Chapter 1

The Real Line and Euclidean Space

1.1 Ordered Fields and the Number Systems

1.1.1 Fields and partial orders

Definition 1.1. A set F is said to be a field (%4) if there are two operations + and - such

that

1.

r+yeF,x-ye Fifx,ye F. (3 F)
r+y=y+axforall z,y e F. (commutativity, 4cj* 12 3 4)
(x4+y)+z=a+ (y+ 2) for allx,y, z € F. (associativity, *v 2 e’ & %)

There exists 0 € F, called 4v;* ¥ == %, such that z + 0 = z for all z € F. (the

existence of zero)

. For every x € F, there exists y € F (usually y is denoted by —z and is called x 4c

2 & %) such that z +y = 0. One writes v —y =z + (—y).

r-y=y-xforall x,ye F. (Fi* 2 )

There exists 1 € F, called %2 i~ =~ % such that x - 1 = x for all x € F. (the

existence of unity)

For every x € F, x # 0, there exists y € F (usually y is denoted by z~! and is called
x eh3kiE F A% ) such that -y =1. One writes z -y =z - 27! = 1.

1
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10. - (y+2)=x-y+ax-zforall z,y,z e F. (distributive law, 4 fic &)
11. 0 # 1.

Remark 1.2. Let  and y be both multiplicative inverse ( 3 ;* ¥ = % ) of a number a in
(F,+,-). Then

thus x = y. In other words, the multiplicative inverse of a number is unique.

Remark 1.3. A set F satisfying properties 1 to 10 with 0 = 1 consists of only one member:
By distributive law, -0 = 2-(04-0) = z-0+x-0; thus —(z-0)+(2-0) = —(2-0)+(2-0)+(z-0)
which implies that - 0 = 0. Therefore, if 0 = 1, then x =z -1 =2-0=0 for all z € F.

Hence, the set F consists only one element 0.

Remark 1.4. If z € F, then ((1 4+ (1)) - z = 0 which implies that z + (1) - = = 0.
Therefore, (-1) -2 =—z+2+ (1) -2 =—-2+0=—x.

Example 1.5. Let Q = {}qj ‘p #0,p,qel: integers}. Then Q is a field. (Check all the
properties from 1 to 11).

Example 1.6. Let N = {n e ‘ n > O}. Then N is not a field because there is no zero.

Example 1.7. Let F = {a, b, ¢} with the operations + and - defined by

+‘abc -‘abc
ala b c ala a a
blb ¢ a a b c
clc a b a ¢ b

Then F is a field because of the following: Properties 1, 2, 3, 6, 7 are obvious.

Property 4: 4 “0” s x + “0” = x for all x € F. In fact, “0” = a.

Property 5: Ve e F, dye F sx+y =0, here b= —c¢, c = —b.

Property 8: 3 “1”7 3z -“1” = z for all x € F. In fact, “1” = b (so Property 11 holds since
a #b).

Property 9: Vx #0, e F, dz€ F sz -2 =1, here z = x.

The validity of Property 10 is left as an exercise.
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Example 1.8. Let (F,+,-) be a field. Then (z —y)(x +y) = 2*> —y? for all z,y € F. In
fact,

(r-—y)x+y) =@—-y)-r+@—-y) -y (by # fei®)
=z (x—y)+y-(z—-y) (by i 2 i)
=z-v+z-(~y)+y-r+y (-y) (by » i)
=2 —x-y+ax-y—1y> (by Remark 1.4 and 3/ 2 # &)
=22 +0—y* (by Property 5)
= 22 — y? (by Property 4

).
Definition 1.9. A partial order over a set P is a binary relation < which is reflexive,

anti-symmetric and transitive (i& &iE4% ), in the sense that
1. x < x for all x € P (reflexivity).
2. z<yand y <z = =y (anti-symmetry).
3. x <yand y < z = z < z (transitivity).
A set with a partial order is called a partially ordered set.
Example 1.10. Let S be a given set, and 2° be the power set of S; that is,
P=2%= {A ‘ Ac S} = the collection of all subsets of S'.
We define < as 2. Then
1. AD A (reflexivity).
2. AD B and B2 A= A= B (anti-symmetry).
3. Ao Band B2 (C = A D (transitivity).

Hence, 2 is a partial order over 2° (or equivalently, (2°,2) is a partially ordered set).

Similarly, < on 2° is also a partial order.

Definition 1.11. Let (P, <) be a partially ordered set. Two elements x,y € P are said to

be comparable if either z < y or y < z.

Definition 1.12. A partial order under which every pair of elements is comparable is called

a total order or linear order.
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Definition 1.13. An ordered field is a totally ordered field (F, +, -, <) satisfying that
1. If x <y, then x 4+ z < y + 2 for all z € F (compatibility of < and +).
2. If 0 <z and 0 < y, then 0 < x - y (compatibility of < and ).

Example 1.14. (Q,+,,>) is a totally ordered field, but is not an ordered field (since
Property 2 in Definition 1.13 is violated). On the other hand, (Q,+,-,<) is an ordered
field.

From now on, the total order < of an ordered field will be denoted by <

Definition 1.15. In an ordered field (F,+,-,<), the binary relations <, > and > are
defined by:

l.z<yifr<yandz #y.
2. x>yity <w.
3. x>yify <.

Adopting the definition above, it is not immediately clear that © < y < x > y. However,

this is indeed the case, and to be more precise we have the following

Proposition 1.16. (Law of Trichotomy, = - &) If z and y are elements of an ordered
field (F,+,-, <), then exactly one of the relations x <y, x =y ory < x holds.

Proof. Since F is a totally ordered field, x and y are comparable. Therefore, either z < y

or y < x. Assume that x < y.
1. If x =y, thenz <y and = > .

2. If © # y, then x < y. If it also holds that x > y, then x > y; thus by the property
of anit-symmetry of an order, we must have x = y, a contradiction. Therefore, it can

only be that x < y.
The proof for the case y < x is similar, and is left as an exercise. =
Proposition 1.17. Let (F,+,-, <) be an ordered field, and a,b,x,y,z € F.

1. Ifa+z=a, then x =0.
Ifa-x=a and a # 0, then v = 1.
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2. Ifa+x =0, then v = —a.
Ifa-z=1anda#0, then v =a™ .

3. If x-y=0, thenx =0 ory=0.
4. Ifr <y <zorx<y<z, then x < z (the transitivity of <).

5. If a < b, then a + x < b+ x (the compatibility of < and +).
If0<a and 0 <b, then 0 < a-b (the compatibility of < and -).

6. Ifa+x=b+x, thena =0b.
Ifa+x<(<)b+uz, thena < (<)b.
Ifa-x=0b-x and v # 0, then a = b.
Ifa-x < (<)b-z and x >0, then a < (<)b.

10. If x #0, then ™! # 0 and (=)~ = .
11. Ifr #0 andy # 0, then x -y # 0 and (v -y) ' =271 -y~ L.

(<)z,then x -z <
z z =

(>)z,

12. Ifx
If x

(<)y and 0
(<)y and 0

A

NN
VA

then x -

13. Ifx
If x

(<)0 andy
(<)0 and y

(<)0, thenz -y > :
(>)0, then x -y < (<)0.

NN
VoA

14. 0 <1 and —1 < 0.
15. x-x=22> 0.
16. If x>0, then x=1 > 0. If x <0, then 27! < 0.

Proof. 1. (—a)+a+z=(—a)+a=0=2=0.

(@-a-r=@") a=1=2=1
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2. (—a)+a+zr=(—a)+0=—-a=2=—a.

(al)-a-z=(@') 1=at=x=al

3. Assume that z # 0, then 2™t -2 -y=2"1-0=0=y = 0.

1

Assume that y # 0, then z -y -y 1 =0-y ! =0=2=0.

4 and 5 are Left as an exercise.

6. a+0=a+z+(—z)=b+z+(—2)=b+0=a=0.
a+0=a+z+(—z)<b+z+(—2)=b+ 0= a < b (compatibility of < and +).

1 1

a-x-x  =b-x-z7"=a=0>.

Suppose the contrary that b < a. Then 0 = b+ (—b) < a + (=b). Since z > 0, z = 0;
thus
0<(a+(=b) z=a-z+(-b) x.

As a consequence, b-x =0+b-x <a-x+ (-b) -z +0b-x=a-z. By assumption, we

must have a-2 =b-x or (a —b) -z = 0. Using 3, x = 0 (since a # b), a contradiction.
7. See Remark 1.3.
8 (—z)+ (—(—2))=0=(—2)+z=2=—(—2x).
9. See Remark 1.4.

10. Assume 27! =0, 1 = z+a~! = -0 = 0, a contradiction. Therefore, x7! # 0; thus

() tzt=1l=z-27'= (7)) =2z (by 4).
11. That x - y = 0 cannot be true since it is against Property 3, so x - y # 0. Moreover,
@y ry=l=11l=(@ ) (yy)="y") (= y);
thus (z-y)' =271y~ (by 4).

12. If x < (<)y, then 0 = 2+ (—z) < (<) y+ (—=z). Since 0 < (<) 2, by the compatibility
< (<)(y+(—2))-z2=y-z+ (—x) - z. Therefore, by
the compatibility of < (<) and +, - 2=0+2z-2 < (<)y-z2+(—2) - z+x- 2=y 2.

of < (<) and - we must have 0

The second statement can be proved in a similar fashion.

13. Left as an exercise.
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14. If 1 < 0, then compatibility of < and + implies that 0 < —1. By the compatibility of
< and -, using 6 and 7 we find that 0 < (—1) - (—1) = —(—1) = 1; thus we conclude
that 1 = 0, a contradiction. As a consequence, 0 < 1; thus the compatibility of < and
+ implies that —1 < 0.

15. Left as an exercise.
16. If t >0but 71 <0,then 1 =2 27! <x-0=0, a contradiction. o
Proposition 1.18. Let (F,+,-, <) be an ordered field, and x,y € F.
1. If 0 <z <y, then 2% < 32,
2. If 0 < x,y and 2* < y?, then x < y.
Proof. 1. By definition of “<”, 0 < x < y and = # y. Using 12 of Proposition 1.17,
<y z<y-y=y.
By the transitivity of <, we conclude that z? < y2.

2. Note that = # y, for if not, then @? ~ y*> = 0 which contradicts to the assumption

22 < y?. Assume that y < x; then 1 implies that y? < 22, a contradiction. o
Remark 1.19. Proposition 1.18 can be summarized as follows: if z,y > 0, then
r<ye <y’

Moreover, Example 1.8, Proposition 1.17 and Proposition 1.18 together suggest that if

2,y = 0, then x < y if and only if 22 < y%

Definition 1.20. The magnitude or the absolute value of x, denoted |z|, is defined as

2] = x ifx>=0,
=Y -2 ifr<o.

Proposition 1.21. Let (F,+,-, <) be an ordered field. Then
L. |z| =0 forallz e F.

2. |z| =0 if and only if x = 0.
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w

.=zl <x < x| forallx e F.

W

eyl = x| ly| for all z,y € F.

22

N4yl < x|+ |y| for all z,y € F (triangle inequality, = % 7 % 3%).

t

=)

Nzl = yl| < |z =yl for all z,y e F.
Proof. Left as an exercise. =
Proposition 1.22. Define d(z,y) = |z —y|. Then

1. d(z,y) =0 for all z,y € F.

2. d(z,y) =0 if and only if x = y.

3. d(xz,y) =d(y,x) for all x,y € F.

4. d(z,y) < d(x,z) +d(z,y) for all x,y,z € F (triangle inequality, = % 7 % 3').
Proof. Left as an exercise. =

Remark 1.23. d(z,y) is the “distance” of two elements x,y € F.

d(z,y)

d(zx, z)

Figure 1.1: An illustration of why 4 of Proposition 1.22 is called the triangle inequality.

1.1.2 The natural numbers, the integers, and the rational num-
bers

Definition 1.24. Let (F,+,-,<) be an ordered field. The natural number system,

denoted by N is the collection of all the numbers 1, 141, 14+141, 14+14---+1 and etc. in

F. Wewrite2=1+1,3=2+1,andn=1+4+14---+ 1. In other words, N = {1,2,3,--- }.
ﬁ_ —

(n times)

The integer number system, denoted by Z, is theset Z = {--- ,—=3,-2,-1,0,1,2,3,--- }.
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Principle of mathematical induction (Peano axiom, & & 3% 23K ):
If S is a subset of N U {0} (or N) such that 0 € S (or 1€ S) and k+ 1€ S if k € S, then
S =Nu{0} (or S =N).

Example 1.25. Prove kgl k= n(n;— 1). ()
Proof. Let 5= {neN| ¥k = ”(”; 1)} (# %4 % & (x) 7 n fcbde %) . Then
k=1
1
LIfn=1 Y k=2X2_1
k=1 2
2. Assume that m € S, then
m—+1 m
1 1 2
3 k:Zk:—l—(val):%—k(m—f—l): Uik );er )
=1 k=1
which implies that m + 1€ S.
By mathematical induction, we have S = N. o

Example 1.26. Prove that 2% < 1 for all. n € N.
n

Proof. Let S = {n eN ’ ZL” < %} We show S = N by mathematical induction as follows:

. 1 1

(ii) If n € S, then

1 11 1 1 1 1
2kl 9m 2 nm 2 n4n n+1
which implies that n + 1€ S.
By mathematical induction, we have S = N. =

Let (F,+,-, <) be an ordered field. By the property of being a field, for any non-zero
n € N, there exists a unique multiplicative inverse n~!. This inverse is usually denoted by

1
= We also use - to denote m - n~1. Giving this notation, we have the following

n n
Definition 1.27. Let (F,+,-,<) be an order field. The rational number system, de-
noted by Q, is the collection of all numbers of the form 9 with p,q € Z and p # 0; that
is, P

Q= {xe]—"‘x:i,p,qez,p;&o}.
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Definition 1.28. An order field (F,+,-, <) is said to have the Archimedean property
ifVee F,dneZ sz <n.

Theorem 1.29. Q has the Archimedean property.

Proof. 1If x < 0, we take n = 1. Otherwise if 0 < x = 9 with p, ¢ € N, we take n = ¢+ 1
p

and it is obvious that < < g<q+1=n. O
p

Definition 1.30. A well-ordered relation on a set S is a total order on S with the property

that every non-empty subset of S has a least (smallest) element in this ordering.

Proposition 1.31 (Well-Ordered Property of N). If S < N and S # J, then S has a

smallest element; that is, 3so € SaVax e s, sg < x.

Proof. Assume the contrary that there exists a non-empty set..S € N such that S does not
have the smallest element. Define T = N\S, and Ty = {n € N|{1,2,--- ,n} = T'}. Then we
have Ty < T. Also note that 1 ¢ S for otherwise 1 is the smallest element in S, so 1 € T
(thus 1 € Tp).

Assume k € Ty. Since {1,2,---  k} < T, 1,2,---k¢ S. If k+1€ S, then k+ 1 is the
smallest element in .S. Since we assume that S does not have the smallest element, k+1 ¢ S
thusk+1eT =k+1eT,.

Therefore, by mathematical induction we conclude that Ty = N; thus 7" = N (since
To < T) which further implies that S = & (since T = N\S). This contradicts to the
assumption S # . O

1.1.3 Countability

Definition 1.32. A set S is called denumerable or countably infinite ( & 3 ¥ #iceh) if
S can be put into one-to-one correspondence with N; that is, S is denumerable if and only
if 3 : N — S which is one-to-one and onto. A set is called countable (¥ #) if S is

either finite or denumerable.

Remark 1.33. If f: Nl—_tlnS’, then f~1: Sl—_tl>N. Therefore,

S is denumerable < 3 f : N-LS < 3 g=f1: SN

onto onto

N.

f can be thought as a rule of counting/labeling elements in S since S = {f(l), f(2)),--- }
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Example 1.34. N is countable since f : Nl—ftkN with f(z) =z, Vne N,
1 ifx=0
Example 1.35. Z is countable. f:7Z — N with f(x) = 2z ifz>0.
—2x+1 ifx<O

k-3 2 -1 0 1 2 3

fky 7 5 3 1 2 4 6
—_—>
<«
_—>

Figure 1.2: An illustration of how elements in Z are labeled

Example 1.36. The set N x N = {(a,b)‘a,b € N} is countable. In fact, two ways of
mapping are shown in the figures below.

y y
5) 5 © @ © o o
; : 1011112 13]
F O———0)
0 8 74
9 !
: |2l e]
OO e OO ey O)
14 516 17
1 2 3 4 5 @ 1 2 3 4 5 =@

Figure 1.3: The illustration of two ways of labeling elements in N x N

Proposition 1.37. Let S be a non-empty set. The following three statements are equivalent:

(a) S is countable;
(b) there ezists a surjection f: N — S;
(c) there ezists an injection f : S — N.

Proof. “(a) = (b)” First suppose that S = {xy, -+, z,} is finite. Define f : N — S by

f(k):{ T ifk:<n,

r, ifk>=n.
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Then f : N — S is a surjection. Now suppose that S is denumerable. Then by

definition of countability, there exists f : N %S .
onto

“(a) <= (b)” W.L.O.G. (without loss of generality, # % - 4 %) we assume that S is an

infinite set. Let k; = 1. Since #(S) = o0, S; = S\{f(k1)} # &; thus Ny = f~1(S)) is
a non-empty subset of N. By the well-ordered property of N (Proposition 1.31), N has
a smallest element denoted by ko. Since #(5) = o0, Sy = S\{f(k1), f(k2)} # &; thus
N, = f71(5,) is a non-empty subset of N and possesses a smallest element denoted by

k3. We continue this process and obtain a set {ki, ks, -} S N, where k; < ky < -+,
and k; is the smallest element of N;_y = f~H(S\{f(k1), f(k2),- - . f(kj—1)}).

Claim: f : {ky, ks, -} — S is one-to-one and onto.

Proof of claim: The injectivity of f is due to that f(k;) ¢ {f(k1), f(ka), -, f(kj—1)}
for all j = 2. For surjectivity, assume that there is s'€ S such that s ¢ f({k1, k2, ---}).
Since f : N — Sis onto, f~({s}) is a non-empty subset of N; thus possesses a smallest
element k. Since s ¢ f({ky, k2, --}), there exists £ € N such that ky < k < k;yq. As a
consequence, there exists k € N, such that k < ks, 1 which contradicts to the fact that

keyq is the smallest element of N,.

Define g : N — {ky, ko, --} by g(j) = k;. Then g : N — {ky, ko, - -} is one-to-one and
onto; thus h = go f : N-—56,

onto

“(a) = (¢)” If S = {x1,- - ,xp} is finite, we simply let f : S — N be f(x,) =n. Then f is

clearly an injection. If S"is denumerable, by definition there exists ¢ : Nl;tl»S which

suggests that f =g~ : $ — N is an injection.

“(a) <= (¢)” Let f 15— N be an injection. If f is also surjective, then f : S—=LN which
(a) < (c) j j

onto

implies that S is denumerable. Now suppose that f(S) & N. Since S is non-empty,
there exists s € S. Let g : N — S be defined by

_ [ [T ) ifne f(9),
9ln) = { s ifné¢ f(9).

Then clearly g : N — S is surjective; thus the equivalence between (a) and (b) implies
that S is countable. o

Theorem 1.38. Any non-empty subset of a countable set is countable.
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Proof. Let S be a countable set, and A be a non-empty subset of S. Since S is countable,
by by Proposition 1.37 there exists a surjection f: N — S. On the other hand, since A is a

non-empty subset of S, there exists a € A. Define
(z) = r ifxeA,
IE=) a ifogA.

Then h =go f: N — A is a surjection, and Proposition 1.37 suggests that A is countable.

O

Example 1.39. The set N x N is countable since the map f : N x N — N defined by

f((m,n)) = 2™3™ is an injection.

Theorem 1.40. The union of denumerable denumerable sets is denumerable ( & 3 ¥ BB
EEVHRESEE TR BT &) . In other words, if F is a denumerable collection of

denumerable sets, then | ) A is denumerable.
AeF

Proof. Let % = {Al‘z € N, A; is denumerable} be ‘an indexed family of denumerable
e}
sets, and define A = [J A;. Since A; is denumerable, A; = {z;,%i2, T3, - }. Then

i=1
A ={x;|i,j e N}. Let f : NxN — Abedefined by f((i,§)) = z;;. Then f: NxN — Aisa

surjection. Moreover, Example 1.39 implies that there exists a bijection g : N — N x N; thus

h= fog:N— Ais a surjection which, by Proposition 1.37, implies that A is countable.

Since A; € A, A is infinite; thus A is denumerable. O

Corollary 1.41. The union-of countable countable sets is countable (¥ #c B ¥ & o &

A7 feih)

Proof. By adding empty sets into the family or adding N into a finite set if necessary, we
find that the union of countable countable sets is a subset of the union of denumerable
denumerable sets. By Theorem 1.38, we find that the union of countable countable sets is

countable. =
Example 1.42. 7Z x 7 is countable.

Proof. For i € Z, let A; = {(i,j) ‘j € Z}. By Example 1.35, A; is countable for all i € Z.
Since Z x Z = | J,.; Ai which is countable union of countable sets, Theorem 1.40 implies
that Z x Z is countable. =
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Theorem 1.43. Q is countable.
Proof. Define

(p,q), ifz>0, g;:%, ged(p,q) =1, p> 0.
fl@)=1 (0,0), ifz=0.
(p7 _Q), 1f T < 07 Tr = _%7 ng(p> Q) = 17 p > 0.

Then f : Q — Z x 7Z is one-to-one; thus f : @%f(@). Since Z x 7 is countable, its
1-1

non-empty subset f(Q) is also countable. As a consequence, there exists g : f (Q)—t>N;
thus h = go f : Q—-LN. o

onto

1.2 Completeness and the Real Number System

1.2.1 Sequences

Definition 1.44. A sequence in a set S is a function f : N — S (not necessary one-to-one

or onto). The values of f are called the terms of the sequence.

Remark 1.45. A sequence in S is a countable list of elements in S arranged in a particular
order, and is usually denoted by {f(n)}:):l or {z,}>_, with x,, = f(n).

Definition 1.46. Let F be an ordered field. A sequence {z,} , < F is said to be con-

vergent if there exists x € F such that for every € > 0,
#{neN|z, ¢ (z—c,xz+e)} <.
Such an x is called a limit of the sequence. In notation,
{zp} ) < Fis convergent < dJxeFaVe>0,#{neN|z, ¢ (r—c,x+¢)} < 0.

If z is a limit of {z,}*_,, we say {x,}?_; converges to z and write lim x, = x or x,, — z as
n—00

n — oo. If no such = exists we say that {z,})°_, diverges or lim x, does not exist.
n—a0

Remark 1.47. The number N may depend on ¢, and smaller ¢ usually requires larger V.

In the definition above, it could happen that there are two different limits of a convergent

sequence. In fact, this is never the case because of the following
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Proposition 1.48. If {x,} ", is a sequence in an ordered field F, and x,, — = and x, — y

as n — o, then x = y. (The uniqueness of the limit).

Proof. Assume the contrary that x # y. W.L.O.G. we may assume that x < y, and let

€:%>O. Define
Ai={neN|z, ¢ (x—c,x+¢)} and A ={neN|z, ¢ (y—cy+e)}.

Then by the definition of the convergence of sequences, #A4; < o« and #A; < . Let
N; = max Ay, Ny = max Ay and N = max{Ny, Ny}. Since Ay, As are finite; N < c0. On the
other hand, N + 1 ¢ A; U Ay which implies that xy1 € (x —e,x +e)n (y—¢e,y +¢) = &,

a contradiction. o

Example 1.49. Let z,, = ﬂ
n+1

we need to show for every ¢ > 0 the set A. = {n € N ‘ Tn ¢ (—¢,¢)} is finite. Note that
A. = {neN||z,| = £}; thus

We show that {x,}’, converges to 0. By definition,

Aez{neN’ 1 > }:{neN‘nél—l}.
n+1 €

Therefore, #A, = [5 — 1 < oo which implies that {z,}* ; converges to 0.

34 (—1)”
2
have to show that any real number x cannot be the limit of {y,,}7_;.

Example 1.50. The sequence {y,,}°_; given by y, = diverges. To see this, we
1
Let y be given and € = 5" Then (y — €,y + €) at most contains one integer. Since y,

only takes value 1 or 2 and #{n € N|y, = 1} = #{n e N|y, = 2} = o0, we find that

#{neN|y. ¢ (y—ey+e)f=x
which implies {y,}2_, cannot converges to y.

Example 1.51. A permutation of a non-empty set A is a one-to-one function from A
onto A. Let 7 : N — N be a permutation of N, and {z,})°; be a convergent sequence in
an ordered field F. Then {xw(n)}le is also convergent since if = is the limit of {z,,}’*_; and

>0,

#{neN|zmm ¢ (@ —c,o+e)}=#{neN|z, ¢ (z—c,x+e)} <.
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Proposition 1.52. Let F be an ordered field, {x,}>_, < F be a sequence, and x € F. Then

n=1 =

lim z, = x if and only if for every e > 0, there exists N > 0 such that |z, — x| < € whenever
n—0oo

n = N. In notation,

limz, =2 < Ve>0,AN>03n>N=|z,—z|<c¢.

n—a0

Proof. “=" Let € > 0 be given, and A. = {n € N‘xn ¢ (x —e,x+¢e)}. Since {z,},
converges to x, k = #A. < c©. Suppose that ny < ny < --- < ny belongs to A.. Let
N =mny + 1. Then if n > N, n ¢ A, which implies that if n > N, z, € (v — e,z + ¢)
or equivalently,

|z, — x| <& whenever n = N.
e
7

<
x1 I4$\;,\}\If T5T3 X2

z, forn>N = Ny+1

Figure 1.4: Let Ny be the largest index of those z,’s outside (x — ¢,z 4+ ¢). Then z,, €
(x — e,z +¢) whenever n > N = Ny + 1.

“<" Let ¢ > 0 be given. Then for some N > 0, if n > N, we have |z, — x| < ¢ or

equivalently, if n > N, z,, € (x —<;2 4 ¢). This implies that
#{neN|z, ¢ (z—c,x+e)} <N <. o
Remark 1.53. A sequence {x,} , < F diverges if (and only if)
VeeF,de>0s#{neN|z, ¢ (r—c,x+¢e)} =0
which is equivalent to that
VeeF,3e>03{neN|z, ¢ (r—c,o+e)}={nm <na<---<mnj <---}.
Therefore, {z,}>_, diverges if (and only if)
VeeF,3e > 03V N > 0,3n > N such that |z, —z| > €.

Example 1.54. Now we use the e-N argument as the definition of the convergence of

sequences to re-establish the convergence of sequences in Example 1.49, 1.50 and 1.51.
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—1)n
Example 1.49 - revisit: Let ¢ > 0 be given, and z, = (n—l—)l' Let N = [5 + 1. Since
1

1 1 1
[f} ——1,ifn> N we must have n > = — 1; thus if n > N, —— < . Therefore,
€ 5 15 n-+1

|z, — 0] <& whenever n > N

which implies that {x,}>_, converges to 0.

Example 1.50 - revisit: Let y be given, € = %, and N € N. Define

N+ if|yy vyl <e,
SN2 iffyy -yl >

Then n > N. Moreover, if [yy —y| < e, then |y, —y| = |y —yn| =lyn —y| > 1—c = ¢,
while if |yny — y| = € then clearly |y, — y| = . Therefore,

Vye F,3e >03VYN >0,3n> N3y, —y| =«

Example 1.51 - revisit: Now suppose that {z,}>_; is.a convergent sequence with limit x,

n=1

and € > 0 be given. Then there exists N; > 0 such that if n > Ny, we have |z, —z| < ¢.
Let N = max {7 '(1), 7 *(2),--- ,#7*(N1)} + 1. Then if n > N, m(n) > N; which
implies that

‘mﬂ(n) = x! < ¢ whenever n > N.

Therefore, lim 2., = .
n—o0

From the example above, we notice that proving the convergence using the e- N argument
seems more complicated; however, it is a necessary evil so we encourage the readers to major
it.

Lemma 1.55 (Sandwich). If lim z, = L, lim y, = L, {z,}._, is a sequence such that
n—o0 n—0o0

Tp < 2 < Yp, then lim z, = L.
n—o0

Proof. Let € > 0 be given. Since lim z, = L and hm yn = L, by definition

n—0o0
dN; >03L —e<x, <L+¢e whenever n > N;
and
ANy >03L—e¢ <y, <L-+¢e whenever n> Ns.
Let N = max{Ny, No}. Then forn > N, L —¢ <z, < 2, <y, < L+¢; thus lim z, = L. o

n—0o0
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Proposition 1.56. Ifa <z, <b and lim x, = x, then a < x < b.

n—0oo
Proof. Assume the contrary that x ¢ [a,b]. If x < a, let e = a — 2z > 0. Since lim x, = z,
n—0

AN > 053z, € (r —e,x + ) whenever n > N. Therefore, x, < a for all n > N, a

contradiction. So a .

<z
We can prove x < b in a similar way, and the proof is left as an exercise. =

Corollary 1.57. Ifa < x, <b and lim z, =z, then a < x < b.

n—o0

Definition 1.58. Let {x,}>_; be a sequence in an order field F.

1. {z,}¥ , is said to be bounded (3 % ) if there exists M > 0 such that |z,| < M

for all n e N.

2. {z,};, is said to be bounded from above (7 } % ) if there exists B € F, called

an upper bound of the sequence, such that x,, < B for all n € N.

3. {z,}, is said to be bounded from below (3 T % ) if there exists A € F, called a

lower bound of the sequence, such that A < x,, for all n € N.
Proposition 1.59. A convergent sequence is bounded (#ic7|jcacs 3 %) .

Proof. Let {x,})%_; be a convergent sequence with limit z. Then there exists N > 0 such
that
Tp€(r—1,24+1) Vn > N.

Let M = max {|z{,|22],~~ ,|zn-1], |z| + 1}. Then |z,| < M for all n € N. o
Theorem 1.60. Suppose that x, — x and y, — y as n — o0, X is a constant. Then

1.z, +y, >ty asn — .

2. A\-xp, > A-x asn — .

3. Tp Yo — T-Y aS N — 0.

4. If yn,y # 0, thenx—"ag as n — .

n

Proof. The proof of 1 and 2 are left as an exercise.
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3. Since z,, — z and y,, — y as n — o, by Proposition 1.59 3M > 0 3 |z,| <

lyn] < M. Let € > 0 be given. Moreover,
HN1>09|xn—x|<ﬁVn>N1
and
ANy, > 05 |y, — \<—Vn Ny .
Define N = max{Ny, No}. Then for all n > N,

|Tn Y — -y =T Yo — T Y+ Ty —x -y < |2 (Yo — )+ |y (2
g €
< M-y, — M|z, —a| <M-— + M- =
[ =yl + M - fan — 2] o o T E

< M and

— )]

4. Tt suffices to show that lim 1 if y,,y # 0 (because of 3). Since lim y, = y,
n—o0

n—00 Yn

Y
AN > 053 |y, —y| < |y\ for all n = Nj. Therefore, |y| — |y,| < \y| for all n > Ny

which further implies that Y| > |y2| for all n > IV;.

2
Let € > 0 be given. Since hm Yn =9, ANy > 03 |y, —y| < |y!

Define N = max{Ny, No}. Then forall n> N,

1
< — =£.
Yl Tyl vl

Yn Y

1 1‘:|yn—| Iyl2

1.2.2 Monotone sequence property and completeness

~_¢ for all n = Ns.

Definition 1.61. A sequence {x,}> , is said to be increasing/non-decreasing, de-

creasing/non-increasing, strictly increasing and strictly decreasing if x,, < x, 1,

Ty = Tpit, Ty < Ty and x, > x,41 Vn € N| respectively. A sequence is called (strictly)

monotone if it is either (strictly) increasing or (strictly) decreasing.

Definition 1.62. An ordered field F is said to satisfy the (strictly) monotone sequence

property if every bounded (strictly) monotone sequence converges to a limit in F.

Remark 1.63. An equivalent definition of the monotone sequence property is that every

monotone increasing sequence bounded above converges; that is, if each sequence {z,}> | <

F satisfying

(i) xp, < xpqq for all n e N,



20 CHAPTER 1. The Real Line and Euclidean Space

(ii) IMe FaVneN:z, <M,
is convergent, then we say JF satisfies the monotone sequence property.

Example 1.64. (Q,+, -, <) is an ordered field.

Question: Is there any bounded monotone sequence in Q that does not converge to a limit
in Q7

Answer: Yes! Consider the sequence

1 1 1 1
T1=75, 2= — 71, =71 » $n+1=2+$ .
[— n

2 I

Then {z,};°, is a monotone decreasing sequence in Q. If lim 2z, = z, then Theorem 1.60
1 n—00

Figs from which we conclude that 2 = —1 4+ /2. Since = ¢ Q, {z,}%_,

does not converge (to a limit) in Q. In other words, Q does not have the monotone sequence

property.

implies that z =

Proposition 1.65. An ordered field satisfying the monotone sequence property has the
Archimedean property; that is, if F is an ordered field satisfying the monotone sequence

property, thenVx e F,Ane N sz < n.

Proof. Assume the contrary that there exists x € F such that n < z for all n € N. Let
xn, = n. Then {x,}*_, is increasing and bounded above. By the monotone sequence property

of F, there exists ¥ € F such that z,, — ¥ as n — oo; thus 3N > 0 such that

~ 1
|:)3n—:1:|<4—1 Vn>=N.

In particular, |N — Z| < i, IN+1-1Z2| < i; thus

~ ~ 1 1 1
1=|[N+1-N|<|IN+1-Z|+|Z-N|<-+4+-=—,
4 4 2
a contradiction. o

Example 1.66. Let (F,+, -, <) be an ordered field satisfying the monotone sequence prop-

. o . N .
erty, and y € F be a given positive number (that is, y > 0). Define z,, = 2—:, where N, is
Ny +1

5 )2 > y (for example, if

. . Npy2
the largest integer such that 22 < y; that is, (2—:) < y but (

2 5 11
y = 2, then x; = ?,x;z,:?—s,---). Then

ﬁaxQZ
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1. z, is bounded above: since 2 <y < 2y +y* + 1 = (y + 1), by the non-negativity of
x, and y and Remark 1.19 we must have 0 < z,, <y + 1.

2. x, is increasing: by the definition of N,

Ng<22n_y:>4.N2<22n+2_y:22(n+1)_yj(

Nn 2Nn Nn+1
on T ogntl S gail T Tntls
property, 3z € F 3 x, — x asn — 0. By Theorem 1.60, 22 — x?, and by Proposition

1.56, 22 < y.

Therefore, x,, = Since F satisfies the monotone sequence

Now we show 22 = . To this end observe that

1)2:(Nn 1):(Nn+1)2

(1t 5) =G+ 3) =

Ys
1 1
thus 72 <y < (xn+2—n)2. By the Archimedean propery of F (Proposition 1.65), lim on = 0;
n—0o0
1
thus Theorem 1.60 implies that * = lim 22 = lim (,, + 27)2 = y. Note that Proposition
n—ao0 n—0o0

1.18 implies that such an x is unique if x > 0.

In general, one can define the n-th root of non-negative number y in an ordered field
satisfying the monotone sequence property. The construction of the n-th root of y € F is

left as an exercise.

Definition 1.67. For n € N, the'n-th root of a non-negative number y in an ordered field
satisfying the monotone sequence property is the unique non-negative number x satisfying

2" = y. One writes y'/" or {/y to denote n-th root of y.

Definition 1.68. An ordered field F is said to be complete (= # ) (have the completeness

property, & & = # 4).if it satisfies the monotone sequence property.

Remark 1.69. In an ordered field, completeness < monotone sequence property (% or-
dered field #2 » = & 1 = B E A 3 K L jcae = B |3E8 3 + I < zag). Moreover,

1. A complete ordered field is “Archimedean” (Proposition 1.65).

2. For n € N, the n-th root of a non-negative number in a complete ordered field is
well-defined (Definition 1.67).

Proposition 1.70. Let (F,+,-, <) be an ordered field. Then F satisfies the monotone

sequence property if and only if F satisfies the strictly monotone sequence property.
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Proof. The “only if” part is trivial, so we only prove the “if” part. Let {z,}>_, be a bounded

increasing sequence in F. If {z,}> , has finite number of values; that is,
#{neN‘xn <xn+1} < 0,

then there exists N € N such that z,, = xy for all n = N which implies that {z,}>_;

converges to xny. Now suppose that
#{neN‘xn <xn+1} = .

Then there exists an infinite set {ni,nq,---} < N such that z,, # x,,,; for all £ € N. Let
Yr = Tp,. Since F satisfies the strictly monotone sequence property, y, — y as k — oo for
some z € F. However, it is easy to see that the sequence {z,}>_, also converges to y since

{x,}2 | is monotone increasing. o

Theorem 1.71. There is a “unique” complete ordered field, called the real number system
R.

Remark 1.72. Uniqueness means if F is any other complete ordered field (F,®,®, <),
then there exists an field isomorphism ¢ : R — F; that is, ¢ : R — F is one-to-one and

onto, and satisfies that
1. ¢z +vy) = ¢(x) ®o(y) for all z,y e R.

2. ¢(x-y) = p(x) © P(y) for all z,y € R.
3. z<y= ¢(x) < ¢(y) forall z,y € R.

Sketch of proof of Theorem 1.71. Let S be the collection of all bounded increasing sequences

in Q in which all terms in every sequence have the same sign; that is,
S = {{xn}le‘mne(@for allneN, z; -2 >0 forall k,jeN,
and {z,}_; is increasing and bounded above}.

Define on S an equivalence relation ~: {z,}>_ , ~ {y,}’° if every upper bound of {z,}>_, is
also an upper bound of {y,,};_, and vice versa. Let R = { [{z,};2] | {2}, € S} be the set
of equivalence class of S (the existence of such a set relies on the axiom of choice). We define
on R, +, -, < as follows: if r = [{z,};2,] and s = [{y.}2°,] (where {z,},, {y.}i; € S),
then



§1.2 Completeness and the Real Number System 23

[ k] 7,830,
—((=r)-s) ifr<Oands>0,
—(r-(=s)) ifr>0ands<O0,
(=r)-(=s) ifr,s<0;

Lor+s=[{z,+yiq]; 2.7 5=

e @]
n=

3. r < s if every upper bound of {y,};>, is also an upper bound for {x,}> .

One needs to verify that R is an ordered field, and this part is left as an exercise (or see

Remark 1.73 for some part of the verification).
Claim 1: If {xnk}zozl is a subsequence of {z,}*_,, then [{xnk}zozl] = [{z. ]
Claim 2: If [{a:n}ff:l} < [{yn ;‘?:1], then for some N € N, z,, < yy for allm > N.

The proofs of the claims above are not difficult and are left as an exercise.

Now we show the completeness of R by showing that R satisfies the strictly monotone
sequence property (Proposition 1.70). Let {r}{; be a bounded, strictly increasing sequence
in RT. Write rj, = [{xk,n}le], where xy , < 2 4 for allk;n € N. Since {r;}}; is bounded
in R, there is M € Q such that x;,, < M for all k;n € N. Moreover, since 7, < 4, for all

k € N, by claims above we can assume that xj, < 1,1 for all £, n € N; thus
Thn < Tom V¢ >k and n,m e N. (%)

Therefore, {x, .}y, is bounded and monotone increasing, so {z,n}a_, € S. Define r =
[{znn}iy]. Then r € R, and

(i) r is an upper bound of {r;}{ ,: Suppose the contrary that there exists M € Q such
that z,,, < M for all'n € N but 23, > M for some £,/ € N.

(a) If k > ¢, then xy; = w0 > M since {zg};2, is increasing.

(b) If kK < ¢, then x;, > x> M because of ().
In either case we conclude that M cannot be an upper bound of r, a contradiction.

(ii) r — ¢ is not an upper bound of {r;}{, for all ¢ > 0: Suppose the contrary that
r — ¢ is an upper bound of {r;}y2,. Write ¢ = {e,}72,;, and W.L.O.G. we can assume
that there exists § € Q such that e, = 20 > 0 for all k € N. Then for all (fixed) k € N,

ke + 0120 < Hawe + 2032 ] < [{one + e} 2] < [{zedd 2] -
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Let N; = 1. By claim 2, for each k € N there exists N1 € N such that Ny, > Ni

and xn, ¢+ 0 < on,,, N, forall £ = Niyi. On the other hand,
TN, Nesr 2 TN Neyy +0 2 TN N, +0 2 -0 2 21,1 + kO
which implies that {z,,}}, is not bounded, a contradiction.

As a consequence, r is the least upper bound of {r;}7;. o

From now on R is the complete ordered field containing Q, Z, N.

Remark 1.73 (The existence of additive inverse of real numbers). Suppose that a bounded
increasing sequence {x,}*°; is not equivalent to any rational “number” {¢}*_, for any q € Q,
then there exists a decreasing sequence {y,}>, such that z,, =y, — 0 as n — . Such
{yn}2_, can be obtained by choosing y, to be the smallest upper bound of the form 2%,

where k € Z. By deleting terms if necessary, we can assume that all y, s have the same sign.

0

©_,] is the additive inverse of

Then {—y,}x_, is a bounded increasing sequence, and [{—yn

[{$n}§:1]

Example 1.74. In R, define z,, inductively by 1 = 0, 23 = v/2, 23 = V2 4+ V2, -+, Tni1 =
V2 + z,. It is easy to see that {z,} -, satisfies z,, = 0 for all n e N.

1. x, < 2 for all n € N (boundedness): First of all, z; < 2. Assume that z, < 2. Then

Tpi1 = /2 + 2 < /2 +2 = 2. By mathematical induction, z,, < 2 for all n € N.

2. z, < T,41 (monotonicity): Since z, —2<0and z, +1 >0, (z, —2) (z, +1) <O0.
Expanding the product, we obtain that 2 < z, + 2 = z2,, which implies that

Ty < Tpgl-

3. x, — 2asn — o (convergence): Since {z,}; is a bounded monotone sequence in R,

lim x, = x for some x € R. Note that then z,,; — x as n — o0. Since 5’3121+1 =x,+2,

n—a0
by Theorem 1.60 we must have 22 = x + 2. Then (x — 2)(z + 1) = 0 which implies
x =2 or x = —1 (failed). Therefore, {z,}_; converges to 2.

Theorem 1.75. The interval (0,1) in R is uncountable (* ¥ #x).
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Proof. Assume the contrary that there exists f : N — (0, 1) which is one-to-one and onto.
Write f(k) in decimal expansion (- & =& B ); that is,

f(l) = 0.d11d21d31 s
f(?) = 0.d12d22d32 s

f(k) = 0.dygdapdsy - - -

Here we note that repeated 9’s are chosen by preference over terminating decimals; that is,
1 1
for example, we write i 0.249999 - - - instead of 1= 0.250000 - - .

Let z € (0,1) be such that = 0.dyds - - -, where

5 if dy, # 5
d, = .

(ZH- B o P HE™ % kil f(k) v BT 5 k=82 4p% ). Thenz # f(k)
for all £ € N, a contradiction; thus (0, 1) is uncountable. o

Corollary 1.76. R is uncountable.

Proposition 1.77. Q is dense (#& %) in R; that is, if z,y € R and x < y, then Ir € Q 3

T <r<uy.

Proof. Since % — 0-as n — o0 (by the Archimedean property of R, Proposition 1.65), there
exists N > 0 such that )% —0‘ <y—xforalln > N.

Claim: {% ‘ ke Z} N (z,y) # .

Proof of claim: Suppose the contrary that {% ’ k e Z} N (z,y) = &. Then % < x and
041

1
-~ > y for some ¢ € Z, while this fact will imply that y — z < N2 contradiction. =

Remark 1.78. The denseness of Q in R can be rephrased as follows: if x € R and ¢ > 0,

then 3reQalz —r| <e.




26 CHAPTER 1. The Real Line and Euclidean Space

Corollary 1.79. The collection of irrational numbers Q" = R\Q is dense in R; that is, if
rz,yeRandz <y, JceQ azx<c<y.

Proof. Let z,y € R with z < y. By Proposition 1.77 there exists r € Q, r # 0 such that

x Yy c
— <r<-—=. Let c=4/2r. Then ce Q" and xr < c < y.
7 N V2 Q y 2
Example 1.80. The harmonic sequence
T = 1
1
To = 1 + =

2

is (monotone) increasing but not bounded above.

Proof. That the sequence is increasing is trivial. For the unboundedness, we observe that

1+=+ +1+1 1+ + =+ +1
Ton = —de— 3+t + -+ -+ = —
2 2 '3"4"5 "6 "7"8 on
>1+1+1+1+1+1+1+1+ +2n_1
- 2. 4 4 8 8 8 8 on
—1+1+1+ +1—1+n
~ 2 2 2 2
which is not bounded above (23 * 7). o

1.3 Least Upper Bounds and Greatest Lower Bounds

Definition 1.81. Let ¢J # S € R. A number M € R is called an upper bound (* %)
for S if x < M for all x € S, and a number m € R is called a lower bound (T %) for S if
x = m for all x € S. If there is an upper bound for S, then S is said to be bounded from
above, while if there is a lower bound for S, then S is said to be bounded from below. A

number b € R is called a least upper bound (& + %) of S if

1. b is an upper bound for S, and
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2. if M is an upper bound for S, then M > b.
A number « is called a greatest lower bound (.~ & %) of S if

1. a is a lower bound for S, and

2. if m is a lower bound for S, then m < a.

— )
m S M

a lower bound for S an upper bound for S

>
>

If S is not bounded above, the least upper bound of S is set to be co, while if S is not
bounded below, the greatest lower bound of S is set to be —oo. The least upper bound of
S is also called the supremum of S and is usually denoted by lubS or sup .S, and “the”
greatest lower bound of S is also called the infimum of S, and is usually denoted by glbS
or infS. If S = ¢, then sup .S = —oo, infS = o0.

Example 1.82. Let S = (0,1). Then sup S =1, inf S = 0.

Example 1.83. Let f : R — R given by

1 —a? ifa 0,
f(x)_{o if x =0.

Define

S — {f(z)|z e R, T:{a:eR|f(x)>i}.

We can get S = (—o0, 1), 80 sup(S) = 1, inf(S) = —o0.

1 V3 V3 V3 V3
Solve 1—2? = 1= 0= 1-7, then we can get T' = (—7,0) U (0, 7), sosup(T) = 5
inf(T) = —\f.

Remark 1.84. The least upper bound and the greatest lower bound of S need not be a

member of S.

Remark 1.85. The reason for defining sup J = —oo and inf @ = oo is as follows: if
@ # A< B, then sup A <sup B and inf A > inf B.

14 / A \ B \
\ \ / /
infp infA  swpA qppB
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Since F is a subset of any other sets, we shall have sup ¢ is smaller then any real number,
and inf ¢ is greater than any real number. However, this “definition” would destroy the
property that inf A < sup A.

The “definition” of sup ¢ and inf (J is purely artificial. One can also define sup & = o
and inf @ = —o0.

Definition 1.86. An open interval in R is of the form (a,b) which consists of all z € R 3
a<x <b A closed interval in R is of the form [a,b] which consists of all z € R 3 a <

xr <b.
Proposition 1.87. Let S € R be non-empty. Then
1. b=supS e R if and only if

(a) b is an upper bound of S.
(b) Ve>0,3dzeSsx>b—c.

2. a =infS € R if and only if

(a) a is a lower bound of S.

(b) Ve>0,dxeSarx<a+e.

Proof. “=" (a) is part of the definition of being a least upper bound.

(b) If M is an upper bound of S, then we must have M > b; thus b— ¢ is not an upper
bound of S. Therefore, 3x€ Ssx > b —c.

“<” First, we show that b is an upper bound for S. If not, there exists z € S such that

b<uz. Let e =x —s > 0. Then we do not have (i) since x € S but v < s +¢.

Next, we show that if M is an upper bound of S, then M > b. Assume the contrary.
Then 3 M such that M is an upper bound of S but M < b. Let ¢ = b— M, then there

iIsnoxeSsx>b—c. —« o

So far it is not clear that whether the least upper bound or the greatest lower bound
for a subset S < R exists or not. The following theorem provides the existence of the least

upper bound or the greatest lower bound of a set S provided that S has certain properties.

Theorem 1.88. In R, the following two properties hold:
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1. Least upper bound property (L.U.B.P.):

Let S be a non-empty set in R that has an upper bound (or is bounded from above),
then S has a least upper bound. (22 & &3 + % > Bl &+ B )

2. Greatest lower bound property:

Let S be a non-empty set in R that has a lower bound (or is bounded from below), then
S has a greatest lower bound. (27 % &3 T Fh > B3 &~ T R)

Proof. We only prove the least upper bound property since the proof of the greatest lower
bound property is similar.
Let & # 5 < R be given. Let x be the smallest integer such that zg is an upper bound

N . . . .
of S. Let vy = xg — 1—01, where Nj is the largest integer such that x, is still an upper bound

of S. We continue this process, and define x,, = x,,_1 — where N, is the largest integer

N,
0"’
such that z,, is an upper bound of S. (¥ ¢ } » x, i; LT BT R G o fih
JBA G S et B B 7R B Ek)

L AY
\
S /l'gl‘g x1

Note that in the process of constructing {z,}°_,, N, is always non-negative which im-
plies that {z,}>°; is decreasing. Moreover, any a € S is a lower bound of {z,}*_,. By
completeness of R, {x,}*; converges. Assume that x,, — = as n — 0.

Claim: x =sup S (< 1. x is an upper bound of S. 2. Ve > 0,3s€e S5 s>z —¢).

1. Assume the contrary that = is not an upper bound of S. Then 3s€ .S 3 s > x. Since

r, > rasn—0o, IN >053 |z, — x| < s—x for all n = N; thus
20 — s <k, < S n=N.
Therefore, x,, cannot be an upper bound of S for all n > N, a contradiction.

2. Assume the contrary that de¢ > 0 3 Vs e S, s < © —e. Choose k € N such that

¢ > —. Then
10%
N+ 1 1

- = —— > —€ >
Tr—1 10 Tk mk/:v E>S

: . . N . .
which suggests that N}, is not the largest integer such that x_; — ﬁ is still an upper
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bound, a contradiction. O
Proposition 1.89. Suppose that & # A< B < R. Then inf B <infA <sup A <supB.
Proof. We proceed as follows.

1. supA <supB: Let b =sup B, then Vx € B, v <b. Since A € B, then Vx € A, xz < b;
hence b is also an upper bound for A. Since sup A is the least upper bound for A and

b is an upper bound for A, then sup A < b =sup B.
2. It is similar to prove inf B < inf A.

3. It is trivially true that inf A < sup A. O

Theorem 1.90. Let (F,+,-, <) be an ordered field such that F has the least upper bound
property, then F is complete.

Proof. We would like to show that any increasing bounded sequence converges. Let {z,}> ,

be increasing and bounded above (by M).

r—¢ xT=supS
( ¢ |
I ) s X4 \ M
S =IN

Define S = {1, 29, -+ ,x,, - }. Then S is non-empty and has an upper bound; thus by
the assumption that F satisfies the least upper bound property, sup S = z exists.

1. x is an upper bound of S = x,, < x for all n e N.

2. By Proposition 1.87, Ve > 0, 3se€ S 3s > x —e. Note that s = x for some N € N.

Since {z,}*_, is increasing, xy < z,, < x for all n = N. Therefore, if n > N,
r—e<aIN<IT,<r<zxT+E€
which implies that |z, — x| <eif n > N. o

Example 1.91. Q is not complete. Let S = {21 = 3,25 = 3.1,23 = 3.14,--- }. Then S has
4 as an upper bound, but S has no least upper bound (in Q).

Remark 1.92. The two theorems above suggest that in an ordered field, completeness <

the least upper bound property.
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1.4 Cauchy Sequences

So far the only criteria that we learn (from previous sections) for the convergence of a
sequence in an ordered field is that a bounded monotone sequence in R converges. Are there
any other criteria for the convergence of a sequence in an ordered field? By Proposition 1.48,

we know that if a sequence {z,}r_, in an ordered field F converges, then
JlzeFaVe>0,#{neN|z, ¢ (z—c,x+¢)} <.
We would like to investigate if the following much weaker statement
Ve > 0,3 (a limit candidate) y € F 3 #{n e N|z, ¢ (y w¢,y+¢)} < ()

leads to the convergence of a sequence. Note that statement (x) is equivalent to statement

(xx) in the following

Definition 1.93. A sequence {z,}_; in an ordered field is said to be Cauchy if

Ve>0,3N >0 3|z, —2,,| < e whenever n,m > N . (%)
Remark 1.94. () iz B4citend o LBE T 837 - 1 &g & Pgtae 45 3] - 1B £ B &2

R B R E R AL RE S, T PR A HE BERA PR IR ORR
B A 3 e T {,)0 e (BIUE E i hams 0 PRAR BRI 25T AT B
R F2ZPN ), Jtiﬁia%;tm&ﬂ&?u&z 7 ,T}uz i€ Jeac e

Example 1.95. In'Q, z; = 3,25 = 3.1,z3 = 3.14,24 = 3.141,---. Then {z,}r, is a

Cauchy sequence, but is not convergent. Therefore, a Cauchy sequence may not converge.
Proposition 1.96. Fvery convergent sequence is Cauchy.

Proof. Let {xn}oo,l be a convergent sequence with limit . For any ¢ > 0, 4N > 0 >
|z, — x| < 5 if n > N. Then by triangle inequality, if n,m > N,

g g

|zp — | < |wp — 2]+ |2 — 20| < 5+ 3

thus {z,}>_, is Cauchy. o

Lemma 1.97. FEvery Cauchy sequence is bounded.
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Proof. Let {x,}>_, be Cauchy. 3N >0 >3 |z, — x| < 1 for all n,m > N. In particular,

|z, —xn| < 1if n > N or equivalently,
sy —l<zx,<zy+1 Vn>=N.
Let M = max {|z1], |22, ,|zn-1], |zn] + 1}. Then |z,| < M for all n € N. o

Definition 1.98. A sequence {y;}72, is called a subsequence (+ #7|) of a sequence
{z,}o_, if there exists an increasing function f : N — N such that y; = ;). In this case,

we often write f(j) = n; and y; = x,,,.

In other words, a subsequence is a sequence that can be derived from another sequence
by deleting some elements without changing the order of remaining elements. Let f : N — R
be a sequence an x,, = f(n). A subsequence {x,,}}2, of {z,};” is the image of an infinite

subset {nj,ng,- -} of N under the map f.

7 2oy p x T Aoy 1

TnyLn, Tny  Tp, T,
111211 112 11
Example 1.99. Let {z,}* , = {1,5,?,5,5,?..-}, and {y,}2, = {5,?,57?...}

Then {y,},—; can be viewed as a subsequence of {z,}_; by the relation y; = x, ; that
is, Y1 = X2, Yo = T3, Y3 = x5, Ys = Tg, and etc. The sequence {xnj};p:l is obtained by

deleting z; and x, (and maybe more) from the original sequence {z,}r,. However, if

{zn}2 | = {%, %1, 1,---}, then {z,}7 is not a subsequence of {z,}>_, (but only a subset)

of {x,}°, because the order is changed.

Theorem 1.100 (Bolzano-Weierstrass property). Fvery bounded sequence in R has a con-
vergent subsequence; that is, every bounded sequence in R has a subsequence that converges

to a limit in R.

Proof. Let {x,})%; be a bounded sequence satisfying |z,| < M for all n € N. Divide
[—M, M| into two intervals [—M, 0], [0, M], and denote one of the two intervals containing

infinitely many z, as [a1,bi); that is, #{n € N|z, € [a1,b]} = 0. Divide [ay, ] into two

ar +b
2

many x, as [as, by]. We continue this process, and obtain a sequence of intervals [ag, b] such

that #{n € N|z, € [ax, br]} = 0.

intervals [al,

b . C e .
}, [al ;— Ly bl}, and denote one of the two intervals containing infinitely
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Let x,, be an element belonging to [a1,b1]. Since #{n € N|z, € [a1,b]} = o0, we can
choose ny > ny such that x,, € [as, bs], and for the same reason we can choose ng > ny such

that x,, € [as, bs]. We continue this process and obtain z,, € [ax, bx] with ng > ng_;.

Since [ak, bg] 2 [aky1,bp41] for all k € N, we find that {ax};~; is increasing and {by}7,;
is decreasing. Moreover, a, < M, b, = —M. As a consequence, by the monotone sequence
property, a; converges to a and by converges to b.

On the other hand, we observe that b, — ay = 259\/[1 Then b —a = hm 2% = 0; thus
a = b. Since a;, < z,, < by, by Sandwich lemma l}I_I)IOlO Ty, =a=beR. o
Lemma 1.101. If a subsequence of a Cauchy sequence is convergent, then this Cauchy

sequence also CONVETGES.

Proof. Let {z,};_, be a Cauchy sequence with a convergent subsequence {x,,}7,. Assume
lim z,,, = x. Then Ve > 0,
J—
E|K>09|xnj—x|<% if j>= K, and
€

E|N>Oa|xn—xm\<§ if n,m=>=N.
Choose j = max{K, N}. Then n; > N; thus if n > N,

€
|:L'n_$|<|$n—$nj|—f-|gj‘nj_x|<§_’_§:€‘ ]

Theorem 1.102. Every Cauchy sequence in R is convergent.

Theorem 1.103. Suppose that F is an ordered field with Archimedean property and every

Cauchy sequence converges. Then F is complete.

Proof. Suppose the contrary that there is a bounded increasing sequence {z,}>_, that does

not converge to a limit in F. By assumption, {z,}?_; cannot be Cauchy; thus

e >03VYN>03dn,m=>= N 3 |z, —x,| =
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Let N =1,3ny >ny =213 |z, —xp,| = Let N =mny+1,3Ing >ng =>ng+ 13

|Tns — Tn,| = €. We continue this process and obtain a sequence {x,,}32, satisfying

}xn%_l — xn%‘ >e VkeNlN.

> € > >e  ZE€
Ln, TnyTny Tny Tng ﬂ \ Tng
xn(; CL‘m

Claim: {xnj};ozl is unbounded (thus a contradiction to the boundedness of {x,}%_,).

Proof of claim: Assume the contrary that there exists M € F such that z,, < M for all

j € N. Since z,,, = x1 + ke for all £ € N, we must have

r<M—n e
13

which violates the Archimedean property, a contradiction. =

Remark 1.104. In an ordered field with Archimedean property, Completeness < Cauchy

completeness (Every Cauchy sequence converges).

Example 1.105. z, € R, |z, — 1] < 271:1 VneN.

1
Claim: {x,}_, is Cauchy. Given € > 0, choose N >0 3 oN <& Then if N <n <m,

|Tn — Tm| < [Tn =Tnit] HTng1 — T4

< %= Tpga| + Totr — Togo| + |[Tog — T

< .

< |Tn — Topg1| | Tng1 — Togo| + -+ [ Tme1 — T
1 1 1

< 2n+1+2n+2+"'+2_m
1 1

< 2_n < 2_N <&,

thus {z,}> , is Cauchy in R. This implies that the sequence is convergent.

1.5 Cluster Points and Limit Inferior, Limit Superior

Definition 1.106. A point x is called a cluster point of a sequence {z,}r_, if

Ve>0, #{neN|z,e(z—c,ax+¢)} =w.
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Example 1.107. Let x,, = (—1)". Then 1 and —1 are the only two cluster points of {z,}>_,.

Example 1.108. Let x, = (—1)" + L
n

Claim: 1 and —1 are cluster points of {z,}>_,
Let € > 0 be given. We observe that

{neN‘xn (1—-e¢, 1+5}2{neN‘niseven,%<€};

thus #{n eN ! zne(l—¢g,1+¢) } c0. Similarly, —1 is a cluster point.

Claim: Y a # +1, a is not a cluster point of {z,}°_, (reasoning in the following proposition).
Proposition 1.109. Let {z,}* ; € R and x € R.

1. x is a cluster point of {x,}>_, if and only if ¥e >0, N >0, 3In>= N > |z, — x| <e.

2. x s a cluster point of {x,};_, if and only if there erists a subsequence {, }7, of

{z,}2 | converges to x.
3. &, > x as n — © if and only if every proper subsequence of {x,}>_, converges to x.

4. x, — x asn — © if and only if {x,}}_, is bounded and x is the only cluster point of

{xn}nzl :

5. &, — x as n — o if and only if every proper subsequence of {x,}w_, has a further

subsequence that converges to x.
Proof. We only prove 1-4,.and the proof of 5 is left as an exercise.

1. (=) Let £ >/0 be given. Since there are infinitely many n’'s with |z,, — x| < ¢, for any
fixed N € N, there are only finite number of the indices that are smaller than N. So

there must be some n > N with |z, — 2| <e.

(<) Let ¢ > 0 be given. Pick n; > 1 3 |z, — x| < &, then pick ny > ny +1
3 |Zn, — x| < &. We continue this process and obtain a subsequence {z,,;}7, satisfying

@, —a| <eforall jeN. Then {neN|z, € (x—e,x+e)} 2 {ni,ng, - }.

. . 1
2. (=) By 1, we can pick ny = 1 3 |z,,, — 2| <1 and pick ng = n; + 13 |z, — x <3

1
In general, we can pick ngy > ng_1 +1 3 |z, — 2| < e for all k > 2. Then

1 1
T <Tp <TH o VkeN.
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By Sandwich lemma, klim T, = T.
—00

(<) Ve>0,3J>0 3z, —z|<eifj>J. Then {neN|z, e (xz—c,z+¢e)} 2

{nJ7nJ—i—1a T }~

. (=) Let {z,,;}7, be a subsequence of a convergent sequence {z,},_; and lingo Ty = .
n—

Then Ve > 0,3N >053 |z, —x| <eforaln=>N. Sincen; - wasj—o,3J>0

3n; = N; thus |z,, — x| < € whenever j > J.

(<) Assume the contrary that x, > x as n — c0. Then
3e>03VN >0,3n>N 3|z, —z| > ¢

Let ny > 1 such that |z, — x| = €, and ny = ny + 1 such that |z,, — x| = €. In general,
we can chose 1y > ng_y such that |z, —z| > ¢ for all k = 2. The subsequence {z,, }72,

clearly does not converge to z, a contradiction.

. (=) This direction is a direct consequence of Proposition 1.48 and 1.59.

(<) Suppose that {z,},-1 is a bounded sequence in R and has z as the only cluster

point but {x,}*_; does not converge to x. Then
Je>0a#{neN|z, ¢ (z—e,x+e)} =w.

Write {n € N‘xn ¢ (x —ex + 5)} = {ni,ng9, -+ ,ng,---}. Then we find a subse-
quence {xnk}le lying outside (z — &,z +¢). Since {xnk}zo:l is bounded, the Bolzano-
Weierstrass property (Theorem 1.100) suggests that there exists a convergent subse-
quence {xnkj }?0:1 with limit y. Since Ty, ¢ (x—e,x+e),y¢[r—e,x+e]; thusy # x.
On the other hand, 2 suggests that y is a cluster point of {z,}* ,, a contradiction to

the assumption that x is the only cluster point of {z,}*_,. o

Definition 1.110. A sequence {z,}_, is said to diverge to infinity if VM > 0,3 N > 0

3 x, > M whenever n > N. It is said to diverge to negative infinity if {—x,}’";

diverge to infinity. We use lim z, = o0 or —oo to denote that {z,}>_, diverges to infinity

n—0o0

or negative infinity, and call o0 or —oo the limit of {x,} ;.

Definition 1.111. The extended real number system, denoted by R*, is the number

system R U {0, —o0}, where o0 and —o0 are two symbols satisfying —oo < = < oo for all
reR.
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Remark 1.112. 1. R* is not a field since o0 and —oo do not have multiplicative inverse.

2. The definition of the least upper bound of a set can be simplified as follows: Let
S < R* be a set (not necessary non-empty set). A number b € R* is said to be the

least upper bound of §' if

(a) bis an upper bound of S (that is, s < b for all s € S);
(b) If M € R* is an upper bound of S, then b < M.

No further discussion (such as S = J or S is not bounded above) has to be made.

The greatest lower bound can be defined in a similar fashion.

3. Any sets in R* has a least upper bound and a greatest lower bound in R*, even the

empty set and unbounded set.

4. Proposition 1.87 can be rephrased as follows: Let S & R*. Then b =sup S € R if and
only if

(a) bis an upper bound of S;
(b) Ve>0,3seSas>b—c¢.

Note that b € R is crucial since there is no s € R* such that s > o0 — ¢ = . The

greatest lower bound counterpart-can be made in a similar fashion.

5. In light of Proposition 1.109 and Definition 1.110, we can redefine cluster points of a
real sequence as follows: A number z € R* is said to be a cluster point of a sequence
{z,}2 , < R if there exists a subsequence {:an };il such that Jllrglo T,, = x. Note that
now we can talk about if co or —oo is a cluster points of a real sequence.

In the rest of the section, one is allowed to find the least upper bound and the greatest

lower bound of a subset in R*.
Definition 1.113. Let {z,}*_; be a sequence in R.

1. The limit superior of {x,}*_,, denoted by limsupz, or lim x,, is the infimum of
n—00 n—a0

the sequence { sup {xn ’ n = k}}:l.

2. The limit inferior of {x,}_;, denoted by liminfz, or lim x,, is the supremum of
n—aw n—o

the sequence {inf{xn ‘ n = k}}jl
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Remark 1.114. Let supx, denote the number sup {a:n}n = k} and 12% z,, denote the
n=k nz

number inf {a:n ‘ n = k’} Then the limit superior and the limit inferior can be written as

limsupz, = infsupz, and liminfz, = sup inf z,, .
n—00 k21 p>k n—o k=1 n=k

Remark 1.115. Let {x,})°; be a sequence in R, and y, = supz, and z; = inf x,. Then
n=k nz=

{yr}7, is a decreasing sequence, and {z;}; is an increasing sequence. Therefore, the limit
of {yx}72; and the limit of {z;};°; both “exist” in the sense of Definition 1.46 and 1.110. In
fact, the limit of {y;};2, is the infimum of {yx},, and the limit of {z;}}2, is the supremum

of {2}, In other words,

lim sup x, = infsupz, and lim inf x,, = supinf x, ;
k—o0 p>p k=1 p>pk k—oo n=k k>1 n=k

thus

limsupx, = lim supx,, and. liminfz, = lim infz, .
n—00 k—o0 p>p n—0o0 k—oo n=k

Example 1.116. Let {z,}>, ={1,0,—1,1,0,—1,1,0,—1,---}. Then

Y = supx, =1 = limsupzx, = 1.

n=k n—o0
2z, = infx, = —1 = liminfz, = —1.
n=k n—00

Example 1.117. Let z, = l Then
n

Yp = supx, = — = limsupx, = 0.
n=k k n—00

2z, = infx, =0 = liminfz, = 0.
n=k n— 00

0 if n is even

0 ifnis odd that is, {z,}’2; = {1,0,3,0,5,---}. Then

Example 1.118. Let z,, = {

Yr = supx, = o0 = limsup x, = .
n=k n—00

2z = infx, =0 = liminfx, = 0.

n=k n—00
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14—l if n =4k + 1,
n

—1—l if n =4k + 2,
Example 1.119. Let z,, = < n

1= itp—ak 3,

n

—1+l if n = 4k.
\ n

yp =supx, =1+ —, 2z, = infz,, = -1 — —. limsupx, = 1. liminfz, = —1.
n=>k O n=k n—00 n—0o0

Proposition 1.120. Let {z,}_, be a sequence in R. Then

limsup —z,, = —liminfz,, and liminf—z, = —limsupz, .
n—00 n—o n—on n—00

Proof. By the fact that sup —z,, = — inf x,,,

n=k nzk
limsup —z,, = lim sup(—z,) = lim ( — inf xn) = — lim inf z,, = —liminfz,, .
n—00 k—00 n>k k—o0 n=k k—o0 n=k n—00
The second identity holds simply by replacing x,, by —x,, in the first identity. =

Proposition 1.121. Let {z,}_; be a sequence in R. Then

1. a =liminfz, € R if and only if
n—0o0
(a) Ve >0, 3N > 0 such that a — ¢ < x,, whenever n = N that is,

Ve>0, #{neN|z, <a—c} <,

and
(b) Ve >0 and N >0, 3n = N such that x, < a+ ¢; that is,
Ve>0, #{neN|z, <a+e} =m.
2. b=Ilim Sololp xn € R if and only if
(a) Ve >0, 3N > 0 such that b+ € > x,, whenever n = N; that is,

Ve>0, #{neN|z, >b+¢e} <o,

and
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(b) Ve >0 and N >0, 3n = N such that x, > b —¢; that is,

Ve>0, #{neN|z,>b—¢c} =w.

Proof. We only prove 1 since the proof of 2 is similar. Let 2z, = in£ T, and
nz

sup zp = lim z, = a € R*.

We show that a € R if and only if 1-(a) and 1-(b). Nevertheless, by Proposition 1.87 (or
Remark 1.112), a € R if and only if

(i) a is an upper bound of {z;}{ ;.
(i) Ve>0,3INeNszy >a —e.

We justify the equivalency between 1-(a) and (ii), as well as the equivalency between 1-(b)

and (i) as follows:

(i) a is an upper bound of {zx}2; < a = 2z for allk e N & Ve > 0,a + ¢ > 2, for all

keN<:>V€>0andk:eN,a+€>ir>1£:1:n@V5>OandkeN,a—l—gisnotalower

bound of {z,};, < Ve>0andkeN,dn>ksa+ec >z, < 1-(b).

(i) Ve >0, INeN>szy >a—-e<=Ve>0,IN >0> infz, >a—¢c < Ve > 0,

n=N
3N > 0 such that a — € is @ lower bound of {zy,zNy1, -} < Ve >0, IN > 0 such
that a —e <z, foralln =N < Ve >0, 3N >0 such that a —e < x, forall n > N
< 1-(a). =
Remark 1.122. By Proposition 1.121, if @ = liminfz, € R, then

n—o0

Ve>0,#{neN|z,e(a—e,a+e)} =

which suggests that a is a cluster point of {z,}>_ ;. Moreover, 1-(a) of Proposition 1.121
implies that no other cluster points can be smaller than a. In other words, if ¢ = liminfx,, €
n—o0

R, then a is the smallest cluster point of {z,}°_,. Similarly, b is the largest cluster point of

{32, if b=limsupzx, € R.
n—0o0

Theorem 1.123. Let {x,}r_, be a sequence in R. Then

1. liminfx, <limsupz,.
n—aw n—0o0
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[\]

Af {x, }2, is bounded above by M, then limsupz, < M.

n—0o0

3. If {x,}, is bounded below by m, then liminfx, > m.
n—oo

4. limsup x,, = o0 if and only if {x,}*_, is not bounded above.
n—ao0

5. liminfz, = —o0 if and only if {z,}>_, is not bounded below.
n—00

6. If x is a cluster point of {x,}>_, then liminfx, < x < limsup x,,.
n—00 n—00

7. If a = liminfx, is finite, then a is a cluster point.
o0

n—

8. If b =limsup z,, is finite, then b is a cluster point.

n—0o0
9. If {z,}>, converges to x in R if and only if liminfz, =limsupzx, =z € R.
n—ao n—0o0
Proof. Left as an exercise. =

Remark 1.124. Using the definition of cluster points of a sequence in Remark 1.112, Re-
mark 1.122 and Theorem 1.123 together imply that the limit superior/inferior of a sequence

is the largest/smallest cluster point of that sequence.

Example 1.125. Let S = Qn[0,1]. Then S is countable since it is a subset of a countable
set Q. Therefore, 3 f : N%S or equivalently S = {q1,¢2, "+ ,qn, - }. The collection of
all cluster points of {g,}r_, is [0, 1] since Q n [0, 1] is dense in [0, 1].

1.6 Euclidean Spaces and Vector Spaces

Definition 1.126. Euclidean n-space, denoted by R", consists of all ordered n-tuples of

real numbers. Symbolically,
R" = {x’x: (x1, T2, Tp), T; GR}.

Elements of R™ are generally denoted by single letters that stand for n-tuples such as

x = (x1,%2, - ,T,), and speak of x as a “point” in R™.

Definition 1.127. A real vector space V is a set of elements called vectors, with given
operations of vector addition + : V x ¥V — V and scalar multiplication - : R x V — V) such
that
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1. v+w=w+wv for all v,we V.
2. (v+w)+u=v+ (u+w) for all u,v,we V.
3. 30, the zero vector, v+ 0 = v for all v € V.
4. VoeV, dJweV sv+w=0.
5. M-(v+w)=A-v+ A wforall \e R and v,we V.
6. A+p)-v=Av+p-vforall \,ueRand ve.
7. A-p)-v=A-(u-v) forall \,pe R and v e V.
8. 1-v=wforallve).
Example 1.128. Let the vector addition and scalar multiplication on R™ be defined by
r+y= (@ +y, o tyn) @ =(r e an),y = (W, yn)

and
Ax=Axy, -, Azy) i ANeR z=(r1, - ,x,).

Then R” is a real vector space.
Example 1.129. Let M = {n x m matrix with entries in R}. Define
A+ B=a; +bijl, AN-A=[X-a;y if NeR, A=]a;],B=][b;]le M.

Then M is a real vector space.
Definition 1.130. W is called a subspace of a real vector space V if

1. W is a subset of V.

2. (W, +,-), with vector addition and scalar multiplication in V), is a real vector space.
Example 1.131. V =R3 W =R? x {0} = {(z,y,0)|z,y € R}. W is a subspace of V.

Lemma 1.132. If W is a subset of a real vector space V, then W is a subspace if and only
X v+p-weW, Y\ pueR v,weW.
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Remark 1.133. “n” is called the dimension of R™.

There are n linearly independent vectors e; = (1,0,---,0),e5 = (0,1,0,---,0),--- , e, =

(0,0,---,0,1), but if v, v, -+ ,v,41 are (n+ 1) vectors in R™, I\, -+ A\pp1 € R, 3 \ug +
A A 1Unr1 =0, (Mg, Apgr) # (0,4, 0).

Definition 1.134. A subset H < R" is called a hyperplane if H is (n — 1)-dimensional
subspace of R". An affine hyperplaneis a set 1+ H = {x+y |y € H} for some hyperplane
H.

1.7 Normed Vector Spaces, Inner Product Spaces and
Metric Spaces

Definition 1.135. A nomed vector space (V.| - |) is a real vector space V associated
with a function || - | : V — R such that

(a) [|z] =0 for all z € V.

(b) |z| = 0 if and only if x = 0.

() [N z| =\ |z for all A e R and x € V.
(d) [z +yl < lz| + lly| for all z,y€ V.

A function | - | satisfies (a)-(d) is called a morm on V.

n

Example 1.136. Let V = R", and |z|; = <Zx?>§ if v = (1,29, - ,2,). Then |- |2 is
i=1

a norm, called 2-norm, on R". It suffices to show that (d) in Definition 1.135 holds. Let
T = (.1'1,1'2, T 7xn) and Yy = (y17y27 T 7yn) Then

(= +yl)? Z Tt y)? = (37 2wy ) = D al + Y R+ 2w
i=1 i=1 i=1 i=1 i=1
< [l + |yl3 + 2|zl2lyl.  (By Cauchy’s inequality)
= (l=l2+ yl2)*

thus |z + yl2 < ||lz]2 + |yl
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Example 1.137. Let V = R", and define

n 1
(Z]xi|p>p if 1 <p< oo,
|z, = i=1 for all x = (21,29, -+ ,x,) € R™.
max {|z1], -, |z,|} if p= o0,

Then || - |, is a norm, called p-norm, on R". Property (d) in Definition 1.135; that is,

lz+yl, < =], + |yl,, is left as an exercise.

Example 1.138. Let M, ., = {n x m matrix with entries in R}, and we remind the read-

ers that if A e M, ,, then A : { R™ =R . Define
r — Az

A
4], = sup |Aa], = sup 122l
Jzlp=1 w20 [z,

VAe Mym;

| Ay

(g™

that is, |A|, is the least upper bound of the set {
| Az,

[E4

r # 0,z € Rm}. Therefore,

< ||A|, Yz # 0; thus

|Az], < |Alplzlp VzeR™.
Consider the case p = 1,p = 2 and p = oo respectively.

1. p=2: Let (-, )gs denote the inner product in Euclidean space R*. Then
|Az|5 = (Az, Ax)pn = (z, AT Az)gm = (v, PAPT2)gm = (P 2, AP 2)gn

in which we use the fact that AT A is symmetric; thus diagonalizable by an orthonormal
matrix P (that.is, ATA = PAPT, PP = I, A is a diagonal matrix). Therefore,

sup HAxH% = sup (PTx,APTx) = sup (y,Ay) (Lety= P'z, then lylo = 1)

z]2=1 [z]2=1 lyll2=1
= sup (Ayf + Aays + -+ Aay)
lyll2=1
= max {)\1, e ,)\n} = maximum eigenvalue of AT A

which implies that |A[, = 4/maximum eigenvalue of ATA.

m m m
2. p=00 |[Alw = sup [Ax|e = maX{Z Jagsl, ) laggl, -+ |anj!}-
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Reason: Let © = (1,22, -+ ,2,)" and A = [a;;] . Then

a1ry + -+ AmTm

A21T1 + + + Qo Ty
Ax =

Ap1T7 + -+ ApmTm

Assume max Z lai;| = Z lay;| for some 1 < k < n. Let

7=1

x = (sgn(ak1),sgn(ak2), -, sgn(ar,)) -

Then |z]l, = 1, and |Az|e = > |ak,|.

j=1
On the other hand, if ||z|, = 1, then

m
an1 + iy + -+ - Qi T | < Z\awl maX{Z\alj\Z\azj\ Zlanj!};
j=1

thus ||All, = max Z lay,l, Z lag;l, o 2] \anj|}. In other words, ||A] is the largest
J=1 J=1 J=l1
sum of the absolute value of row entries.

3. p=1: |A]; = max {2|6L11| Z\az2| Z|azm|}

=1

Example 1.139. Let % be the collection of all continuous real-valued functions on the
interval [0, 1]; that is,

¢ ={f:[0,1] > R| f is continuous on [0, 1]} .

For each f € €, we define

£l = Ul Fda]” it <p <o,

max |f(z)] ifp=o0.

z€[0,1]
The function | - |, : € — R is a norm on ¢ (Minkowski’s inequality).

Definition 1.140. An inner product space (V, &, >) is a real vector space V associated
with a function (-,-) : V x V — R such that
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(1) {x,2) =0, Ve V.
(2) (x,x) =0 if and only if z = 0.
(3) {x,y+ 2) ={x,yy+{x,z) for all x,y,z€ V.
(4) Oz, y) = Xa,y) forall A\ e R and z,y € V.
(5) {x,yy =y, x) for all z,y e V.
A symmetric bilinear form (-, -) satisfies (1)-(5) is called an énner product on V.

Example 1.141. Let (-, ) : R” x R" — R be defined by

(@, y) =D wy; Vo= (1, an)y= (Y Yn)-
=1

Then (+,-) is an inner product on R™.

Example 1.142. Let € be defined as in Example 1.139. Define

{f.9)= L f(z)g(z)dz .

Then {-,-) : € x € — R satisfies all the properties that an inner product has. Note that
=111

Proposition 1.143. If (-, -».is an inner product on a real vector space V. Then
L Qv+ pw, uy = Mo, uy + plw, uy for all u,v,w e V.
2. {u, A+ pw)y = Nu, v) + plu, w) for all u,v,w e V.
3. (v, w)y = Mv,w) for all v,we V.
4. {0,w)y = (w,0) =0 for allwe V.

Theorem 1.144. The inner product {-,-) on a real vector space induces a norm || - | given
by |x|| = A/{z,z) and satisfies the Cauchy-Schwarz inequality

Ko, < o -yl Va,yeV. (1.7.1)
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Proof. First, we observe that for all x,y € V fixed, we must have
0< Oz +y, Az +y) = [2PA% + 2@, A + [y)?

for all A € R. Therefore,
{a,y)® — || |yl* <0

which implies (1.7.1).
It should be clear that (a)-(c) in Definition 1.135 are satisfied. To show that | - || satisfies
the triangle inequality, by (1.7.1) we find that

2
(Il + Il)? = 2+ 1P = ol + 2Nellyl + Iyl? — G+ 0+
= 2(|lz[|y] — ¢z, 9)) = 0;

thus the triangle inequality is also valid. =

Corollary 1.145. Let f,g:[0,1] — R be continuous.. Then

<(J 1 |f(x)|2d:r)é (] 1 |g<x>|2dx)é |

Definition 1.146. A metric space (M,d) is a set M associated with a function d :
M x M — R such that

) ' f(e)g(a)da

(i) d(z,y) = 0 for all x,y e M:
(ii) d(z,y) =0 ifand only if =z = y.
(iii) d(z,y) = d(y,z) for all z,y € M.
(iv) d(z,y) < d(z,z)+d(z,y) for all z,y,z € M.
A function d satisfies (i)-(iv) is called a metric on M.

Example 1.147 (Discrete metric). Let M be a non-empty set, and dy : M x M — R be
defined by

0 ifz=uy,

Then dj is a metric on M, and we call dy the discrete metric.
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Example 1.148 (Bounded metric). Let (M, d) be a metric space. Define p: M x M — R
by
d(z,y)

P(ﬂf,y):Hd—(x,y)-

Then p is also a metric on M.

Proposition 1.149. If (V,| - |) is a normed vector space, then the function d:V xV — R
defined by d(z,y) = || — y| is a metric on V. In other words, (V,d) is a metric space, and

we usually write (V, | -||) as the metric space.

1.8 Exercises

§1.1 Ordered Fields and the Number Systems

Problem 1.1. Let (F,+, -, <) be an ordered field, and a,b,¢,d € F.
1. Show that if a < band ¢ < d, then a +¢c < b+ d.
2. Show that if a < b and ¢ < d, then a+c < b+ d.

Problem 1.2. Let S be a non-empty subset of N and satisfy that
1. 1,2€ 8.
2. ifmand m+1€ S, thenm+2€S.

Show that S = N.

§1.2 Completeness and the Real Number System

Problem 1.3. Let F be an ordered field with Archimedean property, and z,y € F. Show
that + <y ifand only if Ve > 0, x <y + €.

Problem 1.4. Fix y > 1. Complete the following.
1. Define y'/™ properly. (Hint: see how we define \/y in class).
2. Show that y™ — 1 > n(y — 1) for all n € N\{1}; thus y — 1 > n(y*/™ — 1).

3. Ift>1andn > (y—1)/(t — 1), then y*/™ < ¢t.
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4. Show that nli_r}roloyl/” =1lasn — .
Problem 1.5. Complete the following.
1. Let z > 0 be a real number such that for any € > 0, x < . Show that x = 0.
2. Let S = (0,1). Show that for each € > 0 there exists an = € S such that z < .
§1.3 Least Upper Bounds and Greatest Lower Bounds

Problem 1.6. Let A be a non-empty set of R which is bounded below: Define the set —A
by —A ={ -z € R|z e A}. Prove that

inf A = —sup(—A).

Problem 1.7. Let A, B be non-empty subset of R. Define A+ B ={zx+y|xe A, ye B}
Justify if the following statements are true or false by providing a proof for the true statement

and giving a counter-example for the false ones.
1. sup(A+ B) =sup A+ sup B.
2. inf(A+ B) = inf A +inf B.
3. sup(A n B) < min{sup A, sup B}.
4. sup(A n B) = min{sup A, sup B}.
5. sup(A U B) = max{sup A, sup B}.
6. sup(A u B) = max{sup A, sup B}.
Problem 1.8. Let S < R be bounded below and non-empty. Show that
inf S = sup {x eR \ x is a lower bound for S} .

Problem 1.9. Let A, B be two sets, and f : A x B — R be a function. Show that

sup  f(z,y) =sup (sup f(z,y)) = sup (sup f(z,y)) .
(z,y)eAxB yeB xzeA €A yeB

Problem 1.10. Fix b > 1.

1. Show the law of exponents holds (for rational exponents); that is, show that
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(a) if r,s in Q, then b = b" - b°.
(b) if r;s in Q, then ™ = (b")".
2. For z € R, let B(z) = {¢' € R|t € Q,t < z}. Show that 0" = sup B(r) if r € Q.

Therefore, it makes sense to define b* = sup B(z) for z € R. Show that the law of

exponents (for real exponents) are also valid.

3. Let y > 0 be given. Using 4 of Problem 1.4 to show that if u,v € R such that 0" <y
and b¥ > y, then b**'/™ <y and b*~'/" > y for sufficiently large n.

4. Let y > 0 be given, and A be the set of all w such that b < y. Show that z = sup A
satisfies b* = y.

5. Prove that if 1, x9 are two real numbers satisfying b** = 6%2, then z; = x».

The number x satisfying b* = y is called the logarithm of y to the base b, and is denoted by
log, y.
§1.4 Cauchy Sequences

Problem 1.11. Let a € R. Define a,, through the iterated relation
an:ai_l—an_lJrl Vn>1la =a.

For what a is the sequence {a,}_; (1) monotone? (2) bounded? (3) convergent? Compute

the limit in the case of convergence.

Problem 1.12. Let F be an ordered field, and {z,}>, be a sequence in F. Show that
{z,}*_, is Cauchy if and only if

Ve>0,3ye Fo#{neN|z, ¢ (y—c,y+e)} <.

k
Problem 1.13. Let {a,};>, and {z,,})°_; be two sequences in R, and define S, = Y] a, (so

n=1
{Sk}y2, is also a sequence). Suppose that |z, — z,41| < a, for all n € N. Show that {z,}7,

converges if {Si}, converges.

Problem 1.14. Let f : R — R be a function so that |f(x) — f(y)| < \x;y\ Pick an
arbitrary z; € R, and define x;; = f(xy) for all k € N. Show that {z,}*_, is a Cauchy

sequence.
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§

Problem 1.15. Suppose that {z,}>* ; and {y,}>, are two Cauchy sequence in R. Show

that the sequence {|z,, — yn|}f:1 converges.
§1.5 Cluster Points and Limit Inferior, Limit Superior

Problem 1.16. Let {z,}>_, and {y,}_, be sequences in R. Prove the following inequalities:

liminfz, + liminfy, <liminf(z, + y,) < liminfz, + limsup y,
n—00 n—oo n—00 n—00 00

< lim sup(x,, + y,) < limsup z,, + limsup y,, ;
n—0o0 n—0o0 n—00

<hgi£f‘xn|)(hgglf|yn|) < ligioglf|xnyn| < (hgio?f‘x”D(hgl_)S;lp‘ynD

< limsup |2,y < (limsup |z,]) (limsup [y,|) -
n—00 n—o0 n—oo

Give examples showing that the equalities are generally not true.

Problem 1.17. Prove that

lim inf 2] < liminf /|z,| < limsup {/|z,| < limsup [l
n—aoo

n—oo ’xn‘ n—o n—00 |$n’ .
Give examples to show that the equalities are not true in general. Is it true that lim {/|z,|
n—00

exists implies that lim 1] also exists?

n—o0 |$n‘

Problem 1.18. Find the following limits.

1 1
lim —V/n!, lim —/(n+ 1)(n+2)---(2n).

n—0 1 n—ao N

Problem 1.19. Given the following sets consisting of elements of some sequence of real

numbers. Find their sup and inf, and also the limsup and liminf of the sequence.
1. {Cosm‘m:O,l,Q,---}.
2. {g/|sinm||m=1,2,---}.
1, . mnm
3. {(1—|—E)sm7‘m: 1,2,---}.
Hint: For 1, first show that for all irrational «, the set

S ={ze[0,1]|z = ka (mod 1) for some k € N}
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is dense in [0, 1]; that is, for all y € [0, 1] and € > 0, there exists x € SN (y — e,y + ). Then

1
choose o = o to conclude that
T

T = {z€0,2n] |z =k (mod 2r) for some k € N}

is dense in [0, 27]. To prove that S is dense in [0, 1], you might want to consider the following
set
Sy ={z €[0,1]|z = lo (mod 1) for some 1 < ¢ < k + 1}

o . . 1
Note that there must be two points in S, whose distance is less than T What happened to
(the multiples of) the difference of these two points?

§1.6 Euclidean Spaces and Vector Spaces

Problem 1.20. Show that the p-norm on Euclidean space R" given by

n

1
<Z|xi|p)p if 1< p<oo,

Hpr = i=1 T = (xla T 7xn)

max{|x1|,---,|xn\} if p=o0,
is indeed a norm.
§1.7 Normed Vector Spaces, Inner Product Spaces and Metric Spaces

Problem 1.21. Let M,,.,, be the collection of all n x m matrices with real entries as in
Example 1.138. Define a function | - || : M — R by

Ax 2
4] = sup 112
erm |22
x#0
here we recall that | - | is the 2-norm on Euclidean space given by

k

1/2
ol = (Ya?) it @= (o) e RE.

i=1
Show that

1. |A| = sup |Az]y = inf {M € R|[|Az], < M|z[, ¥z  R™}.
zeR™

[zll2=1

2. |Az|s < |A]|z]2 for all z e R™.
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3. || - | defines a norm on M,y .

4.

Let {Ar}, S Myuym. Show that klim |Ax| = 0 if and only if each entry of A con-
—00

verges to 0. In other words, by writing A, = [a@

7 |1 <izn1<jem: Show that lim | Ay =0
if and only if hm a( =0forall 1 <i<m,1<j<n. Inparticular, A, — A in the
sense that HA,;€ - AH — 0 as k — oo if and only if the (i, j)-th entry of Ay converges to

(7,7)-th entry of Aforalll <i<mnand1<j<m.

Problem 1.22. Let (V,+,-,{:,-)) be an inner product space, and define |v| = (v, v)'/? for
all v € V. Show that

1.

2l|z[* + 2|y[* = |z + y|* + | — y[* (parallelogram law).

2. |z +ylle =yl <=+ lyl*.

3. 4z, y) = |z +y|* — |= — y|* (polarization identity).

Can the p-norm | - ||, on R™ be induced from any inner product (on R") for p # 27

Problem 1.23. Let (X, |x), (Y;| - |v),(Z,]| | z) be three normed vector spaces such
that X, Y < Z and

lz]z < Clzlx VeeX T Jand  ylz <Clyly VyeY.

Define

and

E={aeZ||a|z=max{|a]x, aly} < oo}

F={aeZl|alr= inf (Jz]x+[yly) <o}

zeX,yeY

Show that (E,| - ||g) and (F,| - |r) are also normed vector spaces, and E = X nY. The
space F'is usually denoted by X + Y.

Problem 1.24 (True or False). Determine whether the following statements are true or

false. If it is true, prove it. Otherwise, give a counter-example.

1. Given two sets A and B. Then A x B is countable if and only if A and B are countable.

2. Let {x,})2; < R be a sequence and limsup x,, = x. Then sup z,, = z.

n—00 neN
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. Let {z,}°_; < R be a sequence such that |z, — x,.1| <

. The set {(:U, y) € R? ! r+ye Q} is countable.

. Then {x,}*_; converges in

S

R.

0

. If a bounded sequence {z,}> ; in R satisfies x, 1 — €, < z, for n € N, where > ¢,

n=1

k

is an absolute convergent series; that is, the partial sum Y] |e,| converges as k — o,
n=1

then {z,}>_, converges.

. Let m : N — N be one-to-one and onto (such map 7 is called a rearrangement), and

{z,}X_, is a convergent sequence. Then {mﬂ(n)}w

is also convergent.
n=1

. Let A < R satisfy

sup { Z |b] ‘ B is a non-empty finite subsets of A} <.
beB

Then {z € A |z # 0} is countable.

00

. Any rearrangement of the series > x,, diverges if and only if x,, does not tend to 0 as

n=1
n — 0.

- If {x,}2, is a sequence of distinet-non-zero real numbers such that lim z,, = 0, then

n—0o0
the set {mxn ‘ me Z,ne N} is dense in R.



