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Chapter 1

The Real Line and Euclidean Space

1.1 Ordered Fields and the Number Systems
1.1.1 Fields and partial orders

Definition 1.1. A set F is said to be a field (體) if there are two operations + and ¨ such
that

1. x+ y P F , x ¨ y P F if x, y P F . (封閉性)

2. x+ y = y + x for all x, y P F . (commutativity, 加法的交換性)

3. (x+ y) + z = x+ (y + z) for all x, y, z P F . (associativity, 加法的結合性)

4. There exists 0 P F , called 加法單位元素, such that x + 0 = x for all x P F . (the
existence of zero)

5. For every x P F , there exists y P F (usually y is denoted by ´x and is called x 的加

法反元素) such that x+ y = 0. One writes x ´ y ” x+ (´y).

6. x ¨ y = y ¨ x for all x, y P F . (乘法的交換性)

7. (x ¨ y) ¨ z = x ¨ (y ¨ z) for all x, y, z P F . (乘法的結合性)

8. There exists 1 P F , called 乘法單位元素, such that x ¨ 1 = x for all x P F . (the
existence of unity)

9. For every x P F , x ‰ 0, there exists y P F (usually y is denoted by x´1 and is called
x 的乘法反元素) such that x ¨ y = 1. One writes x ¨ y ” x ¨ x´1 = 1.
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2 CHAPTER 1. The Real Line and Euclidean Space

10. x ¨ (y + z) = x ¨ y + x ¨ z for all x, y, z P F . (distributive law, 分配律)

11. 0 ‰ 1.

Remark 1.2. Let x and y be both multiplicative inverse（乘法反元素）of a number a in
(F ,+, ¨). Then

x ¨ a = 1 ñ (x ¨ a) ¨ y = 1 ¨ y = y ñ x ¨ 1 = x ¨ (a ¨ y) = y ;

thus x = y. In other words, the multiplicative inverse of a number is unique.

Remark 1.3. A set F satisfying properties 1 to 10 with 0 = 1 consists of only one member:
By distributive law, x¨0 = x¨(0+0) = x¨0+x¨0; thus ´(x¨0)+(x¨0) = ´(x¨0)+(x¨0)+(x¨0)

which implies that x ¨ 0 = 0. Therefore, if 0 = 1, then x = x ¨ 1 = x ¨ 0 = 0 for all x P F .
Hence, the set F consists only one element 0.

Remark 1.4. If x P F , then
(
(1 + (´1)

)
¨ x = 0 which implies that x + (´1) ¨ x = 0.

Therefore, (´1) ¨ x = ´x+ x+ (´1) ¨ x = ´x+ 0 = ´x.

Example 1.5. Let Q =
!

q

p

ˇ

ˇ

ˇ
p ‰ 0, p, q P Z : integers

)

. Then Q is a field. (Check all the
properties from 1 to 11).

Example 1.6. Let N =
␣

n P Z
ˇ

ˇn ą 0
(

. Then N is not a field because there is no zero.

Example 1.7. Let F = ta, b, cu with the operations + and ¨ defined by

+ a b c
a a b c
b b c a
c c a b

¨ a b c
a a a a
b a b c
c a c b

.

Then F is a field because of the following: Properties 1, 2, 3, 6, 7 are obvious.
Property 4: D “0” Q x+ “0” = x for all x P F . In fact, “0” = a.
Property 5: @x P F , D y P F Q x+ y = 0, here b = ´c, c = ´b.
Property 8: D “1” Q x ¨ “1” = x for all x P F . In fact, “1” = b (so Property 11 holds since
a ‰ b).
Property 9: @x ‰ 0, P F , D z P F Q x ¨ z = 1, here z = x.
The validity of Property 10 is left as an exercise.
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§1.1 Ordered Fields and the Number Systems 3

Example 1.8. Let (F ,+, ¨) be a field. Then (x ´ y)(x + y) = x2 ´ y2 for all x, y P F . In
fact,

(x ´ y)(x+ y) = (x ´ y) ¨ x+ (x ´ y) ¨ y (by 分配律)
= x ¨ (x ´ y) + y ¨ (x ´ y) (by 乘法交換律)
= x ¨ x+ x ¨ (´y) + y ¨ x+ y ¨ (´y) (by 分配律)
= x2 ´ x ¨ y + x ¨ y ´ y2 (by Remark 1.4 and 乘法交換律)
= x2 + 0 ´ y2 (by Property 5)
= x2 ´ y2 (by Property 4).

Definition 1.9. A partial order over a set P is a binary relation ď which is reflexive,
anti-symmetric and transitive (滿足遞移律), in the sense that

1. x ď x for all x P P (reflexivity).

2. x ď y and y ď x ñ x = y (anti-symmetry).

3. x ď y and y ď z ñ x ď z (transitivity).

A set with a partial order is called a partially ordered set.

Example 1.10. Let S be a given set, and 2S be the power set of S; that is,

P = 2S =
␣

A
ˇ

ˇA Ď S
(

= the collection of all subsets of S .

We define ď as Ě. Then

1. A Ě A (reflexivity).

2. A Ě B and B Ě A ñ A = B (anti-symmetry).

3. A Ě B and B Ě C ñ A Ě C (transitivity).

Hence, Ě is a partial order over 2S (or equivalently, (2S,Ě) is a partially ordered set).
Similarly, Ď on 2S is also a partial order.

Definition 1.11. Let (P,ď) be a partially ordered set. Two elements x, y P P are said to
be comparable if either x ď y or y ď x.

Definition 1.12. A partial order under which every pair of elements is comparable is called
a total order or linear order.
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Definition 1.13. An ordered field is a totally ordered field (F ,+, ¨,ď) satisfying that

1. If x ď y, then x+ z ď y + z for all z P F (compatibility of ď and +).

2. If 0 ď x and 0 ď y, then 0 ď x ¨ y (compatibility of ď and ¨).

Example 1.14. (Q,+, ¨,ě) is a totally ordered field, but is not an ordered field (since
Property 2 in Definition 1.13 is violated). On the other hand, (Q,+, ¨,ď) is an ordered
field.

From now on, the total order ď of an ordered field will be denoted by ď.

Definition 1.15. In an ordered field (F ,+, ¨,ď), the binary relations ă, ě and ą are
defined by:

1. x ă y if x ď y and x ‰ y.

2. x ě y if y ď x.

3. x ą y if y ă x.

Adopting the definition above, it is not immediately clear that x ď y ô x ą y. However,
this is indeed the case, and to be more precise we have the following

Proposition 1.16. (Law of Trichotomy, 三一律) If x and y are elements of an ordered
field (F ,+, ¨,ď), then exactly one of the relations x ă y, x = y or y ă x holds.

Proof. Since F is a totally ordered field, x and y are comparable. Therefore, either x ď y

or y ď x. Assume that x ď y.

1. If x = y, then x ă y and x ą y.

2. If x ‰ y, then x ă y. If it also holds that x ą y, then x ě y; thus by the property
of anit-symmetry of an order, we must have x = y, a contradiction. Therefore, it can
only be that x ă y.

The proof for the case y ď x is similar, and is left as an exercise. ˝

Proposition 1.17. Let (F ,+, ¨,ď) be an ordered field, and a, b, x, y, z P F .

1. If a+ x = a, then x = 0.
If a ¨ x = a and a ‰ 0, then x = 1.
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§1.1 Ordered Fields and the Number Systems 5

2. If a+ x = 0, then x = ´a.
If a ¨ x = 1 and a ‰ 0, then x = a´1.

3. If x ¨ y = 0, then x = 0 or y = 0.

4. If x ď y ă z or x ă y ď z, then x ă z (the transitivity of ă).

5. If a ă b, then a+ x ă b+ x (the compatibility of ă and +).
If 0 ă a and 0 ă b, then 0 ă a ¨ b (the compatibility of ă and ¨).

6. If a+ x = b+ x, then a = b.
If a+ x ď (ă) b+ x, then a ď (ă) b.
If a ¨ x = b ¨ x and x ‰ 0, then a = b.
If a ¨ x ď (ă) b ¨ x and x ą 0, then a ď (ă) b.

7. 0 ¨ x = 0.

8. ´(´x) = x.

9. ´x = (´1) ¨ x.

10. If x ‰ 0, then x´1 ‰ 0 and (x´1)´1 = x.

11. If x ‰ 0 and y ‰ 0, then x ¨ y ‰ 0 and (x ¨ y)´1 = x´1 ¨ y´1.

12. If x ď (ă) y and 0 ď (ă) z, then x ¨ z ď (ă) y ¨ z.
If x ď (ă) y and 0 ě (ą) z, then x ¨ z ě (ą) y ¨ z.

13. If x ď (ă) 0 and y ď (ă) 0, then x ¨ y ě (ą) 0.
If x ď (ă) 0 and y ě (ą) 0, then x ¨ y ď (ă) 0.

14. 0 ă 1 and ´1 ă 0.

15. x ¨ x ” x2 ě 0.

16. If x ą 0, then x´1 ą 0. If x ă 0, then x´1 ă 0.

Proof. 1. (´a) + a+ x = (´a) + a = 0 ñ x = 0.
(a´1) ¨ a ¨ x = (a´1) ¨ a = 1 ñ x = 1.
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2. (´a) + a+ x = (´a) + 0 = ´a ñ x = ´a.
(a´1) ¨ a ¨ x = (a´1) ¨ 1 = a´1 ñ x = a´1.

3. Assume that x ‰ 0, then x´1 ¨ x ¨ y = x´1 ¨ 0 = 0 ñ y = 0.
Assume that y ‰ 0, then x ¨ y ¨ y´1 = 0 ¨ y´1 = 0 ñ x = 0.

4 and 5 are Left as an exercise.

6. a+ 0 = a+ x+ (´x) = b+ x+ (´x) = b+ 0 ñ a = b.
a+ 0 = a+ x+ (´x) ď b+ x+ (´x) = b+ 0 ñ a ď b (compatibility of ď and +).
a ¨ x ¨ x´1 = b ¨ x ¨ x´1 ñ a = b.
Suppose the contrary that b ă a. Then 0 = b+ (´b) ď a+ (´b). Since x ą 0, x ě 0;
thus

0 ď
(
a+ (´b)

)
¨ x = a ¨ x+ (´b) ¨ x .

As a consequence, b ¨ x = 0+ b ¨ x ď a ¨ x+ (´b) ¨ x+ b ¨ x = a ¨ x. By assumption, we
must have a ¨ x = b ¨ x or (a´ b) ¨ x = 0. Using 3, x = 0 (since a ‰ b), a contradiction.

7. See Remark 1.3.

8. (´x) + (´(´x)) = 0 = (´x) + x ñ x = ´(´x).

9. See Remark 1.4.

10. Assume x´1 = 0, 1 = x ¨ x´1 = x ¨ 0 = 0, a contradiction. Therefore, x´1 ‰ 0; thus
(x´1)´1 ¨ x´1 = 1 = x ¨ x´1 ñ (x´1)´1 = x (by 4).

11. That x ¨ y = 0 cannot be true since it is against Property 3, so x ¨ y ‰ 0. Moreover,

(x ¨ y)´1(x ¨ y) = 1 = 1 ¨ 1 = (x ¨ x´1) ¨ (y ¨ y´1) = (x´1 ¨ y´1) ¨ (x ¨ y) ;

thus (x ¨ y)´1 = x´1 ¨ y´1 (by 4).

12. If x ď (ă) y, then 0 = x+(´x) ď (ă) y+(´x). Since 0 ď (ă) z, by the compatibility
of ď (ă) and ¨ we must have 0 ď (ă) (y + (´x)) ¨ z = y ¨ z + (´x) ¨ z. Therefore, by
the compatibility of ď (ă) and +, x ¨ z = 0+ x ¨ z ď (ă) y ¨ z + (´x) ¨ z + x ¨ z = y ¨ z.
The second statement can be proved in a similar fashion.

13. Left as an exercise.
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§1.1 Ordered Fields and the Number Systems 7

14. If 1 ď 0, then compatibility of ď and + implies that 0 ď ´1. By the compatibility of
ď and ¨, using 6 and 7 we find that 0 ď (´1) ¨ (´1) = ´(´1) = 1; thus we conclude
that 1 = 0, a contradiction. As a consequence, 0 ă 1; thus the compatibility of ă and
+ implies that ´1 ă 0.

15. Left as an exercise.

16. If x ą 0 but x´1 ď 0, then 1 = x ¨ x´1 ď x ¨ 0 = 0, a contradiction. ˝

Proposition 1.18. Let (F ,+, ¨,ď) be an ordered field, and x, y P F .

1. If 0 ď x ă y, then x2 ă y2.

2. If 0 ď x, y and x2 ă y2, then x ă y.

Proof. 1. By definition of “<”, 0 ď x ď y and x ‰ y. Using 12 of Proposition 1.17,

x2 ď y ¨ x ă y ¨ y = y2 .

By the transitivity of ă, we conclude that x2 ă y2.

2. Note that x ‰ y, for if not, then x2 ´ y2 = 0 which contradicts to the assumption
x2 ă y2. Assume that y ă x, then 1 implies that y2 ă x2, a contradiction. ˝

Remark 1.19. Proposition 1.18 can be summarized as follows: if x, y ě 0, then

x ă y ô x2 ă y2 .

Moreover, Example 1.8, Proposition 1.17 and Proposition 1.18 together suggest that if
x, y ě 0, then x ď y if and only if x2 ď y2.

Definition 1.20. The magnitude or the absolute value of x, denoted |x|, is defined as

|x| =

"

x if x ě 0 ,
´x if x ă 0 .

Proposition 1.21. Let (F ,+, ¨,ď) be an ordered field. Then

1. |x| ě 0 for all x P F .

2. |x| = 0 if and only if x = 0.
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3. ´|x| ď x ď |x| for all x P F .

4. |x ¨ y| = |x| ¨ |y| for all x, y P F .

5. |x+ y| ď |x| + |y| for all x, y P F (triangle inequality, 三角不等式).

6.
ˇ

ˇ|x| ´ |y|
ˇ

ˇ ď |x ´ y| for all x, y P F .

Proof. Left as an exercise. ˝

Proposition 1.22. Define d(x, y) = |x ´ y|. Then

1. d(x, y) ě 0 for all x, y P F .

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x, y P F .

4. d(x, y) ď d(x, z) + d(z, y) for all x, y, z P F (triangle inequality, 三角不等式).

Proof. Left as an exercise. ˝

Remark 1.23. d(x, y) is the “distance” of two elements x, y P F .

yd(x, y)

x

d(x, z)

z

d(z, y)

Figure 1.1: An illustration of why 4 of Proposition 1.22 is called the triangle inequality.

1.1.2 The natural numbers, the integers, and the rational num-
bers

Definition 1.24. Let (F ,+, ¨,ď) be an ordered field. The natural number system,
denoted by N, is the collection of all the numbers 1, 1+1, 1+1+1, 1+1+ ¨ ¨ ¨+1 and etc. in
F . We write 2 ” 1+1, 3 ” 2+1, and n ” 1 + 1 + ¨ ¨ ¨ + 1

looooooomooooooon

(n times)

. In other words, N = t1, 2, 3, ¨ ¨ ¨ u.

The integer number system, denoted by Z, is the set Z = t¨ ¨ ¨ ,´3,´2,´1, 0, 1, 2, 3, ¨ ¨ ¨ u.
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Principle of mathematical induction (Peano axiom, 皮亞諾公設):
If S is a subset of N Y t0u (or N) such that 0 P S (or 1 P S) and k + 1 P S if k P S, then
S = N Y t0u (or S = N).

Example 1.25. Prove
n
ř

k=1

k =
n(n+ 1)

2
. (‹)

Proof. Let S =
!

n P N
ˇ

ˇ

ˇ

n
ř

k=1

k =
n(n+ 1)

2

)

（把所有滿足 (‹) 的 n 收集起來）. Then

1. If n = 1,
1
ř

k=1

k =
1 ˆ 2

2
= 1.

2. Assume that m P S, then
m+1
ÿ

k=1

k =
m
ÿ

k=1

k + (m+ 1) =
m(m+ 1)

2
+ (m+ 1) =

(m+ 1)(m+ 2)

2

which implies that m+ 1 P S.

By mathematical induction, we have S = N. ˝

Example 1.26. Prove that 1

2n
ă

1

n
for all n P N.

Proof. Let S =
!

n P N
ˇ

ˇ

ˇ

1

2n
ă

1

n

)

. We show S = N by mathematical induction as follows:

(i) 1 P S ô
1

2
ă

1

1
.

(ii) If n P S, then
1

2n+1
=

1

2n
¨
1

2
ă

1

n
¨
1

2
=

1

n+ n
ď

1

n+ 1
.

which implies that n+ 1 P S.

By mathematical induction, we have S = N. ˝

Let (F ,+, ¨,ď) be an ordered field. By the property of being a field, for any non-zero
n P N, there exists a unique multiplicative inverse n´1. This inverse is usually denoted by
1

n
. We also use m

n
to denote m ¨ n´1. Giving this notation, we have the following

Definition 1.27. Let (F ,+, ¨,ď) be an order field. The rational number system, de-
noted by Q, is the collection of all numbers of the form q

p
with p, q P Z and p ‰ 0; that

is,
Q =

!

x P F
ˇ

ˇ

ˇ
x =

q

p
, p, q P Z, p ‰ 0

)

.
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Definition 1.28. An order field (F ,+, ¨,ď) is said to have the Archimedean property
if @x P F , Dn P Z Q x ă n.

Theorem 1.29. Q has the Archimedean property.

Proof. If x ď 0, we take n = 1. Otherwise if 0 ă x =
q

p
with p, q P N, we take n = q + 1

and it is obvious that q

p
ď q ă q + 1 = n. ˝

Definition 1.30. A well-ordered relation on a set S is a total order on S with the property
that every non-empty subset of S has a least (smallest) element in this ordering.

Proposition 1.31 (Well-Ordered Property of N). If S Ď N and S ‰ H, then S has a
smallest element; that is, D s0 P S Q @ x P S, s0 ď x.

Proof. Assume the contrary that there exists a non-empty set S Ď N such that S does not
have the smallest element. Define T = NzS, and T0 =

␣

n P N
ˇ

ˇ t1, 2, ¨ ¨ ¨ , nu Ď T
(

. Then we
have T0 Ď T . Also note that 1 R S for otherwise 1 is the smallest element in S, so 1 P T

(thus 1 P T0).
Assume k P T0. Since t1, 2, ¨ ¨ ¨ , ku Ď T , 1, 2, ¨ ¨ ¨ k R S. If k + 1 P S, then k + 1 is the

smallest element in S. Since we assume that S does not have the smallest element, k+1 R S;
thus k + 1 P T ñ k + 1 P T0.

Therefore, by mathematical induction we conclude that T0 = N; thus T = N (since
T0 Ď T ) which further implies that S = H (since T = NzS). This contradicts to the
assumption S ‰ H. ˝

1.1.3 Countability

Definition 1.32. A set S is called denumerable or countably infinite（無窮可數的）if
S can be put into one-to-one correspondence with N; that is, S is denumerable if and only
if D f : N Ñ S which is one-to-one and onto. A set is called countable（可數的）if S is
either finite or denumerable.

Remark 1.33. If f : N 1´1
ÝÝÑ
onto

S, then f´1 : S
1´1

ÝÝÑ
onto

N. Therefore,

S is denumerable ô D f : N 1´1
ÝÝÑ
onto

S ô D g = f´1 : S
1´1

ÝÝÑ
onto

N.

f can be thought as a rule of counting/labeling elements in S since S =
␣

f(1), f(2), ¨ ¨ ¨
(

.
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Example 1.34. N is countable since f : N 1´1
ÝÝÑ
onto

N with f(x) = x, @n P N.

Example 1.35. Z is countable. f : Z Ñ N with f(x) =

$

&

%

1 if x = 0
2x if x ą 0

´2x+ 1 if x ă 0
.

−3 −2 −1 10 2
2 4 6

3k

1357f(k)

Figure 1.2: An illustration of how elements in Z are labeled

Example 1.36. The set N ˆ N =
␣

(a, b)
ˇ

ˇ a, b P N
(

is countable. In fact, two ways of
mapping are shown in the figures below.

y

x

1
2

3

4
5

6

7
8
9

10

11
12

13
14

15

1

1

1

2

1

3

1

4

1

5

2

1

2

2

2

3

2

4

2

5

3

1

3

2

3

3

3

4

3

5

4

1

4

2

4

3

4

4

4

5

5

1

5

2

5

3

5

4

5

5

y

x

1
2 3

4 5
6
789

10 11 12 13
14
15
16 17

1

1

1

2

1

3

1

4

1

5

2

1

2

2

2

3

2

4

2

5

3

1

3

2

3

3

3

4

3

5

4

1

4

2

4

3

4

4

4

5

5

1

5

2

5

3

5

4

5

5

Figure 1.3: The illustration of two ways of labeling elements in N ˆ N

Proposition 1.37. Let S be a non-empty set. The following three statements are equivalent:

(a) S is countable;

(b) there exists a surjection f : N Ñ S;

(c) there exists an injection f : S Ñ N.

Proof. “(a) ñ (b)” First suppose that S = tx1, ¨ ¨ ¨ , xnu is finite. Define f : N Ñ S by

f(k) =

"

xk if k ă n ,
xn if k ě n .



Copy
rig

ht
Prot

ect
ed

12 CHAPTER 1. The Real Line and Euclidean Space

Then f : N Ñ S is a surjection. Now suppose that S is denumerable. Then by
definition of countability, there exists f : N 1´1

ÝÝÑ
onto

S.

“(a) ð (b)” W.L.O.G. (without loss of generality, 不失一般性) we assume that S is an
infinite set. Let k1 = 1. Since #(S) = 8, S1 ” Sztf(k1)u ‰ H; thus N1 ” f´1(S1) is
a non-empty subset of N. By the well-ordered property of N (Proposition 1.31), N1 has
a smallest element denoted by k2. Since #(S) = 8, S2 = Sztf(k1), f(k2)u ‰ H; thus
N2 ” f´1(S2) is a non-empty subset of N and possesses a smallest element denoted by
k3. We continue this process and obtain a set tk1, k2, ¨ ¨ ¨ u Ď N, where k1 ă k2 ă ¨ ¨ ¨ ,
and kj is the smallest element of Nj´1 ” f´1(Sztf(k1), f(k2), ¨ ¨ ¨ , f(kj´1)u).

Claim: f : tk1, k2, ¨ ¨ ¨ u Ñ S is one-to-one and onto.

Proof of claim: The injectivity of f is due to that f(kj) R
␣

f(k1), f(k2), ¨ ¨ ¨ , f(kj´1)
(

for all j ě 2. For surjectivity, assume that there is s P S such that s R f(tk1, k2, ¨ ¨ ¨ u).
Since f : N Ñ S is onto, f´1(tsu) is a non-empty subset of N; thus possesses a smallest
element k. Since s R f(tk1, k2, ¨ ¨ ¨ u), there exists ℓ P N such that kℓ ă k ă kℓ+1. As a
consequence, there exists k P Nℓ such that k ă kℓ+1 which contradicts to the fact that
kℓ+1 is the smallest element of Nℓ.

Define g : N Ñ tk1, k2, ¨ ¨ ¨ u by g(j) = kj. Then g : N Ñ tk1, k2, ¨ ¨ ¨ u is one-to-one and
onto; thus h = g ˝ f : N 1´1

ÝÝÑ
onto

S.

“(a) ñ (c)” If S = tx1, ¨ ¨ ¨ , xnu is finite, we simply let f : S Ñ N be f(xn) = n. Then f is
clearly an injection. If S is denumerable, by definition there exists g : N 1´1

ÝÝÑ
onto

S which
suggests that f = g´1 : S Ñ N is an injection.

“(a) ð (c)” Let f : S Ñ N be an injection. If f is also surjective, then f : S
1´1

ÝÝÑ
onto

N which
implies that S is denumerable. Now suppose that f(S) Ĺ N. Since S is non-empty,
there exists s P S. Let g : N Ñ S be defined by

g(n) =

"

f´1(n) if n P f(S) ,

s if n R f(S) .

Then clearly g : N Ñ S is surjective; thus the equivalence between (a) and (b) implies
that S is countable. ˝

Theorem 1.38. Any non-empty subset of a countable set is countable.
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Proof. Let S be a countable set, and A be a non-empty subset of S. Since S is countable,
by by Proposition 1.37 there exists a surjection f : N Ñ S. On the other hand, since A is a
non-empty subset of S, there exists a P A. Define

g(x) =

"

x if x P A ,
a if x R A .

Then h = g ˝ f : N Ñ A is a surjection, and Proposition 1.37 suggests that A is countable.
˝

Example 1.39. The set N ˆ N is countable since the map f : N ˆ N Ñ N defined by
f((m,n)) = 2m3n is an injection.

Theorem 1.40. The union of denumerable denumerable sets is denumerable（無窮可數個
無窮可數集的聯集是無窮可數的）. In other words, if F is a denumerable collection of
denumerable sets, then

Ť

APF

A is denumerable.

Proof. Let F =
␣

Ai
ˇ

ˇ i P N, Ai is denumerableu be an indexed family of denumerable

sets, and define A =
8
Ť

i=1

Ai. Since Ai is denumerable, Ai = txi1, xi2, xi3, ¨ ¨ ¨ u. Then

A =
␣

xij
ˇ

ˇ i, j P N
(

. Let f : NˆN Ñ A be defined by f((i, j)) = xij. Then f : NˆN Ñ A is a
surjection. Moreover, Example 1.39 implies that there exists a bijection g : N Ñ NˆN; thus
h = f ˝ g : N Ñ A is a surjection which, by Proposition 1.37, implies that A is countable.
Since A1 Ď A, A is infinite; thus A is denumerable. ˝

Corollary 1.41. The union of countable countable sets is countable（可數個可數集的聯集
是可數的）.

Proof. By adding empty sets into the family or adding N into a finite set if necessary, we
find that the union of countable countable sets is a subset of the union of denumerable
denumerable sets. By Theorem 1.38, we find that the union of countable countable sets is
countable. ˝

Example 1.42. Z ˆ Z is countable.

Proof. For i P Z, let Ai =
␣

(i, j)
ˇ

ˇ j P Z
(

. By Example 1.35, Ai is countable for all i P Z.
Since Z ˆ Z =

Ť

iPZAi which is countable union of countable sets, Theorem 1.40 implies
that Z ˆ Z is countable. ˝
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Theorem 1.43. Q is countable.

Proof. Define

f(x) =

$

’

’

&

’

’

%

(p, q), if x ą 0, x =
q

p
, gcd(p, q) = 1, p ą 0.

(0, 0), if x = 0.

(p,´q), if x ă 0, x = ´
q

p
, gcd(p, q) = 1, p ą 0.

Then f : Q Ñ Z ˆ Z is one-to-one; thus f : Q 1´1
ÝÝÑ
onto

f(Q). Since Z ˆ Z is countable, its

non-empty subset f(Q) is also countable. As a consequence, there exists g : f(Q)
1´1

ÝÝÑ
onto

N;

thus h = g ˝ f : Q 1´1
ÝÝÑ
onto

N. ˝

1.2 Completeness and the Real Number System
1.2.1 Sequences

Definition 1.44. A sequence in a set S is a function f : N Ñ S (not necessary one-to-one
or onto). The values of f are called the terms of the sequence.

Remark 1.45. A sequence in S is a countable list of elements in S arranged in a particular
order, and is usually denoted by

␣

f(n)
(8

n=1
or txnu8

n=1 with xn = f(n).

Definition 1.46. Let F be an ordered field. A sequence txnu8
n=1 Ď F is said to be con-

vergent if there exists x P F such that for every ε ą 0,

#
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

ă 8 .

Such an x is called a limit of the sequence. In notation,

txnu8
n=1 Ď F is convergent ô D x P F Q @ ε ą 0,#tn P N |xn R (x ´ ε, x+ ε)u ă 8.

If x is a limit of txnu8
n=1, we say txnu8

n=1 converges to x and write lim
nÑ8

xn = x or xn Ñ x as
n Ñ 8. If no such x exists we say that txnu8

n=1 diverges or lim
nÑ8

xn does not exist.
Remark 1.47. The number N may depend on ε, and smaller ε usually requires larger N .

In the definition above, it could happen that there are two different limits of a convergent
sequence. In fact, this is never the case because of the following
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Proposition 1.48. If txnu8
n=1 is a sequence in an ordered field F , and xn Ñ x and xn Ñ y

as n Ñ 8, then x = y. (The uniqueness of the limit).

Proof. Assume the contrary that x ‰ y. W.L.O.G. we may assume that x ă y, and let
ε =

y ´ x

2
ą 0. Define

A1 =
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

and A2 =
␣

n P N
ˇ

ˇxn R (y ´ ε, y + ε)
(

.

Then by the definition of the convergence of sequences, #A1 ă 8 and #A2 ă 8. Let
N1 = maxA1, N2 = maxA2 and N = maxtN1, N2u. Since A1, A2 are finite, N ă 8. On the
other hand, N + 1 R A1 YA2 which implies that xN+1 P (x´ ε, x+ ε) X (y ´ ε, y + ε) = H,
a contradiction. ˝

Example 1.49. Let xn =
(´1)n

n+ 1
. We show that txnu8

n=1 converges to 0. By definition,

we need to show for every ε ą 0 the set Aε =
␣

n P N
ˇ

ˇxn R (´ε, ε)
(

is finite. Note that
Aε =

␣

n P N
ˇ

ˇ |xn| ě ε
(

; thus

Aε =
!

n P N
ˇ

ˇ

ˇ

1

n+ 1
ě ε

)

=
!

n P N
ˇ

ˇ

ˇ
n ď

1

ε
´ 1

)

.

Therefore, #Aϵ =
[1
ε

]
´ 1 ă 8 which implies that txnu8

n=1 converges to 0.

Example 1.50. The sequence tynu8
n=1 given by yn =

3 + (´1)n

2
diverges. To see this, we

have to show that any real number x cannot be the limit of tynu8
n=1.

Let y be given and ε =
1

2
. Then (y ´ ε, y + ε) at most contains one integer. Since yn

only takes value 1 or 2 and #
␣

n P N | yn = 1
(

= #
␣

n P N | yn = 2
(

= 8, we find that

#
␣

n P N
ˇ

ˇ yn R (y ´ ε, y + ε)
(

= 8

which implies tynu8
n=1 cannot converges to y.

Example 1.51. A permutation of a non-empty set A is a one-to-one function from A

onto A. Let π : N Ñ N be a permutation of N, and txnu8
n=1 be a convergent sequence in

an ordered field F . Then
␣

xπ(n)
(8

n=1
is also convergent since if x is the limit of txnu8

n=1 and
ε ą 0,

#
␣

n P N
ˇ

ˇxπ(n) R (x ´ ε, x+ ε)
(

= #
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

ă 8 .
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Proposition 1.52. Let F be an ordered field, txnu8
n=1 Ď F be a sequence, and x P F . Then

lim
nÑ8

xn = x if and only if for every ε ą 0, there exists N ą 0 such that |xn´x| ă ε whenever
n ě N . In notation,

lim
nÑ8

xn = x ô @ ε ą 0, DN ą 0 Q n ě N ñ |xn ´ x| ă ε .

Proof. “ñ” Let ε ą 0 be given, and Aϵ =
␣

n P N
ˇ

ˇxn R (x ´ ε, x + ε)
(

. Since txnu8
n=1

converges to x, k ” #Aϵ ă 8 . Suppose that n1 ă n2 ă ¨ ¨ ¨ ă nk belongs to Aϵ. Let
N = nk + 1. Then if n ě N , n R Aϵ which implies that if n ě N , xn P (x ´ ε, x + ε)

or equivalently,
|xn ´ x| ă ε whenever n ě N .

x1 x4 x2x3x5xN0

xn for n ≥ N = N0 + 1

ε ε

x
( )

Figure 1.4: Let N0 be the largest index of those xn’s outside (x ´ ε, x + ε). Then xn P

(x ´ ε, x+ ε) whenever n ě N = N0 + 1.

“ð” Let ε ą 0 be given. Then for some N ą 0, if n ě N , we have |xn ´ x| ă ε or
equivalently, if n ě N , xn P (x ´ ε, x+ ε). This implies that

#
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

ă N ă 8 . ˝

Remark 1.53. A sequence txnu8
n=1 Ď F diverges if (and only if)

@x P F , D ε ą 0 Q #tn P N |xn R (x ´ ε, x+ ε)u = 8

which is equivalent to that

@x P F , D ε ą 0 Q tn P N |xn R (x ´ ε, x+ ε)u = tn1 ă n2 ă ¨ ¨ ¨ ă nj ă ¨ ¨ ¨ u .

Therefore, txnu8
n=1 diverges if (and only if)

@x P F , D ε ą 0 Q @N ą 0, Dn ě N such that |xn ´ x| ě ε .

Example 1.54. Now we use the ε-N argument as the definition of the convergence of
sequences to re-establish the convergence of sequences in Example 1.49, 1.50 and 1.51.
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Example 1.49 - revisit: Let ε ą 0 be given, and xn =
(´1)n

n+ 1
. Let N =

[1
ε

]
+ 1. Since[1

ε

]
ą

1

ε
´ 1, if n ě N we must have n ą

1

ε
´ 1; thus if n ě N , 1

n+ 1
ă ε. Therefore,

|xn ´ 0| ă ε whenever n ě N

which implies that txnu8
n=1 converges to 0.

Example 1.50 - revisit: Let y be given, ε = 1

2
, and N P N. Define

n =

"

N + 1 if |yN ´ y| ă ε ,

N + 2 if |yN ´ y| ě ε .

Then n ě N . Moreover, if |yN ´y| ă ε, then |yn´y| ě |yn´yN |´|yN ´y| ą 1´ε = ε,
while if |yN ´ y| ě ε then clearly |yn ´ y| ě ε. Therefore,

@ y P F , D ε ą 0 Q @N ą 0, Dn ą N Q |yn ´ y| ě ε .

Example 1.51 - revisit: Now suppose that txnu8
n=1 is a convergent sequence with limit x,

and ε ą 0 be given. Then there exists N1 ą 0 such that if n ě N1, we have |xn´x| ă ε.
Let N = max

␣

π´1(1), π´1(2), ¨ ¨ ¨ , π´1(N1)
(

+ 1. Then if n ě N , π(n) ě N1 which
implies that

ˇ

ˇxπ(n) ´ x
ˇ

ˇ ă ε whenever n ě N .

Therefore, lim
nÑ8

xπ(n) = x.

From the example above, we notice that proving the convergence using the ε-N argument
seems more complicated; however, it is a necessary evil so we encourage the readers to major
it.

Lemma 1.55 (Sandwich). If lim
nÑ8

xn = L, lim
nÑ8

yn = L, tznu8
n=1 is a sequence such that

xn ď zn ď yn, then lim
nÑ8

zn = L.

Proof. Let ε ą 0 be given. Since lim
nÑ8

xn = L and lim
nÑ8

yn = L, by definition

DN1 ą 0 Q L ´ ε ă xn ă L+ ε whenever n ě N1

and
DN2 ą 0 Q L ´ ε ă yn ă L+ ε whenever n ě N2 .

Let N = maxtN1, N2u. Then for n ě N , L´ ε ă xn ď zn ď yn ă L+ ε; thus lim
nÑ8

zn = L. ˝
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Proposition 1.56. If a ď xn ď b and lim
nÑ8

xn = x, then a ď x ď b.

Proof. Assume the contrary that x R [a, b]. If x ă a, let ε = a ´ x ą 0. Since lim
nÑ8

xn = x,
DN ą 0 Q xn P (x ´ ε, x + ε) whenever n ě N . Therefore, xn ă a for all n ě N , a
contradiction. So a ď x.

We can prove x ď b in a similar way, and the proof is left as an exercise. ˝

Corollary 1.57. If a ă xn ă b and lim
nÑ8

xn = x, then a ď x ď b.

Definition 1.58. Let txnu8
n=1 be a sequence in an order field F .

1. txnu8
n=1 is said to be bounded（有界的）if there exists M ą 0 such that |xn| ď M

for all n P N.

2. txnu8
n=1 is said to be bounded from above（有上界）if there exists B P F , called

an upper bound of the sequence, such that xn ď B for all n P N.

3. txnu8
n=1 is said to be bounded from below（有下界）if there exists A P F , called a

lower bound of the sequence, such that A ď xn for all n P N.

Proposition 1.59. A convergent sequence is bounded（數列收斂必有界）.

Proof. Let txnu8
n=1 be a convergent sequence with limit x. Then there exists N ą 0 such

that
xn P (x ´ 1, x+ 1) @n ě N.

Let M = max
␣

|x1|, |x2|, ¨ ¨ ¨ , |xN´1|, |x| + 1
(

. Then |xn| ď M for all n P N. ˝

Theorem 1.60. Suppose that xn Ñ x and yn Ñ y as n Ñ 8, λ is a constant. Then

1. xn ˘ yn Ñ x ˘ y as n Ñ 8.

2. λ ¨ xn Ñ λ ¨ x as n Ñ 8.

3. xn ¨ yn Ñ x ¨ y as n Ñ 8.

4. If yn, y ‰ 0, then xn
yn

Ñ
x

y
as n Ñ 8.

Proof. The proof of 1 and 2 are left as an exercise.
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3. Since xn Ñ x and yn Ñ y as n Ñ 8, by Proposition 1.59 DM ą 0 Q |xn| ď M and
|yn| ď M . Let ε ą 0 be given. Moreover,

DN1 ą 0 Q |xn ´ x| ă
ε

2M
@n ě N1

and
DN2 ą 0 Q |yn ´ y| ă

ε

2M
@n ě N2 .

Define N = maxtN1, N2u. Then for all n ě N ,

|xn ¨ yn ´ x ¨ y| = |xn ¨ yn ´ xn ¨ y + xn ¨ y ´ x ¨ y| ď |xn ¨ (yn ´ y)| + |y ¨ (xn ´ x)|

ď M ¨ |yn ´ y| +M ¨ |xn ´ x| ă M ¨
ε

2M
+M ¨

ε

2M
= ε.

4. It suffices to show that lim
nÑ8

1

yn
=

1

y
if yn, y ‰ 0 (because of 3). Since lim

nÑ8
yn = y,

DN1 ą 0 Q |yn ´ y| ă
|y|

2
for all n ě N1. Therefore, |y| ´ |yn| ă

|y|

2
for all n ě N1

which further implies that |yn| ą
|y|

2
for all n ě N1.

Let ε ą 0 be given. Since lim
nÑ8

yn = y, DN2 ą 0 Q |yn ´ y| ă
|y|2

2
ε for all n ě N2.

Define N = maxtN1, N2u. Then for all n ě N ,
ˇ

ˇ

ˇ

1

yn
´

1

y

ˇ

ˇ

ˇ
=

|yn ´ y|

|yn||y|
ă

|y|2

2
ε ¨

1

|y|

2

|y|
= ε . ˝

1.2.2 Monotone sequence property and completeness

Definition 1.61. A sequence txnu8
n=1 is said to be increasing/non-decreasing, de-

creasing/non-increasing, strictly increasing and strictly decreasing if xn ď xn+1,
xn ě xn+1, xn ă xn+1 and xn ą xn+1 @n P N, respectively. A sequence is called (strictly)
monotone if it is either (strictly) increasing or (strictly) decreasing.

Definition 1.62. An ordered field F is said to satisfy the (strictly) monotone sequence
property if every bounded (strictly) monotone sequence converges to a limit in F .

Remark 1.63. An equivalent definition of the monotone sequence property is that every
monotone increasing sequence bounded above converges; that is, if each sequence txnu8

n=1 Ď

F satisfying

(i) xn ď xn+1 for all n P N,
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(ii) DM P F Q @n P N : xn ď M ,

is convergent, then we say F satisfies the monotone sequence property.

Example 1.64. (Q,+, ¨,ď) is an ordered field.
Question: Is there any bounded monotone sequence in Q that does not converge to a limit
in Q?
Answer: Yes! Consider the sequence

x1 =
1

2
, x2 =

1

2 +
1

2

, x3 =
1

2 +
1

2 +
1

2

, ¨ ¨ ¨ , xn+1 =
1

2 + xn
.

Then txnu8
n=1 is a monotone decreasing sequence in Q. If lim

nÑ8
xn = x, then Theorem 1.60

implies that x =
1

2 + x
from which we conclude that x = ´1 +

?
2. Since x R Q, txnu8

n=1

does not converge (to a limit) in Q. In other words, Q does not have the monotone sequence
property.

Proposition 1.65. An ordered field satisfying the monotone sequence property has the
Archimedean property; that is, if F is an ordered field satisfying the monotone sequence
property, then @x P F , Dn P N Q x ă n.

Proof. Assume the contrary that there exists x P F such that n ď x for all n P N. Let
xn = n. Then txnu8

n=1 is increasing and bounded above. By the monotone sequence property
of F , there exists px P F such that xn Ñ px as n Ñ 8; thus DN ą 0 such that

|xn ´ px| ă
1

4
@n ě N .

In particular, |N ´ px| ă
1

4
, |N + 1 ´ px| ă

1

4
; thus

1 = |N + 1 ´ N | ď |N + 1 ´ px| + |px ´ N | ă
1

4
+

1

4
=

1

2
,

a contradiction. ˝

Example 1.66. Let (F ,+, ¨,ď) be an ordered field satisfying the monotone sequence prop-
erty, and y P F be a given positive number (that is, y ą 0). Define xn =

Nn

2n
, where Nn is

the largest integer such that x2n ď y; that is,
(Nn

2n

)2
ď y but

(Nn + 1

2n

)2
ą y (for example, if

y = 2, then x1 =
2

21
, x2 =

5

22
, x3 =

11

23
, ¨ ¨ ¨ ). Then



Copy
rig

ht
Prot

ect
ed

§1.2 Completeness and the Real Number System 21

1. xn is bounded above: since x2n ď y ď 2y + y2 + 1 = (y + 1)2, by the non-negativity of
xn and y and Remark 1.19 we must have 0 ď xn ď y + 1.

2. xn is increasing: by the definition of Nn,

N2
n ď 22n ¨ y ñ 4 ¨ N2

n ď 22n+2 ¨ y = 22(n+1) ¨ y ñ
( 2Nn

2n+1

)2
ď y ñ 2Nn ď Nn+1 .

Therefore, xn =
Nn

2n
=

2Nn

2n+1
ď
Nn+1

2n+1
= xn+1. Since F satisfies the monotone sequence

property, Dx P F Q xn Ñ x as n Ñ 8. By Theorem 1.60, x2n Ñ x2, and by Proposition
1.56, x2 ď y.

Now we show x2 = y. To this end observe that(
xn +

1

2n

)2
=

(Nn

2n
+

1

2n

)
=

(Nn + 1

2n

)2
ą y;

thus x2n ď y ď
(
xn+

1

2n

)2. By the Archimedean propery of F (Proposition 1.65), lim
nÑ8

1

2n
= 0;

thus Theorem 1.60 implies that x2 = lim
nÑ8

x2n = lim
nÑ8

(
xn +

1

2n

)2
= y. Note that Proposition

1.18 implies that such an x is unique if x ą 0.
In general, one can define the n-th root of non-negative number y in an ordered field

satisfying the monotone sequence property. The construction of the n-th root of y P F is
left as an exercise.

Definition 1.67. For n P N, the n-th root of a non-negative number y in an ordered field
satisfying the monotone sequence property is the unique non-negative number x satisfying
xn = y. One writes y1/n or n

?
y to denote n-th root of y.

Definition 1.68. An ordered field F is said to be complete (完備) (have the completeness
property, 具備完備性) if it satisfies the monotone sequence property.

Remark 1.69. In an ordered field, completeness ô monotone sequence property (在 or-
dered field 裡，完備性 = 數列單調有界必收斂 = 數列遞增有上界必收斂). Moreover,

1. A complete ordered field is “Archimedean” (Proposition 1.65).

2. For n P N, the n-th root of a non-negative number in a complete ordered field is
well-defined (Definition 1.67).

Proposition 1.70. Let (F ,+, ¨,ď) be an ordered field. Then F satisfies the monotone
sequence property if and only if F satisfies the strictly monotone sequence property.
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Proof. The “only if” part is trivial, so we only prove the “if” part. Let txnu8
n=1 be a bounded

increasing sequence in F . If txnu8
n=1 has finite number of values; that is,

#
␣

n P N
ˇ

ˇxn ă xn+1

(

ă 8 ,

then there exists N P N such that xn = xN for all n ě N which implies that txnu8
n=1

converges to xN . Now suppose that

#
␣

n P N
ˇ

ˇxn ă xn+1

(

= 8 .

Then there exists an infinite set tn1, n2, ¨ ¨ ¨ u Ď N such that xnk
‰ xnk+1

for all k P N. Let
yk = xnk

. Since F satisfies the strictly monotone sequence property, yk Ñ y as k Ñ 8 for
some x P F . However, it is easy to see that the sequence txnu8

n=1 also converges to y since
txnu8

n=1 is monotone increasing. ˝

Theorem 1.71. There is a “unique” complete ordered field, called the real number system
R.

Remark 1.72. Uniqueness means if F is any other complete ordered field (F ,‘,d,ď),
then there exists an field isomorphism ϕ : R Ñ F ; that is, ϕ : R Ñ F is one-to-one and
onto, and satisfies that

1. ϕ(x+ y) = ϕ(x) ‘ ϕ(y) for all x, y P R.

2. ϕ(x ¨ y) = ϕ(x) d ϕ(y) for all x, y P R.

3. x ď y ñ ϕ(x) ď ϕ(y) for all x, y P R.

Sketch of proof of Theorem 1.71. Let S be the collection of all bounded increasing sequences
in Q in which all terms in every sequence have the same sign; that is,

S =
!

txnu8
n=1

ˇ

ˇ

ˇ
xn P Q for all n P N, xj ¨ xk ě 0 for all k, j P N,

and txnu8
n=1 is increasing and bounded above

)

.

Define on S an equivalence relation „: txnu8
n=1 „ tynu8

n=1 if every upper bound of txnu8
n=1 is

also an upper bound of tynu8
n=1, and vice versa. Let R =

␣[
txnu8

n=1

] ˇ
ˇ txnu8

n=1 P S
(

be the set
of equivalence class of S (the existence of such a set relies on the axiom of choice). We define
on R, +, ¨, ď as follows: if r =

[
txnu8

n=1

]
and s =

[
tynu8

n=1

]
(where txnu8

n=1, tynu8
n=1 P S),

then
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1. r + s =
[
txn + ynu8

n=1

]
; 2. r ¨ s =

$

’

’

’

&

’

’

’

%

[
txn ¨ ynu8

n=1

]
if r, s ě 0 ,

´
(
(´r) ¨ s

)
if r ă 0 and s ą 0 ,

´
(
r ¨ (´s)

)
if r ą 0 and s ă 0 ,

(´r) ¨ (´s) if r, s ă 0 ;

3. r ď s if every upper bound of tynu8
n=1 is also an upper bound for txnu8

n=1.

One needs to verify that R is an ordered field, and this part is left as an exercise (or see
Remark 1.73 for some part of the verification).

Claim 1: If
␣

xnk

(8

k=1
is a subsequence of txnu8

n=1, then
[␣
xnk

(8

k=1

]
=

[
txnu8

n=1

]
.

Claim 2: If
[
txnu8

n=1

]
ă

[
tynu8

n=1

]
, then for some N P N, xn ă yN for all n ě N .

The proofs of the claims above are not difficult and are left as an exercise.
Now we show the completeness of R by showing that R satisfies the strictly monotone

sequence property (Proposition 1.70). Let trku8
k=1 be a bounded, strictly increasing sequence

in R+. Write rk =
[
txk,nu8

n=1

]
, where xk,n ď xk,n+1 for all k, n P N. Since trku8

k=1 is bounded
in R, there is M P Q such that xk,n ď M for all k, n P N. Moreover, since rk ă rk+1 for all
k P N, by claims above we can assume that xk,n ă xk+1,1 for all k, n P N; thus

xk,n ă xℓ,m @ ℓ ą k and n,m P N. (‹)

Therefore, txn,nu8
n=1 is bounded and monotone increasing, so txn,nu8

n=1 P S. Define r =[
txn,nu8

n=1

]
. Then r P R, and

(i) r is an upper bound of trku8
k=1: Suppose the contrary that there exists M P Q such

that xn,n ď M for all n P N but xk,ℓ ą M for some k, ℓ P N.

(a) If k ě ℓ, then xk,k ě xk,ℓ ą M since txk,ℓu
8
ℓ=1 is increasing.

(b) If k ă ℓ, then xℓ,ℓ ą xk,ℓ ą M because of (‹).

In either case we conclude that M cannot be an upper bound of r, a contradiction.

(ii) r ´ ε is not an upper bound of trku8
k=1 for all ε ą 0: Suppose the contrary that

r ´ ε is an upper bound of trku8
k=1. Write ε = tεku8

k=1, and W.L.O.G. we can assume
that there exists δ P Q such that εk ě 2δ ą 0 for all k P N. Then for all (fixed) k P N,[

txk,ℓ + δu8
ℓ=1

]
ă

[
txk,ℓ + 2δu8

ℓ=1

]
ď

[
txk,ℓ + εku8

ℓ=1

]
ď

[
txℓ,ℓu

8
ℓ=1

]
.
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Let N1 = 1. By claim 2, for each k P N there exists Nk+1 P N such that Nk+1 ě Nk

and xNk,ℓ + δ ă xNk+1,Nk+1
for all ℓ ě Nk+1. On the other hand,

xNk+1,Nk+1
ě xNk,Nk+1

+ δ ě xNk,Nk
+ δ ě ¨ ¨ ¨ ě x1,1 + kδ

which implies that txℓ,ℓu
8
ℓ=1 is not bounded, a contradiction.

As a consequence, r is the least upper bound of trku8
k=1. ˝

From now on R is the complete ordered field containing Q, Z, N.

Remark 1.73 (The existence of additive inverse of real numbers). Suppose that a bounded
increasing sequence txnu8

n=1 is not equivalent to any rational “number” tqu8
n=1 for any q P Q,

then there exists a decreasing sequence tynu8
n=1 such that xn ´ yn Ñ 0 as n Ñ 8. Such

tynu8
n=1 can be obtained by choosing yn to be the smallest upper bound of the form k

2n
,

where k P Z. By deleting terms if necessary, we can assume that all y 1
ns have the same sign.

Then t´ynu8
n=1 is a bounded increasing sequence, and

[
t´ynu8

n=1

]
is the additive inverse of[

txnu8
n=1

]
.

Example 1.74. In R, define xn inductively by x1 = 0, x2 =
?
2, x3 =

a

2 +
?
2, ¨ ¨ ¨ , xn+1 =

?
2 + xn. It is easy to see that txnu8

n=1 satisfies xn ě 0 for all n P N.

1. xn ď 2 for all n P N (boundedness): First of all, x1 ď 2. Assume that xn ď 2. Then
xn+1 =

?
2 + xn ď

?
2 + 2 = 2. By mathematical induction, xn ď 2 for all n P N.

2. xn ď xn+1 (monotonicity): Since xn ´ 2 ď 0 and xn + 1 ě 0, (xn ´ 2) ¨ (xn + 1) ď 0.
Expanding the product, we obtain that x2n ď xn + 2 = x2n+1 which implies that
xn ď xn+1.

3. xn Ñ 2 as n Ñ 8 (convergence): Since txnu8
n=1 is a bounded monotone sequence in R,

lim
nÑ8

xn = x for some x P R. Note that then xn+1 Ñ x as n Ñ 8. Since x2n+1 = xn+2,
by Theorem 1.60 we must have x2 = x + 2. Then (x ´ 2)(x + 1) = 0 which implies
x = 2 or x = ´1 (failed). Therefore, txnu8

n=1 converges to 2.

Theorem 1.75. The interval (0, 1) in R is uncountable (不可數).
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Proof. Assume the contrary that there exists f : N Ñ (0, 1) which is one-to-one and onto.
Write f(k) in decimal expansion (十進位展開); that is,

f(1) = 0.d11d21d31 ¨ ¨ ¨

f(2) = 0.d12d22d32 ¨ ¨ ¨

... ...
f(k) = 0.d1kd2kd3k ¨ ¨ ¨

... ...

Here we note that repeated 9’s are chosen by preference over terminating decimals; that is,
for example, we write 1

4
= 0.249999 ¨ ¨ ¨ instead of 1

4
= 0.250000 ¨ ¨ ¨ .

Let x P (0, 1) be such that x = 0.d1d2 ¨ ¨ ¨ , where

dk =

"

5 if dkk ‰ 5 ,

7 if dkk = 5 .

（建構一個 x使其小數點下第 k 位數與 f(k)的小數點下第 k 位數不相等）. Then x ‰ f(k)

for all k P N, a contradiction; thus (0, 1) is uncountable. ˝

Corollary 1.76. R is uncountable.

Proposition 1.77. Q is dense (稠密) in R; that is, if x, y P R and x ă y, then D r P Q Q

x ă r ă y.

Proof. Since 1

n
Ñ 0 as n Ñ 8 (by the Archimedean property of R, Proposition 1.65), there

exists N ą 0 such that
ˇ

ˇ

1

n
´ 0

ˇ

ˇ ă y ´ x for all n ě N .

Claim:
!

k

N

ˇ

ˇ

ˇ
k P Z

)

X (x, y) ‰ H.

Proof of claim: Suppose the contrary that
!

k

N

ˇ

ˇ

ˇ
k P Z

)

X (x, y) = H. Then ℓ

N
ď x and

ℓ+ 1

N
ě y for some ℓ P Z, while this fact will imply that y ´ x ď

1

N
, a contradiction. ˝

Remark 1.78. The denseness of Q in R can be rephrased as follows: if x P R and ε ą 0,
then D r P Q Q |x ´ r| ă ε.

••( )
xrx ´ ε x+ ε
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Corollary 1.79. The collection of irrational numbers QA ” RzQ is dense in R; that is, if
x, y P R and x ă y, D c P QA Q x ă c ă y.

Proof. Let x, y P R with x ă y. By Proposition 1.77 there exists r P Q, r ‰ 0 such that
x

?
2

ă r ă
y

?
2
. Let c =

?
2r. Then c P QA and x ă c ă y. ˝

Example 1.80. The harmonic sequence

x1 = 1

x2 = 1 +
1

2
... ...

xn = 1 +
1

2
+

1

3
+ ¨ ¨ ¨ +

1

n
=

n
ÿ

k=1

1

k

... ...

is (monotone) increasing but not bounded above.

Proof. That the sequence is increasing is trivial. For the unboundedness, we observe that

x2n = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ ¨ ¨ ¨ +

1

2n

ě 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+ ¨ ¨ ¨ +

2n´1

2n

= 1 +
1

2
+

1

2
+ ¨ ¨ ¨ +

1

2
= 1 +

n

2

which is not bounded above (沒有上界). ˝

1.3 Least Upper Bounds and Greatest Lower Bounds
Definition 1.81. Let H ‰ S Ď R. A number M P R is called an upper bound (上界)
for S if x ď M for all x P S, and a number m P R is called a lower bound (下界) for S if
x ě m for all x P S. If there is an upper bound for S, then S is said to be bounded from
above, while if there is a lower bound for S, then S is said to be bounded from below. A
number b P R is called a least upper bound (最小上界) of S if

1. b is an upper bound for S, and
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2. if M is an upper bound for S, then M ě b.

A number a is called a greatest lower bound (最大下界) of S if

1. a is a lower bound for S, and

2. if m is a lower bound for S, then m ď a.

( )
S

• •
m M

a lower bound for S an upper bound for S

If S is not bounded above, the least upper bound of S is set to be 8, while if S is not
bounded below, the greatest lower bound of S is set to be ´8. The least upper bound of
S is also called the supremum of S and is usually denoted by lubS or supS, and “the”
greatest lower bound of S is also called the infimum of S, and is usually denoted by glbS
or infS. If S = H, then supS = ´8, infS = 8.

Example 1.82. Let S = (0, 1). Then supS = 1, infS = 0.

Example 1.83. Let f : R Ñ R given by

f(x) =

"

1 ´ x2 if x ‰ 0,
0 if x = 0.

Define
S = tf(x) |x P Ru, T =

␣

x P R | f(x) ą
1

4

(

.

We can get S = (´8, 1), so sup(S) = 1, inf(S) = ´8.

Solve 1´x2 =
1

4
ñ x = ˘

?
3

2
, then we can get T =

(
´

?
3

2
, 0
)
Y
(
0,

?
3

2

)
, so sup(T ) =

?
3

2
,

inf(T ) = ´

?
3

2
.

Remark 1.84. The least upper bound and the greatest lower bound of S need not be a
member of S.

Remark 1.85. The reason for defining sup H = ´8 and inf H = 8 is as follows: if
H ‰ A Ď B, then supA ď supB and infA ě infB.

( )( )
A B

infB supBinfA supA
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Since H is a subset of any other sets, we shall have sup H is smaller then any real number,
and inf H is greater than any real number. However, this “definition” would destroy the
property that infA ď supA.

The “definition” of sup H and inf H is purely artificial. One can also define sup H = 8

and inf H = ´8.

Definition 1.86. An open interval in R is of the form (a, b) which consists of all x P R Q

a ă x ă b. A closed interval in R is of the form [a, b] which consists of all x P R Q a ď

x ď b.

Proposition 1.87. Let S Ď R be non-empty. Then

1. b = supS P R if and only if

(a) b is an upper bound of S.

(b) @ ε ą 0, Dx P S Q x ą b ´ ε.

2. a = infS P R if and only if

(a) a is a lower bound of S.

(b) @ ε ą 0, Dx P S Q x ă a+ ε.

Proof. “ñ” (a) is part of the definition of being a least upper bound.

(b) If M is an upper bound of S, then we must have M ě b; thus b´ ε is not an upper
bound of S. Therefore, Dx P S Q x ą b ´ ε.

“ð” First, we show that b is an upper bound for S. If not, there exists x P S such that
b ă x. Let ε = x ´ s ą 0. Then we do not have (i) since x P S but x ă s+ ε.

Next, we show that if M is an upper bound of S, then M ě b. Assume the contrary.
Then DM such that M is an upper bound of S but M ă b. Let ε = b´M , then there
is no x P S Q x ą b ´ ε. ÑÐ ˝

So far it is not clear that whether the least upper bound or the greatest lower bound
for a subset S Ď R exists or not. The following theorem provides the existence of the least
upper bound or the greatest lower bound of a set S provided that S has certain properties.

Theorem 1.88. In R, the following two properties hold:
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1. Least upper bound property (L.U.B.P.):

Let S be a non-empty set in R that has an upper bound (or is bounded from above),
then S has a least upper bound. （非空集合有上界，則有最小上界）

2. Greatest lower bound property:

Let S be a non-empty set in R that has a lower bound (or is bounded from below), then
S has a greatest lower bound. (非空集合有下界，則有最大下界)

Proof. We only prove the least upper bound property since the proof of the greatest lower
bound property is similar.

Let H ‰ S Ď R be given. Let x0 be the smallest integer such that x0 is an upper bound
of S. Let x1 = x0 ´

N1

10
, where N1 is the largest integer such that x2 is still an upper bound

of S. We continue this process, and define xn = xn´1 ´
Nn

10n
, where Nn is the largest integer

such that xn is an upper bound of S.（事實上，xn 就是十進位下小數點以下只有 n 位的

小數裡面，S 的上界中最小的那個數）

(
S x3x2 x1

)

Note that in the process of constructing txnu8
n=1, Nn is always non-negative which im-

plies that txnu8
n=1 is decreasing. Moreover, any a P S is a lower bound of txnu8

n=1. By
completeness of R, txnu8

n=1 converges. Assume that xn Ñ x as n Ñ 8.
Claim: x = supS (ô 1. x is an upper bound of S. 2. @ ε ą 0, D s P S Q s ą x ´ ε).

1. Assume the contrary that x is not an upper bound of S. Then D s P S Q s ą x. Since
xn Ñ x as n Ñ 8, DN ą 0 Q |xn ´ x| ă s ´ x for all n ě N ; thus

2x ´ s ă xn ă s n ě N .

Therefore, xn cannot be an upper bound of S for all n ě N , a contradiction.

2. Assume the contrary that D ε ą 0 Q @ s P S, s ă x ´ ε. Choose k P N such that
ε ą

1

10k
. Then

xk´1 ´
Nk + 1

10k
= xk ´

1

10k
ě x ´ ε ą s

which suggests that Nk is not the largest integer such that xk´1 ´
Nk

10k
is still an upper
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bound, a contradiction. ˝

Proposition 1.89. Suppose that H ‰ A Ď B Ď R. Then infB ď infA ď supA ď supB.

Proof. We proceed as follows.

1. supA ď supB: Let b = supB, then @x P B, x ď b. Since A Ď B, then @x P A, x ď b;
hence b is also an upper bound for A. Since supA is the least upper bound for A and
b is an upper bound for A, then supA ď b = supB.

2. It is similar to prove infB ď infA.

3. It is trivially true that infA ď supA. ˝

Theorem 1.90. Let (F ,+, ¨,ď) be an ordered field such that F has the least upper bound
property, then F is complete.

Proof. We would like to show that any increasing bounded sequence converges. Let txnu8
n=1

be increasing and bounded above (by M).

x = sup S

Mx1 x2 x3 x4
(

s = xN

x − ε

Define S = tx1, x2, ¨ ¨ ¨ , xn, ¨ ¨ ¨ u. Then S is non-empty and has an upper bound; thus by
the assumption that F satisfies the least upper bound property, supS ” x exists.

1. x is an upper bound of S ñ xn ď x for all n P N.

2. By Proposition 1.87, @ ε ą 0, D s P S Q s ą x ´ ε . Note that s = xN for some N P N.
Since txnu8

n=1 is increasing, xN ď xn ď x for all n ě N . Therefore, if n ě N ,

x ´ ε ă xN ď xn ď x ă x+ ε

which implies that |xn ´ x| ă ε if n ě N . ˝

Example 1.91. Q is not complete. Let S = tx1 = 3, x2 = 3.1, x3 = 3.14, ¨ ¨ ¨ u. Then S has
4 as an upper bound, but S has no least upper bound (in Q).

Remark 1.92. The two theorems above suggest that in an ordered field, completeness ô

the least upper bound property.
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1.4 Cauchy Sequences
So far the only criteria that we learn (from previous sections) for the convergence of a
sequence in an ordered field is that a bounded monotone sequence in R converges. Are there
any other criteria for the convergence of a sequence in an ordered field? By Proposition 1.48,
we know that if a sequence txnu8

n=1 in an ordered field F converges, then

D!x P F Q @ ε ą 0,#
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

ă 8.

We would like to investigate if the following much weaker statement

@ ε ą 0, D (a limit candidate) y P F Q #
␣

n P N
ˇ

ˇxn R (y ´ ε, y + ε)
(

ă 8 (‹)

leads to the convergence of a sequence. Note that statement (‹) is equivalent to statement
(‹‹) in the following

Definition 1.93. A sequence txnu8
n=1 in an ordered field is said to be Cauchy if

@ ε ą 0, DN ą 0 Q |xn ´ xm| ă ε whenever n,m ě N . (‹‹)

Remark 1.94. (‹) 這個敘述的中心思想是：給定一正值 ε, 我們都能找到一個長度是 2ε

的區間使得落在此區間外的 xn 只有有限個。因為當對每個長度我們都能找到這樣的區間

時，才有機會找到 txnu8
n=1 的極限（極限若真的存在的話，那麼這個極限一定落在所有這

樣的區間之內）；要是連這樣的區間都找不到，就不可能會收斂了。

Example 1.95. In Q, x1 = 3, x2 = 3.1, x3 = 3.14, x4 = 3.141, ¨ ¨ ¨ . Then txnu8
n=1 is a

Cauchy sequence, but is not convergent. Therefore, a Cauchy sequence may not converge.

Proposition 1.96. Every convergent sequence is Cauchy.

Proof. Let txnu8
n=1 be a convergent sequence with limit x. For any ε ą 0, DN ą 0 Q

|xn ´ x| ă
ε

2
if n ě N . Then by triangle inequality, if n,m ě N ,

|xn ´ xm| ď |xn ´ x| + |x ´ xm| ă
ε

2
+
ε

2
= ε ;

thus txnu8
n=1 is Cauchy. ˝

Lemma 1.97. Every Cauchy sequence is bounded.
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Proof. Let txnu8
n=1 be Cauchy. DN ą 0 Q |xn ´ xm| ă 1 for all n,m ě N . In particular,

|xn ´ xN | ă 1 if n ě N or equivalently,

xN ´ 1 ă xn ă xN + 1 @n ě N .

Let M = max
␣

|x1|, |x2|, ¨ ¨ ¨ , |xN´1|, |xN | + 1
(

. Then |xn| ď M for all n P N. ˝

Definition 1.98. A sequence tyju
8
j=1 is called a subsequence (子數列) of a sequence

txnu8
n=1 if there exists an increasing function f : N Ñ N such that yj = xf(j). In this case,

we often write f(j) = nj and yj = xnj
.

In other words, a subsequence is a sequence that can be derived from another sequence
by deleting some elements without changing the order of remaining elements. Let f : N Ñ R
be a sequence an xn = f(n). A subsequence txnj

u8
j=1 of txnu8

n=1 is the image of an infinite
subset tn1, n2, ¨ ¨ ¨ u of N under the map f .

x2x3x1 x4 x7x6

xn4
xn3

x5 x8

xn5
xn1

xn2

Example 1.99. Let txnu8
n=1 =

␣

1,
1

2
,
1

7
,
1

3
,
2

3
,
11

8
, ¨ ¨ ¨

(

, and tynu8
n=1 =

␣1

2
,
1

7
,
2

3
,
11

8
, ¨ ¨ ¨

(

.
Then tynu8

n=1 can be viewed as a subsequence of txnu8
n=1 by the relation yj = xnj

; that
is, y1 = x2, y2 = x3, y3 = x5, y4 = x6, and etc. The sequence txnj

u8
j=1 is obtained by

deleting x1 and x4 (and maybe more) from the original sequence txnu8
n=1. However, if

tznu8
n=1 =

␣1

7
,
11

8
, 1, ¨ ¨ ¨

(

, then tznu8
n=1 is not a subsequence of txnu8

n=1 (but only a subset)
of txnu8

n=1 because the order is changed.

Theorem 1.100 (Bolzano-Weierstrass property). Every bounded sequence in R has a con-
vergent subsequence; that is, every bounded sequence in R has a subsequence that converges
to a limit in R.

Proof. Let txnu8
n=1 be a bounded sequence satisfying |xn| ď M for all n P N. Divide

[´M,M ] into two intervals [´M, 0], [0,M ], and denote one of the two intervals containing
infinitely many xn as [a1, b1]; that is, #

␣

n P N
ˇ

ˇxn P [a1, b1]
(

= 8. Divide [a1, b1] into two
intervals

[
a1,

a1 + b1
2

]
,
[a1 + b1

2
, b1

]
, and denote one of the two intervals containing infinitely

many xn as [a2, b2]. We continue this process, and obtain a sequence of intervals [ak, bk] such
that #tn P N |xn P [ak, bk]u = 8.
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Let xn1 be an element belonging to [a1, b1]. Since #tn P N |xn P [a1, b1]u = 8, we can
choose n2 ą n1 such that xn2 P [a2, b2], and for the same reason we can choose n3 ą n2 such
that xn3 P [a3, b3]. We continue this process and obtain xnk

P [ak, bk] with nk ą nk´1.

−M O

a1
a2

M

b1
b2

]
]
b3a3

[

xn2

xn1

xn3

][[

Since [ak, bk] Ě [ak+1, bk+1] for all k P N, we find that taku8
k=1 is increasing and tbku8

k=1

is decreasing. Moreover, ak ď M , bk ě ´M . As a consequence, by the monotone sequence
property, ak converges to a and bk converges to b.

On the other hand, we observe that bk ´ ak =
M

2k´1
. Then b ´ a = lim

kÑ8

M

2k´1
= 0; thus

a = b. Since ak ď xnk
ď bk, by Sandwich lemma lim

kÑ8
xnk

= a = b P R. ˝

Lemma 1.101. If a subsequence of a Cauchy sequence is convergent, then this Cauchy
sequence also converges.

Proof. Let txnu8
n=1 be a Cauchy sequence with a convergent subsequence txnj

u8
j=1. Assume

lim
jÑ8

xnj
= x. Then @ ε ą 0,

DK ą 0 Q |xnj
´ x| ă

ε

2
if j ě K, and

DN ą 0 Q |xn ´ xm| ă
ε

2
if n,m ě N.

Choose j ě maxtK,Nu. Then nj ě N ; thus if n ě N ,

|xn ´ x| ď |xn ´ xnj
| + |xnj

´ x| ă
ε

2
+
ε

2
= ε . ˝

Theorem 1.102. Every Cauchy sequence in R is convergent.

Theorem 1.103. Suppose that F is an ordered field with Archimedean property and every
Cauchy sequence converges. Then F is complete.

Proof. Suppose the contrary that there is a bounded increasing sequence txnu8
n=1 that does

not converge to a limit in F . By assumption, txnu8
n=1 cannot be Cauchy; thus

D ε ą 0 Q @N ą 0 Dn,m ě N Q |xn ´ xm| ě ε .
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Let N = 1, Dn2 ą n1 ě 1 Q |xn1 ´ xn2 | ě ε. Let N = n2 + 1, Dn4 ą n3 ě n2 + 1 Q

|xn3 ´ xn4 | ě ε. We continue this process and obtain a sequence txnj
u8
j=1 satisfying

ˇ

ˇxn2k´1
´ xn2k

ˇ

ˇ ě ε @ k P N.

xn1
xn2

xn3
xn4

xn5
xn8

≥ ε

xn6
xn7

≥ ε ≥ ε ≥ ε

Claim:
␣

xnj

(8

j=1
is unbounded (thus a contradiction to the boundedness of txnu8

n=1).
Proof of claim: Assume the contrary that there exists M P F such that xnj

ď M for all
j P N. Since xn2k

ě x1 + kε for all k P N, we must have

k ď
M ´ x1

ε
@ k P N

which violates the Archimedean property, a contradiction. ˝

Remark 1.104. In an ordered field with Archimedean property, Completeness ô Cauchy
completeness (Every Cauchy sequence converges).

Example 1.105. xn P R, |xn ´ xn+1| ă
1

2n+1
@n P N.

Claim: txnu8
n=1 is Cauchy. Given ε ą 0, choose N ą 0 Q

1

2N
ă ε. Then if N ď n ă m,

|xn ´ xm| ď |xn ´ xn+1| + |xn+1 ´ xm|

ď |xn ´ xn+1| + |xn+1 ´ xn+2| + |xn+2 ´ xm|

ď ¨ ¨ ¨

ď |xn ´ xn+1| + |xn+1 ´ xn+2| + ¨ ¨ ¨ + |xm´1 ´ xm|

ď
1

2n+1
+

1

2n+2
+ ¨ ¨ ¨ +

1

2m

ď
1

2n
ď

1

2N
ă ε ;

thus txnu8
n=1 is Cauchy in R. This implies that the sequence is convergent.

1.5 Cluster Points and Limit Inferior, Limit Superior
Definition 1.106. A point x is called a cluster point of a sequence txnu8

n=1 if

@ ε ą 0, #
␣

n P N
ˇ

ˇxn P (x ´ ε, x+ ε)
(

= 8 .
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Example 1.107. Let xn = (´1)n. Then 1 and ´1 are the only two cluster points of txnu8
n=1.

Example 1.108. Let xn = (´1)n +
1

n
.

Claim: 1 and ´1 are cluster points of txnu8
n=1.

Let ε ą 0 be given. We observe that
␣

n P N
ˇ

ˇxn P (1 ´ ε, 1 + ε)
(

Ě
␣

n P N
ˇ

ˇn is even, 1
n

ă ε
(

;

thus #
␣

n P N
ˇ

ˇxn P (1 ´ ε, 1 + ε)
(

= 8. Similarly, ´1 is a cluster point.
Claim: @ a ‰ ˘1, a is not a cluster point of txnu8

n=1 (reasoning in the following proposition).

Proposition 1.109. Let txnu8
n=1 Ď R and x P R.

1. x is a cluster point of txnu8
n=1 if and only if @ ε ą 0, N ą 0, Dn ě N Q |xn ´ x| ă ε.

2. x is a cluster point of txnu8
n=1 if and only if there exists a subsequence txnj

u8
j=1 of

txnu8
n=1 converges to x.

3. xn Ñ x as n Ñ 8 if and only if every proper subsequence of txnu8
n=1 converges to x.

4. xn Ñ x as n Ñ 8 if and only if txnu8
n=1 is bounded and x is the only cluster point of

txnu8
n=1.

5. xn Ñ x as n Ñ 8 if and only if every proper subsequence of txnu8
n=1 has a further

subsequence that converges to x.

Proof. We only prove 1-4, and the proof of 5 is left as an exercise.

1. (ñ) Let ε ą 0 be given. Since there are infinitely many n1s with |xn ´ x| ă ε, for any
fixed N P N, there are only finite number of the indices that are smaller than N . So
there must be some n ě N with |xn ´ x| ă ε.

(ð) Let ε ą 0 be given. Pick n1 ě 1 Q |xn1 ´ x| ă ε, then pick n2 ě n1 + 1

Q |xn2 ´x| ă ε. We continue this process and obtain a subsequence txnj
u8
j=1 satisfying

|xnj
´ x| ă ε for all j P N. Then

␣

n P N
ˇ

ˇxn P (x ´ ε, x+ ε)
(

Ě tn1, n2, ¨ ¨ ¨ u.

2. (ñ) By 1, we can pick n1 ě 1 Q |xn1 ´ x| ă 1 and pick n2 ě n1 + 1 Q |xn2 ´ x| ă
1

2
.

In general, we can pick nk ě nk´1 + 1 Q |xnk
´ x| ă

1

k
for all k ě 2. Then

x ´
1

k
ă xnk

ă x+
1

k
@ k P N.
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By Sandwich lemma, lim
kÑ8

xnk
= x.

(ð) @ ε ą 0, D J ą 0 Q |xnj
´ x| ă ε if j ě J . Then

␣

n P N
ˇ

ˇxn P (x ´ ε, x + ε)
(

Ě

tnJ , nJ+1, ¨ ¨ ¨ u.

3. (ñ) Let txnj
u8
j=1 be a subsequence of a convergent sequence txnu8

n=1 and lim
nÑ8

xn = x.
Then @ ε ą 0, DN ą 0 Q |xn ´ x| ă ε for all n ě N . Since nj Ñ 8 as j Ñ 8, D J ą 0

Q nj ě N ; thus |xnj
´ x| ă ε whenever j ě J .

(ð) Assume the contrary that xn Ñ̂x as n Ñ 8. Then

D ε ą 0 Q @N ą 0, Dn ě N Q |xn ´ x| ě ε.

Let n1 ě 1 such that |xn1 ´x| ě ε, and n2 ě n1+1 such that |xn2 ´x| ě ε. In general,
we can chose nk ě nk´1 such that |xnk

´x| ě ε for all k ě 2. The subsequence txnj
u8
j=1

clearly does not converge to x, a contradiction.

4. (ñ) This direction is a direct consequence of Proposition 1.48 and 1.59.

(ð) Suppose that txnun=1 is a bounded sequence in R and has x as the only cluster
point but txnu8

n=1 does not converge to x. Then

D ε ą 0 Q #
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

= 8 .

Write
␣

n P N
ˇ

ˇxn R (x ´ ε, x + ε)
(

= tn1, n2, ¨ ¨ ¨ , nk, ¨ ¨ ¨ u. Then we find a subse-
quence

␣

xnk

(8

k=1
lying outside (x´ ε, x+ ε). Since

␣

xnk

(8

k=1
is bounded, the Bolzano-

Weierstrass property (Theorem 1.100) suggests that there exists a convergent subse-
quence

␣

xnkj

(8

j=1
with limit y. Since xnkj

R (x´ ε, x+ ε), y R [x´ ε, x+ ε]; thus y ‰ x.
On the other hand, 2 suggests that y is a cluster point of txnu8

n=1, a contradiction to
the assumption that x is the only cluster point of txnu8

n=1. ˝

Definition 1.110. A sequence txnu8
n=1 is said to diverge to infinity if @M ą 0, DN ą 0

Q xn ą M whenever n ě N . It is said to diverge to negative infinity if t´xnu8
n=1

diverge to infinity. We use lim
nÑ8

xn = 8 or ´8 to denote that txnu8
n=1 diverges to infinity

or negative infinity, and call 8 or ´8 the limit of txnu8
n=1.

Definition 1.111. The extended real number system, denoted by R˚, is the number
system R Y t8,´8u, where 8 and ´8 are two symbols satisfying ´8 ă x ă 8 for all
x P R.



Copy
rig

ht
Prot

ect
ed

§1.5 Cluster Points and Limit Inferior, Limit Superior 37

Remark 1.112. 1. R˚ is not a field since 8 and ´8 do not have multiplicative inverse.

2. The definition of the least upper bound of a set can be simplified as follows: Let
S Ď R˚ be a set (not necessary non-empty set). A number b P R˚ is said to be the
least upper bound of S if

(a) b is an upper bound of S (that is, s ď b for all s P S);

(b) If M P R˚ is an upper bound of S, then b ď M .

No further discussion (such as S = H or S is not bounded above) has to be made.
The greatest lower bound can be defined in a similar fashion.

3. Any sets in R˚ has a least upper bound and a greatest lower bound in R˚, even the
empty set and unbounded set.

4. Proposition 1.87 can be rephrased as follows: Let S Ď R˚. Then b = supS P R if and
only if

(a) b is an upper bound of S;

(b) @ ε ą 0, D s P S Q s ą b ´ ε.

Note that b P R is crucial since there is no s P R˚ such that s ą 8 ´ ε = 8. The
greatest lower bound counterpart can be made in a similar fashion.

5. In light of Proposition 1.109 and Definition 1.110, we can redefine cluster points of a
real sequence as follows: A number x P R˚ is said to be a cluster point of a sequence
txnu8

n=1 Ď R if there exists a subsequence
␣

xnj

(8

j=1
such that lim

jÑ8
xnj

= x. Note that
now we can talk about if 8 or ´8 is a cluster points of a real sequence.

In the rest of the section, one is allowed to find the least upper bound and the greatest
lower bound of a subset in R˚.

Definition 1.113. Let txnu8
n=1 be a sequence in R.

1. The limit superior of txnu8
n=1, denoted by lim sup

nÑ8

xn or lim
nÑ8

xn, is the infimum of

the sequence
!

sup
␣

xn
ˇ

ˇn ě k
(

)8

k=1
.

2. The limit inferior of txnu8
n=1, denoted by lim inf

nÑ8
xn or lim

nÑ8

xn, is the supremum of

the sequence
!

inf
␣

xn
ˇ

ˇn ě k
(

)8

k=1
.
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Remark 1.114. Let sup
něk

xn denote the number sup
␣

xn
ˇ

ˇn ě k
(

and inf
něk

xn denote the

number inf
␣

xn
ˇ

ˇn ě k
(

. Then the limit superior and the limit inferior can be written as

lim sup
nÑ8

xn = inf
kě1

sup
něk

xn and lim inf
nÑ8

xn = sup
kě1

inf
něk

xn .

Remark 1.115. Let txnu8
n=1 be a sequence in R, and yk = sup

něk
xn and zk = inf

něk
xn. Then

tyku8
k=1 is a decreasing sequence, and tzku8

k=1 is an increasing sequence. Therefore, the limit
of tyku8

k=1 and the limit of tzku8
k=1 both “exist” in the sense of Definition 1.46 and 1.110. In

fact, the limit of tyku8
k=1 is the infimum of tyku8

k=1, and the limit of tzku8
k=1 is the supremum

of tzku8
k=1. In other words,

lim
kÑ8

sup
něk

xn = inf
kě1

sup
něk

xn and lim
kÑ8

inf
něk

xn = sup
kě1

inf
něk

xn ;

thus

lim sup
nÑ8

xn = lim
kÑ8

sup
něk

xn and lim inf
nÑ8

xn = lim
kÑ8

inf
něk

xn .

Example 1.116. Let txnu8
n=1 = t1, 0,´1, 1, 0,´1, 1, 0,´1, ¨ ¨ ¨ u. Then

yk = sup
něk

xn = 1 ñ lim sup
nÑ8

xn = 1.

zk = inf
něk

xn = ´1 ñ lim inf
nÑ8

xn = ´1.

Example 1.117. Let xn =
1

n
. Then

yk = sup
něk

xn =
1

k
ñ lim sup

nÑ8

xn = 0.

zk = inf
něk

xn = 0 ñ lim inf
nÑ8

xn = 0.

Example 1.118. Let xn =

"

0 if n is even
n if n is odd ; that is, txnu8

n=1 = t1, 0, 3, 0, 5, ¨ ¨ ¨ u. Then

yk = sup
něk

xn = 8 ñ lim sup
nÑ8

xn = 8.

zk = inf
něk

xn = 0 ñ lim inf
nÑ8

xn = 0.
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Example 1.119. Let xn =

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1 +
1

n
if n = 4k + 1,

´1 ´
1

n
if n = 4k + 2,

1 ´
1

n
if n = 4k + 3,

´1 +
1

n
if n = 4k.

yk = sup
něk

xn = 1 +
1

⃝
, zk = inf

něk
xn = ´1 ´

1

⃝
. lim sup

nÑ8

xn = 1. lim inf
nÑ8

xn = ´1.

Proposition 1.120. Let txnu8
n=1 be a sequence in R. Then

lim sup
nÑ8

´xn = ´ lim inf
nÑ8

xn and lim inf
nÑ8

´xn = ´ lim sup
nÑ8

xn .

Proof. By the fact that sup
něk

´xn = ´ inf
něk

xn,

lim sup
nÑ8

´xn = lim
kÑ8

sup
něk

(´xn) = lim
kÑ8

(
´ inf

něk
xn

)
= ´ lim

kÑ8
inf
něk

xn = ´ lim inf
nÑ8

xn .

The second identity holds simply by replacing xn by ´xn in the first identity. ˝

Proposition 1.121. Let txnu8
n=1 be a sequence in R. Then

1. a = lim inf
nÑ8

xn P R if and only if

(a) @ ε ą 0, DN ą 0 such that a ´ ε ă xn whenever n ě N ; that is,

@ ε ą 0, #
␣

n P N
ˇ

ˇxn ď a ´ ε
(

ă 8 ,

and

(b) @ ε ą 0 and N ą 0, Dn ě N such that xn ă a+ ε; that is,

@ ε ą 0, #
␣

n P N
ˇ

ˇxn ă a+ ε
(

= 8 .

2. b = lim sup
nÑ8

xn P R if and only if

(a) @ ε ą 0, DN ą 0 such that b+ ε ą xn whenever n ě N ; that is,

@ ε ą 0, #
␣

n P N
ˇ

ˇxn ě b+ ε
(

ă 8 ,

and
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(b) @ ε ą 0 and N ą 0, Dn ě N such that xn ą b ´ ε; that is,

@ ε ą 0, #
␣

n P N
ˇ

ˇxn ą b ´ ε
(

= 8 .

Proof. We only prove 1 since the proof of 2 is similar. Let zk = inf
něk

xn, and

sup
kě1

zk = lim
kÑ8

zk = a P R˚ .

We show that a P R if and only if 1-(a) and 1-(b). Nevertheless, by Proposition 1.87 (or
Remark 1.112), a P R if and only if

(i) a is an upper bound of tzku8
k=1.

(ii) @ ε ą 0, DN P N Q zN ą a ´ ε.

We justify the equivalency between 1-(a) and (ii), as well as the equivalency between 1-(b)
and (i) as follows:

(i) a is an upper bound of tzku8
k=1 ô a ě zk for all k P N ô @ ε ą 0, a + ε ą zk for all

k P N ô @ ε ą 0 and k P N, a+ ε ą inf
něk

xn ô @ ε ą 0 and k P N, a+ ε is not a lower
bound of txnu8

něk ô @ ε ą 0 and k P N, Dn ě k Q a+ ε ą xn ô 1-(b).

(ii) @ ε ą 0, DN P N Q zN ą a ´ ε ô @ ε ą 0, DN ą 0 Q inf
něN

xn ą a ´ ε ô @ ε ą 0,
DN ą 0 such that a ´ ε is a lower bound of txN , xN+1, ¨ ¨ ¨ u ô @ ε ą 0, DN ą 0 such
that a ´ ε ď xn for all n ě N ô @ ε ą 0, DN ą 0 such that a ´ ε ă xn for all n ě N

ô 1-(a). ˝

Remark 1.122. By Proposition 1.121, if a = lim inf
nÑ8

xn P R, then

@ ε ą 0, #
␣

n P N
ˇ

ˇxn P (a ´ ε, a+ ε)
(

= 8

which suggests that a is a cluster point of txnu8
n=1. Moreover, 1-(a) of Proposition 1.121

implies that no other cluster points can be smaller than a. In other words, if a = lim inf
nÑ8

xn P

R, then a is the smallest cluster point of txnu8
n=1. Similarly, b is the largest cluster point of

txnu8
n=1 if b = lim sup

nÑ8

xn P R.

Theorem 1.123. Let txnu8
n=1 be a sequence in R. Then

1. lim inf
nÑ8

xn ď lim sup
nÑ8

xn.
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2. If txnu8
n=1 is bounded above by M , then lim sup

nÑ8

xn ď M .

3. If txnu8
n=1 is bounded below by m, then lim inf

nÑ8
xn ě m.

4. lim sup
nÑ8

xn = 8 if and only if txnu8
n=1 is not bounded above.

5. lim inf
nÑ8

xn = ´8 if and only if txnu8
n=1 is not bounded below.

6. If x is a cluster point of txnu8
n=1, then lim inf

nÑ8
xn ď x ď lim sup

nÑ8

xn.

7. If a = lim inf
nÑ8

xn is finite, then a is a cluster point.

8. If b = lim sup
nÑ8

xn is finite, then b is a cluster point.

9. If txnu8
n=1 converges to x in R if and only if lim inf

nÑ8
xn = lim sup

nÑ8

xn = x P R.

Proof. Left as an exercise. ˝

Remark 1.124. Using the definition of cluster points of a sequence in Remark 1.112, Re-
mark 1.122 and Theorem 1.123 together imply that the limit superior/inferior of a sequence
is the largest/smallest cluster point of that sequence.

Example 1.125. Let S = QX [0, 1]. Then S is countable since it is a subset of a countable
set Q. Therefore, D f : N 1´1

ÝÝÑ
onto

S or equivalently S = tq1, q2, ¨ ¨ ¨ , qn, ¨ ¨ ¨ u. The collection of
all cluster points of tqnu8

n=1 is [0, 1] since Q X [0, 1] is dense in [0, 1].

1.6 Euclidean Spaces and Vector Spaces
Definition 1.126. Euclidean n-space, denoted by Rn, consists of all ordered n-tuples of
real numbers. Symbolically,

Rn =
␣

x
ˇ

ˇx = (x1, x2, ¨ ¨ ¨ , xn), xi P R
(

.

Elements of Rn are generally denoted by single letters that stand for n-tuples such as
x = (x1, x2, ¨ ¨ ¨ , xn), and speak of x as a “point” in Rn.

Definition 1.127. A real vector space V is a set of elements called vectors, with given
operations of vector addition + : V ˆ V Ñ V and scalar multiplication ¨ : R ˆ V Ñ V such
that
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1. v + w = w + v for all v, w P V .

2. (v + w) + u = v + (u+ w) for all u, v, w P V .

3. D 0, the zero vector, Q v + 0 = v for all v P V .

4. @ v P V , Dw P V Q v + w = 0.

5. λ ¨ (v + w) = λ ¨ v + λ ¨ w for all λ P R and v, w P V .

6. (λ+ µ) ¨ v = λ ¨ v + µ ¨ v for all λ, µ P R and v P V .

7. (λ ¨ µ) ¨ v = λ ¨ (µ ¨ v) for all λ, µ P R and v P V .

8. 1 ¨ v = v for all v P V .

Example 1.128. Let the vector addition and scalar multiplication on Rn be defined by

x+ y = (x1 + y1, ¨ ¨ ¨ , xn + yn) if x = (x1, ¨ ¨ ¨ , xn), y = (y1, ¨ ¨ ¨ , yn)

and
λ ¨ x = (λx1, ¨ ¨ ¨ , λxn) if λ P R, x = (x1, ¨ ¨ ¨ , xn) .

Then Rn is a real vector space.

Example 1.129. Let M ”
␣

n ˆ m matrix with entries in R
(

. Define

A+B ” [aij + bij], λ ¨ A ” [λ ¨ aij] if λ P R, A = [aij], B = [bij] P M .

Then M is a real vector space.

Definition 1.130. W is called a subspace of a real vector space V if

1. W is a subset of V .

2. (W ,+, ¨), with vector addition and scalar multiplication in V , is a real vector space.

Example 1.131. V = R3, W = R2 ˆ t0u ” t(x, y, 0)|x, y P Ru. W is a subspace of V .

Lemma 1.132. If W is a subset of a real vector space V, then W is a subspace if and only
if λ ¨ v + µ ¨ w P W , @λ, µ P R, v, w P W.
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Remark 1.133. “n” is called the dimension of Rn.
There are n linearly independent vectors e1 = (1, 0, ¨ ¨ ¨ , 0), e2 = (0, 1, 0, ¨ ¨ ¨ , 0), ¨ ¨ ¨ , en =

(0, 0, ¨ ¨ ¨ , 0, 1), but if v1, v2, ¨ ¨ ¨ , vn+1 are (n+ 1) vectors in Rn, Dλ1, ¨ ¨ ¨ , λn+1 P R, Q λ1v1 +

¨ ¨ ¨ + λn+1vn+1 = 0, (λ1, ¨ ¨ ¨ , λn+1) ‰ (0, ¨ ¨ ¨ , 0).

Definition 1.134. A subset H Ď Rn is called a hyperplane if H is (n ´ 1)-dimensional
subspace of Rn. An affine hyperplane is a set x+H ” tx+y | y P Hu for some hyperplane
H.

1.7 Normed Vector Spaces, Inner Product Spaces and
Metric Spaces

Definition 1.135. A nomed vector space (V , } ¨ }) is a real vector space V associated
with a function } ¨ } : V Ñ R such that

(a) }x} ě 0 for all x P V .

(b) }x} = 0 if and only if x = 0.

(c) }λ ¨ x} = |λ| ¨ }x} for all λ P R and x P V .

(d) }x+ y} ď }x} + }y} for all x, y P V .

A function } ¨ } satisfies (a)-(d) is called a norm on V .

Example 1.136. Let V = Rn, and }x}2 ”

( n
ÿ

i=1

x2i

) 1
2 if x = (x1, x2, ¨ ¨ ¨ , xn). Then } ¨ }2 is

a norm, called 2-norm, on Rn. It suffices to show that (d) in Definition 1.135 holds. Let
x = (x1, x2, ¨ ¨ ¨ , xn) and y = (y1, y2, ¨ ¨ ¨ , yn). Then

(}x+ y}2)
2 =

n
ÿ

i=1

(xi + yi)
2 =

n
ÿ

i=1

(x2i + 2xiyi + y2i ) =
n
ÿ

i=1

x2i +
n
ÿ

i=1

y2i + 2
n
ÿ

i=1

xiyi

ď }x}22 + }y}22 + 2}x}2}y}2 (By Cauchy’s inequality)
= (}x}2 + }y}2)

2 ;

thus }x+ y}2 ď }x}2 + }y}2.
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Example 1.137. Let V = Rn, and define

}x}p ”

$

’

&

’

%

( n
ÿ

i=1

|xi|
p
) 1

p if 1 ď p ă 8,

max
␣

|x1|, ¨ ¨ ¨ , |xn|
(

if p = 8,
for all x = (x1, x2, ¨ ¨ ¨ , xn) P Rn.

Then } ¨ }p is a norm, called p-norm, on Rn. Property (d) in Definition 1.135; that is,
}x+ y}p ď }x}p + }y}p, is left as an exercise.

Example 1.138. Let Mnˆm ”
␣

nˆm matrix with entries in R
(

, and we remind the read-

ers that if A P Mnˆm, then A :

"

Rm Ñ Rn

x ÞÑ Ax
. Define

}A}p = sup
}x}p=1

}Ax}p = sup
x‰0

}Ax}p

}x}p
@A P Mnˆm ;

that is, }A}p is the least upper bound of the set
!

}Ax}p

}x}p

ˇ

ˇ

ˇ
x ‰ 0, x P Rm

)

. Therefore,
}Ax}p

}x}p
ď }A}p @x ‰ 0; thus

}Ax}p ď }A}p}x}p @x P Rm .

Consider the case p = 1, p = 2 and p = 8 respectively.

1. p = 2: Let (¨, ¨)Rk denote the inner product in Euclidean space Rk. Then

}Ax}22 = (Ax,Ax)Rn = (x,ATAx)Rm = (x, PΛPTx)Rm = (PTx,ΛPTx)Rn ,

in which we use the fact that ATA is symmetric; thus diagonalizable by an orthonormal
matrix P (that is, ATA = PΛPT, PTP = I, Λ is a diagonal matrix). Therefore,

sup
}x}2=1

}Ax}22 = sup
}x}2=1

(PTx,ΛPTx) = sup
}y}2=1

(y,Λy) (Let y = PTx, then }y}2 = 1)

= sup
}y}2=1

(λ1y
2
1 + λ2y

2
2 + ¨ ¨ ¨ + λny

2
n)

= max
␣

λ1, ¨ ¨ ¨ , λn
(

= maximum eigenvalue of ATA

which implies that }A}2 =
a

maximum eigenvalue of ATA.

2. p = 8: }A}8 = sup
}x}8=1

}Ax}8 = max
#

m
ÿ

j=1

|a1j|,
m
ÿ

j=1

|a2j|, ¨ ¨ ¨

m
ÿ

j=1

|anj|

+

.



Copy
rig

ht
Prot

ect
ed

§1.6 Euclidean Spaces and Vector Spaces 45

Reason: Let x = (x1, x2, ¨ ¨ ¨ , xn)
T and A =

[
aij

]
nˆm

. Then

Ax =


a11x1 + ¨ ¨ ¨ + a1mxm
a21x1 + ¨ ¨ ¨ + a2mxm

...
an1x1 + ¨ ¨ ¨ + anmxm


Assume max

1ďiďn

m
ÿ

j=1

|aij| =
m
ÿ

j=1

|akj| for some 1 ď k ď n. Let

x = (sgn(ak1), sgn(ak2), ¨ ¨ ¨ , sgn(akn)) .

Then }x}8 = 1, and }Ax}8 =
m
ř

j=1

|akj|.

On the other hand, if }x}8 = 1, then

|ai1x1 + ai2x2 + ¨ ¨ ¨ aimxm| ď

m
ÿ

j=1

|aij| ď max
#

m
ÿ

j=1

|a1j|,
m
ÿ

j=1

|a2j|, ¨ ¨ ¨

m
ÿ

j=1

|anj|

+

;

thus }A}8 = max
#

m
ř

j=1

|a1j|,
m
ř

j=1

|a2j|, ¨ ¨ ¨
m
ř

j=1

|anj|

+

. In other words, }A}8 is the largest

sum of the absolute value of row entries.

3. p = 1: }A}1 = max
#

n
ÿ

i=1

|ai1|,
n
ÿ

i=1

|ai2|, ¨ ¨ ¨ ,
n
ÿ

i=1

|aim|

+

.

Example 1.139. Let C be the collection of all continuous real-valued functions on the
interval [0, 1]; that is,

C =
␣

f : [0, 1] Ñ R
ˇ

ˇ f is continuous on [0, 1]
(

.

For each f P C , we define

}f}p =

$

’

’

&

’

’

%

[ ż 1

0

|f(x)|pdx
] 1

p if 1 ď p ă 8 ,

max
xP[0,1]

|f(x)| if p = 8 .

The function } ¨ }p : C Ñ R is a norm on C (Minkowski’s inequality).

Definition 1.140. An inner product space
(
V , x¨, ¨y

)
is a real vector space V associated

with a function x¨, ¨y : V ˆ V Ñ R such that
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(1) xx, xy ě 0, @x P V .

(2) xx, xy = 0 if and only if x = 0.

(3) xx, y + zy = xx, yy + xx, zy for all x, y, z P V .

(4) xλx, yy = λxx, yy for all λ P R and x, y P V .

(5) xx, yy = xy, xy for all x, y P V .

A symmetric bilinear form x¨, ¨y satisfies (1)-(5) is called an inner product on V .

Example 1.141. Let (¨, ¨) : Rn ˆ Rn Ñ R be defined by

(x, y) =
n
ÿ

i=1

xiyi @x = (x1, ¨ ¨ ¨ , xn), y = (y1, ¨ ¨ ¨ , yn) .

Then (¨, ¨) is an inner product on Rn.

Example 1.142. Let C be defined as in Example 1.139. Define

xf, gy =

ż 1

0

f(x)g(x)dx .

Then x¨, ¨y : C ˆ C Ñ R satisfies all the properties that an inner product has. Note that
xf, fy = }f}22.

Proposition 1.143. If x¨, ¨y is an inner product on a real vector space V. Then

1. xλv + µw, uy = λxv, uy + µxw, uy for all u, v, w P V.

2. xu, λv + µwy = λxu, vy + µxu,wy for all u, v, w P V.

3. xv, λwy = λxv, wy for all v, w P V.

4. x0, wy = xw, 0y = 0 for all w P V.

Theorem 1.144. The inner product x¨, ¨y on a real vector space induces a norm } ¨ } given
by }x} =

a

xx, xy and satisfies the Cauchy-Schwarz inequality
ˇ

ˇxx, yy
ˇ

ˇ ď }x} ¨ }y} @ x, y P V . (1.7.1)
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Proof. First, we observe that for all x, y P V fixed, we must have

0 ď xλx+ y, λx+ yy = }x}2λ2 + 2xx, yyλ+ }y}2

for all λ P R. Therefore,
xx, yy2 ´ }x}2 ¨ }y}2 ď 0

which implies (1.7.1).
It should be clear that (a)-(c) in Definition 1.135 are satisfied. To show that } ¨ } satisfies

the triangle inequality, by (1.7.1) we find that(
}x} + }y}

)2
´ }x+ y}2 = }x}2 + 2}x}}y} + }y}2 ´ xx+ y, x+ yy

= 2
(
}x}}y} ´ xx, yy

)
ě 0 ;

thus the triangle inequality is also valid. ˝

Corollary 1.145. Let f, g : [0, 1] Ñ R be continuous. Then

ˇ

ˇ

ˇ

ˇ

ż 1

0

f(x)g(x)dx

ˇ

ˇ

ˇ

ˇ

ď

(
ż 1

0

|f(x)|2dx

) 1
2
(
ż 1

0

|g(x)|2dx

) 1
2

.

Definition 1.146. A metric space (M,d) is a set M associated with a function d :

M ˆ M Ñ R such that

(i) d(x, y) ě 0 for all x, y P M .

(ii) d(x, y) = 0 if and only if x = y.

(iii) d(x, y) = d(y, x) for all x, y P M .

(iv) d(x, y) ď d(x, z) + d(z, y) for all x, y, z P M .

A function d satisfies (i)-(iv) is called a metric on M .

Example 1.147 (Discrete metric). Let M be a non-empty set, and d0 : M ˆ M Ñ R be
defined by

d0(x, y) =

"

0 if x = y ,
1 if x ‰ y .

Then d0 is a metric on M , and we call d0 the discrete metric.
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Example 1.148 (Bounded metric). Let (M,d) be a metric space. Define ρ :M ˆ M Ñ R
by

ρ(x, y) =
d(x, y)

1 + d(x, y)
.

Then ρ is also a metric on M .

Proposition 1.149. If (V , } ¨ }) is a normed vector space, then the function d : V ˆ V Ñ R
defined by d(x, y) = }x ´ y} is a metric on V. In other words, (V, d) is a metric space, and
we usually write (V , } ¨ }) as the metric space.

1.8 Exercises
§1.1 Ordered Fields and the Number Systems

Problem 1.1. Let (F ,+, ¨,ď) be an ordered field, and a, b, c, d P F .

1. Show that if a ď b and c ď d, then a+ c ď b+ d.

2. Show that if a ď b and c ă d, then a+ c ă b+ d.

Problem 1.2. Let S be a non-empty subset of N and satisfy that

1. 1, 2 P S.

2. if m and m+ 1 P S, then m+ 2 P S.

Show that S = N.

§1.2 Completeness and the Real Number System

Problem 1.3. Let F be an ordered field with Archimedean property, and x, y P F . Show
that x ď y if and only if @ ε ą 0, x ă y + ε.

Problem 1.4. Fix y ą 1. Complete the following.

1. Define y1/n properly. (Hint: see how we define ?
y in class).

2. Show that yn ´ 1 ą n(y ´ 1) for all n P Nzt1u; thus y ´ 1 ą n(y1/n ´ 1).

3. If t ą 1 and n ą (y ´ 1)/(t ´ 1), then y1/n ă t.
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4. Show that lim
nÑ8

y1/n = 1 as n Ñ 8.

Problem 1.5. Complete the following.

1. Let x ě 0 be a real number such that for any ε ą 0, x ď ε. Show that x = 0.

2. Let S = (0, 1). Show that for each ε ą 0 there exists an x P S such that x ă ε.

§1.3 Least Upper Bounds and Greatest Lower Bounds

Problem 1.6. Let A be a non-empty set of R which is bounded below. Define the set ´A

by ´A ”
␣

´ x P R
ˇ

ˇx P A
(

. Prove that

infA = ´ sup(´A) .

Problem 1.7. Let A,B be non-empty subset of R. Define A+ B = tx+ y |x P A, y P Bu.
Justify if the following statements are true or false by providing a proof for the true statement
and giving a counter-example for the false ones.

1. sup(A+B) = supA+ supB.

2. inf(A+B) = infA+ infB.

3. sup(A X B) ď mintsupA, supBu.

4. sup(A X B) = mintsupA, supBu.

5. sup(A Y B) ě maxtsupA, supBu.

6. sup(A Y B) = maxtsupA, supBu.

Problem 1.8. Let S Ď R be bounded below and non-empty. Show that

infS = sup
␣

x P R
ˇ

ˇx is a lower bound for S
(

.

Problem 1.9. Let A,B be two sets, and f : A ˆ B Ñ R be a function. Show that

sup
(x,y)PAˆB

f(x, y) = sup
yPB

(
sup
xPA

f(x, y)
)
= sup

xPA

(
sup
yPB

f(x, y)
)
.

Problem 1.10. Fix b ą 1.

1. Show the law of exponents holds (for rational exponents); that is, show that
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(a) if r, s in Q, then br+s = br ¨ bs.

(b) if r, s in Q, then br¨s = (br)s.

2. For x P R, let B(x) =
␣

bt P R
ˇ

ˇ t P Q, t ď x
(

. Show that br = supB(r) if r P Q.
Therefore, it makes sense to define bx = supB(x) for x P R. Show that the law of
exponents (for real exponents) are also valid.

3. Let y ą 0 be given. Using 4 of Problem 1.4 to show that if u, v P R such that bu ă y

and bv ą y, then bu+1/n ă y and bv´1/n ą y for sufficiently large n.

4. Let y ą 0 be given, and A be the set of all w such that bw ă y. Show that x = supA
satisfies bx = y.

5. Prove that if x1, x2 are two real numbers satisfying bx1 = bx2 , then x1 = x2.

The number x satisfying bx = y is called the logarithm of y to the base b, and is denoted by
logb y.

§1.4 Cauchy Sequences

Problem 1.11. Let a P R. Define an through the iterated relation

an = a2n´1 ´ an´1 + 1 @n ą 1, a1 = a .

For what a is the sequence tanu8
n=1 (1) monotone? (2) bounded? (3) convergent? Compute

the limit in the case of convergence.

Problem 1.12. Let F be an ordered field, and txnu8
n=1 be a sequence in F . Show that

txnu8
n=1 is Cauchy if and only if

@ ε ą 0, D y P F Q #
␣

n P N
ˇ

ˇxn R (y ´ ε, y + ε)
(

ă 8 .

Problem 1.13. Let tanu8
n=1 and txnu8

n=1 be two sequences in R, and define Sk =
k
ř

n=1

an (so

tSku8
k=1 is also a sequence). Suppose that |xn ´xn+1| ă an for all n P N. Show that txnu8

n=1

converges if tSku8
k=1 converges.

Problem 1.14. Let f : R Ñ R be a function so that |f(x) ´ f(y)| ď
|x´ y|

2
. Pick an

arbitrary x1 P R, and define xk+1 = f(xk) for all k P N. Show that txnu8
n=1 is a Cauchy

sequence.
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Problem 1.15. Suppose that txnu8
n=1 and tynu8

n=1 are two Cauchy sequence in R. Show
that the sequence

␣

|xn ´ yn|
(8

n=1
converges.

§1.5 Cluster Points and Limit Inferior, Limit Superior

Problem 1.16. Let txnu8
n=1 and tynu8

n=1 be sequences in R. Prove the following inequalities:

lim inf
nÑ8

xn + lim inf
nÑ8

yn ď lim inf
nÑ8

(xn + yn) ď lim inf
nÑ8

xn + lim sup
nÑ8

yn

ď lim sup
nÑ8

(xn + yn) ď lim sup
nÑ8

xn + lim sup
nÑ8

yn ;(
lim inf
nÑ8

|xn|
)(

lim inf
nÑ8

|yn|
)

ď lim inf
nÑ8

|xnyn| ď
(

lim inf
nÑ8

|xn|
)(

lim sup
nÑ8

|yn|
)

ď lim sup
nÑ8

|xnyn| ď
(

lim sup
nÑ8

|xn|
)(

lim sup
nÑ8

|yn|
)
.

Give examples showing that the equalities are generally not true.

Problem 1.17. Prove that

lim inf
nÑ8

|xn+1|

|xn|
ď lim inf

nÑ8

n
a

|xn| ď lim sup
nÑ8

n
a

|xn| ď lim sup
nÑ8

|xn+1|

|xn|
.

Give examples to show that the equalities are not true in general. Is it true that lim
nÑ8

n
a

|xn|

exists implies that lim
nÑ8

|xn+1|

|xn|
also exists?

Problem 1.18. Find the following limits.

lim
nÑ8

1

n
n
?
n! , lim

nÑ8

1

n
n
a

(n+ 1)(n+ 2) ¨ ¨ ¨ (2n) .

Problem 1.19. Given the following sets consisting of elements of some sequence of real
numbers. Find their sup and inf, and also the limsup and liminf of the sequence.

1.
␣

cosm
ˇ

ˇm = 0, 1, 2, ¨ ¨ ¨
(

.

2.
␣

m
a

| sinm|
ˇ

ˇm = 1, 2, ¨ ¨ ¨
(

.

3.
␣

(1 +
1

m
) sin mπ

6

ˇ

ˇm = 1, 2, ¨ ¨ ¨
(

.

Hint: For 1, first show that for all irrational α, the set

S =
␣

x P [0, 1]
ˇ

ˇx = kα (mod 1) for some k P N
(
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is dense in [0, 1]; that is, for all y P [0, 1] and ε ą 0, there exists x P S X (y´ ε, y+ ε). Then
choose α =

1

2π
to conclude that

T =
␣

x P [0, 2π]
ˇ

ˇx = k (mod 2π) for some k P N
(

is dense in [0, 2π]. To prove that S is dense in [0, 1], you might want to consider the following
set

Sk =
␣

x P [0, 1]
ˇ

ˇx = ℓα (mod 1) for some 1 ď ℓ ď k + 1
(

Note that there must be two points in Sk whose distance is less than 1

k
. What happened to

(the multiples of) the difference of these two points?

§1.6 Euclidean Spaces and Vector Spaces

Problem 1.20. Show that the p-norm on Euclidean space Rn given by

}x}p ”

$

’

&

’

%

( n
ÿ

i=1

|xi|
p
) 1

p if 1 ď p ă 8 ,

max
␣

|x1|, ¨ ¨ ¨ , |xn|
(

if p = 8 ,

x = (x1, ¨ ¨ ¨ , xn)

is indeed a norm.

§1.7 Normed Vector Spaces, Inner Product Spaces and Metric Spaces

Problem 1.21. Let Mnˆm be the collection of all n ˆ m matrices with real entries as in
Example 1.138. Define a function } ¨ } : M Ñ R by

}A} = sup
xPRm
x‰0

}Ax}2

}x}2
,

here we recall that } ¨ }2 is the 2-norm on Euclidean space given by

}x}2 =
( k
ÿ

i=1

x2i

)1/2

if x = (x1, ¨ ¨ ¨ , xk) P Rk .

Show that

1. }A} = sup
xPRm

}x}2=1

}Ax}2 = inf
␣

M P R
ˇ

ˇ }Ax}2 ď M}x}2 @x P Rm
(

.

2. }Ax}2 ď }A}}x}2 for all x P Rm.
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3. } ¨ } defines a norm on Mnˆm.

4. Let tAku8
k=1 Ď Mnˆm. Show that lim

kÑ8
}Ak} = 0 if and only if each entry of Ak con-

verges to 0. In other words, by writing Ak =
[
a
(k)
ij

]
1ďiďn,1ďjďm

, show that lim
kÑ8

}Ak} = 0

if and only if lim
kÑ8

a
(k)
ij = 0 for all 1 ď i ď m, 1 ď j ď n. In particular, Ak Ñ A in the

sense that }Ak ´A} Ñ 0 as k Ñ 8 if and only if the (i, j)-th entry of Ak converges to
(i, j)-th entry of A for all 1 ď i ď n and 1 ď j ď m.

Problem 1.22. Let (V ,+, ¨, x¨, ¨y) be an inner product space, and define }v} = xv, vy1/2 for
all v P V . Show that

1. 2}x}2 + 2}y}2 = }x+ y}2 + }x ´ y}2 (parallelogram law).

2. }x+ y}}x ´ y} ď }x}2 + }y}2.

3. 4 xx, yy = }x+ y}2 ´ }x ´ y}2 (polarization identity).

Can the p-norm } ¨ }p on Rn be induced from any inner product (on Rn) for p ‰ 2?

Problem 1.23. Let (X, } ¨ }X), (Y, } ¨ }Y ), (Z, } ¨ }Z) be three normed vector spaces such
that X,Y Ď Z and

}x}Z ď C}x}X @x P X and }y}Z ď C}y}Y @ y P Y .

Define
E =

␣

a P Z
ˇ

ˇ }a}E ” maxt}a}X , }a}Y u ă 8
(

and
F =

␣

a P Z
ˇ

ˇ }a}F ” inf
a=x+y

xPX,yPY

(}x}X + }y}Y ) ă 8u .

Show that (E, } ¨ }E) and (F, } ¨ }F ) are also normed vector spaces, and E = X X Y . The
space F is usually denoted by X + Y .

Problem 1.24 (True or False). Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.

1. Given two sets A and B. Then AˆB is countable if and only if A and B are countable.

2. Let txnu8
n=1 Ď R be a sequence and lim sup

nÑ8

xn = x. Then sup
nPN

xn = x.
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3. The set
␣

(x, y) P R2
ˇ

ˇx+ y P Q
(

is countable.

4. Let txnu8
n=1 Ď R be a sequence such that |xn ´ xn+1| ď

1

n
. Then txnu8

n=1 converges in
R.

5. If a bounded sequence txnu8
n=1 in R satisfies xn+1 ´ ϵn ď xn for n P N, where

8
ř

n=1

ϵn

is an absolute convergent series; that is, the partial sum
k
ř

n=1

|ϵn| converges as k Ñ 8,

then txnu8
n=1 converges.

6. Let π : N Ñ N be one-to-one and onto (such map π is called a rearrangement), and
txnu8

n=1 is a convergent sequence. Then
␣

xπ(n)
(8

n=1
is also convergent.

7. Let A Ď R satisfy

sup
!

ÿ

bPB

|b|
ˇ

ˇ

ˇ
B is a non-empty finite subsets of A

)

ă 8 .

Then
␣

x P A
ˇ

ˇx ‰ 0u is countable.

8. Any rearrangement of the series
8
ř

n=1

xn diverges if and only if xn does not tend to 0 as
n Ñ 8.

9. If txnu8
n=1 is a sequence of distinct non-zero real numbers such that lim

nÑ8
xn = 0, then

the set
␣

mxn
ˇ

ˇm P Z, n P N
(

is dense in R.


