Chapter 0 Introduction - Sets and Functions

0.1 Sets

Definition 0.1. A *set* is a collection of objects called *elements* or *members* of the set. To denote a set, we make a complete list $\{x_1, x_2, \dots, x_N\}$ or use the notation

$$\{x : P(x)\}$$
 or $\{x | P(x)\}$,

where the sentence P(x) describes the property that defines the set. A set A is said to be a **subset** of S if every member of A is also a member of S. We write $x \in A$ (or A contains x) if x is a member of A, and write $A \subseteq S$ (or S includes A) if A is a subset of S. The empty set, denoted \emptyset , is the set with no member.

Definition 0.2. Let S be a given set, and $A \subseteq S$, $B \subseteq S$. The set $A \cup B$, called the **union** of A and B, consists of members belonging to set A or set B. Let A_1, A_2, \cdots be sets. The set $\bigcup_{i=1}^{\infty} A_i = \{x \mid x \in A_i \text{ for some } i\}$ is the union of A_1, A_2, \cdots . The set $A \cap B$, called the **intersection** of A and B, consists of members belonging to both set A and set B. Let A_1, A_2, \cdots be sets. The set $\bigcap_{i=1}^{\infty} A_i = \{x \mid x \in A_i \text{ for all } i\}$ is the intersection of A_1, A_2, \cdots .

Remark 0.3. Let \mathscr{F} be the collection of some subsets in S. Sometimes we also write the union of sets in \mathscr{F} as $\bigcup_{A \in \mathscr{F}} A$; that is,

$$\bigcup_{A \in \mathscr{F}} A = \left\{ x \in S \, \big| \, \exists \, A \in \mathscr{F} \ni x \in A \right\}$$

Similarly, $\bigcap_{A \in \mathscr{F}} A = \{x \in S \mid \forall A \in \mathscr{F} \ni x \in A\}$ is the intersection of sets in \mathscr{F} .

Example 0.4. Let $A = \{1, 2, 3, 4, 5\}, B = \{1, 3, 7\}, S = \{1, 2, 3, \dots\}, \text{ and } \mathscr{F} = \{A, B\}.$ Then $\bigcup_{E \in \mathscr{F}} E \equiv A \cup B = \{1, 2, 3, 4, 5, 7\}$, and $\bigcap_{E \in \mathscr{F}} E \equiv A \cap B = \{1, 3\}$.

Definition 0.5. Let S be a given set, and $A \subseteq S$, $B \subseteq S$. The *complement* of A relative to B, denoted $B \setminus A$, is the set consisting of members of B that are not members of A. When the universal set S under consideration is fixed, the complement of A relative to S or simply the complement of A, is denoted by A^{\complement} , or $S \setminus A$.

Theorem 0.6. (De Morgan's Law)

1.
$$B \setminus \bigcup_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} (B \setminus A_i) \text{ or } B \setminus \bigcup_{A \in \mathscr{F}} A = \bigcap_{A \in \mathscr{F}} (B \setminus A).$$

2. $B \setminus \bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} (B \setminus A_i) \text{ or } B \setminus \bigcap_{A \in \mathscr{F}} A = \bigcup_{A \in \mathscr{F}} (B \setminus A).$
roof. By definition,

Proof. By definition,

$$x \in B \setminus \bigcup_{i=1}^{\infty} A_i \Leftrightarrow x \in B \text{ but } x \notin \bigcup_{i=1}^{\infty} A_i \Leftrightarrow x \in B \text{ and } x \notin A_i \text{ for all } i$$
$$\Leftrightarrow x \in B \setminus A_i \text{ for all } i \Leftrightarrow x \in \bigcap_{i=1}^{\infty} (B \setminus A_i)$$

The proof of the second identity is similar, and is left as an exercise.

Definition 0.7. An *ordered pair* (a, b) is an object formed from two objects a and b, where a is called the first coordinate and b the second coordinate. Two ordered pairs are equal whenever their corresponding coordinates are the same. An ordered *n*-tuples (a_1, a_2, \cdots, a_n) is an object formed from n objects a_1, a_2, \cdots, a_n , where for each j, a_j is called the *j*-th coordinate. Two *n*-tuples (a_1, a_2, \dots, a_n) , (c_1, c_2, \dots, c_n) are equal if $a_j = c_j$ for all $j \in \{1, \cdots, n\}$.

Definition 0.8. Given sets A and B, the *Cartesian product* $A \times B$ of A and B is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$, $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$. The Cartesian of three or more sets are defined similarly.

Example 0.9. Let $A = \{1, 3, 5\}$ and $B = \{\star, \diamond\}$. Then

$$A \times B = \{(1, \star), (3, \star), (5, \star), (1, \diamond), (3, \diamond), (5, \diamond)\}$$

П

Example 0.10. Let A = [2, 7] and B = [1, 4]. The Cartesian product of A and B is the square plotted below:

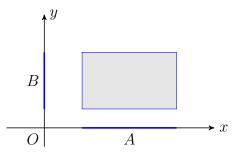
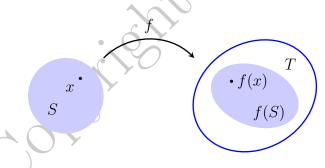


Figure 1: The Cartesian product $[2,7] \times [1,4]$

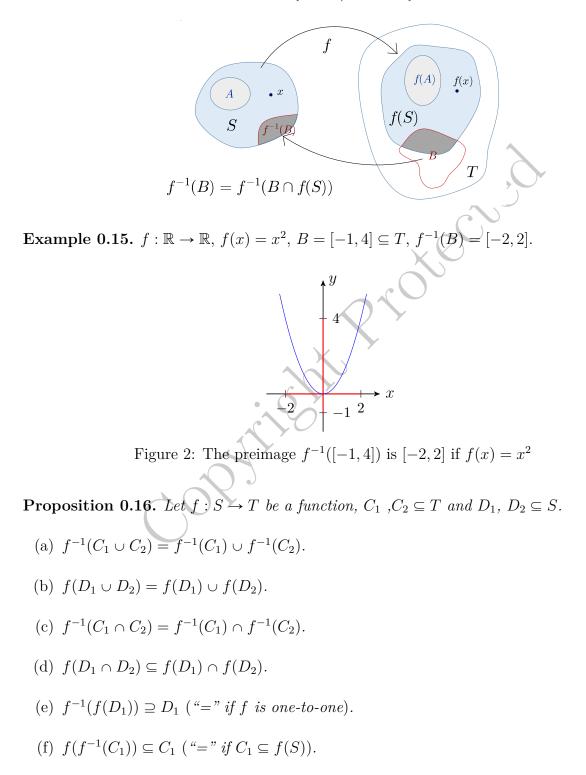
0.2 Functions

Definition 0.11. Let S and T be given sets. A *function* $f: S \to T$ consists of two sets S and T together with a "rule" that assigns to each $x \in S$ a special element of T denoted by f(x). One writes $x \mapsto f(x)$ to denote that x is mapped to the element f(x). S is called the *domain* (定義域) of f, and T is called the *target* or *co-domain* of f. The *range* (值域) of f or the *image* of f, is the subset of T defined by $f(S) = \{f(x) \mid x \in S\}$.



Definition 0.12. A function $f: S \to T$ is called *one-to-one* (-對-), *injective* or an *injection* if $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ (which is equivalent to that $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$). A function $f: S \to T$ is called *onto* (映成), *surjective* or an *surjection* if $\forall y \in T$, $\exists x \in S$, $\exists f(x) = y$ (that is, f(S) = T). A function $f: S \to T$ is called an *bijection* if it is one-to-one and onto.

Remark 0.13 (映成函數的反敘述). If $f : S \to T$ is **not** onto, then $\exists y \in T, \exists \forall x \in S, f(x) \neq y$. 一般來說,若有一個的數學的敘述 \forall statement A, \exists statement B \exists statement C 成立,那麼它的相反敘述的寫法為: \exists statement A, $\exists \forall$ statement B, statement C 不成立。 簡單的記法: 1. $\forall \leftrightarrow \exists 2$. $\exists P \ni Q \leftrightarrow \exists \forall P \sim Q$. **Definition 0.14.** For $f: S \to T$, $A \subseteq S$, we call $f(A) = \{f(x) \mid x \in A\}$ the *image* of A under f. For $B \subseteq T$, we call $f^{-1}(B) = \{x \in S \mid f(x) \in B\}$ the *pre-image* of B under f.



Proof. We only prove (c) and (d), and the proof of the other statements are left as an exercise.

(c) We first show that $f^{-1}(C_1 \cap C_2) \subseteq f^{-1}(C_1) \cap f^{-1}(C_2)$. Suppose that $x \in f^{-1}(C_1 \cap C_2)$. Then $f(x) \in C_1 \cap C_2$. Therefore, $f(x) \in C_1$ and $f(x) \in C_2$, or equivalently, $x \in f^{-1}(C_1)$ and $x \in f^{-1}(C_2)$; thus $x \in f^{-1}(C_1) \cap f^{-1}(C_2)$.

Next, we show that $f^{-1}(C_1) \cap f^{-1}(C_2) \subseteq f^{-1}(C_1 \cap C_2)$. Suppose that $x \in f^{-1}(C_1) \cap f^{-1}(C_2)$. Then $x \in f^{-1}(C_1)$ and $x \in f^{-1}(C_2)$ which suggests that $f(x) \in C_1$ and $f(x) \in C_2$; thus $f(x) \in C_1 \cap C_2$ or equivalently, $x \in f^{-1}(C_1 \cap C_2)$.

(d) Suppose that $y \in f(D_1 \cap D_2)$. Then $\exists x \in D_1 \cap D_2$ such that y = f(x). As a consequence, $y \in f(D_1)$ and $y \in f(D_2)$ which implies that $y \in f(D_1) \cap f(D_2)$.

Example 0.17. We note it might happen that $f(D_1 \cap D_2) \subsetneq f(D_1) \cap f(D_2)$. Take $D_1 = [-1,0]$ and $D_2 = [0,1]$, and define $f: S = \mathbb{R} \to T = \mathbb{R}$ to be $f(x) = x^2$. Then $f(D_1) = f([-1,0]) = [0,1]$ and $f(D_2) = f([0,1]) = [0,1]$. However,

$$f(D_1 \cap D_2) = f(\{0\}) = \{0\} \subsetneq [0,1] = f(D_1) \cap f(D_2).$$

0.3 Exercises

§0.1 Sets

Problem 0.1. Let A, B, C be given sets. Show that

1.
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$$

2. $(A \cap B) \cup C = (A \cup C) \cap (B \cup C).$

§0.2 Functions

Problem 0.2. Let S and T be given sets, $A \subseteq S$, $B \subseteq T$, and $f: S \to T$. Show that

- 1. $f(f^{-1}(B)) \subseteq B$, and $f(f^{-1}(B)) = B$ if $B \subseteq f(S)$.
- 2. $f^{-1}(f(A)) \supseteq A$, and $f^{-1}(f(A)) = A$ if $f: S \to T$ is one-to-one.

Problem 0.3. Let A and B be two non-empty sets and $f: A \to B$. Show that

- 1. $f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2), f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2), f^{-1}(D_1 \setminus D_2) = f^{-1}(D_1) \setminus f^{-1}(D_2)$ for all $D_1, D_2 \subseteq B$.
- 2. $f(C_1 \cup C_2) = f(C_1) \cup f(C_2), f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$ for all $C_1, C_2 \subseteq A$.

Problem 0.4. Let A and B be two non-empty sets and $f : A \to B$. Show that the following three statements are equivalent; that is, show that each one of the following statements implies the other four.

- 1. f is one-to-one.
- 2. For every y in B, the set $f^{-1}(\{y\})$ contains at most one point.
- 3. $f^{-1}(f(C)) = C$ for all $C \subseteq A$.
- 4. $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$ for all subsets C_1 and C_2 of A.
- 5. $f(C_2 \setminus C_1) = f(C_2) f(C_1)$ for all $C_1 \subseteq C_2 \subseteq A$.

stit