y, ε) X (Aztyu) ‰ H.

ô @n ą 0, D yn ‰ y, yn P A, yn P D(y,
1

n
).

ô @n ą 0, D yn ‰ y, yn P A, d(yn, y) ă
1

n
.

ô D tynu8
n=1 Ď Aztyu Q yn Ñ y as n Ñ 8.

Remark 2.64. A is closed ô A = cl(A) = sA ô If txnu8
n=1 Ď A and xn Ñ x as n Ñ 8,

then x P A.

Remark 2.65. The sequence txku8
k=1 does not converge to x as k Ñ 8 if

D ε ą 0 Q @N ą 0, D k ě N Q d(xk, x) ě ε ô D ε ą 0 Q #
␣

n P N
ˇ

ˇ d(xn, x) ě ε
(

= 8

ô D ε ą 0 Q #
␣

n P N
ˇ

ˇxn R D(x, ε)
(

= 8.

Proposition 2.66. In Rn, a sequence of vectors converges if and only if every component
of the vectors converges. In other words, in Rn

Componentwise convergence ô Convergence.

Proof. Let tvku8
k=1, vk = (v

(1)
k , v

(2)
k , ¨ ¨ ¨ , v

(n)
k ), be a sequence of vectors in Rn.

“ñ” Suppose vk Ñ v = (v(1), ¨ ¨ ¨ , v(n)) as k Ñ 8. Then

@ ε ą 0, DN ą 0 Q }vk ´ v}2 ă ε whenever k ě N ;

thus if k ě N ,

|v
(i)
k ´ v(i)| ď }vk ´ v}2 =

b

(v
(1)
k ´ v(1))2 + ¨ ¨ ¨ + (v

(n)
k ´ v(n))2 ă ε.

“ð” Assume that v(i)k Ñ ui as k Ñ 8 for i = 1, 2, ¨ ¨ ¨ , n. Then

@ ε ą 0, DNi ą 0, Q |v
(i)
k ´ ui| ă

ε
?
n

whenever k ě Ni.

Let N = maxtN1, N2, ¨ ¨ ¨ , Nnu. Then if k ě N ,

}vk ´ u}2 =

b

(v
(1)
k ´ u1)2 + ¨ ¨ ¨ + (v

(n)
k ´ un)2 ă

c

ε2

n
+ ¨ ¨ ¨ +

ε2

n
= ε. ˝
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Example 2.67. Let vk =
(1
k
,
1

k2

)
P R2. Then vk Ñ (0, 0) as k Ñ 8 since

c

(
1

k
´ 0)2 + (

1

k2
´ 0)2 =

1

k2

?
k2 + 1 Ñ 0 as k Ñ 8 .

Proposition 2.68. Suppose that tvku8
k=1 and twku8

k=1 are sequences of vectors in a normed
space (V , } ¨ }), λk is a sequence in R, and vk Ñ v, wk Ñ w in V, λk Ñ λ in R as k Ñ 8.
Then

1. vk + wk Ñ v + w as k Ñ 8.

2. λkvk Ñ λv as k Ñ 8.

3. 1

λk
vk Ñ

1

λ
v as k Ñ 8 if λk ‰ 0, λ ‰ 0.

Proposition 2.69. Let (M,d) be a metric space.

1. A set A Ď M is closed if and only if every convergent sequence txku8
k=1 Ď A converges

to a limit in A.

2. x P sA if and only if there is a sequence txku8
k=1 Ď A, Q xk Ñ x as k Ñ 8

Proof. “ñ” Since A is closed, Theorem 2.38 implies that A = sA. Let txku8
k=1 Ď A be a

convergent sequence with limit x. Then

@ ε ą 0, DN ą 0 Q d(xk, x) ă ε whenever k ě N.

Therefore,
@ ε ą 0, D(x, ε) X A Ě txku8

k=N ‰ H

which implies that x P sA(= A).

“ð” Assume the contrary that A is not closed. Then

Dx P AA Q @ ε ą 0, D(x, ε) Ę AA.

Let ε =
1

n
, xn P D

(
x,

1

n

)
X A. Then txnu8

n=1 Ď A and xn Ñ x as n Ñ 8; thus we
obtain a sequence txnu8

n=1 which converges to a point x R A, a contradiction. ˝
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Example 2.70. Suppose txku Ď Rn is such that (i) }xk} ď 1 (ii) xk Ñ x as k Ñ 8.
Question 1: }x} ď 1?
Question 2: Can ď be replaced by ă; that is, is it true that }xk} ă 1, xk Ñ x as k Ñ 8,
then }x} ă 1?
Answer to Question 1: Yes, consider B(0, 1) =

␣

x P Rn
ˇ

ˇ }x} ď 1
(

. Then B is closed
since if x P BA, D ε = }x}2 ´ 1 ą 0 Q D(x, ε) Ď BA. Since txku8

k=1 Ď B and xk Ñ x as
k Ñ 8, by Proposition 2.69 x P B; thus }x} ď 1.

On the other hand, we can obtain the inequality above by the triangle inequality:

}x}2 ď }xk ´ x}2 + }xk}2 ď }xk ´ x}2 + 1 @ k ą 0 ñ }x}2 ď lim
kÑ8

}xk ´ x}2 + 1 = 1.

Answer to Question 2: No. For example, consider the case n = 1, and take xk = 1 ´
1

n
.

Then |xk| ă 1 and xk Ñ x = 1 as k Ñ 8. However, |x| = 1 ă 1.

Definition 2.71. A point x in a metric space is said to be a cluster point of a sequence
txnu8

n=1 if
@ ε ą 0,#

␣

n P N
ˇ

ˇxn P D(x, ε)
(

= 8 .

Proposition 2.72. If txnu8
n=1 is a sequence in a metric space (M,d), then

1. x is a cluster point of txnu8
n=1 if and only if @ ε ą 0 and N ą 0, Dn ě N Q d(xn, x) ă ε.

2. x is a cluster point of txnu8
n=1 if and only if D txnj

u8
j=1 Q xnj

Ñ x as j Ñ 8.

3. xn Ñ x as n Ñ 8 if and only if every subsequence of txnu8
n=1 converges to x.

4. xn Ñ x as n Ñ 8 if and only if every proper subsequence of txnu8
n=1 has a further

subsequence that converges to x.

Proof. See the proof of Proposition 1.109 by changing | ¨ ´ ¨ | to d(¨, ¨). ˝

Theorem 2.73. The collection of cluster points of a sequence is closed.

Proof. Let txku8
k=1 Ď M be a sequence, and A be the collection of cluster points of txku8

k=1.
If y P AA, then y is not a cluster point of txku8

k=1; thus

D ε ą 0 Q #
␣

n P N
ˇ

ˇxn P D(y, ε)
(

ă 8 .

If z P D(y, ε), let r = ε ´ d(y, z) ą 0, then D(z, r) Ď D(y, ε) (Check!). As a consequence,
#
␣

n P N
ˇ

ˇxn P D(z, r)
(

ă 8.
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ε

yz

ε´ d(y, z)

Figure 2.3: D(z, ε ´ d(y, z)) Ď D(y, ε) if z P D(y, ε)

Therefore, z P AA which implies that D(y, ε) Ď AA; thus A is closed. ˝

Next we talk about the completeness of a metric space. Recall that the completeness
of an order field is defined by the monotone sequence property (or the least upper bound
property) which relies on the concept of order, so we cannot define the completeness of a
metric space via these two properties. On the other hand, Theorem 1.103 suggests that
when the concept of order is out of scope, the convergence of all Cauchy sequences seems
a good replacement for completeness. This is in fact how we define the completeness of
general metric spaces. To be more precise, we start with the following

Definition 2.74. Let (M,d) be a metric space. A sequence txku8
k=1 Ď M is said to be

Cauchy if
@ ε ą 0, DN ą 0 Q d(xn, xm) ă ε whenever n,m ě N.

Definition 2.75. A metric space (M,d) is said to be complete if every Cauchy sequence
in M converges to a limit in M .

Definition 2.76. A Banach space is a complete normed vector space.

Definition 2.77. A sequence txku8
k=1 in a normed space (V , } ¨ }) is said to be bounded if

DB ą 0 Q }xk} ď B @ k P N.

Definition 2.78. A sequence txku8
k=1 in a metric space (M,d) is said to be bounded if

Dx0 P M and B ą 0 Q d(xk, x0) ď B @ k P N.

Remark 2.79. Adopting the definition of boundedness in a metric space, a sequence txku8
k=1

in a nomed space (V , } ¨ }) is bounded if

Dx0 P V and B ą 0 Q }xk ´ x0} ď B @ k P N;

thus }xk} ď }x0} +B ” rB. Therefore, Definition 2.78 implies Definition 2.77.
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Proposition 2.80. A convergent sequence in (M,d) is bounded.

Proof. Let txku8
k=1 be a convergent sequence in M with limit x0. Then

@ ε ą 0, DN ą 0 Q d(xk, x0) ă ε whenever k ě N .

Let C = max
␣

d(x1, x0), d(x2, x0), ¨ ¨ ¨ , d(xN´1, x0), ε
(

+ 1. Then d(xk, x0) ď C @ k P N. ˝

Proposition 2.81.

1. Every convergent sequence in (M,d) is Cauchy.

2. If a subsequence of Cauchy sequence converges, then this Cauchy sequence also con-
verges.

Proof. See the proof of Proposition 1.96 and Lemma 1.101 by changing | ¨ | to d(¨, ¨). ˝

Theorem 2.82. A sequence in Rn converges if and only if the sequence is Cauchy
(
because

of that max
1ďiďn

|v
(i)
k ´ ui| ď }vk ´ u}2 ď

?
n max

1ďiďn
|v

(i)
k ´ ui|

)
.

Theorem 2.83. Let (M,d) be a complete metric space, and N Ď M be a closed subset.
Then (N, d) is complete (完備空間中之閉集合是完備的).

Proof. Let txku8
k=1 Ď N be Cauchy sequence. Then

@ ε ą 0, DN0 ą 0 Q d(xn, xm) ă ε if n,m ě N0.

Therefore, txku8
k=1 is Cauchy in (M,d). By completeness of (M,d), Dx P M Q xk Ñ x as

k Ñ 8. Note that x P N since N is closed. ˝

Theorem 2.84. Let (M,d) be a metric space, and A is dense subset of M ; that is, A Ď

M Ď sA. If every Cauchy sequence in A converges in M , then (M,d) is complete.

Proof. Let txnu8
n=1 be a Cauchy sequence in M . Since A is dense in M , for each n P N there

exists
␣

x
(n)
k

(8

k=1
such that x(n)k Ñ xn as k Ñ 8, and for each j P N, there exists N(j) ą 0

such that
d
(
x
(n)
k , xn

)
ă

1

j
@ k ě N(j) .

Let yk = x
(k)
N(k). Then

d(yk, yℓ) ď d
(
x
(k)
N(k), xk

)
+ d(xk, xℓ) + d

(
xℓ, x

(ℓ)
N(ℓ)) ă

1

k
+

1

ℓ
+ d(xk, xℓ)
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which implies that tynu8
n=1 is a Cauchy sequence (for lim

k,ℓÑ8
d(yk, yℓ) = 0). Since tynu8

n=1 Ď A,
by assumption it converges to some point x P M ; thus for a given ε ą 0, there exists K ą 0

such that
d
(
x
(n)
N(n), x

)
= d(yn, x) ă

ε

2
@n ě K .

Choose J ą 0 such that 1

J
ă
ε

2
. Then if n ě max

␣

K,N(J)
(

,

d(xn, x) ď d
(
xn, x

(n)
N(n)) + d

(
x
(n)
N(n), x) ă

1

J
+
ε

2
ă ε . ˝

2.4 Series of real numbers and vectors
Definition 2.85. Let (V , } ¨ }) be a normed space. A series

8
ř

k=1

xk, where txku8
k=1 Ď V , is

said to converge to S P V if the partial sum Sn =
n
ř

k=1

xk converges to S, and one writes

S =
8
ř

k=1

xk if this is the case.

Theorem 2.86. Let (V , } ¨ }) be a complete normed space (called Banach space). A series
8
ř

k=1

xk converges if and only if

@ ε ą 0, DN ą 0 Q }xk + xk+1 + ¨ ¨ ¨ + xk+p} ă ε if k ě N, p ě 0.

Proof. Let Sn =
n
ř

k=1

xk be partial sum of
8
ř

k=1

xk. Then

tSnu8
n=1 converges in V ô tSnu8

n=1 is Cauchy
ô @ ε ą 0, DN ą 0 Q }Sn ´ Sm} ă ε if n,m ě N

ô @ ε ą 0, DN ą 0 Q }xn+1 + xn+2 + ¨ ¨ ¨ + xm} ă ε if m ą n ě N

ô @ ε ą 0, DN ą 0 Q }xk + xk+1 + ¨ ¨ ¨ + xk+p} ă ε if k ě N + 1, p ě 0. ˝

Corollary 2.87. If
8
ř

k=1

xk converges, then }xk} Ñ 0 as k Ñ 8, and if }xk} Ñ̂ 0 as k Ñ 8,

then
8
ř

k=1

xk diverges.

Proof. Take p = 0 in Theorem 2.86. ˝

Definition 2.88. A series
8
ř

k=1

xk is said to converge absolutely if
8
ř

k=1

}xk} converges in

R. A series that is convergent but not absolutely convergent is said to be conditionally
convergent.
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Example 2.89.
8
ř

k=1

(´1)k

k
is conditionally convergent.

Theorem 2.90. In a complete normed space, if
8
ř

k=1

xk converges absolutely, then
8
ř

k=1

xk

converges.

Proof. If
8
ř

k=1

xk converges absolutely, then Sn =
n
ř

k=1

}xk} converges in R. Then

@ ε ą 0, DN ą 0 Q
ˇ

ˇ}xk} + }xk+1} + ¨ ¨ ¨ + }xk+p}
ˇ

ˇ ă ε if k ě N, p ě 0.

Therefore, if k ě N, p ě 0,

}xk + xk+1 + ¨ ¨ ¨ + xk+p} ď }xk} + ¨ ¨ ¨ + }xk+p} ă ε . ˝

Theorem 2.91. 1. Geometric series:

(a) If |r| ă 1, then
8
ř

k=1

rk converges absolutely to r

1 ´ r
.

(b) If |r| ą 1, then
8
ř

k=1

rk does not converge (diverge).

2. Comparison test:

(a) If
8
ř

k=1

ak converges, ak ě 0, and 0 ď bk ď ak, then
8
ř

k=1

bk converges.

(b) If
8
ř

k=1

ak diverges, ak ě 0, and ak ď bk, then
8
ř

k=1

bk diverges.

3. p-series:
8
ř

k=1

1

kp
converges if p ą 1 and diverges if p ď 1.

4. Root test:

(a) If lim sup
kÑ8

k
a

|xk| ă 1, then
8
ř

k=1

xk converges absolutely.

(b) If lim sup
kÑ8

k
a

|xk| ą 1, then
8
ř

k=1

xk diverges.

5. Ratio and comparison test:

Let
8
ř

k=1

ak and
8
ř

k=1

bk be series, and bk ą 0 for all k P N.
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(a) lim sup
kÑ8

|ak|

bk
ă 8,

8
ř

k=1

bk is convergent, then
8
ř

k=1

ak converges absolutely.

(b) lim inf
kÑ8

ak
bk

ą 0,
8
ř

k=1

bk is divergent, then
8
ř

k=1

ak diverges.

6. Integral test:

If f is continuous, non-negative, and monotone decreasing on [1,8), then
8
ř

k=1

f(k)

converges if and only if the improper integral
ż 8

1
f(x)dx ă 8.

7. Alternative series:
8
ÿ

k=1

(´1)kak is convergent if ak ě 0, akŒ 0 (that is, ak ě ak+1, ak Ñ 0 as k Ñ 8).

Remark 2.92. By Problem 1.17,

lim inf
kÑ8

|xk+1|

|xk|
ď lim inf

kÑ8

k
a

|xk| ď lim sup
kÑ8

k
a

|xk| ď lim sup
kÑ8

|xk+1|

|xk|
.

As a consequence, by the root test we obtain

1. if lim sup
kÑ8

|xk+1|

|xk|
ă 1, the series

8
ř

k=1

xk converges absolutely, and

2. if lim inf
kÑ8

|xk+1|

|xk|
ą 1, the series

8
ř

k=1

xk diverges.

This is called the ratio test.

Example 2.93. Let

xk =

$

’

’

&

’

’

%

1

2
k+1
2

if k is odd,

1

3
k
2

if k is even,

that is, txku8
k=1 =

!

1

2
,
1

3
,
1

4
,
1

9
,
1

8
,
1

27
, ¨ ¨ ¨

)

, be a sequence in R. Then

1. lim inf
kÑ8

|xk+1|

|xk|
= 0;

2. lim inf
kÑ8

k
a

|xk| =
1

?
3
;
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3. lim sup
kÑ8

k
a

|xk| =
1

?
2
;

4. lim sup
kÑ8

|xk+1|

|xk|
= 8.

Therefore,
8
ř

k=1

xk converges absolutely.

2.5 Exercises
§2.1 Open Sets and the Interior of Sets

Problem 2.1. Show that every open set in R is the union of at most countable collection
of disjoint open intervals; that is, if U Ď R is open, then

U =
ď

kPI
(ak, bk) ,

where I is countable, and (ak, bk) X (aℓ, bℓ) = H if k ‰ ℓ.

Problem 2.2. Let (M,d) be a metric space, and A Ď M . An open cover of A is a collection
of open sets whose union contains A; that is, tUiuiPI is called an open cover of A if

1. Ui is open for all i P I.

2. A Ď
Ť

iPI
Ui.

Show that

1. if
␣

(ak, bk)
(8

k=1
is an open cover of [a, b] Ď R, then there exists N ą 0 such that

N
Ť

k=1

(ak, bk) Ě [a, b].

2. Using Exercise 2.1 to show that if tUku8
k=1 is an open cover of [a, b], then there exists

N ą 0 such that
N
Ť

k=1

Uk Ě [a, b].

Problem 2.3. Let A and B be subsets of a metric space (M,d). Show that

1. int(int(A)) = int(A).

2. int(A X B) = int(A) X int(B).
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§2.2 Closed Sets, the Closure of Sets, and the Boundary of Sets

Problem 2.4. Let (M,d) be a metric space, and A Ď M . Show (by definition) that sA is
closed .

Problem 2.5. Let (M,d) be a metric space, and A Ď M . Show that A1 = sAz(AzA1). In
other words, the derived set consists of all limit points that are not isolated points. Also
show that sAzA1 = AzA1.

Problem 2.6. Let A Ď Rn. Define the sequence of sets A(m) as follows: A(0) = A and
A(m+1) = the derived set of A(m) for m P N. Do the following problems.

1. Prove that each A(m) for m P N is a closed set; thus A(1) Ě A(2) Ě ¨ ¨ ¨ .

2. Show that if there exists some m P N such that A(m) is a countable set, then A is
countable.

3. For any given m P N, is there a set A such that A(m) ‰ H but A(m+1) = H.

4. Let A be uncountable. Then each A(m) is an uncountable set. Is it possible that
8
Ş

m=1

A(m) = H?

5. Let A =
!

1

m
+

1

k

ˇ

ˇ

ˇ
m ´ 1 ą k(k ´ 1),m, k P N

)

. Find A(1), A(2) and A(3).

Problem 2.7. Let A and B be subsets of a metric space (M,d). Show that

1. cl(cl(A)) = cl(A).

2. cl(A Y B) = cl(A) Y cl(B).

3. cl(A X B) Ď cl(A) X cl(B). Find examples of that cl(A X B) Ĺ cl(A) X cl(B).

Problem 2.8. Let (M,d) be a metric space, and A Ď M be a subset. Show that

BA =
(
A X cl(MzA)

)
Y
(
cl(A)zA

)
.

Problem 2.9. Let A and B be subsets of a metric space (M,d). Show that

1. BA = B(MzA).
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2. B(BA) Ď B(A). Find examples of that B(BA) Ĺ BA. Also show that B(BA) = BA if A
is closed.

3. B(A Y B) Ď BA Y BB Ď B(A Y B) Y A Y B. Find examples of that equalities do not
hold.

4. If cl(A) X cl(B) = H, then B(A Y B) = BA Y BB.

5. B(B(BA)) = B(BA).

Problem 2.10. Let (M,d) be a metric space, and A Ď M be a subset. Determine which
of the following statements are true.

1. intA = AzBA.

2. cl(A) =Mzint(MzA).

3. int(cl(A)) = int(A).

4. cl(int(A)) = A.

5. B(cl(A)) = BA.

6. If A is open, then BA Ď MzA.

7. If A is open, then A = cl(A)zBA. How about if A is not open?

Problem 2.11. Let (M,d) be a metric space. A set A Ď M is said to be perfect if A = A1.
The Cantor set is constructed by the following procedure: let E0 = [0, 1]. Remove the
segment

(1
3
,
2

3

)
, and let E1 be the union of the intervals

[
0,

1

3

]
,
[2
3
, 1
]
.

Remove the middle thirds of these intervals, and let E2 be the union of the intervals[
0,

1

9

]
,
[2
9
,
3

9

]
,
[6
9
,
7

9

]
,
[8
9
, 1
]
.

Continuing in this way, we obtain a sequence of closed set Ek such that

(a) E1 Ě E2 Ě E2 Ě ¨ ¨ ¨ ;
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(b) En is the union of 2n intervals, each of length 3´n.

The set C =
8
Ş

n=1

En is called the Cantor set.

1. Show that C is a perfect set; that is, C = C 1.

2. Show that C is uncountable.

3. Find int(C).

Problem 2.12. In a metric space (M,d), if subsets satisfy A Ď S Ď cl(A), then A is said
to be dense in S. For example, Q is dense in R.

1. Show that if A is dense in S and if S is dense in T , then A is dense in T .

2. Show that if A is dense in S and B Ď S is open, then B Ď cl(A X B).

§2.3 Sequences and Completeness

Problem 2.13. Show that

1. Every convergent sequence in a metric space is a Cauchy sequence.

2. If a subsequence of a Cauchy sequence converges to x, then the sequence converges to
x.

3. x is a cluster point of txku8
k=1 if and only if @ ε ą 0 and N ą 0, D k ą N with

d(xk, x) ă ε.

4. x is a cluster point of txku8
k=1 if and only if there is a subsequence converging to x.

5. xk Ñ x as k Ñ 8 if and only if every subsequence of txku8
k=1 converges to x.

6. xk Ñ x as k Ñ 8 if and only if every proper subsequence of txku8
k=1 has a further

subsequence that converges to x.

Problem 2.14. Let (M,d) be a metric space, and N Ď M . Show that if (N, d) is complete,
then N is closed.
Remark: Theorem 2.83 states that if (M,d) is a complete metric space and N is a closed
subset of M , then (N, d) is complete. This problem gives a reverse statement.
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Problem 2.15. Let an be defined by an =

$

’

’

&

’

’

%

n+ 1

2n
if n is odd ,

n

3n
if n is even .

Compute the value

of lim inf
nÑ8

n
?
an, lim sup

nÑ8

n
?
an, lim inf

nÑ8

an+1

an
and lim sup

nÑ8

an+1

an
, and conclude that whether the

series
8
ř

n=1

an is convergent or not.

Hint: You can use lim
nÑ8

n
?
n = lim

nÑ8

n
?
n+ 1 = 1 without proving it.

Problem 2.16. Let α P R, α ą
1

3
. Discuss the absolute convergence or the conditional

convergence of the series
8
ÿ

k=2

(´1)k

kα + (´1)k
.

Problem 2.17. Determine whether the following series converge or not. Also test for their
absolute convergence.

1.
8
ÿ

n=1

sin(n´α), α ą 0;

2.
8
ÿ

n=1

log(n+ 1) ´ logn
arctan 2

n

;

3.
8
ÿ

n=1

a(a+ 1) ¨ ¨ ¨ (a+ n´ 1)b(b+ 1) ¨ ¨ ¨ (b+ n´ 1)

1 ¨ 2 ¨ ¨ ¨n ¨ c(c+ 1) ¨ ¨ ¨ (c+ n´ 1)
;

4.
8
ÿ

n=1

(´1)n

n+ 1

(
1 +

1

3
+ ¨ ¨ ¨ +

1

2n+ 1

)
;

5.
8
ÿ

n=2

(´1)n
?
n+ (´1)n

;

The a, b, c in (3) are not negative integers.

Problem 2.18. Let tanu8
n=1 Ď R ba a sequence. A series

8
ř

n=1

bn is said to be a rearrangement

of the series
8
ř

n=1

an if there exists a rearrangement π of N; that is, π : N Ñ N is bijective,

such that bn = aπ(n). Show that if
8
ř

n=1

an converges absolutely, then any rearrangement of

the series
8
ř

n=1

an converges and has the value
8
ř

n=1

an.
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§3.1 Compactness

Problem 2.19. Let (M,d) be a metric space.

1. Show that the union of a finite number of compact subsets of M is compact.

2. Show that the intersection of an arbitrary collection of compact subsets of M is com-
pact.

Problem 2.20. A metric space (M,d) is said to be separable if there is a countable subset
A which is dense in M . Show that every compact set is separable.

Problem 2.21. Given taku8
k=1 Ď R a bounded sequence. Define

A =
␣

x P R
ˇ

ˇ there exists a subsequence
␣

akj
(8

j=1
such that lim

jÑ8
akj = x

(

.

Show that A is a non-empty compact set in R. Furthermore , lim sup
kÑ8

ak = supA and
lim inf
kÑ8

ak = infA.

Problem 2.22. Let (M,d) be a compact metric space; that is, M itself is a compact set.
If tFku8

k=1 is a sequence of closed sets such that int(Fk) = H, then Mz
8
Ť

k=1

Fk ‰ H.

Problem 2.23. Let d : R2 ˆ R2 Ñ R be defined by

d(x, y) =

#

|x1 ´ y1| if x2 = y2 ,

|x1 ´ y1| + |x2 ´ y2| + 1 if x2 ‰ y2 .
where x = (x1, x2) and y = (y1, y2).

1. Show that d is a metric on R2. In other words, (R2, d) is a metric space.

2. Find D(x, r) with r ă 1, r = 1 and r ą 1.

3. Show that the set tcu ˆ [a, b] Ď (R2, d) is closed and bounded.

4. Examine whether the set tcu ˆ [a, b] Ď (R2, d) is compact or not.

Problem 2.24. Let (M,d) be a complete metric space, and A Ď M be totally bounded.
Show that cl(A) is compact.

Problem 2.25. Let txku8
k=1 be a convergent sequence in a metric space, and xk Ñ x as

k Ñ 8. Show that the set A ” tx1, x2, ¨ ¨ ¨ , u Y txu is compact by
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1. showing that A is sequentially compact; and

2. showing that every open cover of A has a finite subcover; and

3. showing that A is totally bounded and complete.

Problem 2.26. Let Y be the collection of all sequences tyku8
k=1 Ď R such that

8
ř

k=1

|yk|2 ă 8.
In other words,

Y =
␣

tyku8
k=1

ˇ

ˇ yk P R for all k P N,
8
ÿ

k=1

|yk|2 ă 8
(

.

Define } ¨ } : Y Ñ R by
›

›tyku8
k=1

›

› =
( 8
ÿ

k=1

|yk|2
) 1

2
.

1. Show that } ¨ } is a norm on Y . The normed space (Y, } ¨ }) usually is denoted by ℓ2.

2. Show that } ¨ } is induced by an inner product.

3. Show that (Y, } ¨ }) is complete.

4. Let B =
␣

y P Y
ˇ

ˇ }y} ď 1
(

. Is E compact or not?

Problem 2.27 (True or False). Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.

1. Every open set in a metric space is a countable union of closed sets.

2. Let A Ď R be bounded from above, then supA P A1.

3. An infinite union of distinct closed sets cannot be closed.

4. An interior point of a subset A of a metric space (M,d) is an accumulation point of
that set.

5. Let (M,d) be a metric space, and A Ď M . Then (A1)1 = A1.

6. There exists a metric space in which some unbounded Cauchy sequence exists.

7. Every metric defined in Rn is induced from some “norm” in Rn.


