Chapter 1

The Real Line and Euclidean Space

1.1 Ordered Fields and the Number Systems

1.1.1 Fields and partial orders

Definition 1.1. A set \mathcal{F} is said to be a *field* (\mathbb{R}) if there are two operations + and \cdot such that

- 1. $x + y \in \mathcal{F}, x \cdot y \in \mathcal{F}$ if $x, y \in \mathcal{F}$. (封閉性)
- 2. x + y = y + x for all $x, y \in \mathcal{F}$. (commutativity, 加法的交換性)
- 3. (x+y) + z = x + (y+z) for all $x, y, z \in \mathcal{F}$. (associativity, 加法的結合性)
- 4. There exists $0 \in \mathcal{F}$, called 加法單位元素, such that x + 0 = x for all $x \in \mathcal{F}$. (the existence of zero)
- 5. For every $x \in \mathcal{F}$, there exists $y \in \mathcal{F}$ (usually y is denoted by -x and is called x 的加 法反元素) such that x + y = 0. One writes $x - y \equiv x + (-y)$.
- 6. $x \cdot y = y \cdot x$ for all $x, y \in \mathcal{F}$. (乘法的交換性)
- 7. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in \mathcal{F}$. (乘法的結合性)
- 8. There exists $1 \in \mathcal{F}$, called 乘法單位元素, such that $x \cdot 1 = x$ for all $x \in \mathcal{F}$. (the existence of unity)
- 9. For every $x \in \mathcal{F}$, $x \neq 0$, there exists $y \in \mathcal{F}$ (usually y is denoted by x^{-1} and is called x 的乘法反元素) such that $x \cdot y = 1$. One writes $x \cdot y \equiv x \cdot x^{-1} = 1$.

10. $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in \mathcal{F}$. (distributive law, 分配律)

11. $0 \neq 1$.

Remark 1.2. Let x and y be both multiplicative inverse (乘法反元素) of a number a in $(\mathcal{F}, +, \cdot)$. Then

$$x \cdot a = 1 \quad \Rightarrow \quad (x \cdot a) \cdot y = 1 \cdot y = y \quad \Rightarrow \quad x \cdot 1 = x \cdot (a \cdot y) = y;$$

thus x = y. In other words, the multiplicative inverse of a number is unique.

Remark 1.3. A set \mathcal{F} satisfying properties 1 to 10 with 0 = 1 consists of only one member: By distributive law, $x \cdot 0 = x \cdot (0+0) = x \cdot 0 + x \cdot 0$; thus $-(x \cdot 0) + (x \cdot 0) = -(x \cdot 0) + (x \cdot 0) + (x \cdot 0) + (x \cdot 0) = -(x \cdot 0) + (x \cdot 0)$ which implies that $x \cdot 0 = 0$. Therefore, if 0 = 1, then $x = x \cdot 1 = x \cdot 0 = 0$ for all $x \in \mathcal{F}$. Hence, the set \mathcal{F} consists only one element 0.

Remark 1.4. If $x \in \mathcal{F}$, then $((1 + (-1)) \cdot x = 0$ which implies that $x + (-1) \cdot x = 0$. Therefore, $(-1) \cdot x = -x + x + (-1) \cdot x = -x + 0 = -x$. **Example 1.5.** Let $\mathbb{Q} = \left\{ \frac{q}{p} \mid p \neq 0, p, q \in \mathbb{Z} : \text{integers} \right\}$. Then \mathbb{Q} is a field. (Check all the properties from 1 to 11).

properties from 1 to 11).

Example 1.6. Let $\mathbb{N} = \{n \in \mathbb{Z} \mid n > 0\}$. Then \mathbb{N} is not a field because there is no zero.

Example 1.7. Let $\mathcal{F} = \{a, b, c\}$ with the operations + and \cdot defined by

Ŧ	a	b	c		a	b	c
a	a	b	С	a	a	a	a
b	b	c	a	b	a	b	С
С	c	a	b	c	a	c	b

Then \mathcal{F} is a field because of the following: Properties 1, 2, 3, 6, 7 are obvious.

Property 4: $\exists "0" \ni x + "0" = x$ for all $x \in \mathcal{F}$. In fact, "0" = a.

Property 5: $\forall x \in \mathcal{F}, \exists y \in \mathcal{F} \ni x + y = 0$, here b = -c, c = -b.

Property 8: \exists "1" $\ni x \cdot$ "1" = x for all $x \in \mathcal{F}$. In fact, "1" = b (so Property 11 holds since $a \neq b$).

Property 9: $\forall x \neq 0, \in \mathcal{F}, \exists z \in \mathcal{F} \ni x \cdot z = 1$, here z = x.

The validity of Property 10 is left as an exercise.

Example 1.8. Let $(\mathcal{F}, +, \cdot)$ be a field. Then $(x - y)(x + y) = x^2 - y^2$ for all $x, y \in \mathcal{F}$. In fact,

$$\begin{split} (x-y)(x+y) &= (x-y) \cdot x + (x-y) \cdot y & \text{(by 分配律)} \\ &= x \cdot (x-y) + y \cdot (x-y) & \text{(by 乘法交换律)} \\ &= x \cdot x + x \cdot (-y) + y \cdot x + y \cdot (-y) & \text{(by 分配律)} \\ &= x^2 - x \cdot y + x \cdot y - y^2 & \text{(by Remark 1.4 and 乘法交换律)} \\ &= x^2 + 0 - y^2 & \text{(by Property 5)} \\ &= x^2 - y^2 & \text{(by Property 4).} \end{split}$$

Definition 1.9. A *partial order* over a set P is a binary relation \leq which is reflexive, anti-symmetric and transitive (满足遞移律), in the sense that

- 1. $x \leq x$ for all $x \in P$ (reflexivity).
- 2. $x \leq y$ and $y \leq x \Rightarrow x = y$ (anti-symmetry).
- 3. $x \leq y$ and $y \leq z \Rightarrow x \leq z$ (transitivity).

A set with a partial order is called a *partially ordered set*.

Example 1.10. Let S be a given set, and 2^S be the **power set** of S; that is,

 $P = 2^{S} = \{A \mid A \subseteq S\} = \text{the collection of all subsets of } S.$

We define \leq as \supseteq . Then

- 1. $A \supseteq A$ (reflexivity).
- 2. $A \supseteq B$ and $B \supseteq A \Rightarrow A = B$ (anti-symmetry).
- 3. $A \supseteq B$ and $B \supseteq C \Rightarrow A \supseteq C$ (transitivity).

Hence, \supseteq is a partial order over 2^S (or equivalently, $(2^S, \supseteq)$ is a partially ordered set). Similarly, \subseteq on 2^S is also a partial order.

Definition 1.11. Let (P, \leq) be a partially ordered set. Two elements $x, y \in P$ are said to be *comparable* if either $x \leq y$ or $y \leq x$.

Definition 1.12. A partial order under which every pair of elements is comparable is called a *total order* or *linear order*.

Definition 1.13. An *ordered field* is a totally ordered field $(\mathcal{F}, +, \cdot, \leq)$ satisfying that

1. If $x \leq y$, then $x + z \leq y + z$ for all $z \in \mathcal{F}$ (compatibility of \leq and +).

2. If $0 \leq x$ and $0 \leq y$, then $0 \leq x \cdot y$ (compatibility of \leq and \cdot).

Example 1.14. $(\mathbb{Q}, +, \cdot, \geq)$ is a totally ordered field, but is **not** an ordered field (since Property 2 in Definition 1.13 is violated). On the other hand, $(\mathbb{Q}, +, \cdot, \leq)$ is an ordered field.

From now on, the total order \leq of an ordered field will be denoted by \leq .

Definition 1.15. In an ordered field $(\mathcal{F}, +, \cdot, \leq)$, the binary relations $\langle \cdot, \rangle$ and \rangle are defined by:

- 1. x < y if $x \leq y$ and $x \neq y$.
- 2. $x \ge y$ if $y \le x$.
- 3. x > y if y < x.

Adopting the definition above, it is not immediately clear that $x \leq y \Leftrightarrow x > y$. However, this is indeed the case, and to be more precise we have the following

Proposition 1.16. (Law of Trichotomy, $\leq -\not{a}$) *If* x and y are elements of an ordered field $(\mathcal{F}, +, \cdot, \leq)$, then exactly one of the relations x < y, x = y or y < x holds.

Proof. Since \mathcal{F} is a totally ordered field, x and y are comparable. Therefore, either $x \leq y$ or $y \leq x$. Assume that $x \leq y$.

- 1. If x = y, then $x \neq y$ and $x \neq y$.
- 2. If $x \neq y$, then x < y. If it also holds that x > y, then $x \ge y$; thus by the property of anit-symmetry of an order, we must have x = y, a contradiction. Therefore, it can only be that x < y.

The proof for the case $y \leq x$ is similar, and is left as an exercise.

Proposition 1.17. Let $(\mathcal{F}, +, \cdot, \leq)$ be an ordered field, and $a, b, x, y, z \in \mathcal{F}$.

1. If a + x = a, then x = 0. If $a \cdot x = a$ and $a \neq 0$, then x = 1.

- 2. If a + x = 0, then x = -a. If $a \cdot x = 1$ and $a \neq 0$, then $x = a^{-1}$.
- 3. If $x \cdot y = 0$, then x = 0 or y = 0.
- 4. If $x \leq y < z$ or $x < y \leq z$, then x < z (the transitivity of <).
- 5. If a < b, then a + x < b + x (the compatibility of < and +). If 0 < a and 0 < b, then $0 < a \cdot b$ (the compatibility of $< and \cdot$).

ecth

- 6. If a + x = b + x, then a = b. If $a + x \leq (<) b + x$, then $a \leq (<) b$. If $a \cdot x = b \cdot x$ and $x \neq 0$, then a = b. If $a \cdot x \leq (<) b \cdot x$ and x > 0, then $a \leq (<) b$.
- 7. $0 \cdot x = 0.$
- 8. -(-x) = x.
- 9. $-x = (-1) \cdot x$.
- 10. If $x \neq 0$, then $x^{-1} \neq 0$ and $(x^{-1})^{-1} = x$.
- 11. If $x \neq 0$ and $y \neq 0$, then $x \cdot y \neq 0$ and $(x \cdot y)^{-1} = x^{-1} \cdot y^{-1}$.
- 12. If $x \leq (<) y$ and $0 \leq (<) z$, then $x \cdot z \leq (<) y \cdot z$. If $x \leq (<) y$ and $0 \geq (>) z$, then $x \cdot z \geq (>) y \cdot z$.
- 13. If $x \leq (<) 0$ and $y \leq (<) 0$, then $x \cdot y \geq (>) 0$. If $x \leq (<) 0$ and $y \geq (>) 0$, then $x \cdot y \leq (<) 0$.
- 14. 0 < 1 and -1 < 0.
- 15. $x \cdot x \equiv x^2 \ge 0.$
- 16. If x > 0, then $x^{-1} > 0$. If x < 0, then $x^{-1} < 0$.

Proof. 1.
$$(-a) + a + x = (-a) + a = 0 \Rightarrow x = 0.$$

 $(a^{-1}) \cdot a \cdot x = (a^{-1}) \cdot a = 1 \Rightarrow x = 1.$

- 2. $(-a) + a + x = (-a) + 0 = -a \Rightarrow x = -a$. $(a^{-1}) \cdot a \cdot x = (a^{-1}) \cdot 1 = a^{-1} \Rightarrow x = a^{-1}.$
- 3. Assume that $x \neq 0$, then $x^{-1} \cdot x \cdot y = x^{-1} \cdot 0 = 0 \Rightarrow y = 0$. Assume that $y \neq 0$, then $x \cdot y \cdot y^{-1} = 0 \cdot y^{-1} = 0 \Rightarrow x = 0$.

4 and 5 are Left as an exercise.

6. $a + 0 = a + x + (-x) = b + x + (-x) = b + 0 \Rightarrow a = b$. $a + 0 = a + x + (-x) \le b + x + (-x) = b + 0 \Rightarrow a \le b$ (compatibility of \le and +). $a \cdot x \cdot x^{-1} = b \cdot x \cdot x^{-1} \Rightarrow a = b.$

 $a \cdot x \cdot x^{-1} = b \cdot x \cdot x \implies a = b$. Suppose the contrary that b < a. Then $0 = b + (-b) \le a + (-b)$. Since $x > 0, x \ge 0$; thus

$$0 \leq (a + (-b)) \cdot x = a \cdot x + (-b) \cdot x.$$

As a consequence, $b \cdot x = 0 + b \cdot x \leq a \cdot x + (-b) \cdot x + b \cdot x = a \cdot x$. By assumption, we must have $a \cdot x = b \cdot x$ or $(a - b) \cdot x = 0$. Using 3, x = 0 (since $a \neq b$), a contradiction.

7. See Remark 1.3.

8.
$$(-x) + (-(-x)) = 0 = (-x) + x \Rightarrow x = -(-x).$$

- 9. See Remark 1.4.
- 10. Assume x⁻¹ = 0, 1 = x ⋅ x⁻¹ = x ⋅ 0 = 0, a contradiction. Therefore, x⁻¹ ≠ 0; thus (x⁻¹)⁻¹ ⋅ x⁻¹ = 1 = x ⋅ x⁻¹ ⇒ (x⁻¹)⁻¹ = x (by 4).
 11. That x ⋅ y = 0 cannot be true since it is against Property 3, so x ⋅ y ≠ 0. Moreover,

$$(x \cdot y)^{-1}(x \cdot y) = 1 = 1 \cdot 1 = (x \cdot x^{-1}) \cdot (y \cdot y^{-1}) = (x^{-1} \cdot y^{-1}) \cdot (x \cdot y);$$

thus $(x \cdot y)^{-1} = x^{-1} \cdot y^{-1}$ (by 4).

- 12. If $x \leq (<) y$, then $0 = x + (-x) \leq (<) y + (-x)$. Since $0 \leq (<) z$, by the compatibility of $\leq (<)$ and \cdot we must have $0 \leq (<)(y + (-x)) \cdot z = y \cdot z + (-x) \cdot z$. Therefore, by the compatibility of $\leq (<)$ and $+, x \cdot z = 0 + x \cdot z \leq (<) y \cdot z + (-x) \cdot z + x \cdot z = y \cdot z$. The second statement can be proved in a similar fashion.
- 13. Left as an exercise.

- 14. If $1 \le 0$, then compatibility of \le and + implies that $0 \le -1$. By the compatibility of \le and \cdot , using 6 and 7 we find that $0 \le (-1) \cdot (-1) = -(-1) = 1$; thus we conclude that 1 = 0, a contradiction. As a consequence, 0 < 1; thus the compatibility of < and + implies that -1 < 0.
- 15. Left as an exercise.
- 16. If x > 0 but $x^{-1} \leq 0$, then $1 = x \cdot x^{-1} \leq x \cdot 0 = 0$, a contradiction.

Proposition 1.18. Let $(\mathcal{F}, +, \cdot, \leq)$ be an ordered field, and $x, y \in \mathcal{F}$.

- 1. If $0 \le x < y$, then $x^2 < y^2$.
- 2. If $0 \leq x, y$ and $x^2 < y^2$, then x < y.
- *Proof.* 1. By definition of "<", $0 \le x \le y$ and $x \ne y$. Using 12 of Proposition 1.17,

$$x^2 \leqslant y \cdot x < y \cdot y = y^2$$

By the transitivity of <, we conclude that $x^2 < y^2$.

2. Note that $x \neq y$, for if not, then $x^2 - y^2 = 0$ which contradicts to the assumption $x^2 < y^2$. Assume that y < x, then 1 implies that $y^2 < x^2$, a contradiction.

Remark 1.19. Proposition 1.18 can be summarized as follows: if $x, y \ge 0$, then

$$x < y \Leftrightarrow x^2 < y^2.$$

Moreover, Example 1.8, Proposition 1.17 and Proposition 1.18 together suggest that if $x, y \ge 0$, then $x \le y$ if and only if $x^2 \le y^2$.

Definition 1.20. The *magnitude* or the *absolute value* of x, denoted |x|, is defined as

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

Proposition 1.21. Let $(\mathcal{F}, +, \cdot, \leq)$ be an ordered field. Then

- 1. $|x| \ge 0$ for all $x \in \mathcal{F}$.
- 2. |x| = 0 if and only if x = 0.

- 3. $-|x| \leq x \leq |x|$ for all $x \in \mathcal{F}$.
- 4. $|x \cdot y| = |x| \cdot |y|$ for all $x, y \in \mathcal{F}$.
- 5. $|x+y| \leq |x|+|y|$ for all $x, y \in \mathcal{F}$ (triangle inequality, 三角不等式).
- 6. $||x| |y|| \leq |x y|$ for all $x, y \in \mathcal{F}$.

Proof. Left as an exercise.

Proposition 1.22. Define d(x, y) = |x - y|. Then

- 1. $d(x, y) \ge 0$ for all $x, y \in \mathcal{F}$.
- 2. d(x, y) = 0 if and only if x = y.
- 3. d(x,y) = d(y,x) for all $x, y \in \mathcal{F}$.
- 4. $d(x,y) \leq d(x,z) + d(z,y)$ for all $x, y, z \in \mathcal{F}$ (triangle inequality, 三角不等式).

Proof. Left as an exercise.

Remark 1.23. d(x, y) is the "distance" of two elements $x, y \in \mathcal{F}$.

Figure 1.1: An illustration of why 4 of Proposition 1.22 is called the triangle inequality.

1.1.2 The natural numbers, the integers, and the rational numbers

Definition 1.24. Let $(\mathcal{F}, +, \cdot, \leq)$ be an ordered field. The *natural number system*, denoted by \mathbb{N} , is the collection of all the numbers $1, 1+1, 1+1+1, 1+1+1+\cdots+1$ and etc. in \mathcal{F} . We write $2 \equiv 1+1, 3 \equiv 2+1$, and $n \equiv \underbrace{1+1+\cdots+1}_{\text{(n times)}}$. In other words, $\mathbb{N} = \{1, 2, 3, \cdots\}$. The *integer number system*, denoted by \mathbb{Z} , is the set $\mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$.

Principle of mathematical induction (Peano axiom, 皮亞諾公設):

If S is a subset of $\mathbb{N} \cup \{0\}$ (or \mathbb{N}) such that $0 \in S$ (or $1 \in S$) and $k + 1 \in S$ if $k \in S$, then $S = \mathbb{N} \cup \{0\}$ (or $S = \mathbb{N}$).

Example 1.25. Prove $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$. (*) Proof. Let $S = \left\{ n \in \mathbb{N} \mid \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \right\}$ (把所有满足 (*) 的 n 收集起来). Then 1. If n = 1, $\sum_{k=1}^{1} k = \frac{1 \times 2}{2} = 1$. 2. Assume that $m \in S$, then $\sum_{k=1}^{m+1} k = \sum_{k=1}^{m} k + (m+1) = \frac{m(m+1)}{2} + (m+1) = \frac{(m+1)(m+2)}{2}$ which implies that $m+1 \in S$. By mathematical induction, we have $S = \mathbb{N}$. Example 1.26. Prove that $\frac{1}{2^n} < \frac{1}{n}$ for all $n \in \mathbb{N}$. Proof. Let $S = \left\{ n \in \mathbb{N} \mid \frac{1}{2^n} < \frac{1}{n} \right\}$. We show $S = \mathbb{N}$ by mathematical induction as follows: (i) $1 \in S \Leftrightarrow \frac{1}{2} < \frac{1}{1}$. (ii) If $n \in S$, then $\frac{1}{2^{n+1}} = \frac{1}{2^n} \cdot \frac{1}{2} < \frac{1}{n} \cdot \frac{1}{2} = \frac{1}{n+n} \leqslant \frac{1}{n+1}$.

which implies that $n + 1 \in S$.

By mathematical induction, we have $S = \mathbb{N}$.

Let $(\mathcal{F}, +, \cdot, \leq)$ be an ordered field. By the property of being a field, for any non-zero $n \in \mathbb{N}$, there exists a unique multiplicative inverse n^{-1} . This inverse is usually denoted by $\frac{1}{n}$. We also use $\frac{m}{n}$ to denote $m \cdot n^{-1}$. Giving this notation, we have the following

Definition 1.27. Let $(\mathcal{F}, +, \cdot, \leq)$ be an order field. The *rational number system*, denoted by \mathbb{Q} , is the collection of all numbers of the form $\frac{q}{p}$ with $p, q \in \mathbb{Z}$ and $p \neq 0$; that is,

$$\mathbb{Q} = \Big\{ x \in \mathcal{F} \, \Big| \, x = \frac{q}{p}, p, q \in \mathbb{Z}, p \neq 0 \Big\}.$$

Definition 1.28. An order field $(\mathcal{F}, +, \cdot, \leq)$ is said to have the *Archimedean property* if $\forall x \in \mathcal{F}, \exists n \in \mathbb{Z} \ni x < n$.

Theorem 1.29. \mathbb{Q} has the Archimedean property.

Proof. If $x \leq 0$, we take n = 1. Otherwise if $0 < x = \frac{q}{p}$ with $p, q \in \mathbb{N}$, we take n = q + 1 and it is obvious that $\frac{q}{p} \leq q < q + 1 = n$.

Definition 1.30. A *well-ordered* relation on a set S is a total order on S with the property that every non-empty subset of S has a least (smallest) element in this ordering.

Proposition 1.31 (Well-Ordered Property of \mathbb{N}). If $S \subseteq \mathbb{N}$ and $S \neq \emptyset$, then S has a smallest element; that is, $\exists s_0 \in S \ni \forall x \in S, s_0 \leq x$.

Proof. Assume the contrary that there exists a non-empty set $S \subseteq \mathbb{N}$ such that S does not have the smallest element. Define $T = \mathbb{N} \setminus S$, and $T_0 = \{n \in \mathbb{N} \mid \{1, 2, \dots, n\} \subseteq T\}$. Then we have $T_0 \subseteq T$. Also note that $1 \notin S$ for otherwise 1 is the smallest element in S, so $1 \in T$ (thus $1 \in T_0$).

Assume $k \in T_0$. Since $\{1, 2, \dots, k\} \subseteq T$, $1, 2, \dots k \notin S$. If $k + 1 \in S$, then k + 1 is the smallest element in S. Since we assume that S does not have the smallest element, $k+1 \notin S$; thus $k + 1 \in T \Rightarrow k + 1 \in T_0$.

Therefore, by mathematical induction we conclude that $T_0 = \mathbb{N}$; thus $T = \mathbb{N}$ (since $T_0 \subseteq T$) which further implies that $S = \emptyset$ (since $T = \mathbb{N} \setminus S$). This contradicts to the assumption $S \neq \emptyset$.

1.1.3 Countability

Definition 1.32. A set *S* is called *denumerable* or *countably infinite* (無窮可數的) if *S* can be put into one-to-one correspondence with \mathbb{N} ; that is, *S* is denumerable if and only if $\exists f : \mathbb{N} \to S$ which is one-to-one and onto. A set is called *countable* (可數的) if *S* is either finite or denumerable.

Remark 1.33. If $f : \mathbb{N} \xrightarrow[onto]{tot} S$, then $f^{-1} : S \xrightarrow[onto]{tot} \mathbb{N}$. Therefore,

$$S \text{ is denumerable} \Leftrightarrow \exists f : \mathbb{N} \xrightarrow[onto]{i-1} S \Leftrightarrow \exists g = f^{-1} : S \xrightarrow[onto]{i-1} \mathbb{N}.$$

f can be thought as a rule of counting/labeling elements in S since $S = \{f(1), f(2), \dots \}$.

Example 1.34. \mathbb{N} is countable since $f : \mathbb{N} \xrightarrow[onto]{1-1} \mathbb{N}$ with $f(x) = x, \forall n \in \mathbb{N}$.

Example 1.35. \mathbb{Z} is countable. $f : \mathbb{Z} \to \mathbb{N}$ with $f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 2x & \text{if } x > 0 \\ -2x + 1 & \text{if } x < 0 \end{cases}$.

Figure 1.2: An illustration of how elements in \mathbb{Z} are labeled

Example 1.36. The set $\mathbb{N} \times \mathbb{N} = \{(a, b) | a, b \in \mathbb{N}\}$ is countable. In fact, two ways of mapping are shown in the figures below.

Figure 1.3: The illustration of two ways of labeling elements in $\mathbb{N} \times \mathbb{N}$

Proposition 1.37. Let S be a non-empty set. The following three statements are equivalent:

- (a) S is countable;
- (b) there exists a surjection $f : \mathbb{N} \to S$;
- (c) there exists an injection $f: S \to \mathbb{N}$.

Proof. "(a) \Rightarrow (b)" First suppose that $S = \{x_1, \dots, x_n\}$ is finite. Define $f : \mathbb{N} \to S$ by

$$f(k) = \begin{cases} x_k & \text{if } k < n ,\\ x_n & \text{if } k \ge n . \end{cases}$$

Then $f : \mathbb{N} \to S$ is a surjection. Now suppose that S is denumerable. Then by definition of countability, there exists $f : \mathbb{N} \xrightarrow[onto]{1-1}{onto} S$.

"(a) \leftarrow (b)" W.L.O.G. (without loss of generality, 不失一般性) we assume that S is an infinite set. Let $k_1 = 1$. Since $\#(S) = \infty$, $S_1 \equiv S \setminus \{f(k_1)\} \neq \emptyset$; thus $N_1 \equiv f^{-1}(S_1)$ is a non-empty subset of N. By the well-ordered property of N (Proposition 1.31), N_1 has a smallest element denoted by k_2 . Since $\#(S) = \infty$, $S_2 = S \setminus \{f(k_1), f(k_2)\} \neq \emptyset$; thus $N_2 \equiv f^{-1}(S_2)$ is a non-empty subset of N and possesses a smallest element denoted by k_3 . We continue this process and obtain a set $\{k_1, k_2, \cdots\} \subseteq \mathbb{N}$, where $k_1 < k_2 < \cdots$, and k_j is the smallest element of $N_{j-1} \equiv f^{-1}(S \setminus \{f(k_1), f(k_2), \cdots, f(k_{j-1})\})$.

Claim: $f: \{k_1, k_2, \dots\} \to S$ is one-to-one and onto.

Proof of claim: The injectivity of f is due to that $f(k_j) \notin \{f(k_1), f(k_2), \dots, f(k_{j-1})\}$ for all $j \ge 2$. For surjectivity, assume that there is $s \in S$ such that $s \notin f(\{k_1, k_2, \dots\})$. Since $f : \mathbb{N} \to \mathbb{S}$ is onto, $f^{-1}(\{s\})$ is a non-empty subset of \mathbb{N} ; thus possesses a smallest element k. Since $s \notin f(\{k_1, k_2, \dots\})$, there exists $\ell \in \mathbb{N}$ such that $k_{\ell} < k < k_{\ell+1}$. As a consequence, there exists $k \in N_{\ell}$ such that $k < k_{\ell+1}$ which contradicts to the fact that $k_{\ell+1}$ is the smallest element of N_{ℓ} .

Define $g: \mathbb{N} \to \{k_1, k_2, \dots\}$ by $g(j) = k_j$. Then $g: \mathbb{N} \to \{k_1, k_2, \dots\}$ is one-to-one and onto; thus $h = g \circ f: \mathbb{N} \xrightarrow{1-1}_{onto} S$.

- "(a) \Rightarrow (c)" If $S = \{x_1, \dots, x_n\}$ is finite, we simply let $f : S \to \mathbb{N}$ be $f(x_n) = n$. Then f is clearly an injection. If S is denumerable, by definition there exists $g : \mathbb{N} \xrightarrow[onto]{1-1} S$ which suggests that $f = g^{-1} : S \to \mathbb{N}$ is an injection.
- "(a) \leftarrow (c)" Let $f: S \to \mathbb{N}$ be an injection. If f is also surjective, then $f: S \xrightarrow{1-1}_{onto} \mathbb{N}$ which implies that S is denumerable. Now suppose that $f(S) \subsetneq \mathbb{N}$. Since S is non-empty, there exists $s \in S$. Let $g: \mathbb{N} \to S$ be defined by

$$g(n) = \begin{cases} f^{-1}(n) & \text{if } n \in f(S), \\ s & \text{if } n \notin f(S). \end{cases}$$

Then clearly $g : \mathbb{N} \to S$ is surjective; thus the equivalence between (a) and (b) implies that S is countable.

Theorem 1.38. Any non-empty subset of a countable set is countable.

Proof. Let S be a countable set, and A be a non-empty subset of S. Since S is countable, by by Proposition 1.37 there exists a surjection $f : \mathbb{N} \to S$. On the other hand, since A is a non-empty subset of S, there exists $a \in A$. Define

$$g(x) = \begin{cases} x & \text{if } x \in A, \\ a & \text{if } x \notin A. \end{cases}$$

Then $h = g \circ f : \mathbb{N} \to A$ is a surjection, and Proposition 1.37 suggests that A is countable.

Example 1.39. The set $\mathbb{N} \times \mathbb{N}$ is countable since the map $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f((m,n)) = 2^m 3^n$ is an injection.

Theorem 1.40. The union of denumerable denumerable sets is denumerable (無窮可數個 無窮可數集的聯集是無窮可數的). In other words, if \mathcal{F} is a denumerable collection of denumerable sets, then $\bigcup_{A \in \mathcal{F}} A$ is denumerable.

Proof. Let $\mathscr{F} = \{A_i \mid i \in \mathbb{N}, A_i \text{ is denumerable}\}$ be an indexed family of denumerable sets, and define $A = \bigcup_{i=1}^{\infty} A_i$. Since A_i is denumerable, $A_i = \{x_{i1}, x_{i2}, x_{i3}, \dots\}$. Then $A = \{x_{ij} \mid i, j \in \mathbb{N}\}$. Let $f : \mathbb{N} \times \mathbb{N} \to A$ be defined by $f((i, j)) = x_{ij}$. Then $f : \mathbb{N} \times \mathbb{N} \to A$ is a surjection. Moreover, Example 1.39 implies that there exists a bijection $g : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$; thus $h = f \circ g : \mathbb{N} \to A$ is a surjection which, by Proposition 1.37, implies that A is countable. Since $A_1 \subseteq A$, A is infinite; thus A is denumerable.

Corollary 1.41. *The union of countable countable sets is countable*(可數個可數集的聯集 是可數的).

Proof. By adding empty sets into the family or adding \mathbb{N} into a finite set if necessary, we find that the union of countable countable sets is a subset of the union of denumerable denumerable sets. By Theorem 1.38, we find that the union of countable countable sets is countable.

Example 1.42. $\mathbb{Z} \times \mathbb{Z}$ is countable.

Proof. For $i \in \mathbb{Z}$, let $A_i = \{(i, j) \mid j \in \mathbb{Z}\}$. By Example 1.35, A_i is countable for all $i \in \mathbb{Z}$. Since $\mathbb{Z} \times \mathbb{Z} = \bigcup_{i \in \mathbb{Z}} A_i$ which is countable union of countable sets, Theorem 1.40 implies that $\mathbb{Z} \times \mathbb{Z}$ is countable. **Theorem 1.43.** \mathbb{Q} is countable.

Proof. Define

$$f(x) = \begin{cases} (p,q), & \text{if } x > 0, \quad x = \frac{q}{p}, \quad \gcd(p,q) = 1, \ p > 0. \\ (0,0), & \text{if } x = 0. \\ (p,-q), & \text{if } x < 0, \quad x = -\frac{q}{p}, \quad \gcd(p,q) = 1, \ p > 0. \end{cases}$$

Then $f : \mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}$ is one-to-one; thus $f : \mathbb{Q} \xrightarrow{1-1}_{onto} f(\mathbb{Q})$. Since $\mathbb{Z} \times \mathbb{Z}$ is countable, its non-empty subset $f(\mathbb{Q})$ is also countable. As a consequence, there exists $g : f(\mathbb{Q}) \xrightarrow{1-1}_{onto} \mathbb{N}$; thus $h = g \circ f : \mathbb{Q} \xrightarrow{1-1}_{onto} \mathbb{N}$.

1.2 Completeness and the Real Number System

1.2.1 Sequences

Definition 1.44. A *sequence* in a set S is a function $f : \mathbb{N} \to S$ (not necessary one-to-one or onto). The values of f are called the *terms* of the sequence.

Remark 1.45. A sequence in S is a countable list of elements in S arranged in a particular order, and is usually denoted by $\{f(n)\}_{n=1}^{\infty}$ or $\{x_n\}_{n=1}^{\infty}$ with $x_n = f(n)$.

Definition 1.46. Let \mathcal{F} be an ordered field. A sequence $\{x_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$ is said to be **convergent** if there exists $x \in \mathcal{F}$ such that for every $\varepsilon > 0$,

$$\#\{n \in \mathbb{N} \mid x_n \notin (x - \varepsilon, x + \varepsilon)\} < \infty$$

Such an x is called a *limit* of the sequence. In notation,

$$\{x_n\}_{n=1}^{\infty} \subseteq \mathcal{F} \text{ is convergent} \quad \Leftrightarrow \quad \exists x \in \mathcal{F} \ni \forall \varepsilon > 0, \#\{n \in \mathbb{N} \mid x_n \notin (x - \varepsilon, x + \varepsilon)\} < \infty.$$

If x is a limit of $\{x_n\}_{n=1}^{\infty}$, we say $\{x_n\}_{n=1}^{\infty}$ converges to x and write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ as $n \to \infty$. If no such x exists we say that $\{x_n\}_{n=1}^{\infty}$ diverges or $\lim_{n \to \infty} x_n$ does not exist. **Remark 1.47.** The number N may depend on ε , and smaller ε usually requires larger N.

In the definition above, it could happen that there are two different limits of a convergent sequence. In fact, this is never the case because of the following

Proposition 1.48. If $\{x_n\}_{n=1}^{\infty}$ is a sequence in an ordered field \mathcal{F} , and $x_n \to x$ and $x_n \to y$ as $n \to \infty$, then x = y. (The uniqueness of the limit).

Proof. Assume the contrary that $x \neq y$. W.L.O.G. we may assume that x < y, and let $\varepsilon = \frac{y-x}{2} > 0$. Define

$$A_{1} = \left\{ n \in \mathbb{N} \mid x_{n} \notin (x - \varepsilon, x + \varepsilon) \right\} \text{ and } A_{2} = \left\{ n \in \mathbb{N} \mid x_{n} \notin (y - \varepsilon, y + \varepsilon) \right\}$$

Then by the definition of the convergence of sequences, $\#A_1 < \infty$ and $\#A_2 < \infty$. Let $N_1 = \max A_1, N_2 = \max A_2$ and $N = \max\{N_1, N_2\}$. Since A_1, A_2 are finite, $N < \infty$. On the other hand, $N + 1 \notin A_1 \cup A_2$ which implies that $x_{N+1} \in (x - \varepsilon, x + \varepsilon) \land (y - \varepsilon, y + \varepsilon) = \emptyset$, a contradiction.

Example 1.49. Let $x_n = \frac{(-1)^n}{n+1}$. We show that $\{x_n\}_{n=1}^{\infty}$ converges to 0. By definition, we need to show for every $\varepsilon > 0$ the set $A_{\varepsilon} = \{n \in \mathbb{N} \mid x_n \notin (-\varepsilon, \varepsilon)\}$ is finite. Note that $A_{\varepsilon} = \{n \in \mathbb{N} \mid |x_n| \ge \varepsilon\}$; thus

$$A_{\varepsilon} = \left\{ n \in \mathbb{N} \, \middle| \, \frac{1}{n+1} \ge \varepsilon \right\} = \left\{ n \in \mathbb{N} \, \middle| \, n \leqslant \frac{1}{\varepsilon} - 1 \right\}.$$

Therefore, $\#A_{\epsilon} = \left[\frac{1}{\varepsilon}\right] - 1 < \infty$ which implies that $\{x_n\}_{n=1}^{\infty}$ converges to 0.

Example 1.50. The sequence $\{y_n\}_{n=1}^{\infty}$ given by $y_n = \frac{3 + (-1)^n}{2}$ diverges. To see this, we have to show that any real number x cannot be the limit of $\{y_n\}_{n=1}^{\infty}$.

Let y be given and $\varepsilon = \frac{1}{2}$. Then $(y - \varepsilon, y + \varepsilon)$ at most contains one integer. Since y_n only takes value 1 or 2 and $\#\{n \in \mathbb{N} \mid y_n = 1\} = \#\{n \in \mathbb{N} \mid y_n = 2\} = \infty$, we find that

$$#\{n \in \mathbb{N} \mid y_n \notin (y - \varepsilon, y + \varepsilon)\} = \infty$$

which implies $\{y_n\}_{n=1}^{\infty}$ cannot converges to y.

Example 1.51. A *permutation* of a non-empty set A is a one-to-one function from A onto A. Let $\pi : \mathbb{N} \to \mathbb{N}$ be a permutation of \mathbb{N} , and $\{x_n\}_{n=1}^{\infty}$ be a convergent sequence in an ordered field \mathcal{F} . Then $\{x_{\pi(n)}\}_{n=1}^{\infty}$ is also convergent since if x is the limit of $\{x_n\}_{n=1}^{\infty}$ and $\varepsilon > 0$,

$$\#\{n \in \mathbb{N} \mid x_{\pi(n)} \notin (x - \varepsilon, x + \varepsilon)\} = \#\{n \in \mathbb{N} \mid x_n \notin (x - \varepsilon, x + \varepsilon)\} < \infty$$

Proposition 1.52. Let \mathcal{F} be an ordered field, $\{x_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$ be a sequence, and $x \in \mathcal{F}$. Then $\lim_{n\to\infty} x_n = x \text{ if and only if for every } \varepsilon > 0, \text{ there exists } N > 0 \text{ such that } |x_n - x| < \varepsilon \text{ whenever}$ $n \ge N$. In notation,

$$\lim_{n \to \infty} x_n = x \quad \Leftrightarrow \quad \forall \, \varepsilon > 0, \exists \, N > 0 \, \ni n \ge N \Rightarrow |x_n - x| < \varepsilon \, .$$

Proof. " \Rightarrow " Let $\varepsilon > 0$ be given, and $A_{\epsilon} = \{n \in \mathbb{N} \mid x_n \notin (x - \varepsilon, x + \varepsilon)\}$. Since $\{x_n\}_{n=1}^{\infty}$ converges to $x, k \equiv #A_{\epsilon} < \infty$. Suppose that $n_1 < n_2 < \cdots < n_k$ belongs to A_{ϵ} . Let $N = n_k + 1$. Then if $n \ge N$, $n \notin A_{\epsilon}$ which implies that if $n \ge N$, $x_n \in (x - \varepsilon, x + \varepsilon)$ or equivalently,

Figure 1.4: Let N_0 be the largest index of those x_n 's outside $(x - \varepsilon, x + \varepsilon)$. Then $x_n \in$ $(x - \varepsilon, x + \varepsilon)$ whenever $n \ge N = N_0 + 1$.

" \Leftarrow " Let $\varepsilon > 0$ be given. Then for some N > 0, if $n \ge N$, we have $|x_n - x| < \varepsilon$ or equivalently, if $n \ge N$, $x_n \in (x - \varepsilon, x + \varepsilon)$. This implies that

$$\#\{n \in \mathbb{N} \mid x_n \notin (x - \varepsilon, x + \varepsilon)\} < N < \infty.$$

Remark 1.53. A sequence $\{x_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$ diverges if (and only if) $\forall x \in \mathcal{F}, \exists \varepsilon > 0 \ni \#\{n \in \mathbb{N} \mid x \neq \ell\}$

$$\forall x \in \mathcal{F}, \exists \varepsilon > 0 \ni \#\{n \in \mathbb{N} \mid x_n \notin (x - \varepsilon, x + \varepsilon)\} = \infty$$

which is equivalent to that

$$\forall x \in \mathcal{F}, \exists \varepsilon > 0 \ni \{n \in \mathbb{N} \mid x_n \notin (x - \varepsilon, x + \varepsilon)\} = \{n_1 < n_2 < \dots < n_j < \dots\}$$

Therefore, $\{x_n\}_{n=1}^{\infty}$ diverges if (and only if)

$$\forall x \in \mathcal{F}, \exists \varepsilon > 0 \ni \forall N > 0, \exists n \ge N \text{ such that } |x_n - x| \ge \varepsilon$$

Example 1.54. Now we use the ε -N argument as the definition of the convergence of sequences to re-establish the convergence of sequences in Example 1.49, 1.50 and 1.51.

<u>Example 1.49 - revisit</u>: Let $\varepsilon > 0$ be given, and $x_n = \frac{(-1)^n}{n+1}$. Let $N = \begin{bmatrix} \frac{1}{\varepsilon} \end{bmatrix} + 1$. Since $\left[\frac{1}{\varepsilon}\right] > \frac{1}{\varepsilon} - 1$, if $n \ge N$ we must have $n > \frac{1}{\varepsilon} - 1$; thus if $n \ge N$, $\frac{1}{n+1} < \varepsilon$. Therefore, $|x_n - 0| < \varepsilon$ whenever $n \ge N$

which implies that $\{x_n\}_{n=1}^{\infty}$ converges to 0.

<u>Example 1.50 - revisit</u>: Let y be given, $\varepsilon = \frac{1}{2}$, and $N \in \mathbb{N}$. Define $n = \begin{cases} N+1 & \text{if } |y_N - y| < \varepsilon, \\ N+2 & \text{if } |y_N - y| \ge \varepsilon. \end{cases}$ Then $n \ge N$. Moreover, if $|y_N - y| < \varepsilon$, then $|y_n - y| \ge |y_n - y_N| - |y_N - y| > 1 - \varepsilon = \varepsilon$, while if $|y_N - y| \ge \varepsilon$ then clearly $|y_n - y| \ge \varepsilon$. Therefore,

$$\forall y \in \mathcal{F}, \exists \varepsilon > 0 \ni \forall N > 0, \exists n > N \ni |y_n - y| \ge \varepsilon$$

<u>Example 1.51 - revisit</u>: Now suppose that $\{x_n\}_{n=1}^{\infty}$ is a convergent sequence with limit x, and $\varepsilon > 0$ be given. Then there exists $N_1 > 0$ such that if $n \ge N_1$, we have $|x_n - x| < \varepsilon$. Let $N = \max \{\pi^{-1}(1), \pi^{-1}(2), \cdots, \pi^{-1}(N_1)\} + 1$. Then if $n \ge N, \pi(n) \ge N_1$ which $|x_{\pi(n)} - x| < \varepsilon$ whenever $n \ge N$. Therefore, $\lim_{n \to \infty} x_{\pi(n)} = x$.

From the example above, we notice that proving the convergence using the ε -N argument seems more complicated; however, it is a necessary evil so we encourage the readers to major it.

Lemma 1.55 (Sandwich). If $\lim_{n \to \infty} x_n = L$, $\lim_{n \to \infty} y_n = L$, $\{z_n\}_{n=1}^{\infty}$ is a sequence such that $x_n \leq z_n \leq y_n$, then $\lim_{n \to \infty} z_n = L$.

Proof. Let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} x_n = L$ and $\lim_{n \to \infty} y_n = L$, by definition

$$\exists N_1 > 0 \ni L - \varepsilon < x_n < L + \varepsilon \quad \text{whenever} \quad n \ge N_1$$

and

$$\exists N_2 > 0 \ni L - \varepsilon < y_n < L + \varepsilon \text{ whenever } n \ge N_2$$

Let $N = \max\{N_1, N_2\}$. Then for $n \ge N$, $L - \varepsilon < x_n \le z_n \le y_n < L + \varepsilon$; thus $\lim_{n \to \infty} z_n = L$.

Proposition 1.56. If $a \leq x_n \leq b$ and $\lim_{n \to \infty} x_n = x$, then $a \leq x \leq b$.

Proof. Assume the contrary that $x \notin [a, b]$. If x < a, let $\varepsilon = a - x > 0$. Since $\lim_{n \to \infty} x_n = x$, $\exists N > 0 \ni x_n \in (x - \varepsilon, x + \varepsilon)$ whenever $n \ge N$. Therefore, $x_n < a$ for all $n \ge N$, a contradiction. So $a \le x$.

We can prove $x \leq b$ in a similar way, and the proof is left as an exercise.

Corollary 1.57. If $a < x_n < b$ and $\lim_{n \to \infty} x_n = x$, then $a \leq x \leq b$.

Definition 1.58. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in an order field \mathcal{F} .

- 1. $\{x_n\}_{n=1}^{\infty}$ is said to be **bounded** (有界的) if there exists M > 0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.
- 2. $\{x_n\}_{n=1}^{\infty}$ is said to be **bounded from above** (有上界) if there exists $B \in \mathcal{F}$, called an **upper bound** of the sequence, such that $x_n \leq B$ for all $n \in \mathbb{N}$.
- 3. $\{x_n\}_{n=1}^{\infty}$ is said to be **bounded from below** (有下界) if there exists $A \in \mathcal{F}$, called a **lower bound** of the sequence, such that $A \leq x_n$ for all $n \in \mathbb{N}$.

Proposition 1.59. A convergent sequence is bounded (數列收斂必有界).

Proof. Let $\{x_n\}_{n=1}^{\infty}$ be a convergent sequence with limit x. Then there exists N > 0 such that

$$x_n \in (x-1, x+1) \qquad \forall n \ge N.$$

Let $M = \max\{|x_1|, |x_2|, \dots, |x_{N-1}|, |x|+1\}$. Then $|x_n| \le M$ for all $n \in \mathbb{N}$.

Theorem 1.60. Suppose that $x_n \to x$ and $y_n \to y$ as $n \to \infty$, λ is a constant. Then

- 1. $x_n \pm y_n \rightarrow x \pm y \text{ as } n \rightarrow \infty$.
- 2. $\lambda \cdot x_n \to \lambda \cdot x \text{ as } n \to \infty$.
- 3. $x_n \cdot y_n \to x \cdot y \text{ as } n \to \infty$.
- 4. If $y_n, y \neq 0$, then $\frac{x_n}{y_n} \to \frac{x}{y}$ as $n \to \infty$.

Proof. The proof of 1 and 2 are left as an exercise.

3. Since $x_n \to x$ and $y_n \to y$ as $n \to \infty$, by Proposition 1.59 $\exists M > 0 \ni |x_n| \leq M$ and $|y_n| \leq M$. Let $\varepsilon > 0$ be given. Moreover,

$$\exists N_1 > 0 \ni |x_n - x| < \frac{\varepsilon}{2M} \ \forall n \ge N_1$$

and

$$\exists N_2 > 0 \ni |y_n - y| < \frac{\varepsilon}{2M} \ \forall n \ge N_2$$

Define $N = \max\{N_1, N_2\}$. Then for all $n \ge N$,

$$\begin{aligned} |x_n \cdot y_n - x \cdot y| &= |x_n \cdot y_n - x_n \cdot y + x_n \cdot y - x \cdot y| \leq |x_n \cdot (y_n - y)| + |y \cdot (x_n - x)| \\ &\leq M \cdot |y_n - y| + M \cdot |x_n - x| < M \cdot \frac{\varepsilon}{2M} + M \cdot \frac{\varepsilon}{2M} = \varepsilon. \end{aligned}$$

4. It suffices to show that $\lim_{n \to \infty} \frac{1}{y_n} = \frac{1}{y}$ if $y_n, y \neq 0$ (because of 3). Since $\lim_{n \to \infty} y_n = y$, $\exists N_1 > 0 \ni |y_n - y| < \frac{|y|}{2}$ for all $n \ge N_1$. Therefore, $|y| - |y_n| < \frac{|y|}{2}$ for all $n \ge N_1$ which further implies that $|y_n| > \frac{|y|}{2}$ for all $n \ge N_1$.

Let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} y_n = y$, $\exists N_2 > 0 \ni |y_n - y| < \frac{|y|^2}{2}\varepsilon$ for all $n \ge N_2$. Define $N = \max\{N_1, N_2\}$. Then for all $n \ge N$,

$$\left|\frac{1}{y_n} - \frac{1}{y}\right| = \frac{|y_n - y|}{|y_n||y|} < \frac{|y|^2}{2}\varepsilon \cdot \frac{1}{|y|}\frac{2}{|y|} = \varepsilon.$$

1.2.2 Monotone sequence property and completeness

Definition 1.61. A sequence $\{x_n\}_{n=1}^{\infty}$ is said to be *increasing/non-decreasing*, *decreasing/non-increasing*, *strictly increasing* and *strictly decreasing* if $x_n \leq x_{n+1}$, $x_n \geq x_{n+1}$, $x_n < x_{n+1}$ and $x_n > x_{n+1} \forall n \in \mathbb{N}$, respectively. A sequence is called (strictly) *monotone* if it is either (strictly) increasing or (strictly) decreasing.

Definition 1.62. An ordered field \mathcal{F} is said to satisfy the *(strictly) monotone sequence property* if every bounded (strictly) monotone sequence converges to a limit in \mathcal{F} .

Remark 1.63. An equivalent definition of the monotone sequence property is that every monotone *increasing* sequence *bounded above* converges; that is, if each sequence $\{x_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$ satisfying

(i) $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$,

(ii) $\exists M \in \mathcal{F} \ni \forall n \in \mathbb{N} : x_n \leq M$,

is convergent, then we say \mathcal{F} satisfies the monotone sequence property.

Example 1.64. $(\mathbb{Q}, +, \cdot, \leq)$ is an ordered field.

Question: Is there any bounded monotone sequence in \mathbb{Q} that does not converge to a limit in \mathbb{Q} ?

Answer: Yes! Consider the sequence

$$x_1 = \frac{1}{2}, \quad x_2 = \frac{1}{2 + \frac{1}{2}}, \quad x_3 = \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}, \quad \cdots, \quad x_{n+1} = \frac{1}{2 + x_n}.$$

Then $\{x_n\}_{n=1}^{\infty}$ is a monotone decreasing sequence in \mathbb{Q} . If $\lim_{n \to \infty} x_n = x$, then Theorem 1.60 implies that $x = \frac{1}{2+x}$ from which we conclude that $x = -1 + \sqrt{2}$. Since $x \notin \mathbb{Q}$, $\{x_n\}_{n=1}^{\infty}$ does not converge (to a limit) in \mathbb{Q} . In other words, \mathbb{Q} does not have the monotone sequence property.

Proposition 1.65. An ordered field satisfying the monotone sequence property has the Archimedean property; that is, if \mathcal{F} is an ordered field satisfying the monotone sequence property, then $\forall x \in \mathcal{F}, \exists n \in \mathbb{N} \ni x < n$.

Proof. Assume the contrary that there exists $x \in \mathcal{F}$ such that $n \leq x$ for all $n \in \mathbb{N}$. Let $x_n = n$. Then $\{x_n\}_{n=1}^{\infty}$ is increasing and bounded above. By the monotone sequence property of \mathcal{F} , there exists $\hat{x} \in \mathcal{F}$ such that $x_n \to \hat{x}$ as $n \to \infty$; thus $\exists N > 0$ such that

$$|x_n - \hat{x}| < \frac{1}{4} \qquad \forall \, n \ge N \, .$$

In particular, $|N - \hat{x}| < \frac{1}{4}$, $|N + 1 - \hat{x}| < \frac{1}{4}$; thus

$$1 = |N + 1 - N| \le |N + 1 - \hat{x}| + |\hat{x} - N| < \frac{1}{4} + \frac{1}{4} = \frac{1}{2},$$

a contradiction.

Example 1.66. Let $(\mathcal{F}, +, \cdot, \leqslant)$ be an ordered field satisfying the monotone sequence property, and $y \in \mathcal{F}$ be a given positive number (that is, y > 0). Define $x_n = \frac{N_n}{2^n}$, where N_n is the largest integer such that $x_n^2 \leqslant y$; that is, $\left(\frac{N_n}{2^n}\right)^2 \leqslant y$ but $\left(\frac{N_n+1}{2^n}\right)^2 > y$ (for example, if y = 2, then $x_1 = \frac{2}{2^1}$, $x_2 = \frac{5}{2^2}$, $x_3 = \frac{11}{2^3}$, ...). Then

- 1. x_n is bounded above: since $x_n^2 \leq y \leq 2y + y^2 + 1 = (y+1)^2$, by the non-negativity of x_n and y and Remark 1.19 we must have $0 \leq x_n \leq y + 1$.
- 2. x_n is increasing: by the definition of N_n ,

$$N_n^2 \leqslant 2^{2n} \cdot y \Rightarrow 4 \cdot N_n^2 \leqslant 2^{2n+2} \cdot y = 2^{2(n+1)} \cdot y \Rightarrow \left(\frac{2N_n}{2^{n+1}}\right)^2 \leqslant y \Rightarrow 2N_n \leqslant N_{n+1}$$

Therefore, $x_n = \frac{N_n}{2^n} = \frac{2N_n}{2^{n+1}} \leq \frac{N_{n+1}}{2^{n+1}} = x_{n+1}$. Since \mathcal{F} satisfies the monotone sequence property, $\exists x \in \mathcal{F} \ni x_n \to x$ as $n \to \infty$. By Theorem 1.60, $x_n^2 \to x^2$, and by Proposition 1.56, $x^2 \leq y$.

Now we show $x^2 = y$. To this end observe that

$$(x_n + \frac{1}{2^n})^2 = (\frac{N_n}{2^n} + \frac{1}{2^n}) = (\frac{N_n + 1}{2^n})^2 > y;$$

thus $x_n^2 \leq y \leq (x_n + \frac{1}{2^n})^2$. By the Archimedean property of \mathcal{F} (Proposition 1.65), $\lim_{n \to \infty} \frac{1}{2^n} = 0$; thus Theorem 1.60 implies that $x^2 = \lim_{n \to \infty} x_n^2 = \lim_{n \to \infty} (x_n + \frac{1}{2^n})^2 = y$. Note that Proposition 1.18 implies that such an x is unique if x > 0.

In general, one can define the *n*-th root of non-negative number y in an ordered field satisfying the monotone sequence property. The construction of the *n*-th root of $y \in \mathcal{F}$ is left as an exercise.

Definition 1.67. For $n \in \mathbb{N}$, the *n*-th root of a non-negative number y in an ordered field satisfying the monotone sequence property is the unique non-negative number x satisfying $x^n = y$. One writes $y^{1/n}$ or $\sqrt[n]{y}$ to denote n-th root of y.

Definition 1.68. An ordered field \mathcal{F} is said to be *complete* (完備) (have the completeness property, 具備完備性) if it satisfies the monotone sequence property.

Remark 1.69. In an ordered field, completeness \Leftrightarrow monotone sequence property (在 ordered field 裡,完備性 = 數列單調有界必收斂 = 數列遞增有上界必收斂). Moreover,

- 1. A complete ordered field is "Archimedean" (Proposition 1.65).
- 2. For $n \in \mathbb{N}$, the *n*-th root of a non-negative number in a complete ordered field is well-defined (Definition 1.67).

Proposition 1.70. Let $(\mathcal{F}, +, \cdot, \leq)$ be an ordered field. Then \mathcal{F} satisfies the monotone sequence property if and only if \mathcal{F} satisfies the strictly monotone sequence property.

Proof. The "only if" part is trivial, so we only prove the "if" part. Let $\{x_n\}_{n=1}^{\infty}$ be a bounded increasing sequence in \mathcal{F} . If $\{x_n\}_{n=1}^{\infty}$ has finite number of values; that is,

$$#\{n \in \mathbb{N} \mid x_n < x_{n+1}\} < \infty,$$

then there exists $N \in \mathbb{N}$ such that $x_n = x_N$ for all $n \ge N$ which implies that $\{x_n\}_{n=1}^{\infty}$ converges to x_N . Now suppose that

$$\#\left\{n \in \mathbb{N} \,\middle|\, x_n < x_{n+1}\right\} = \infty \,.$$

Then there exists an infinite set $\{n_1, n_2, \dots\} \subseteq \mathbb{N}$ such that $x_{n_k} \neq x_{n_{k+1}}$ for all $k \in \mathbb{N}$. Let $y_k = x_{n_k}$. Since \mathcal{F} satisfies the strictly monotone sequence property, $y_k \to y$ as $k \to \infty$ for some $x \in \mathcal{F}$. However, it is easy to see that the sequence $\{x_n\}_{n=1}^{\infty}$ also converges to y since $\{x_n\}_{n=1}^{\infty}$ is monotone increasing.

Theorem 1.71. There is a "unique" complete ordered field, called the real number system $\mathbb{R}.$

Remark 1.72. Uniqueness means if \mathcal{F} is any other complete ordered field $(\mathcal{F}, \oplus, \odot, \leqslant)$, then there exists an field isomorphism $\phi : \mathbb{R} \to \mathcal{F}$; that is, $\phi : \mathbb{R} \to \mathcal{F}$ is one-to-one and onto, and satisfies that

- 1. $\phi(x+y) = \phi(x) \oplus \phi(y)$ for all $x, y \in \mathbb{R}$. 2. $\phi(x \cdot y) = \phi(x) \odot \phi(y)$ for all $x, y \in \mathbb{R}$.

3.
$$x \leq y \Rightarrow \phi(x) \leq \phi(y)$$
 for all $x, y \in \mathbb{R}$.

Sketch of proof of Theorem 1.71. Let S be the collection of all bounded increasing sequences in \mathbb{Q} in which all terms in every sequence have the same sign; that is,

$$S = \left\{ \{x_n\}_{n=1}^{\infty} \middle| x_n \in \mathbb{Q} \text{ for all } n \in \mathbb{N}, x_j \cdot x_k \ge 0 \text{ for all } k, j \in \mathbb{N}, \\ \text{and } \{x_n\}_{n=1}^{\infty} \text{ is increasing and bounded above} \right\}.$$

Define on S an equivalence relation $\sim: \{x_n\}_{n=1}^{\infty} \sim \{y_n\}_{n=1}^{\infty}$ if every upper bound of $\{x_n\}_{n=1}^{\infty}$ is also an upper bound of $\{y_n\}_{n=1}^{\infty}$, and vice versa. Let $\mathbb{R} = \{ [\{x_n\}_{n=1}^{\infty}] \mid \{x_n\}_{n=1}^{\infty} \in S \}$ be the set of equivalence class of S (the existence of such a set relies on the axiom of choice). We define on \mathbb{R} , $+, \cdot, \leq$ as follows: if $r = [\{x_n\}_{n=1}^{\infty}]$ and $s = [\{y_n\}_{n=1}^{\infty}]$ (where $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \in S$), then

1.
$$r + s = [\{x_n + y_n\}_{n=1}^{\infty}];$$
 2. $r \cdot s = \begin{cases} [\{x_n \cdot y_n\}_{n=1}^{\infty}] & \text{if } r, s \ge 0, \\ -((-r) \cdot s) & \text{if } r < 0 \text{ and } s > 0, \\ -(r \cdot (-s)) & \text{if } r > 0 \text{ and } s < 0, \\ (-r) \cdot (-s) & \text{if } r, s < 0; \end{cases}$

3. $r \leq s$ if every upper bound of $\{y_n\}_{n=1}^{\infty}$ is also an upper bound for $\{x_n\}_{n=1}^{\infty}$.

One needs to verify that \mathbb{R} is an ordered field, and this part is left as an exercise (or see Remark 1.73 for some part of the verification).

Claim 1: If $\{x_{n_k}\}_{k=1}^{\infty}$ is a subsequence of $\{x_n\}_{n=1}^{\infty}$, then $[\{x_{n_k}\}_{k=1}^{\infty}] = [\{x_n\}_{n=1}^{\infty}]$. Claim 2: If $[\{x_n\}_{n=1}^{\infty}] < [\{y_n\}_{n=1}^{\infty}]$, then for some $N \in \mathbb{N}$, $x_n < y_N$ for all $n \ge N$. The proofs of the claims above are not difficult and are left as an exercise.

Now we show the completeness of \mathbb{R} by showing that \mathbb{R} satisfies the strictly monotone sequence property (Proposition 1.70). Let $\{r_k\}_{k=1}^{\infty}$ be a bounded, strictly increasing sequence in \mathbb{R}^+ . Write $r_k = [\{x_{k,n}\}_{n=1}^{\infty}]$, where $x_{k,n} \leq x_{k,n+1}$ for all $k, n \in \mathbb{N}$. Since $\{r_k\}_{k=1}^{\infty}$ is bounded in \mathbb{R} , there is $M \in \mathbb{Q}$ such that $x_{k,n} \leq M$ for all $k, n \in \mathbb{N}$. Moreover, since $r_k < r_{k+1}$ for all $k \in \mathbb{N}$, by claims above we can assume that $x_{k,n} < x_{k+1,1}$ for all $k, n \in \mathbb{N}$; thus

$$x_{k,n} < x_{\ell,m} \quad \forall \ell > k \text{ and } n, m \in \mathbb{N}.$$
 (*)

Therefore, $\{x_{n,n}\}_{n=1}^{\infty}$ is bounded and monotone increasing, so $\{x_{n,n}\}_{n=1}^{\infty} \in S$. Define $r = [\{x_{n,n}\}_{n=1}^{\infty}]$. Then $r \in \mathbb{R}$, and

- (i) r is an upper bound of $\{r_k\}_{k=1}^{\infty}$: Suppose the contrary that there exists $M \in \mathbb{Q}$ such that $x_{n,n} \leq M$ for all $n \in \mathbb{N}$ but $x_{k,\ell} > M$ for some $k, \ell \in \mathbb{N}$.
 - (a) If $k \ge \ell$, then $x_{k,k} \ge x_{k,\ell} > M$ since $\{x_{k,\ell}\}_{\ell=1}^{\infty}$ is increasing.
 - (b) If $k < \ell$, then $x_{\ell,\ell} > x_{k,\ell} > M$ because of (\star) .

In either case we conclude that M cannot be an upper bound of r, a contradiction.

(ii) $r - \varepsilon$ is not an upper bound of $\{r_k\}_{k=1}^{\infty}$ for all $\varepsilon > 0$: Suppose the contrary that $r - \varepsilon$ is an upper bound of $\{r_k\}_{k=1}^{\infty}$. Write $\varepsilon = \{\varepsilon_k\}_{k=1}^{\infty}$, and W.L.O.G. we can assume that there exists $\delta \in \mathbb{Q}$ such that $\varepsilon_k \ge 2\delta > 0$ for all $k \in \mathbb{N}$. Then for all (fixed) $k \in \mathbb{N}$,

$$\left[\{ x_{k,\ell} + \delta \}_{\ell=1}^{\infty} \right] < \left[\{ x_{k,\ell} + 2\delta \}_{\ell=1}^{\infty} \right] \le \left[\{ x_{k,\ell} + \varepsilon_k \}_{\ell=1}^{\infty} \right] \le \left[\{ x_{\ell,\ell} \}_{\ell=1}^{\infty} \right]$$

Let $N_1 = 1$. By claim 2, for each $k \in \mathbb{N}$ there exists $N_{k+1} \in \mathbb{N}$ such that $N_{k+1} \ge N_k$ and $x_{N_k,\ell} + \delta < x_{N_{k+1},N_{k+1}}$ for all $\ell \ge N_{k+1}$. On the other hand,

$$x_{N_{k+1},N_{k+1}} \ge x_{N_k,N_{k+1}} + \delta \ge x_{N_k,N_k} + \delta \ge \dots \ge x_{1,1} + k\delta$$

which implies that $\{x_{\ell,\ell}\}_{\ell=1}^{\infty}$ is not bounded, a contradiction.

As a consequence, r is the least upper bound of $\{r_k\}_{k=1}^{\infty}$.

From now on \mathbb{R} is the complete ordered field containing \mathbb{Q} , \mathbb{Z} , \mathbb{N} .

Remark 1.73 (The existence of additive inverse of real numbers). Suppose that a bounded increasing sequence $\{x_n\}_{n=1}^{\infty}$ is not equivalent to any rational "number" $\{q\}_{n=1}^{\infty}$ for any $q \in \mathbb{Q}$, then there exists a decreasing sequence $\{y_n\}_{n=1}^{\infty}$ such that $x_n - y_n \to 0$ as $n \to \infty$. Such $\{y_n\}_{n=1}^{\infty}$ can be obtained by choosing y_n to be the smallest upper bound of the form $\frac{k}{2^n}$, where $k \in \mathbb{Z}$. By deleting terms if necessary, we can assume that all $y'_n s$ have the same sign. Then $\{-y_n\}_{n=1}^{\infty}$ is a bounded increasing sequence, and $[\{-y_n\}_{n=1}^{\infty}]$ is the additive inverse of $[\{x_n\}_{n=1}^{\infty}]$.

Example 1.74. In \mathbb{R} , define x_n inductively by $x_1 = 0$, $x_2 = \sqrt{2}$, $x_3 = \sqrt{2 + \sqrt{2}}$, \cdots , $x_{n+1} = \sqrt{2 + x_n}$. It is easy to see that $\{x_n\}_{n=1}^{\infty}$ satisfies $x_n \ge 0$ for all $n \in \mathbb{N}$.

- 1. $x_n \leq 2$ for all $n \in \mathbb{N}$ (boundedness): First of all, $x_1 \leq 2$. Assume that $x_n \leq 2$. Then $x_{n+1} = \sqrt{2 + x_n} \leq \sqrt{2 + 2} = 2$. By mathematical induction, $x_n \leq 2$ for all $n \in \mathbb{N}$.
- 2. $x_n \leq x_{n+1}$ (monotonicity): Since $x_n 2 \leq 0$ and $x_n + 1 \geq 0$, $(x_n 2) \cdot (x_n + 1) \leq 0$. Expanding the product, we obtain that $x_n^2 \leq x_n + 2 = x_{n+1}^2$ which implies that $x_n \leq x_{n+1}$.
- 3. $x_n \to 2$ as $n \to \infty$ (convergence): Since $\{x_n\}_{n=1}^{\infty}$ is a bounded monotone sequence in \mathbb{R} , $\lim_{n \to \infty} x_n = x$ for some $x \in \mathbb{R}$. Note that then $x_{n+1} \to x$ as $n \to \infty$. Since $x_{n+1}^2 = x_n + 2$, by Theorem 1.60 we must have $x^2 = x + 2$. Then (x - 2)(x + 1) = 0 which implies x = 2 or x = -1 (failed). Therefore, $\{x_n\}_{n=1}^{\infty}$ converges to 2.

Theorem 1.75. The interval (0,1) in \mathbb{R} is uncountable (不可數).

Proof. Assume the contrary that there exists $f : \mathbb{N} \to (0, 1)$ which is one-to-one and onto. Write f(k) in decimal expansion (十進位展開); that is,

$$f(1) = 0.d_{11}d_{21}d_{31}\cdots$$

$$f(2) = 0.d_{12}d_{22}d_{32}\cdots$$

$$\vdots$$

$$f(k) = 0.d_{1k}d_{2k}d_{3k}\cdots$$

$$\vdots$$

$$\vdots$$

Here we note that repeated 9's are chosen by preference over terminating decimals; that is, for example, we write $\frac{1}{4} = 0.249999\cdots$ instead of $\frac{1}{4} = 0.250000\cdots$.

Let $x \in (0,1)$ be such that $x = 0.d_1d_2\cdots$, where

$$d_k = \begin{cases} 5 & \text{if } d_{kk} \neq 5, \\ 7 & \text{if } d_{kk} = 5. \end{cases}$$

(建構一個 x 使其小數點下第 k 位數與 f(k) 的小數點下第 k 位數不相等). Then $x \neq f(k)$ for all $k \in \mathbb{N}$, a contradiction; thus (0,1) is uncountable. □

Corollary 1.76. \mathbb{R} is uncountable.

Proposition 1.77. \mathbb{Q} is dense (稠密) in \mathbb{R} ; that is, if $x, y \in \mathbb{R}$ and x < y, then $\exists r \in \mathbb{Q} \Rightarrow x < r < y$.

Proof. Since $\frac{1}{n} \to 0$ as $n \to \infty$ (by the Archimedean property of \mathbb{R} , Proposition 1.65), there exists N > 0 such that $\left|\frac{1}{n} - 0\right| < y - x$ for all $n \ge N$. *Claim:* $\left\{\frac{k}{N} \mid k \in \mathbb{Z}\right\} \cap (x, y) \neq \emptyset$.

Proof of claim: Suppose the contrary that $\left\{\frac{k}{N} \mid k \in \mathbb{Z}\right\} \cap (x, y) = \emptyset$. Then $\frac{\ell}{N} \leq x$ and $\frac{\ell+1}{N} \geq y$ for some $\ell \in \mathbb{Z}$, while this fact will imply that $y - x \leq \frac{1}{N}$, a contradiction.

Remark 1.78. The denseness of \mathbb{Q} in \mathbb{R} can be rephrased as follows: if $x \in \mathbb{R}$ and $\varepsilon > 0$, then $\exists r \in \mathbb{Q} \ni |x - r| < \varepsilon$.

$$\begin{array}{c|c} & & & \\ \hline & & \\ x - \varepsilon & r & x & x + \varepsilon \end{array}$$

Corollary 1.79. The collection of irrational numbers $\mathbb{Q}^{\mathbb{C}} \equiv \mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} ; that is, if $x, y \in \mathbb{R}$ and x < y, $\exists c \in \mathbb{Q}^{\mathbb{C}} \ni x < c < y$.

Proof. Let $x, y \in \mathbb{R}$ with x < y. By Proposition 1.77 there exists $r \in \mathbb{Q}$, $r \neq 0$ such that $\frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}}$. Let $c = \sqrt{2}r$. Then $c \in \mathbb{Q}^{\complement}$ and x < c < y.

Example 1.80. The harmonic sequence

$$x_{1} = 1$$

$$x_{2} = 1 + \frac{1}{2}$$

$$\vdots$$

$$x_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$$

$$\vdots$$

$$\vdots$$

is (monotone) increasing but not bounded above.

Proof. That the sequence is increasing is trivial. For the unboundedness, we observe that

$$x_{2^{n}} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots + \frac{1}{2^{n}}$$

$$\ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots + \frac{2^{n-1}}{2^{n}}$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} = 1 + \frac{n}{2}$$

which is not bounded above (沒有上界).

1.3 Least Upper Bounds and Greatest Lower Bounds

Definition 1.81. Let $\emptyset \neq S \subseteq \mathbb{R}$. A number $M \in \mathbb{R}$ is called an *upper bound* (上界) for S if $x \leq M$ for all $x \in S$, and a number $m \in \mathbb{R}$ is called a *lower bound* (下界) for S if $x \geq m$ for all $x \in S$. If there is an upper bound for S, then S is said to be *bounded from above*, while if there is a lower bound for S, then S is said to be *bounded from below*. A number $b \in \mathbb{R}$ is called a *least upper bound* (最小上界) of S if

1. b is an upper bound for S, and

2. if M is an upper bound for S, then $M \ge b$.

A number *a* is called a *greatest lower bound* (最大下界) of *S* if

- 1. a is a lower bound for S, and
- 2. if m is a lower bound for S, then $m \leq a$.

If S is not bounded above, the least upper bound of S is set to be ∞ , while if S is not bounded below, the greatest lower bound of S is set to be $-\infty$. The least upper bound of S is also called the **supremum** of S and is usually denoted by lubS or sup S, and "the" greatest lower bound of S is also called the **infimum** of S, and is usually denoted by glbS or inf S. If $S = \emptyset$, then sup $S = -\infty$, inf $S = \infty$.

Example 1.82. Let S = (0, 1). Then sup S = 1, inf S = 0.

Example 1.83. Let $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 1 - x^2 & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Define

$$S = \{ f(x) \mid x \in R \}, \quad T = \{ x \in \mathbb{R} \mid f(x) > \frac{1}{4} \}.$$

We can get $S = (-\infty, 1)$, so $\sup(S) = 1$, $\inf(S) = -\infty$. Solve $1 - x^2 = \frac{1}{4} \Rightarrow x = \pm \frac{\sqrt{3}}{2}$, then we can get $T = \left(-\frac{\sqrt{3}}{2}, 0\right) \cup \left(0, \frac{\sqrt{3}}{2}\right)$, so $\sup(T) = \frac{\sqrt{3}}{2}$, $\inf(T) = -\frac{\sqrt{3}}{2}$.

Remark 1.84. The least upper bound and the greatest lower bound of S need not be a member of S.

Remark 1.85. The reason for defining $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$ is as follows: if $\emptyset \neq A \subseteq B$, then $\sup A \leq \sup B$ and $\inf A \geq \inf B$.

$$\frac{(A B)}{\inf B \inf A \sup A \sup B}$$

ecte

Since \emptyset is a subset of any other sets, we shall have $\sup \emptyset$ is smaller then any real number, and $\inf \emptyset$ is greater than any real number. However, this "definition" would destroy the property that $\inf A \leq \sup A$.

The "definition" of $\sup \emptyset$ and $\inf \emptyset$ is purely artificial. One can also define $\sup \emptyset = \infty$ and $\inf \emptyset = -\infty$.

Definition 1.86. An *open interval* in \mathbb{R} is of the form (a, b) which consists of all $x \in \mathbb{R} \ni a < x < b$. A *closed interval* in \mathbb{R} is of the form [a, b] which consists of all $x \in \mathbb{R} \ni a \leq x \leq b$.

Proposition 1.87. Let $S \subseteq \mathbb{R}$ be non-empty. Then

- 1. $b = \sup S \in \mathbb{R}$ if and only if
 - (a) b is an upper bound of S.
 - (b) $\forall \varepsilon > 0, \exists x \in S \ni x > b \varepsilon.$

2. $a = \inf S \in \mathbb{R}$ if and only if

- (a) a is a lower bound of S.
- (b) $\forall \varepsilon > 0, \exists x \in S \ni x < a + \varepsilon$.

Proof. " \Rightarrow " (a) is part of the definition of being a least upper bound.

(b) If M is an upper bound of S, then we must have $M \ge b$; thus $b - \varepsilon$ is not an upper bound of S. Therefore, $\exists x \in S \ni x > b - \varepsilon$.

"⇐" First, we show that b is an upper bound for S. If not, there exists $x \in S$ such that b < x. Let $\varepsilon = x - s > 0$. Then we do not have (i) since $x \in S$ but $x < s + \varepsilon$. Next, we show that if M is an upper bound of S, then $M \ge b$. Assume the contrary. Then $\exists M$ such that M is an upper bound of S but M < b. Let $\varepsilon = b - M$, then there is no $x \in S \ni x > b - \varepsilon$. \rightarrow ←

So far it is not clear that whether the least upper bound or the greatest lower bound for a subset $S \subseteq \mathbb{R}$ exists or not. The following theorem provides the existence of the least upper bound or the greatest lower bound of a set S provided that S has certain properties.

Theorem 1.88. In \mathbb{R} , the following two properties hold:

1. Least upper bound property (L.U.B.P.):

Let S be a non-empty set in \mathbb{R} that has an upper bound (or is bounded from above), then S has a least upper bound. (非空集合有上界,則有最小上界)

2. Greatest lower bound property:

Let S be a non-empty set in \mathbb{R} that has a lower bound (or is bounded from below), then S has a greatest lower bound. (非空集合有下界,則有最大下界)

Proof. We only prove the least upper bound property since the proof of the greatest lower bound property is similar.

Let $\emptyset \neq S \subseteq \mathbb{R}$ be given. Let x_0 be the smallest integer such that x_0 is an upper bound of S. Let $x_1 = x_0 - \frac{N_1}{10}$, where N_1 is the largest integer such that x_2 is still an upper bound of S. We continue this process, and define $x_n = x_{n-1} - \frac{N_n}{10^n}$, where N_n is the largest integer such that x_n is an upper bound of S. (事實上, x_n 就是十進位下小數點以下只有 n 位的 小數裡面, S 的上界中最小的那個數)

Note that in the process of constructing $\{x_n\}_{n=1}^{\infty}$, N_n is always non-negative which implies that $\{x_n\}_{n=1}^{\infty}$ is decreasing. Moreover, any $a \in S$ is a lower bound of $\{x_n\}_{n=1}^{\infty}$. By completeness of \mathbb{R} , $\{x_n\}_{n=1}^{\infty}$ converges. Assume that $x_n \to x$ as $n \to \infty$. *Claim*: $x = \sup S$ ($\Leftrightarrow 1$. x is an upper bound of S. 2. $\forall \varepsilon > 0, \exists s \in S \ni s > x - \varepsilon$).

1. Assume the contrary that x is not an upper bound of S. Then $\exists s \in S \ni s > x$. Since $x_n \to x$ as $n \to \infty$, $\exists N > 0 \ni |x_n - x| < s - x$ for all $n \ge N$; thus

$$2x - s < x_n < s \qquad n \ge N \,.$$

Therefore, x_n cannot be an upper bound of S for all $n \ge N$, a contradiction.

2. Assume the contrary that $\exists \varepsilon > 0 \ni \forall s \in S, s < x - \varepsilon$. Choose $k \in \mathbb{N}$ such that $\varepsilon > \frac{1}{10^k}$. Then

$$x_{k-1} - \frac{N_k + 1}{10^k} = x_k - \frac{1}{10^k} \ge x - \varepsilon > s$$

which suggests that N_k is not the largest integer such that $x_{k-1} - \frac{N_k}{10^k}$ is still an upper

bound, a contradiction.

Proposition 1.89. Suppose that $\emptyset \neq A \subseteq B \subseteq \mathbb{R}$. Then $\inf B \leq \inf A \leq \sup A \leq \sup B$.

Proof. We proceed as follows.

- 1. $\sup A \leq \sup B$: Let $b = \sup B$, then $\forall x \in B, x \leq b$. Since $A \subseteq B$, then $\forall x \in A, x \leq b$; hence b is also an upper bound for A. Since $\sup A$ is the least upper bound for A and b is an upper bound for A, then $\sup A \leq b = \sup B$.
- 2. It is similar to prove $\inf B \leq \inf A$.
- 3. It is trivially true that $\inf A \leq \sup A$.

Theorem 1.90. Let $(\mathcal{F}, +, \cdot, \leq)$ be an ordered field such that \mathcal{F} has the least upper bound property, then \mathcal{F} is complete.

Proof. We would like to show that any increasing bounded sequence converges. Let $\{x_n\}_{n=1}^{\infty}$ be increasing and bounded above (by M).

Define $S = \{x_1, x_2, \dots, x_n, \dots\}$. Then S is non-empty and has an upper bound; thus by the assumption that \mathcal{F} satisfies the least upper bound property, $\sup S \equiv x$ exists.

- 1. x is an upper bound of $S \Rightarrow x_n \leq x$ for all $n \in \mathbb{N}$.
- 2. By Proposition 1.87, $\forall \varepsilon > 0$, $\exists s \in S \ni s > x \varepsilon$. Note that $s = x_N$ for some $N \in \mathbb{N}$. Since $\{x_n\}_{n=1}^{\infty}$ is increasing, $x_N \leq x_n \leq x$ for all $n \geq N$. Therefore, if $n \geq N$,

$$x - \varepsilon < x_N \leqslant x_n \leqslant x < x + \varepsilon$$

which implies that $|x_n - x| < \varepsilon$ if $n \ge N$.

Example 1.91. \mathbb{Q} is not complete. Let $S = \{x_1 = 3, x_2 = 3.1, x_3 = 3.14, \dots\}$. Then S has 4 as an upper bound, but S has no least upper bound (in \mathbb{Q}).

Remark 1.92. The two theorems above suggest that in an ordered field, completeness \Leftrightarrow the least upper bound property.

1.4 Cauchy Sequences

So far the only criteria that we learn (from previous sections) for the convergence of a sequence in an ordered field is that a bounded monotone sequence in \mathbb{R} converges. Are there any other criteria for the convergence of a sequence in an ordered field? By Proposition 1.48, we know that if a sequence $\{x_n\}_{n=1}^{\infty}$ in an ordered field \mathcal{F} converges, then

$$\exists ! x \in \mathcal{F} \ni \forall \varepsilon > 0, \# \{ n \in \mathbb{N} \mid x_n \notin (x - \varepsilon, x + \varepsilon) \} < \infty$$

We would like to investigate if the following much weaker statement

$$\forall \varepsilon > 0, \exists \text{ (a limit candidate) } y \in \mathcal{F} \ni \# \{ n \in \mathbb{N} \mid x_n \notin (y - \varepsilon, y + \varepsilon) \} < \infty$$
 (*)

leads to the convergence of a sequence. Note that statement (\star) is equivalent to statement $(\star\star)$ in the following

Definition 1.93. A sequence $\{x_n\}_{n=1}^{\infty}$ in an ordered field is said to be **Cauchy** if

$$\forall \varepsilon > 0, \exists N > 0 \ \ni |x_n - x_m| < \varepsilon \text{ whenever } n, m \ge N.$$
 (**)

Remark 1.94. (*) 這個敘述的中心思想是:給定一正值 ε ,我們都能找到一個長度是 2ε 的區間使得落在此區間外的 x_n 只有有限個。因為當對每個長度我們都能找到這樣的區間時,才有機會找到 $\{x_n\}_{n=1}^{\infty}$ 的極限(極限若真的存在的話,那麼這個極限一定落在所有這樣的區間之內);要是連這樣的區間都找不到,就不可能會收斂了。

Example 1.95. In \mathbb{Q} , $x_1 = 3$, $x_2 = 3.1$, $x_3 = 3.14$, $x_4 = 3.141$, \cdots . Then $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, but is not convergent. Therefore, a Cauchy sequence may not converge.

Proposition 1.96. Every convergent sequence is Cauchy.

Proof. Let $\{x_n\}_{n=1}^{\infty}$ be a convergent sequence with limit x. For any $\varepsilon > 0$, $\exists N > 0 \Rightarrow |x_n - x| < \frac{\varepsilon}{2}$ if $n \ge N$. Then by triangle inequality, if $n, m \ge N$,

$$|x_n - x_m| \leq |x_n - x| + |x - x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon;$$

thus $\{x_n\}_{n=1}^{\infty}$ is Cauchy.

Lemma 1.97. Every Cauchy sequence is bounded.

Proof. Let $\{x_n\}_{n=1}^{\infty}$ be Cauchy. $\exists N > 0 \quad \exists |x_n - x_m| < 1$ for all $n, m \ge N$. In particular, $|x_n - x_N| < 1$ if $n \ge N$ or equivalently,

$$x_N - 1 < x_n < x_N + 1 \qquad \forall \, n \ge N \, .$$

Let $M = \max\{|x_1|, |x_2|, \dots, |x_{N-1}|, |x_N|+1\}$. Then $|x_n| \leq M$ for all $n \in \mathbb{N}$.

Definition 1.98. A sequence $\{y_j\}_{j=1}^{\infty}$ is called a *subsequence* (子 數 列) of a sequence $\{x_n\}_{n=1}^{\infty}$ if there exists an increasing function $f : \mathbb{N} \to \mathbb{N}$ such that $y_j = x_{f(j)}$. In this case, we often write $f(j) = n_j$ and $y_j = x_{n_j}$.

In other words, a subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of remaining elements. Let $f : \mathbb{N} \to \mathbb{R}$ be a sequence an $x_n = f(n)$. A subsequence $\{x_{n_j}\}_{j=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ is the image of an infinite subset $\{n_1, n_2, \dots\}$ of \mathbb{N} under the map f.

$$y_1$$
 x_2x_3 y_5 x_8 x_6 y_4 x_7 $x_{n_1}x_{n_2}$ x_{n_5} x_{n_3} x_{n_4}

Example 1.99. Let $\{x_n\}_{n=1}^{\infty} = \{1, \frac{1}{2}, \frac{1}{7}, \frac{1}{3}, \frac{2}{3}, \frac{11}{8}, \cdots\}$, and $\{y_n\}_{n=1}^{\infty} = \{\frac{1}{2}, \frac{1}{7}, \frac{2}{3}, \frac{11}{8}, \cdots\}$. Then $\{y_n\}_{n=1}^{\infty}$ can be viewed as a subsequence of $\{x_n\}_{n=1}^{\infty}$ by the relation $y_j = x_{n_j}$; that is, $y_1 = x_2, y_2 = x_3, y_3 = x_5, y_4 = x_6$, and etc. The sequence $\{x_{n_j}\}_{j=1}^{\infty}$ is obtained by deleting x_1 and x_4 (and maybe more) from the original sequence $\{x_n\}_{n=1}^{\infty}$. However, if $\{z_n\}_{n=1}^{\infty} = \{\frac{1}{7}, \frac{11}{8}, 1, \cdots\}$, then $\{z_n\}_{n=1}^{\infty}$ is not a subsequence of $\{x_n\}_{n=1}^{\infty}$ (but only a subset) of $\{x_n\}_{n=1}^{\infty}$ because the order is changed.

Theorem 1.100 (Bolzano-Weierstrass property). Every bounded sequence in \mathbb{R} has a convergent subsequence; that is, every bounded sequence in \mathbb{R} has a subsequence that converges to a limit in \mathbb{R} .

Proof. Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence satisfying $|x_n| \leq M$ for all $n \in \mathbb{N}$. Divide [-M, M] into two intervals [-M, 0], [0, M], and denote one of the two intervals containing infinitely many x_n as $[a_1, b_1]$; that is, $\#\{n \in \mathbb{N} \mid x_n \in [a_1, b_1]\} = \infty$. Divide $[a_1, b_1]$ into two intervals $[a_1, \frac{a_1 + b_1}{2}], [\frac{a_1 + b_1}{2}, b_1]$, and denote one of the two intervals containing infinitely many x_n as $[a_2, b_2]$. We continue this process, and obtain a sequence of intervals $[a_k, b_k]$ such that $\#\{n \in \mathbb{N} \mid x_n \in [a_k, b_k]\} = \infty$.

Let x_{n_1} be an element belonging to $[a_1, b_1]$. Since $\#\{n \in \mathbb{N} \mid x_n \in [a_1, b_1]\} = \infty$, we can choose $n_2 > n_1$ such that $x_{n_2} \in [a_2, b_2]$, and for the same reason we can choose $n_3 > n_2$ such that $x_{n_3} \in [a_3, b_3]$. We continue this process and obtain $x_{n_k} \in [a_k, b_k]$ with $n_k > n_{k-1}$.

Since $[a_k, b_k] \supseteq [a_{k+1}, b_{k+1}]$ for all $k \in \mathbb{N}$, we find that $\{a_k\}_{k=1}^{\infty}$ is increasing and $\{b_k\}_{k=1}^{\infty}$ is decreasing. Moreover, $a_k \leq M$, $b_k \geq -M$. As a consequence, by the monotone sequence property, a_k converges to a and b_k converges to b.

On the other hand, we observe that $b_k - a_k = \frac{M}{2^{k-1}}$. Then $b - a = \lim_{k \to \infty} \frac{M}{2^{k-1}} = 0$; thus a = b. Since $a_k \leq x_{n_k} \leq b_k$, by Sandwich lemma $\lim_{k \to \infty} x_{n_k} = a = b \in \mathbb{R}$.

Lemma 1.101. If a subsequence of a Cauchy sequence is convergent, then this Cauchy sequence also converges.

Proof. Let $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence with a convergent subsequence $\{x_{n_j}\}_{j=1}^{\infty}$. Assume $\lim_{j\to\infty} x_{n_j} = x$. Then $\forall \varepsilon > 0$,

$$\exists K > 0 \ni |x_{n_j} - x| < \frac{\varepsilon}{2} \quad \text{if} \quad j \ge K, \text{ and}$$

$$\exists N > 0 \ni |x_n - x_m| < \frac{\varepsilon}{2} \quad \text{if} \quad n, m \ge N.$$

Choose $j \ge \max\{K, N\}$. Then $n_j \ge N$; thus if $n \ge N$,

$$|x_n - x| \leq |x_n - x_{n_j}| + |x_{n_j} - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Theorem 1.102. Every Cauchy sequence in \mathbb{R} is convergent.

Theorem 1.103. Suppose that \mathcal{F} is an ordered field with Archimedean property and every Cauchy sequence converges. Then \mathcal{F} is complete.

Proof. Suppose the contrary that there is a bounded increasing sequence $\{x_n\}_{n=1}^{\infty}$ that does not converge to a limit in \mathcal{F} . By assumption, $\{x_n\}_{n=1}^{\infty}$ cannot be Cauchy; thus

$$\exists \varepsilon > 0 \ni \forall N > 0 \exists n, m \ge N \ni |x_n - x_m| \ge \varepsilon.$$

Let N = 1, $\exists n_2 > n_1 \ge 1 \Rightarrow |x_{n_1} - x_{n_2}| \ge \varepsilon$. Let $N = n_2 + 1$, $\exists n_4 > n_3 \ge n_2 + 1 \Rightarrow |x_{n_3} - x_{n_4}| \ge \varepsilon$. We continue this process and obtain a sequence $\{x_{n_j}\}_{j=1}^{\infty}$ satisfying

$$\begin{aligned} \left| x_{n_{2k-1}} - x_{n_{2k}} \right| \ge \varepsilon \quad \forall k \in \mathbb{N}. \\ \xrightarrow{\geq \varepsilon} \qquad \geq \varepsilon \qquad \geq \varepsilon \qquad \geq \varepsilon \\ \xrightarrow{x_{n_1} \qquad x_{n_2} x_{n_3} \qquad x_{n_4} \qquad x_{n_5} \qquad x_{n_6} \qquad x_{n_7}} \end{aligned}$$

Claim: $\{x_{n_j}\}_{j=1}^{\infty}$ is unbounded (thus a contradiction to the boundedness of $\{x_n\}_{n=1}^{\infty}$). Proof of claim: Assume the contrary that there exists $M \in \mathcal{F}$ such that $x_{n_j} \leq M$ for all $j \in \mathbb{N}$. Since $x_{n_{2k}} \geq x_1 + k\varepsilon$ for all $k \in \mathbb{N}$, we must have

$$k \leqslant \frac{M - x_1}{\varepsilon} \qquad \forall \, k \in \mathbb{N}$$

which violates the Archimedean property, a contradiction.

Remark 1.104. In an ordered field with Archimedean property, Completeness \Leftrightarrow Cauchy completeness (Every Cauchy sequence converges).

Example 1.105. $x_n \in \mathbb{R}, |x_n - x_{n+1}| < \frac{1}{2^{n+1}} \forall n \in \mathbb{N}.$ Claim: $\{x_n\}_{n=1}^{\infty}$ is Cauchy. Given $\varepsilon > 0$, choose $N > 0 \ni \frac{1}{2^N} < \varepsilon$. Then if $N \le n < m$, $|x_n - x_m| \le |x_n - x_{n+1}| + |x_{n+1} - x_m|$

$$\leq |x_{n} - x_{n+1}| + |x_{n+1} - x_{n+2}| + |x_{n+2} - x_{m}|$$

$$\leq \dots$$

$$\leq |x_{n} - x_{n+1}| + |x_{n+1} - x_{n+2}| + \dots + |x_{m-1} - x_{m}|$$

$$\leq \frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \dots + \frac{1}{2^{m}}$$

$$\leq \frac{1}{2^{n}} \leq \frac{1}{2^{N}} < \varepsilon ;$$

thus $\{x_n\}_{n=1}^{\infty}$ is Cauchy in \mathbb{R} . This implies that the sequence is convergent.

1.5 Cluster Points and Limit Inferior, Limit Superior

Definition 1.106. A point x is called a *cluster point* of a sequence $\{x_n\}_{n=1}^{\infty}$ if

$$\forall \varepsilon > 0, \# \{ n \in \mathbb{N} \mid x_n \in (x - \varepsilon, x + \varepsilon) \} = \infty.$$

Example 1.107. Let $x_n = (-1)^n$. Then 1 and -1 are the only two cluster points of $\{x_n\}_{n=1}^{\infty}$.

Example 1.108. Let $x_n = (-1)^n + \frac{1}{n}$. Claim: 1 and -1 are cluster points of $\{x_n\}_{n=1}^{\infty}$. Let $\varepsilon > 0$ be given. We observe that

$$\{n \in \mathbb{N} \mid x_n \in (1 - \varepsilon, 1 + \varepsilon)\} \supseteq \{n \in \mathbb{N} \mid n \text{ is even}, \frac{1}{n} < \varepsilon\};$$

thus $\#\{n \in \mathbb{N} \mid x_n \in (1 - \varepsilon, 1 + \varepsilon)\} = \infty$. Similarly, -1 is a cluster point. Claim: $\forall a \neq \pm 1$, a is not a cluster point of $\{x_n\}_{n=1}^{\infty}$ (reasoning in the following proposition).

Proposition 1.109. Let $\{x_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

- 1. x is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if and only if $\forall \varepsilon > 0$, N > 0, $\exists n \ge N \ni |x_n x| < \varepsilon$.
- 2. x is a cluster point of $\{x_n\}_{n=1}^{\infty}$ if and only if there exists a subsequence $\{x_{n_j}\}_{j=1}^{\infty}$ of ${x_n}_{n=1}^{\infty}$ converges to x.
- 3. $x_n \to x$ as $n \to \infty$ if and only if every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges to x.
- 4. $x_n \to x$ as $n \to \infty$ if and only if $\{x_n\}_{n=1}^{\infty}$ is bounded and x is the only cluster point of $\{x_n\}_{n=1}^{\infty}$.
- 5. $x_n \to x$ as $n \to \infty$ if and only if every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ has a further subsequence that converges to x.

Proof. We only prove 1-4, and the proof of 5 is left as an exercise.

1. (\Rightarrow) Let $\varepsilon > 0$ be given. Since there are infinitely many n's with $|x_n - x| < \varepsilon$, for any fixed $N \in \mathbb{N}$, there are only finite number of the indices that are smaller than N. So there must be some $n \ge N$ with $|x_n - x| < \varepsilon$.

(\Leftarrow) Let $\varepsilon > 0$ be given. Pick $n_1 \ge 1 \ge |x_{n_1} - x| < \varepsilon$, then pick $n_2 \ge n_1 + 1$ $\exists |x_{n_2} - x| < \varepsilon$. We continue this process and obtain a subsequence $\{x_{n_j}\}_{j=1}^{\infty}$ satisfying $|x_{n_j} - x| < \varepsilon \text{ for all } j \in \mathbb{N}. \text{ Then } \{n \in \mathbb{N} \mid x_n \in (x - \varepsilon, x + \varepsilon)\} \supseteq \{n_1, n_2, \cdots\}.$

2. (\Rightarrow) By 1, we can pick $n_1 \ge 1 \ge |x_{n_1} - x| < 1$ and pick $n_2 \ge n_1 + 1 \ge |x_{n_2} - x| < \frac{1}{2}$. In general, we can pick $n_k \ge n_{k-1} + 1 \ge |x_{n_k} - x| < \frac{1}{k}$ for all $k \ge 2$. Then

$$x - \frac{1}{k} < x_{n_k} < x + \frac{1}{k} \quad \forall \, k \in \mathbb{N}.$$

By Sandwich lemma, $\lim_{k \to \infty} x_{n_k} = x$. (\Leftarrow) $\forall \varepsilon > 0, \exists J > 0 \Rightarrow |x_{n_j} - x| < \varepsilon$ if $j \ge J$. Then $\{n \in \mathbb{N} \mid x_n \in (x - \varepsilon, x + \varepsilon)\} \supseteq \{n_J, n_{J+1}, \cdots\}$.

- 3. (\Rightarrow) Let $\{x_{n_j}\}_{j=1}^{\infty}$ be a subsequence of a convergent sequence $\{x_n\}_{n=1}^{\infty}$ and $\lim_{n \to \infty} x_n = x$. Then $\forall \varepsilon > 0, \exists N > 0 \ni |x_n - x| < \varepsilon$ for all $n \ge N$. Since $n_j \to \infty$ as $j \to \infty, \exists J > 0$ $\ni n_j \ge N$; thus $|x_{n_j} - x| < \varepsilon$ whenever $j \ge J$.
 - (\Leftarrow) Assume the contrary that $x_n \approx x$ as $n \to \infty$. Then

$$\exists \varepsilon > 0 \ni \forall N > 0, \exists n \ge N \ni |x_n - x| \ge \varepsilon.$$

Let $n_1 \ge 1$ such that $|x_{n_1} - x| \ge \varepsilon$, and $n_2 \ge n_1 + 1$ such that $|x_{n_2} - x| \ge \varepsilon$. In general, we can chose $n_k \ge n_{k-1}$ such that $|x_{n_k} - x| \ge \varepsilon$ for all $k \ge 2$. The subsequence $\{x_{n_j}\}_{j=1}^{\infty}$ clearly does not converge to x, a contradiction.

4. (\Rightarrow) This direction is a direct consequence of Proposition 1.48 and 1.59.

(\Leftarrow) Suppose that $\{x_n\}_{n=1}$ is a bounded sequence in \mathbb{R} and has x as the only cluster point but $\{x_n\}_{n=1}^{\infty}$ does not converge to x. Then

$$\exists \varepsilon > 0 \ni \# \{ n \in \mathbb{N} \mid x_n \notin (x - \varepsilon, x + \varepsilon) \} = \infty$$

Write $\{n \in \mathbb{N} \mid x_n \notin (x - \varepsilon, x + \varepsilon)\} = \{n_1, n_2, \cdots, n_k, \cdots\}$. Then we find a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ lying outside $(x - \varepsilon, x + \varepsilon)$. Since $\{x_{n_k}\}_{k=1}^{\infty}$ is bounded, the Bolzano-Weierstrass property (Theorem 1.100) suggests that there exists a convergent subsequence $\{x_{n_k_j}\}_{j=1}^{\infty}$ with limit y. Since $x_{n_{k_j}} \notin (x - \varepsilon, x + \varepsilon), y \notin [x - \varepsilon, x + \varepsilon]$; thus $y \neq x$. On the other hand, 2 suggests that y is a cluster point of $\{x_n\}_{n=1}^{\infty}$, a contradiction to the assumption that x is the only cluster point of $\{x_n\}_{n=1}^{\infty}$.

Definition 1.110. A sequence $\{x_n\}_{n=1}^{\infty}$ is said to *diverge to infinity* if $\forall M > 0, \exists N > 0$ $\exists x_n > M$ whenever $n \ge N$. It is said to *diverge to negative infinity* if $\{-x_n\}_{n=1}^{\infty}$ diverge to infinity. We use $\lim_{n\to\infty} x_n = \infty$ or $-\infty$ to denote that $\{x_n\}_{n=1}^{\infty}$ diverges to infinity or negative infinity, and call ∞ or $-\infty$ the limit of $\{x_n\}_{n=1}^{\infty}$.

Definition 1.111. The *extended real number system*, denoted by \mathbb{R}^* , is the number system $\mathbb{R} \cup \{\infty, -\infty\}$, where ∞ and $-\infty$ are two symbols satisfying $-\infty < x < \infty$ for all $x \in \mathbb{R}$.

Remark 1.112. 1. \mathbb{R}^* is not a field since ∞ and $-\infty$ do not have multiplicative inverse.

- 2. The definition of the least upper bound of a set can be simplified as follows: Let $S \subseteq \mathbb{R}^*$ be a set (not necessary non-empty set). A number $b \in \mathbb{R}^*$ is said to be the least upper bound of S if
 - (a) b is an upper bound of S (that is, $s \leq b$ for all $s \in S$);
 - (b) If $M \in \mathbb{R}^*$ is an upper bound of S, then $b \leq M$.

No further discussion (such as $S = \emptyset$ or S is not bounded above) has to be made. The greatest lower bound can be defined in a similar fashion.

- 3. Any sets in \mathbb{R}^* has a least upper bound and a greatest lower bound in \mathbb{R}^* , even the empty set and unbounded set.
- 4. Proposition 1.87 can be rephrased as follows: Let $S \subseteq \mathbb{R}^*$. Then $b = \sup S \in \mathbb{R}$ if and only if
 - (a) b is an upper bound of S;
 - (b) $\forall \varepsilon > 0, \exists s \in S \ni s > b \varepsilon$.

Note that $b \in \mathbb{R}$ is crucial since there is no $s \in \mathbb{R}^*$ such that $s > \infty - \varepsilon = \infty$. The greatest lower bound counterpart can be made in a similar fashion.

5. In light of Proposition 1.109 and Definition 1.110, we can redefine cluster points of a real sequence as follows: A number $x \in \mathbb{R}^*$ is said to be a cluster point of a sequence $\{x_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ if there exists a subsequence $\{x_{n_j}\}_{j=1}^{\infty}$ such that $\lim_{j \to \infty} x_{n_j} = x$. Note that now we can talk about if ∞ or $-\infty$ is a cluster points of a real sequence.

In the rest of the section, one is allowed to find the least upper bound and the greatest lower bound of a subset in \mathbb{R}^* .

Definition 1.113. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} .

- 1. The *limit superior* of $\{x_n\}_{n=1}^{\infty}$, denoted by $\limsup_{n \to \infty} x_n$ or $\varlimsup_{n \to \infty} x_n$, is the infimum of the sequence $\left\{\sup\left\{x_n \mid n \ge k\right\}\right\}_{k=1}^{\infty}$.
- 2. The *limit inferior* of $\{x_n\}_{n=1}^{\infty}$, denoted by $\liminf_{n \to \infty} x_n$ or $\lim_{n \to \infty} x_n$, is the supremum of the sequence $\left\{ \inf \left\{ x_n \, \middle| \, n \ge k \right\} \right\}_{k=1}^{\infty}$.

Remark 1.114. Let $\sup_{n \ge k} x_n$ denote the number $\sup \{x_n \mid n \ge k\}$ and $\inf_{n \ge k} x_n$ denote the number $\inf \{x_n \mid n \ge k\}$. Then the limit superior and the limit inferior can be written as

$$\limsup_{n \to \infty} x_n = \inf_{k \ge 1} \sup_{n \ge k} x_n \quad \text{and} \quad \liminf_{n \to \infty} x_n = \sup_{k \ge 1} \inf_{n \ge k} x_n$$

Remark 1.115. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} , and $y_k = \sup_{n \ge k} x_n$ and $z_k = \inf_{n \ge k} x_n$. Then $\{y_k\}_{k=1}^{\infty}$ is a decreasing sequence, and $\{z_k\}_{k=1}^{\infty}$ is an increasing sequence. Therefore, the limit of $\{y_k\}_{k=1}^{\infty}$ and the limit of $\{z_k\}_{k=1}^{\infty}$ both "exist" in the sense of Definition 1.46 and 1.110. In fact, the limit of $\{y_k\}_{k=1}^{\infty}$ is the infimum of $\{y_k\}_{k=1}^{\infty}$, and the limit of $\{z_k\}_{k=1}^{\infty}$ is the supremum of $\{z_k\}_{k=1}^{\infty}$. In other words,

$$\lim_{k \to \infty} \sup_{n \ge k} x_n = \inf_{k \ge 1} \sup_{n \ge k} x_n \quad \text{and} \quad \lim_{k \to \infty} \inf_{n \ge k} x_n = \sup_{k \ge 1} \inf_{n \ge k} x_n;$$

thus

$$\limsup_{n \to \infty} x_n = \lim_{k \to \infty} \sup_{n \ge k} x_n \quad \text{and} \quad \liminf_{n \to \infty} x_n = \lim_{k \to \infty} \inf_{n \ge k} x_n$$

Let $\{x_n\}_{n=1}^{\infty} = \{1, 0, -1, 1, 0, -1, 1, 0, -1, \cdots\}$. Then

Example 1.116. Let
$$\{x_n\}_{n=1}^{\infty} = \{1, 0, -1, 1, 0, -1, 1, 0, -1, \cdots\}$$
. Then
 $y_k = \sup_{n \ge k} x_n = 1 \implies \limsup_{n \to \infty} x_n = 1.$
 $z_k = \inf_{n \ge k} x_n = -1 \implies \liminf_{n \to \infty} x_n = -1.$
Example 1.117. Let $x_n = \frac{1}{n}$. Then
 $y_k = \sup_{n \ge k} x_n = \frac{1}{k} \implies \limsup_{n \to \infty} x_n = 0.$
 $z_k = \inf_{n \ge k} x_n = 0 \implies \liminf_{n \to \infty} x_n = 0.$
Example 1.118. Let $x_n = \begin{cases} 0 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$; that is, $\{x_n\}_{n=1}^{\infty} = \{1, 0, 3, 0, 5, \cdots\}$. Then
 $y_k = \sup_{n \ge k} x_n = \infty \implies \limsup_{n \to \infty} x_n = \infty.$
 $z_k = \inf_{n \ge k} x_n = 0 \implies \limsup_{n \to \infty} x_n = 0.$

Example 1.119. Let
$$x_n = \begin{cases} 1 + \frac{1}{n} & \text{if } n = 4k + 1, \\ -1 - \frac{1}{n} & \text{if } n = 4k + 2, \\ 1 - \frac{1}{n} & \text{if } n = 4k + 3, \\ -1 + \frac{1}{n} & \text{if } n = 4k. \end{cases}$$

 $y_k = \sup_{n \ge k} x_n = 1 + \frac{1}{\bigcirc}, \ z_k = \inf_{n \ge k} x_n = -1 - \frac{1}{\bigcirc}. \ \limsup_{n \to \infty} x_n = 1. \ \liminf_{n \to \infty} x_n = -1.$

Proposition 1.120. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} . Then

$$\limsup_{n \to \infty} -x_n = -\liminf_{n \to \infty} x_n \quad and \quad \liminf_{n \to \infty} -x_n = -\limsup_{n \to \infty} x_n.$$

Proof. By the fact that $\sup_{n \ge k} -x_n = -\inf_{n \ge k} x_n$,

$$\limsup_{n \to \infty} -x_n = \lim_{k \to \infty} \sup_{n \ge k} (-x_n) = \lim_{k \to \infty} \left(-\inf_{n \ge k} x_n \right) = -\lim_{k \to \infty} \inf_{n \ge k} x_n = -\liminf_{n \to \infty} x_n.$$

The second identity holds simply by replacing x_n by $-x_n$ in the first identity.

Proposition 1.121. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} . Then

1.
$$a = \liminf_{n \to \infty} x_n \in \mathbb{R}$$
 if and only if
(a) $\forall \varepsilon > 0, \exists N > 0$ such that $a - \varepsilon < x_n$ whenever $n \ge N$; that is,
 $\forall \varepsilon > 0, \#\{n \in \mathbb{N} \mid x_n \le a - \varepsilon\} < \infty$,
and
(b) $\forall \varepsilon > 0$ and $N > 0, \exists n \ge N$ such that $x_n < a + \varepsilon$; that is,

$$\forall \varepsilon > 0, \ \# \{ n \in \mathbb{N} \mid x_n < a + \varepsilon \} = \infty.$$

2. $b = \limsup_{n \to \infty} x_n \in \mathbb{R}$ if and only if

(a) $\forall \varepsilon > 0, \exists N > 0$ such that $b + \varepsilon > x_n$ whenever $n \ge N$; that is,

$$\forall \varepsilon > 0, \ \# \{ n \in \mathbb{N} \, | \, x_n \ge b + \varepsilon \} < \infty \, ,$$

and

(b) $\forall \varepsilon > 0 \text{ and } N > 0, \exists n \ge N \text{ such that } x_n > b - \varepsilon; \text{ that is,}$

$$\forall \varepsilon > 0, \ \# \{ n \in \mathbb{N} \mid x_n > b - \varepsilon \} = \infty.$$

Proof. We only prove 1 since the proof of 2 is similar. Let $z_k = \inf_{n \ge k} x_n$, and

$$\sup_{k \ge 1} z_k = \lim_{k \to \infty} z_k = a \in \mathbb{R}^*$$

We show that $a \in \mathbb{R}$ if and only if 1-(a) and 1-(b). Nevertheless, by Proposition 1.87 (or Remark 1.112), $a \in \mathbb{R}$ if and only if

(i) a is an upper bound of $\{z_k\}_{k=1}^{\infty}$.

(ii)
$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \ni z_N > a - \varepsilon.$$

We justify the equivalency between 1-(a) and (ii), as well as the equivalency between 1-(b) and (i) as follows:

- (i) as follows:
 (i) a is an upper bound of {z_k}[∞]_{k=1} ⇔ a ≥ z_k for all k ∈ N ⇔ ∀ε > 0, a + ε > z_k for all k ∈ N ⇔ ∀ε > 0 and k ∈ N, a + ε > inf x_n ⇔ ∀ε > 0 and k ∈ N, a + ε is not a lower bound of {x_n}[∞]_{n≥k} ⇔ ∀ε > 0 and k ∈ N, ∃n ≥ k ∋ a + ε > x_n ⇔ 1-(b).
- (ii) $\forall \varepsilon > 0, \exists N \in \mathbb{N} \ni z_N > a \varepsilon \Leftrightarrow \forall \varepsilon > 0, \exists N > 0 \ni \inf_{n \ge N} x_n > a \varepsilon \Leftrightarrow \forall \varepsilon > 0, \exists N > 0$ such that $a \varepsilon$ is a lower bound of $\{x_N, x_{N+1}, \cdots\} \Leftrightarrow \forall \varepsilon > 0, \exists N > 0$ such that $a \varepsilon \leqslant x_n$ for all $n \ge N \Leftrightarrow \forall \varepsilon > 0, \exists N > 0$ such that $a \varepsilon < x_n$ for all $n \ge N \Leftrightarrow \forall \varepsilon > 0, \exists N > 0$ such that $a \varepsilon < x_n$ for all $n \ge N \Leftrightarrow \exists \varepsilon > 0, \exists N > 0$ such that $a \varepsilon < x_n$ for all $n \ge N \Leftrightarrow \exists \varepsilon > 0, \exists N > 0$ such that $a \varepsilon < x_n$ for all $n \ge N \Leftrightarrow \exists \varepsilon > 0, \exists N > 0$ such that $a \varepsilon < x_n$ for all $n \ge N \Leftrightarrow \exists \varepsilon > 0, \exists N > 0$ such that $a \varepsilon < x_n$ for all $n \ge N \Leftrightarrow \exists \varepsilon > 0, \exists z > 0$.

Remark 1.122. By Proposition 1.121, if $a = \liminf_{n \to \infty} x_n \in \mathbb{R}$, then

$$\forall \, \varepsilon > 0, \, \# \big\{ n \in \mathbb{N} \, \big| \, x_n \in (a - \varepsilon, a + \varepsilon) \big\} = \infty$$

which suggests that a is a cluster point of $\{x_n\}_{n=1}^{\infty}$. Moreover, 1-(a) of Proposition 1.121 implies that no other cluster points can be smaller than a. In other words, if $a = \liminf_{n \to \infty} x_n \in \mathbb{R}$, then a is the smallest cluster point of $\{x_n\}_{n=1}^{\infty}$. Similarly, b is the largest cluster point of $\{x_n\}_{n=1}^{\infty}$ if $b = \limsup_{n \to \infty} x_n \in \mathbb{R}$.

Theorem 1.123. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} . Then

1. $\liminf_{n \to \infty} x_n \leq \limsup_{n \to \infty} x_n.$

- 2. If $\{x_n\}_{n=1}^{\infty}$ is bounded above by M, then $\limsup_{n \to \infty} x_n \leq M$.
- 3. If $\{x_n\}_{n=1}^{\infty}$ is bounded below by m, then $\liminf_{n \to \infty} x_n \ge m$.
- 4. $\limsup_{n \to \infty} x_n = \infty$ if and only if $\{x_n\}_{n=1}^{\infty}$ is not bounded above.
- 5. $\liminf_{n \to \infty} x_n = -\infty \text{ if and only if } \{x_n\}_{n=1}^{\infty} \text{ is not bounded below.}$
- 6. If x is a cluster point of $\{x_n\}_{n=1}^{\infty}$, then $\liminf_{n \to \infty} x_n \leq x \leq \limsup_{n \to \infty} x_n$.
- 7. If $a = \liminf_{n \to \infty} x_n$ is finite, then a is a cluster point.
- 8. If $b = \limsup_{n \to \infty} x_n$ is finite, then b is a cluster point.
- 9. If $\{x_n\}_{n=1}^{\infty}$ converges to x in \mathbb{R} if and only if $\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = x \in \mathbb{R}$.

Proof. Left as an exercise.

Remark 1.124. Using the definition of cluster points of a sequence in Remark 1.112, Remark 1.122 and Theorem 1.123 together imply that the limit superior/inferior of a sequence is the largest/smallest cluster point of that sequence.

Example 1.125. Let $S = \mathbb{Q} \cap [0, 1]$. Then S is countable since it is a subset of a countable set \mathbb{Q} . Therefore, $\exists f : \mathbb{N} \xrightarrow[onto]{onto} S$ or equivalently $S = \{q_1, q_2, \cdots, q_n, \cdots\}$. The collection of all cluster points of $\{q_n\}_{n=1}^{\infty}$ is [0, 1] since $\mathbb{Q} \cap [0, 1]$ is dense in [0, 1].

1.6 Euclidean Spaces and Vector Spaces

Definition 1.126. *Euclidean* n-space, denoted by \mathbb{R}^n , consists of all ordered n-tuples of real numbers. Symbolically,

$$\mathbb{R}^n = \left\{ x \mid x = (x_1, x_2, \cdots, x_n), x_i \in \mathbb{R} \right\}.$$

Elements of \mathbb{R}^n are generally denoted by single letters that stand for *n*-tuples such as $x = (x_1, x_2, \cdots, x_n)$, and speak of x as a "point" in \mathbb{R}^n .

Definition 1.127. A *real vector space* \mathcal{V} is a set of elements called vectors, with given operations of vector addition $+ : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ and scalar multiplication $\cdot : \mathbb{R} \times \mathcal{V} \to \mathcal{V}$ such that

v + w = w + v for all v, w ∈ V.
 (v + w) + u = v + (u + w) for all u, v, w ∈ V.
 ∃0, the zero vector, ∋v + 0 = v for all v ∈ V.
 ∀v ∈ V, ∃w ∈ V ∋v + w = 0.
 λ ⋅ (v + w) = λ ⋅ v + λ ⋅ w for all λ ∈ ℝ and v, w ∈ V.
 (λ + μ) ⋅ v = λ ⋅ v + μ ⋅ v for all λ, μ ∈ ℝ and v ∈ V.
 (λ ⋅ μ) ⋅ v = λ ⋅ (μ ⋅ v) for all λ, μ ∈ ℝ and v ∈ V.
 1 ⋅ v = v for all v ∈ V.

Example 1.128. Let the vector addition and scalar multiplication on \mathbb{R}^n be defined by

$$x + y = (x_1 + y_1, \dots, x_n + y_n)$$
 if $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$

and

$$\lambda \cdot x = (\lambda x_1, \cdots, \lambda x_n)$$
 if $\lambda \in \mathbb{R}, x = (x_1, \cdots, x_n)$

Then \mathbb{R}^n is a real vector space.

Example 1.129. Let $\mathcal{M} \equiv \{n \times m \text{ matrix with entries in } \mathbb{R}\}$. Define

$$A + B \equiv [a_{ij} + b_{ij}], \quad \lambda \cdot A \equiv [\lambda \cdot a_{ij}] \quad \text{if} \quad \lambda \in \mathbb{R}, A = [a_{ij}], B = [b_{ij}] \in \mathcal{M}.$$

Then \mathcal{M} is a real vector space.

Definition 1.130. \mathcal{W} is called a *subspace* of a real vector space \mathcal{V} if

- 1. \mathcal{W} is a subset of \mathcal{V} .
- 2. $(\mathcal{W}, +, \cdot)$, with vector addition and scalar multiplication in \mathcal{V} , is a real vector space.

Example 1.131. $\mathcal{V} = \mathbb{R}^3$, $W = \mathbb{R}^2 \times \{0\} \equiv \{(x, y, 0) | x, y \in \mathbb{R}\}$. \mathcal{W} is a subspace of \mathcal{V} .

Lemma 1.132. If \mathcal{W} is a subset of a real vector space \mathcal{V} , then \mathcal{W} is a subspace if and only if $\lambda \cdot v + \mu \cdot w \in \mathcal{W}$, $\forall \lambda, \mu \in \mathbb{R}$, $v, w \in \mathcal{W}$.

Remark 1.133. "n" is called the *dimension* of \mathbb{R}^n .

There are *n* linearly independent vectors $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 0, 1)$, but if v_1, v_2, \dots, v_{n+1} are (n+1) vectors in $\mathbb{R}^n, \exists \lambda_1, \dots, \lambda_{n+1} \in \mathbb{R}, \exists \lambda_1 v_1 + \dots + \lambda_{n+1}v_{n+1} = 0, (\lambda_1, \dots, \lambda_{n+1}) \neq (0, \dots, 0).$

Definition 1.134. A subset $H \subseteq \mathbb{R}^n$ is called a *hyperplane* if H is (n-1)-dimensional subspace of \mathbb{R}^n . An *affine hyperplane* is a set $x + H \equiv \{x + y \mid y \in H\}$ for some hyperplane H.

1.7 Normed Vector Spaces, Inner Product Spaces and Metric Spaces

Definition 1.135. A *nomed vector space* $(\mathcal{V}, \|\cdot\|)$ is a real vector space \mathcal{V} associated with a function $\|\cdot\|: \mathcal{V} \to \mathbb{R}$ such that

- (a) $||x|| \ge 0$ for all $x \in \mathcal{V}$.
- (b) ||x|| = 0 if and only if x = 0.
- (c) $\|\lambda \cdot x\| = |\lambda| \cdot \|x\|$ for all $\lambda \in \mathbb{R}$ and $x \in \mathcal{V}$.
- (d) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathcal{V}$.

A function $\|\cdot\|$ satisfies (a)-(d) is called a **norm** on \mathcal{V} .

Example 1.136. Let $\mathcal{V} = \mathbb{R}^n$, and $||x||_2 \equiv \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$ if $x = (x_1, x_2, \dots, x_n)$. Then $|| \cdot ||_2$ is a norm, called 2-norm, on \mathbb{R}^n . It suffices to show that (d) in Definition 1.135 holds. Let $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$. Then

$$(\|x+y\|_2)^2 = \sum_{i=1}^n (x_i+y_i)^2 = \sum_{i=1}^n (x_i^2 + 2x_iy_i + y_i^2) = \sum_{i=1}^n x_i^2 + \sum_{i=1}^n y_i^2 + 2\sum_{i=1}^n x_iy_i$$

$$\leq \|x\|_2^2 + \|y\|_2^2 + 2\|x\|_2\|y\|_2 \qquad \text{(By Cauchy's inequality)}$$

$$= (\|x\|_2 + \|y\|_2)^2;$$

thus $||x + y||_2 \leq ||x||_2 + ||y||_2$.

Example 1.137. Let $\mathcal{V} = \mathbb{R}^n$, and define

$$\|x\|_p \equiv \begin{cases} \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} & \text{if } 1 \le p < \infty, \\ \max\left\{|x_1|, \cdots, |x_n|\right\} & \text{if } p = \infty, \end{cases} \text{ for all } x = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n.$$

Then $\|\cdot\|_p$ is a norm, called *p*-norm, on \mathbb{R}^n . Property (d) in Definition 1.135; that is, $\|x+y\|_p \leq \|x\|_p + \|y\|_p$, is left as an exercise.

Example 1.138. Let $\mathcal{M}_{n \times m} \equiv \{n \times m \text{ matrix with entries in } \mathbb{R}\}$, and we remind the readers that if $A \in \mathcal{M}_{n \times m}$, then $A : \begin{cases} \mathbb{R}^m \to \mathbb{R}^n \\ x \mapsto Ax \end{cases}$. Define

$$|A||_{p} = \sup_{\|x\|_{p}=1} \|Ax\|_{p} = \sup_{x \neq 0} \frac{\|Ax\|_{p}}{\|x\|_{p}} \quad \forall A \in \mathcal{M}_{n \times m};$$

that is, $||A||_p$ is the least upper bound of the set $\left\{ \frac{||Ax||_p}{||x||_p} \mid x \neq 0, x \in \mathbb{R}^m \right\}$. Therefore, $\frac{||Ax||_p}{||x||_p} \leqslant ||A||_p \ \forall x \neq 0$; thus

$$\|Ax\|_p \leqslant \|A\|_p \|x\|_p \quad \forall x \in \mathbb{R}^m.$$

Consider the case p = 1, p = 2 and $p = \infty$ respectively.

1. p = 2: Let $(\cdot, \cdot)_{\mathbb{R}^k}$ denote the inner product in Euclidean space \mathbb{R}^k . Then

$$\|Ax\|_2^2 = (Ax, Ax)_{\mathbb{R}^n} = (x, A^{\mathrm{T}}Ax)_{\mathbb{R}^m} = (x, P\Lambda P^{\mathrm{T}}x)_{\mathbb{R}^m} = (P^{\mathrm{T}}x, \Lambda P^{\mathrm{T}}x)_{\mathbb{R}^n},$$

in which we use the fact that $A^{T}A$ is symmetric; thus diagonalizable by an orthonormal matrix P (that is, $A^{T}A = P\Lambda P^{T}$, $P^{T}P = I$, Λ is a diagonal matrix). Therefore,

$$\sup_{\|x\|_{2}=1} \|Ax\|_{2}^{2} = \sup_{\|x\|_{2}=1} (P^{\mathrm{T}}x, \Lambda P^{\mathrm{T}}x) = \sup_{\|y\|_{2}=1} (y, \Lambda y) \quad (\text{Let } y = P^{\mathrm{T}}x, \text{ then } \|y\|_{2} = 1)$$
$$= \sup_{\|y\|_{2}=1} (\lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \dots + \lambda_{n}y_{n}^{2})$$
$$= \max \{\lambda_{1}, \dots, \lambda_{n}\} = \text{maximum eigenvalue of } A^{\mathrm{T}}A$$

which implies that $||A||_2 = \sqrt{\text{maximum eigenvalue of } A^{\mathrm{T}}A}$.

2.
$$p = \infty$$
: $||A||_{\infty} = \sup_{||x||_{\infty}=1} ||Ax||_{\infty} = \max\left\{\sum_{j=1}^{m} |a_{1j}|, \sum_{j=1}^{m} |a_{2j}|, \dots, \sum_{j=1}^{m} |a_{nj}|\right\}.$

Reason: Let $x = (x_1, x_2, \cdots, x_n)^T$ and $A = [a_{ij}]_{n \times m}$. Then

$$Ax = \begin{bmatrix} a_{11}x_1 + \dots + a_{1m}x_m \\ a_{21}x_1 + \dots + a_{2m}x_m \\ \vdots \\ a_{n1}x_1 + \dots + a_{nm}x_m \end{bmatrix}$$

Assume $\max_{1 \le i \le n} \sum_{j=1}^{m} |a_{ij}| = \sum_{j=1}^{m} |a_{kj}|$ for some $1 \le k \le n$. Let

$$x = (\operatorname{sgn}(a_{k1}), \operatorname{sgn}(a_{k2}), \cdots, \operatorname{sgn}(a_{kn})) .$$

$$Ax\|_{\infty} = \sum_{j=1}^{m} |a_{kj}|.$$

$$\|x\|_{\infty} = 1, \text{ then}$$

Then $||x||_{\infty} = 1$, and $||Ax||_{\infty} = \sum_{j=1}^{m} |a_{kj}|$.

On the other hand, if $||x||_{\infty} = 1$, then

$$|a_{i1}x_1 + a_{i2}x_2 + \dots + a_{im}x_m| \leq \sum_{j=1}^m |a_{ij}| \leq \max\left\{\sum_{j=1}^m |a_{1j}|, \sum_{j=1}^m |a_{2j}|, \dots + \sum_{j=1}^m |a_{nj}|\right\};$$

thus $||A||_{\infty} = \max\left\{\sum_{j=1}^{m} |a_{1j}|, \sum_{j=1}^{m} |a_{2j}|, \cdots, \sum_{j=1}^{m} |a_{nj}|\right\}$. In other words, $||A||_{\infty}$ is the largest sum of the absolute value of row entries.

3.
$$p = 1$$
: $||A||_1 = \max\left\{\sum_{i=1}^n |a_{i1}|, \sum_{i=1}^n |a_{i2}|, \cdots, \sum_{i=1}^n |a_{im}|\right\}.$

Example 1.139. Let \mathscr{C} be the collection of all continuous real-valued functions on the interval [0, 1]; that is,

$$\mathscr{C} = \left\{ f : [0,1] \to \mathbb{R} \, \big| \, f \text{ is continuous on } [0,1] \right\}.$$

For each $f \in \mathscr{C}$, we define

$$\|f\|_{p} = \begin{cases} \left[\int_{0}^{1} |f(x)|^{p} dx \right]^{\frac{1}{p}} & \text{if } 1 \leq p < \infty, \\ \max_{x \in [0,1]} |f(x)| & \text{if } p = \infty. \end{cases}$$

The function $\|\cdot\|_p: \mathscr{C} \to \mathbb{R}$ is a norm on \mathscr{C} (Minkowski's inequality).

Definition 1.140. An *inner product space* $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ is a real vector space \mathcal{V} associated with a function $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ such that

- (1) $\langle x, x \rangle \ge 0, \ \forall x \in \mathcal{V}.$
- (2) $\langle x, x \rangle = 0$ if and only if x = 0.
- (3) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ for all $x, y, z \in \mathcal{V}$.
- (4) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ for all $\lambda \in \mathbb{R}$ and $x, y \in \mathcal{V}$.
- (5) $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{V}$.

A symmetric bilinear form $\langle \cdot, \cdot \rangle$ satisfies (1)-(5) is called an *inner product* on \mathcal{V} .

Example 1.141. Let $(\cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be defined by

$$(x,y) = \sum_{i=1}^{n} x_i y_i \quad \forall x = (x_1, \cdots, x_n), y = (y_1, \cdots, y_n)$$

Then (\cdot, \cdot) is an inner product on \mathbb{R}^n .

Example 1.142. Let \mathscr{C} be defined as in Example 1.139. Define

$$\langle f,g \rangle = \int_0^1 f(x)g(x)dx$$
.

Then $\langle \cdot, \cdot \rangle : \mathscr{C} \times \mathscr{C} \to \mathbb{R}$ satisfies all the properties that an inner product has. Note that $\langle f, f \rangle = \|f\|_2^2$.

Proposition 1.143. If $\langle \cdot, \cdot \rangle$ is an inner product on a real vector space \mathcal{V} . Then

- 1. $\langle \lambda v + \mu w, u \rangle = \lambda \langle v, u \rangle + \mu \langle w, u \rangle$ for all $u, v, w \in \mathcal{V}$.
- 2. $\langle u, \lambda v + \mu w \rangle = \lambda \langle u, v \rangle + \mu \langle u, w \rangle$ for all $u, v, w \in \mathcal{V}$.
- 3. $\langle v, \lambda w \rangle = \lambda \langle v, w \rangle$ for all $v, w \in \mathcal{V}$.
- 4. $\langle 0, w \rangle = \langle w, 0 \rangle = 0$ for all $w \in \mathcal{V}$.

Theorem 1.144. The inner product $\langle \cdot, \cdot \rangle$ on a real vector space induces a norm $\|\cdot\|$ given by $\|x\| = \sqrt{\langle x, x \rangle}$ and satisfies the **Cauchy-Schwarz inequality**

$$\left|\langle x, y \rangle\right| \leqslant \|x\| \cdot \|y\| \qquad \forall \, x, y \in \mathcal{V} \,. \tag{1.7.1}$$

Proof. First, we observe that for all $x, y \in \mathcal{V}$ fixed, we must have

$$0 \leqslant \langle \lambda x + y, \lambda x + y \rangle = \|x\|^2 \lambda^2 + 2 \langle x, y \rangle \lambda + \|y\|^2$$

for all $\lambda \in \mathbb{R}$. Therefore,

$$\langle x,y\rangle^2-\|x\|^2\cdot\|y\|^2\leqslant 0$$

which implies (1.7.1).

It should be clear that (a)-(c) in Definition 1.135 are satisfied. To show that $\|\cdot\|$ satisfies the triangle inequality, by (1.7.1) we find that

$$(\|x\| + \|y\|)^2 - \|x + y\|^2 = \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 - \langle x + y, x + y \rangle$$

= 2(||x||||y|| - \langle x, y \rangle) \ge 0;

thus the triangle inequality is also valid.

Corollary 1.145. Let $f, g : [0, 1] \to \mathbb{R}$ be continuous. Then

$$\left| \int_{0}^{1} f(x)g(x)dx \right| \leq \left(\int_{0}^{1} |f(x)|^{2}dx \right)^{\frac{1}{2}} \left(\int_{0}^{1} |g(x)|^{2}dx \right)^{\frac{1}{2}}.$$

Definition 1.146. A *metric space* (M, d) is a set M associated with a function d: $M \times M \to \mathbb{R}$ such that

- (i) $d(x,y) \ge 0$ for all $x, y \in M$.
- (ii) d(x,y) = 0 if and only if x = y.
- (iii) d(x,y) = d(y,x) for all $x, y \in M$.
- (iv) $d(x,y) \leq d(x,z) + d(z,y)$ for all $x, y, z \in M$.

A function d satisfies (i)-(iv) is called a *metric* on M.

Example 1.147 (Discrete metric). Let M be a non-empty set, and $d_0: M \times M \to \mathbb{R}$ be defined by

$$d_0(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

Then d_0 is a metric on M, and we call d_0 the discrete metric.

Example 1.148 (Bounded metric). Let (M, d) be a metric space. Define $\rho : M \times M \to \mathbb{R}$ by

$$\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

Then ρ is also a metric on M.

Proposition 1.149. If $(\mathcal{V}, \|\cdot\|)$ is a normed vector space, then the function $d: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ defined by $d(x, y) = \|x - y\|$ is a metric on \mathcal{V} . In other words, (V, d) is a metric space, and we usually write $(\mathcal{V}, \|\cdot\|)$ as the metric space.

1.8 Exercises

§1.1 Ordered Fields and the Number Systems

Problem 1.1. Let $(\mathcal{F}, +, \cdot, \leq)$ be an ordered field, and $a, b, c, d \in \mathcal{F}$.

- 1. Show that if $a \leq b$ and $c \leq d$, then $a + c \leq b + d$.
- 2. Show that if $a \leq b$ and c < d, then a + c < b + d.

Problem 1.2. Let S be a non-empty subset of \mathbb{N} and satisfy that

- 1. 1, $2 \in S$.
- 2. if m and $m + 1 \in S$, then $m + 2 \in S$.

Show that $S = \mathbb{N}$.

§1.2 Completeness and the Real Number System

Problem 1.3. Let \mathcal{F} be an ordered field with Archimedean property, and $x, y \in \mathcal{F}$. Show that $x \leq y$ if and only if $\forall \varepsilon > 0, x < y + \varepsilon$.

Problem 1.4. Fix y > 1. Complete the following.

- 1. Define $y^{1/n}$ properly. (Hint: see how we define \sqrt{y} in class).
- 2. Show that $y^n 1 > n(y 1)$ for all $n \in \mathbb{N} \setminus \{1\}$; thus $y 1 > n(y^{1/n} 1)$.
- 3. If t > 1 and n > (y 1)/(t 1), then $y^{1/n} < t$.

4. Show that $\lim_{n \to \infty} y^{1/n} = 1$ as $n \to \infty$.

Problem 1.5. Complete the following.

- 1. Let $x \ge 0$ be a real number such that for any $\varepsilon > 0$, $x \le \varepsilon$. Show that x = 0.
- 2. Let S = (0, 1). Show that for each $\varepsilon > 0$ there exists an $x \in S$ such that $x < \varepsilon$.

§1.3 Least Upper Bounds and Greatest Lower Bounds

Problem 1.6. Let A be a non-empty set of \mathbb{R} which is bounded below. Define the set -A by $-A \equiv \{-x \in \mathbb{R} \mid x \in A\}$. Prove that

$$\inf A = -\sup(-A) \, .$$

Problem 1.7. Let A, B be non-empty subset of \mathbb{R} . Define $A + B = \{x + y \mid x \in A, y \in B\}$. Justify if the following statements are true or false by providing a proof for the true statement and giving a counter-example for the false ones.

- 1. $\sup(A+B) = \sup A + \sup B$.
- 2. $\inf(A+B) = \inf A + \inf B$.
- 3. $\sup(A \cap B) \leq \min\{\sup A, \sup B\}.$
- 4. $\sup(A \cap B) = \min\{\sup A, \sup B\}.$
- 5. $\sup(A \cup B) \ge \max\{\sup A, \sup B\}.$
- 6. $\sup(A \cup B) = \max\{\sup A, \sup B\}.$

Problem 1.8. Let $S \subseteq \mathbb{R}$ be bounded below and non-empty. Show that

 $\inf S = \sup \left\{ x \in \mathbb{R} \, \big| \, x \text{ is a lower bound for } S \right\}.$

Problem 1.9. Let A, B be two sets, and $f : A \times B \to \mathbb{R}$ be a function. Show that

$$\sup_{(x,y)\in A\times B} f(x,y) = \sup_{y\in B} \left(\sup_{x\in A} f(x,y)\right) = \sup_{x\in A} \left(\sup_{y\in B} f(x,y)\right).$$

Problem 1.10. Fix b > 1.

1. Show the law of exponents holds (for rational exponents); that is, show that

- (a) if r, s in \mathbb{Q} , then $b^{r+s} = b^r \cdot b^s$.
- (b) if r, s in \mathbb{Q} , then $b^{r \cdot s} = (b^r)^s$.
- 2. For $x \in \mathbb{R}$, let $B(x) = \{b^t \in \mathbb{R} \mid t \in \mathbb{Q}, t \leq x\}$. Show that $b^r = \sup B(r)$ if $r \in \mathbb{Q}$. Therefore, it makes sense to define $b^x = \sup B(x)$ for $x \in \mathbb{R}$. Show that the law of exponents (for real exponents) are also valid.
- 3. Let y > 0 be given. Using 4 of Problem 1.4 to show that if $u, v \in \mathbb{R}$ such that $b^u < y$ and $b^v > y$, then $b^{u+1/n} < y$ and $b^{v-1/n} > y$ for sufficiently large n.
- 4. Let y > 0 be given, and A be the set of all w such that $b^w < y$. Show that $x = \sup A$ satisfies $b^x = y$.
- 5. Prove that if x_1, x_2 are two real numbers satisfying $b^{x_1} = b^{x_2}$, then $x_1 = x_2$.

The number x satisfying $b^x = y$ is called the logarithm of y to the base b, and is denoted by $\log_b y$.

§1.4 Cauchy Sequences

Problem 1.11. Let $a \in \mathbb{R}$. Define a_n through the iterated relation

$$a_n = a_{n-1}^2 - a_{n-1} + 1$$
 $\forall n > 1, a_1 = a$

For what a is the sequence $\{a_n\}_{n=1}^{\infty}$ (1) monotone? (2) bounded? (3) convergent? Compute the limit in the case of convergence.

Problem 1.12. Let \mathcal{F} be an ordered field, and $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathcal{F} . Show that $\{x_n\}_{n=1}^{\infty}$ is Cauchy if and only if

$$\forall \varepsilon > 0, \exists y \in \mathcal{F} \ni \# \{ n \in \mathbb{N} \mid x_n \notin (y - \varepsilon, y + \varepsilon) \} < \infty.$$

Problem 1.13. Let $\{a_n\}_{n=1}^{\infty}$ and $\{x_n\}_{n=1}^{\infty}$ be two sequences in \mathbb{R} , and define $S_k = \sum_{n=1}^k a_n$ (so $\{S_k\}_{k=1}^{\infty}$ is also a sequence). Suppose that $|x_n - x_{n+1}| < a_n$ for all $n \in \mathbb{N}$. Show that $\{x_n\}_{n=1}^{\infty}$ converges if $\{S_k\}_{k=1}^{\infty}$ converges.

Problem 1.14. Let $f : \mathbb{R} \to \mathbb{R}$ be a function so that $|f(x) - f(y)| \leq \frac{|x-y|}{2}$. Pick an arbitrary $x_1 \in \mathbb{R}$, and define $x_{k+1} = f(x_k)$ for all $k \in \mathbb{N}$. Show that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Problem 1.15. Suppose that $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are two Cauchy sequence in \mathbb{R} . Show that the sequence $\{|x_n - y_n|\}_{n=1}^{\infty}$ converges.

§1.5 Cluster Points and Limit Inferior, Limit Superior

Problem 1.16. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences in \mathbb{R} . Prove the following inequalities:

$$\liminf_{n \to \infty} x_n + \liminf_{n \to \infty} y_n \leq \liminf_{n \to \infty} (x_n + y_n) \leq \liminf_{n \to \infty} x_n + \limsup_{n \to \infty} y_n$$
$$\leq \limsup_{n \to \infty} (x_n + y_n) \leq \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n;$$
$$(\liminf_{n \to \infty} |x_n|) (\liminf_{n \to \infty} |y_n|) \leq \liminf_{n \to \infty} |x_n y_n| \leq (\liminf_{n \to \infty} |x_n|) (\limsup_{n \to \infty} |y_n|)$$
$$\leq \limsup_{n \to \infty} |x_n y_n| \leq (\limsup_{n \to \infty} |x_n|) (\limsup_{n \to \infty} |y_n|).$$

Give examples showing that the equalities are generally not true.

Problem 1.17. Prove that

$$\liminf_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} \le \liminf_{n \to \infty} \sqrt[n]{|x_n|} \le \limsup_{n \to \infty} \sqrt[n]{|x_n|} \le \limsup_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}$$

Give examples to show that the equalities are not true in general. Is it true that $\lim_{n \to \infty} \sqrt[n]{|x_n|}$ exists implies that $\lim_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}$ also exists?

Problem 1.18. Find the following limits.

$$\lim_{n \to \infty} \frac{1}{n} \sqrt[n]{n!}, \qquad \lim_{n \to \infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(2n)}$$

Problem 1.19. Given the following sets consisting of elements of some sequence of real numbers. Find their sup and inf, and also the limsup and limit of the sequence.

- 1. $\{\cos m \mid m = 0, 1, 2, \cdots\}.$
- 2. $\{\sqrt[m]{|\sin m|} \mid m = 1, 2, \cdots \}.$
- 3. $\left\{ (1+\frac{1}{m})\sin\frac{m\pi}{6} \, \big| \, m=1,2,\cdots \right\}.$

Hint: For 1, first show that for all irrational α , the set

$$S = \{ x \in [0, 1] \mid x = k\alpha \pmod{1} \text{ for some } k \in \mathbb{N} \}$$

is dense in [0, 1]; that is, for all $y \in [0, 1]$ and $\varepsilon > 0$, there exists $x \in S \cap (y - \varepsilon, y + \varepsilon)$. Then choose $\alpha = \frac{1}{2\pi}$ to conclude that

$$T = \{ x \in [0, 2\pi] \mid x = k \pmod{2\pi} \text{ for some } k \in \mathbb{N} \}$$

is dense in $[0, 2\pi]$. To prove that S is dense in [0, 1], you might want to consider the following set

$$S_k = \left\{ x \in [0,1] \, \middle| \, x = \ell \alpha \pmod{1} \text{ for some } 1 \leqslant \ell \leqslant k+1 \right\}$$

Note that there must be two points in S_k whose distance is less than $\frac{1}{k}$. What happened to (the multiples of) the difference of these two points?

§1.6 Euclidean Spaces and Vector Spaces

Problem 1.20. Show that the *p*-norm on Euclidean space \mathbb{R}^n given by

$$\|x\|_p \equiv \begin{cases} \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} & \text{if } 1 \le p < \infty, \\ \max\left\{|x_1|, \cdots, |x_n|\right\} & \text{if } p = \infty, \end{cases} \quad x = (x_1, \cdots, x_n)$$

is indeed a norm.

§1.7 Normed Vector Spaces, Inner Product Spaces and Metric Spaces

Problem 1.21. Let $\mathcal{M}_{n \times m}$ be the collection of all $n \times m$ matrices with real entries as in Example 1.138. Define a function $\|\cdot\| : \mathcal{M} \to \mathbb{R}$ by

$$\|A\| = \sup_{x \in \mathbb{R}^m \atop x \neq 0} \frac{\|Ax\|_2}{\|x\|_2}$$

here we recall that $\|\cdot\|_2$ is the 2-norm on Euclidean space given by

$$||x||_2 = \left(\sum_{i=1}^k x_i^2\right)^{1/2}$$
 if $x = (x_1, \cdots, x_k) \in \mathbb{R}^k$

Show that

- 1. $||A|| = \sup_{\substack{x \in \mathbb{R}^m \\ ||x||_2 = 1}} ||Ax||_2 = \inf \{ M \in \mathbb{R} \mid ||Ax||_2 \le M ||x||_2 \ \forall x \in \mathbb{R}^m \}.$
- 2. $||Ax||_2 \leq ||A|| ||x||_2$ for all $x \in \mathbb{R}^m$.

- 3. $\|\cdot\|$ defines a norm on $\mathcal{M}_{n\times m}$.
- 4. Let $\{A_k\}_{k=1}^{\infty} \subseteq \mathcal{M}_{n \times m}$. Show that $\lim_{k \to \infty} ||A_k|| = 0$ if and only if each entry of A_k converges to 0. In other words, by writing $A_k = [a_{ij}^{(k)}]_{1 \leq i \leq n, 1 \leq j \leq m}$, show that $\lim_{k \to \infty} ||A_k|| = 0$ if and only if $\lim_{k \to \infty} a_{ij}^{(k)} = 0$ for all $1 \leq i \leq m, 1 \leq j \leq n$. In particular, $A_k \to A$ in the sense that $||A_k A|| \to 0$ as $k \to \infty$ if and only if the (i, j)-th entry of A_k converges to (i, j)-th entry of A for all $1 \leq i \leq n$ and $1 \leq j \leq m$.

Problem 1.22. Let $(\mathcal{V}, +, \cdot, \langle \cdot, \cdot \rangle)$ be an inner product space, and define $||v|| = \langle v, v \rangle^{1/2}$ for all $v \in \mathcal{V}$. Show that

- 1. $2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x y||^2$ (parallelogram law).
- 2. $||x+y|| ||x-y|| \le ||x||^2 + ||y||^2$.
- 3. $4\langle x, y \rangle = ||x + y||^2 ||x y||^2$ (polarization identity).

Can the *p*-norm $\|\cdot\|_p$ on \mathbb{R}^n be induced from any inner product (on \mathbb{R}^n) for $p \neq 2$?

Problem 1.23. Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$, $(Z, \|\cdot\|_Z)$ be three normed vector spaces such that $X, Y \subseteq Z$ and

$$||x||_Z \leq C ||x||_X \quad \forall x \in X \text{ and } ||y||_Z \leq C ||y||_Y \quad \forall y \in Y.$$

Define

$$E = \{a \in Z \mid ||a||_E \equiv \max\{||a||_X, ||a||_Y\} < \infty\}$$
$$F = \{a \in Z \mid ||a||_F \equiv \inf_{\substack{a=x+y\\x \in X, y \in Y}} (||x||_X + ||y||_Y) < \infty\}$$

and

Show that
$$(E, \|\cdot\|_E)$$
 and $(F, \|\cdot\|_F)$ are also normed vector spaces, and $E = X \cap Y$. The space F is usually denoted by $X + Y$.

Problem 1.24 (**True or False**). Determine whether the following statements are true or false. If it is true, prove it. Otherwise, give a counter-example.

- 1. Given two sets A and B. Then $A \times B$ is countable if and only if A and B are countable.
- 2. Let $\{x_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ be a sequence and $\limsup_{n \to \infty} x_n = x$. Then $\sup_{n \in \mathbb{N}} x_n = x$.

- 3. The set $\{(x, y) \in \mathbb{R}^2 \mid x + y \in \mathbb{Q}\}$ is countable.
- 4. Let $\{x_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ be a sequence such that $|x_n x_{n+1}| \leq \frac{1}{n}$. Then $\{x_n\}_{n=1}^{\infty}$ converges in \mathbb{R} .
- 5. If a bounded sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} satisfies $x_{n+1} \epsilon_n \leq x_n$ for $n \in \mathbb{N}$, where $\sum_{n=1}^{\infty} \epsilon_n$ is an absolute convergent series; that is, the partial sum $\sum_{n=1}^{k} |\epsilon_n|$ converges as $k \to \infty$, then $\{x_n\}_{n=1}^{\infty}$ converges.
- 6. Let $\pi : \mathbb{N} \to \mathbb{N}$ be one-to-one and onto (such map π is called a rearrangement), and $\{x_n\}_{n=1}^{\infty}$ is a convergent sequence. Then $\{x_{\pi(n)}\}_{n=1}^{\infty}$ is also convergent.
- 7. Let $A \subseteq \mathbb{R}$ satisfy

$$\sup\left\{\sum_{b\in B} |b| \mid B \text{ is a non-empty finite subsets of } A\right\} < \infty$$

Then $\{x \in A \mid x \neq 0\}$ is countable.

- 8. Any rearrangement of the series $\sum_{n=1}^{\infty} x_n$ diverges if and only if x_n does not tend to 0 as $n \to \infty$.
- 9. If $\{x_n\}_{n=1}^{\infty}$ is a sequence of distinct non-zero real numbers such that $\lim_{n \to \infty} x_n = 0$, then the set $\{mx_n \mid m \in \mathbb{Z}, n \in \mathbb{N}\}$ is dense in \mathbb{R} .