
Chapter 1

An Overview

1.1 Brief Review on Fourier Series and Fourier Trans-
form

1.1.1 Fourier series

Let L2(0, 2π) denote the collection of all measurable (complex-valued) functions f defined
on the interval (0, 2π) with

ż 2π

0

ˇ

ˇf(x)
ˇ

ˇ

2
dx ă 8 .

For the reader who is not familiar with the basic Lebesgue theory, the sacrifice is very
minimal by assuming that f is a piecewise continuous function. It will always be assumed
that functions in L2(0, 2π) are extended periodically to the real line R = (´8,8), namely:
f(x) ´ f(x ´ 2π) for all x. Hence, the collection L2(0, 2π) is often called the space of 2π-
periodic square-integrable functions. That L2(0, 2π) is a vector space can be verified very
easily. Any f in L2(0, 2π) has a Fourier series representation:

f(x) =
8
ÿ

n=´8

cne
inx , (1.1.1)

where the constants cn, called the Fourier coefficients of f , are defined by

cn =
1

2π

ż 2π

0

f(x)e´inxdx. (1.1.2)

The convergence of the series in (1.1.1) is in L2(0, 2π), meaning that

lim
N,MÑ8

ż 2π

0

ˇ

ˇ

ˇ

ˇ

f(x) ´

N
ÿ

n=´M

cne
inx

ˇ

ˇ

ˇ

ˇ

2

dx = 0 .

There are two distinct features in the Fourier series representation (1.1.1).

1. Any f P L2(0, 2π) is decomposed into a sum of infinitely many mutually orthogonal
components gn(x) ” cne

inx, where orthogonality means that

xgn, gmyL2(0,2π) = 0 for all m ‰ n (1.1.3)
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with the “inner product” in (1.1.3) being defined by

xgn, gmyL2(0,2π) =
1

2π

ż 2π

0

gn(x)gm(x)dx. (1.1.4)

That (1.1.3) holds is a consequence of the important, yet simple fact that
␣

en P L2(0, 2π)
ˇ

ˇ en(x) ” einx, n P Z
(

(1.1.5)

is an orthonormal (o.n.) “basis” of L2(0, 2π).

2. The orthonormal basis tenu8
n=´8 used in the Fourier series representation (1.1.1) is

generated by “dilation” of a single function

e(x) = eix ; (1.1.6)

that is, en(x) = e(nx) for all integers n. This will be called integral dilation. The
theory of the Fourier series shows that “every 2π-periodic square-integrable function
is generated by a “superposition” of integral dilations of the basic function eix.

Definition 1.1. An orthonormal set tenu8
n=1 in a Hilbert space (H, x¨, ¨y) is said to be

complete or is called an orthonormal basis if for every v P H, we have

v =
8
ÿ

n=1

xv, enyen ,

where, with } ¨ } denote the norm induced by the inner product, the equality above is
understood in the sense that

lim
nÑ8

›

›

›
v ´

n
ÿ

k=1

xv, ekyek

›

›

›
= 0 .

Theorem 1.2. Let (H, x¨, ¨y) be a Hilbert space, and tenu8
n=1 be an orthonormal set in H.

The following three statements are equivalent:

1. tenu8
n=1 is complete;

2. xv, eny = 0 for all n P N implies that v = 0;

3. for every v P H, }v}2 ” xv, vy =
8
ř

n=1

ˇ

ˇxv, eny
ˇ

ˇ

2
.

4. for every u, v P H, xu, vy =
8
ÿ

n=1

xu, eny xv, eny .

From the o.n. property of tenu8
n=´8, the Fourier series representation (1.1.1) also satisfies

the so-called Parseval identity:

1

2π

ż 2π

0

ˇ

ˇf(x)
ˇ

ˇ

2
dx =

8
ÿ

n=´8

|cn|2 . (1.1.7)



Let ℓ2 denote the space of all square-summable bi-infinite sequences; that is, tcnu8
n=´8 P

ℓ2 if and only if
8
ÿ

n=´8

|cn|2 ă 8 .

Hence, if the square-root of the quantity on the left of (1.1.7) is used as the “norm” for the
measurement of functions in L2(0, 2π), and similarly, the square-root of the quantity on the
right of (1.1.7) is used as the norm for ℓ2, then the function space L2(0, 2π) and the sequence
space ℓ2 are “isometric” to each other. Returning to the above mentioned observation on the
Fourier series representation (1.1.1), we can also say that every 2π-periodic square-integrable
function is an ℓ2-linear combination of integral dilations of the basic function e(x) = elx.

We emphasize again that the basic function

e(x) = eix = cosx+ i sinx

which is a “sinusoidal wave”, is the only function required to generate all 2π-periodic square-
summable functions. For any integer n with large absolute value, the wave en(x) = e(nx)

has high “frequency”, and for n with small absolute value, the wave en has low frequency.
So, every function in L2(0, 2π) is composed of waves with various frequencies.

In general, we can consider L2(0, L), the collection of square-integrable (complex-valued)
functions defined on (0, L), and extend f P L2(0, L) periodically (with period L) to the real
line satisfying f(x) = f(x´ L) for all x P R. In other words, L2(0, L) can be viewed as the
collection of all L-periodic complex-valued functions defined on R satsifying

ż L

0

ˇ

ˇf(x)
ˇ

ˇ

2
dx ă 8 .

The inner production of L2(0, L) is given by

xf, gyL2(0,L) =
1

L

ż L

0

f(x)g(x)dx

with induced norm } ¨ }L2(0,L) given by

}f}L2(0,L) =
( 1

L

ż L

0

ˇ

ˇf(x)
ˇ

ˇ

2
dx

) 1
2
.

Any f P L2(0, L) has the Fourier series representation

f(x) =
8
ÿ

n=´8

cne
2πinx

L , (1.1.8)

where the Fourier coefficients tcnu8
n=´8 are given by cn =

1

L

ż L

0
f(x)e´ 2πinx

L dx, and (1.1.8)
is understood in the sense

lim
N,MÑ8

›

›

›
f ´

N
ÿ

n=´M

cnd L
2π
en

›

›

›

L2(0,L)
= 0 , (1.1.9)

where for a constant c ą 0, dc is the dilation operator given by

(dcf)(x) = f(x/c) .



1.1.2 Fourier transform

Next we consider functions defined on R without periodicity.

Definition 1.3. The space Lp(R), where 1 ď p ă 8, is a normed space that consists of all
complex-valued measurable functions satisfying

Lp(R) =
!

f : R Ñ C
ˇ

ˇ

ˇ

ż

R
|f(t)|pdt ă 8

)

which is equipped with norm } ¨ }Lp(R) given by

}f}Lp(R) =
( ż

R

ˇ

ˇf(t)
ˇ

ˇ

p
dt
) 1

p
,

and the space L8(R) consists of all complex-valued (essentially) bounded measurable func-
tions equipped with norm

}f}L8(R) = ess sup
xPR

ˇ

ˇf(x)
ˇ

ˇ .

Note that (Lp(R), } ¨ }Lp(R)) is a Banach space; that is, a complete normed space.

Definition 1.4. For all f P L1(R), the Fourier transform of f , denoted by Ff or pf , is a
function defined by

(Ff)(ω) = pf(ω) =

ż

R
f(t)e´itωdt @ω P R . (1.1.10)

Let C0(R) denote the space of all bounded/continuous functions on R which decay at
infinity; that is, f P C0(R) if and only if f(t) Ñ 0 as t Ñ 8. C0(R) is a normed space
equipped the sup-norm defined by

}f} = sup
tPR

ˇ

ˇf(t)
ˇ

ˇ .

Theorem 1.5. F : L1(R) Ñ C0(R) is a bounded linear map.

Proof. To show this theorem, we need to establish the following properties:

1. F is linear;

2. there exists a constant C such that }F [f ]}L8(R) ď C}f}L1(R);

3. F [f ] is continuous and F [f ](ω) Ñ 0 as |ω| Ñ 8.

The linearity of F is trivial. Moreover, if f P L1(R),

| pf(ω)| ď

ż

R
|f(t)|dt = }f}L1(R) ă 8

which shows that }F [f ]}L8(R) ď }f}L1(R). To show that pf is continuous, we in fact show
that pf is uniformly continuous as follows. Let ε ą 0 be given. Note that the Dominated
Convergence Theorem implies that

lim
∆wÑ0

ż

R
|f(t)|

ˇ

ˇe´it∆w ´ 1
ˇ

ˇdt = 0;



thus there exists δ ą 0 such that
ż

R
|f(t)|

ˇ

ˇe´it∆w ´ 1
ˇ

ˇdt ă ε whenever |∆w| ă δ .

Therefore, if ω1, ω2 P R satisfying |ω1 ´ ω2| ă δ, we have

ˇ

ˇ pf(ω1) ´ pf(ω2)
ˇ

ˇ ď

ż

R
|f(t)|

ˇ

ˇe´it(ω1´ω2) ´ 1
ˇ

ˇdt ă ε

that shows that pf is uniformly continuous on R. Finally, since e´itω = ´e´iω(t+ π
ω
),

pf(ω) =

ż

R
f(t)e´itωdt = ´

ż

R
f(t)e´iω(t+ π

ω
)dt = ´

ż

R
f
(
t ´

π

ω

)
e´iωtdt.

Therefore,

ˇ

ˇ pf(ω)
ˇ

ˇ =
1

2

ˇ

ˇ

ˇ

ˇ

ż

R
f(t)e´iωtdt ´

ż

R
f
(
t ´

π

ω

)
e´iωtdt

ˇ

ˇ

ˇ

ˇ

=
1

2

ˇ

ˇ

ˇ

ˇ

ż

R

[
f(t) ´ f

(
t ´

π

ω

)]
e´iωtdt

ˇ

ˇ

ˇ

ˇ

ď
1

2

ż

R

ˇ

ˇ

ˇ
f(t) ´ f

(
t ´

π

ω

)ˇ
ˇ

ˇ
dt

which converges to 0 as |ω| Ñ 8. ˝

Remark 1.6. The result that lim
|ω|Ñ8

ˇ

ˇ pf(ω)
ˇ

ˇ = 0 for f P L1(R) is often called the Riemann-
Lebesgue Lemma.

Before proceeding, we define the following useful operators, called the translation, mod-
ulation and (scaled) dilation operators, respectively: for f P L1(R),

(Tcf)(t) = f(t ´ c) , (Mcf)(t) = eictf(t) , (Dcf)(t) =
1

a

|c|
f
(x
c

)
. (1.1.11)

In particular, D´1 is called the parity/reflection operator.

Theorem 1.7. Let f P L1(R). Then

1. (Shifting) F [Tcf ](ω) = e´icω
pf(ω).

2. (Scaling) F [Dcf ](ω) =
(
D 1

c

pf
)
(ω).

3. (Conjugation) F
[
D´1f

]
(ω) = F

[
D´1f

]
(ω) = pf (ω).

4. (Modulation) F [Mcf ](ω) = (Tc pf)(ω).

Example 1.8. Let ψ P L1(R), and ψa,b(t) =
1

a

|a|
ψ
(
t´ b

a

)
. Using the translation and

dilation operators we have ψa,b(t) = (TbDaψ)(t); thus

yψa,b(ω) = F [TbDaψ](ω) = e´ibωF [Daψ](ω) = e´ibωD 1
a

pψ(ω) =
a

|a|e´ibω
pψ(aω) .



Definition 1.9. Let f, g be complex-valued function defined on R. The convolution of f
and g, denoted by f ˙ g, is the function defined by

(f ˙ g)(t) =

ż

R
f(τ)g(t ´ τ)dτ

whenever the integral makes sense.

Note that by the change of variable formula, f ˙ g = g ˙ f whenever the convolution
makes sense.

Remark 1.10. The convolution f ˙ g makes sense if f P Lp(R), g P Lq(R) with 1

p
+

1

q
ě 1.

In fact, for f P Lp(R) and g P Lq(R), then f ˙ g P Lr(R) with 1

p
+

1

q
= 1 +

1

r
and one has

Young’s inequality
}f ˙ g}Lr(R) ď }f}Lp(R)}g}Lq(R) .

Theorem 1.11. If f, g P L1(R), then F [f ˙ g](ω) = pf(ω)pg(ω).

Theorem 1.12. Let g P L1(R) and define

h(t) =

ż

R
g(ω)eitωdω

(
= pg(´t)

)
.

If h P L1(R), then for all f P L1(R),

(f ˙ h)(t) =

ż

R
g(ω) pf(ω)eiωtdω.

Definition 1.13. A summability kernel on R is a family tKλuλą0 of continuous functions
with the following properties:

(i)
ż

R
Kλ(x)dx = 1 for all λ ą 0;

(ii) there exists M ą 0 such that
ż

R

ˇ

ˇKλ(x)
ˇ

ˇdx ď M @λ ą 0;

(iii) lim
λÑ8

ż

|x|ąδ

ˇ

ˇKλ(x)
ˇ

ˇdx = 0 for all δ ą 0.

A simple construction of a summability on R is as follows. Suppose F is a continuous
Lebesgue integrable function so that

ż

R
F (x)dx = 1 .

Then, we set
Kλ(x) = λF (λx) for all λ ą 0 and x P R. (1.1.12)



Evidently, it follows that
ż

R
Kλ(x)dx =

ż

R
λF (λx)dx =

ż

R
F (x)dx = 1 ,

ż

R

ˇ

ˇKλ(x)
ˇ

ˇdx =

ż

R
λ
ˇ

ˇF (λx)
ˇ

ˇdx =

ż

R

ˇ

ˇF (x)
ˇ

ˇdx = }F }L1(R)

and for δ ą 0,
ż

|x|ąδ

ˇ

ˇKλ(x)
ˇ

ˇdx =

ż

|x|ąδ

λ
ˇ

ˇF (λx)
ˇ

ˇdx =

ż

|x|ąλδ

ˇ

ˇF (x)
ˇ

ˇdx Ñ 0 as λ Ñ 8.

Therefore, the family tKλuλą0 defined by (1.1.12) is a summability kernel on R.

Example 1.14. 1. The family tKλuλą0 defined by Kλ(x) = λF (λx), where

F (x) =
1

2π

sin2(x/2)

(x/2)2

is called the Fejér kernel.

2. The family tKλuλą0 defined by Kλ(x) = λG(λx), where

G(x) =
1

?
π

exp(´x2)

is called the Gaussian kernel.
Both the Fejér kernel and the Guassian kernel are summability kernels.

Theorem 1.15. Let tKλuλą0 be a summability kernel on R. If f P L1(R), then

lim
λÑ8

}f ˙ Kλ ´ f}L1(R) = 0 .

Moreover, if in addition that f is essentially bounded and is continuous at c, then

lim
λÑ8

(f ˙ Kλ)(c) = f(c) .

Proof. Let f P L1(R) be given, and M ą 0 be such that
ż

R

ˇ

ˇKλ(x)
ˇ

ˇdx ď M .

Let ε ą 0 be given. By the definition of summability kernels and the convolution,

(f ˙ Kλ)(x) ´ f(x) =

ż

R
f(x ´ y)Kλ(y)dy ´ f(x)

ż

R
Kλ(y)dy

=

ż

R
Kλ(y)

[
f(x ´ y) ´ f(x)

]
dy . (1.1.13)

1. Since lim
yÑ0

ż

R

ˇ

ˇf(x) ´ f(x ´ y)
ˇ

ˇdx = 0 , there exists δ ą 0 such that if |y| ă δ,

ż

R

ˇ

ˇf(x) ´ f(x ´ y)
ˇ

ˇdx ă
ε

2M
.



By the Tonelli Theorem,
ż

R

ˇ

ˇ(f ˙ Kλ)(x) ´ f(x)
ˇ

ˇdx ď

ż

R

ż

R

ˇ

ˇKλ(y)
ˇ

ˇ

ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇdydx

=

ż

R

ż

R

ˇ

ˇKλ(y)
ˇ

ˇ

ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇdxdy

=
( ż

|y|ăδ

+

ż

|y|ěδ

)
ˇ

ˇKλ(y)
ˇ

ˇ

ż

R

ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇdxdy

ď
ε

2M

ż

|y|ăδ

ˇ

ˇKλ(y)
ˇ

ˇdy + 2}f}L1(R)

ż

|y|ěδ

ˇ

ˇKλ(y)
ˇ

ˇdy

ď
ε

2
+ 2}f}L1(R)

ż

|y|ěδ

ˇ

ˇKλ(y)
ˇ

ˇdy .

Therefore, by the properties of summability kernels,

lim sup
λÑ8

ż

R

ˇ

ˇ(f ˙ Kλ)(x) ´ f(x)
ˇ

ˇdx ď
ε

2
ă ε.

Since ε ą 0 is given arbitrarily, we conclude that

lim sup
λÑ8

ż

R

ˇ

ˇ(f ˙ Kλ)(x) ´ f(x)
ˇ

ˇdx = 0

which shows that lim
λÑ8

}f ˙ Kλ ´ f}L1(R) = 0.

2. Now suppose in addition that f is continuous at c. Then there exists δ ą 0 such that
ˇ

ˇf(a ´ y) ´ f(a)
ˇ

ˇ ă
ε

2M
.

Therefore, (1.1.13) implies that
ˇ

ˇ(f ˙ Kλ)(c) ´ f(c)
ˇ

ˇ ď

ż

R

ˇ

ˇKλ(y)
ˇ

ˇ

ˇ

ˇf(c ´ y) ´ f(c)
ˇ

ˇdy

=
( ż

|y|ăδ

+

ż

|y|ěδ

)
ˇ

ˇKλ(y)
ˇ

ˇ

ˇ

ˇf(c ´ y) ´ f(c)
ˇ

ˇdy

ď
ε

2M

ż

|y|ăδ

ˇ

ˇKλ(y)
ˇ

ˇdy + 2}f}L8(R)

ż

|y|ěδ

ˇ

ˇKλ(y)
ˇ

ˇdy .

The same argument as in Part 1 shows that lim
λÑ8

ˇ

ˇ(f ˙ Kλ)(c) ´ f(c)
ˇ

ˇ = 0. ˝

Let Λ be the function defined by

Λ(x) =

#

1

2π
(1 ´ |x|) if |x| ď 1,

0 if |x| ą 1.

Then

pΛ(ω) =
1

2π

ż 1

´1

(1 ´ |x|)e´ixωdx =
1

π

ż 1

0

(1 ´ x) cos(xω)dx

=
1

π
¨
1 ´ cosω

ω2
=

1

2π

sin2(ω/2)

(ω/2)2
= F (ω);



thus the Fejér kernel is given by

Kλ(x) = λF (λx) =
?
λD 1

λ

pΛ(x) = F [
?
λDλΛ](x) .

By Theorem 1.12 (with h being the Fejér kernel), the fact that pΛ is even implies that

(f ˙ Kλ)(t) =

ż

R

?
λ(DλΛ)(ω) pf(ω)e

iωtdω =
1

2π

ż λ

´λ

(
1 ´

|ω|

λ

)
pf(ω)eiωtdω.

Using the above identity, Theorem 1.15 and the Dominated Convergence Theorem show
the following

Theorem 1.16 (Fourier Inversion Formula). Let f P L1(R). If pf P L1(R), then

f(t) =
1

2π

ż

R

pf(ω)eiωtdω for a.a. t P R. (1.1.14)

In particular, the identity above holds for t at which f is continuous.

Remark 1.17. Note that in order to show (1.1.14) holds for continuities of f , the bound-
edness of f is required. Nevertheless, since pf P L1(R), (1.1.14) shows that f is almost
everywhere equal to a continuous function that decays at infinity; thus f is essentially
bounded.

Remark 1.18. The integral operator

f ÞÑ
1

2π

ż

R
M‚(ω)f(ω)dω

(
or f(t) = 1

2π

ż

R
Mt(ω)f(ω)dω

)
,

where M‚ is the Modulation operator defined in (1.1.11), is called the inverse Fourier trans-
form and is usually denoted by F ´1 or q. In other words,

F ´1[f ](t) = qf(t) =
1

2π

ż

R
f(ω)Mt(ω)dω =

1

2π

ż

R
f(ω)eiωtdω.

Note that F ´1 =
1

2π
D´1F =

1

2π
FD´1. Similar to Theorem 1.5, F ´1 : L1(R) Ñ C0(R) is

a bounded linear map and lim
|t|Ñ8

qf(t) = 0.

Next we consider the Fourier transform of square-integrable functions. First we note that
there exists square-integrable function which is not integrable. For example, the function

f(x) =

"

x´3/4 if x ą 1,
0 otherwise

belongs to L2(R) but not L1(R). It is not possible to find the Fourier transform for this f
using Definition 1.4 since the integral

ż

R
f(t)eitωdt does not exist. In other words, when we

talk about Fourier transform of functions that are not integrable, we indeed try to extend
the domain of the original Fourier transform F .



Before proceeding, we introduce the inner product x¨, ¨y
L2(R)

used in L2(R):

xf, gy
L2(R)

=

ż

R
f(x)g(x)dx @ f, g P L2(R) ,

and the induced norm is indeed the L2-norm; that is, }f}L2(R) = xf, fy
1
2

L2(R) . The space
(L2(R), x¨, ¨y

L2(R)
) is a Hilbert space.

Since L1(R) X L2(R) is dense in L2(R) (for example, if f P L2(R), then fn ” f1[´n,n] is
square-integrable and tfnu8

n=1 converges to f in L2(R)), it is natural to define the Fourier
transform of a square-integrable function as the limit of the Fourier transform of a sequence
in L1(R) X L2(R) whose L2-limit is that function (if it exists). To talk about whether the
limit of such a sequence exists, we need the following

Lemma 1.19. Suppose that f P L2(R) and f vanishes outside a bounded interval. Then
pf P L2(R) and } pf }2L2(R) = 2π}f}2L2(R).

Proof. Note that since f P L2(R) and f vanishes outside a bounded interval, Cauchy-
Schwarz inequality shows that f P L1(R) so pf P C0(R) is well-defined.

Suppose f vanishes outside [´R,R] for some R ą 0. Let c = R/π and define

g(t) = (M´xD 1
c
f)(t) =

?
ce´ixtf(ct) ,

where x P R is arbitrarily given. Then g vanishes outside [´π, π] and Theorem 1.7 shows
that pg(ω) = (T´xDc

pf)(ω) = (Dc
pf)(ω+ x). On the other hand, the Parseval identity (1.1.7)

implies that

1

2π
}g}2L2(R) =

8
ÿ

n=´8

ˇ

ˇ

ˇ

1

2π

ż π

´π

g(t)e´intdt
ˇ

ˇ

ˇ

2

=
8
ÿ

n=´8

ˇ

ˇ

ˇ

1

2π

ż

R
g(t)e´intdx

ˇ

ˇ

ˇ

2

=
1

4π2

8
ÿ

n=´8

ˇ

ˇ

pg(n)
ˇ

ˇ

2
=

1

4π2

8
ÿ

n=´8

ˇ

ˇ(Dc
pf)(n+ x)

ˇ

ˇ

2
.

Integrating the identity above in x from 0 to 1, we obtain that

}g}2L2(R) =
1

2π

8
ÿ

n=´8

ż 1

0

ˇ

ˇ(Dc
pf)(n+ x)

ˇ

ˇ

2
dx =

1

2π

8
ÿ

n=´8

ż n+1

n

ˇ

ˇ(Dc
pf)(x)

ˇ

ˇ

2
dx

=
1

2π

ż

R

ˇ

ˇ(Dc
pf)(x)

ˇ

ˇ

2
dx =

1

2π
}Dc

pf}2L2(R) =
1

2π
} pf}2L2(R) .

The lemma is then concluded since }f}L2(R) = }g}L2(R). ˝

The collection of square-integrable functions vanishing outside a bounded interval is
denoted by L2

c(R); that is,

L2
c(R) =

␣

f : R Ñ C
ˇ

ˇ f P L2(R) and f vanishes outside [´R,R] for some R ą 0
(

.



Since the support of a function f (P L2
c(R)), denoted by supp(f), is defined as the closure

of the collection of points at which f does not vanish; that is,

supp(f) = cl
(␣
x P R

ˇ

ˇ f(x) ‰ 0
()
.

Functions in L2
c(R) are also called square-integrable functions with compact support.

Lemma 1.20. Let f P L2(R). There exists a (unique) function F P L2(R) such that if
tfnu8

n=1 Ď L2
c(R) converges to f in L2(R), then t pfnu8

n=1 converges to F in L2(R).

Proof. Let f P L2(R), and tfnu8
n=1 Ď L2

c(R) that converges to f in L2(R). Then Lemma
1.19 shows that

} pfn ´ xfm}L2(R) =
?
2π}fn ´ fm}L2(R) Ñ 0 as n,m Ñ 8.

In other words, t pfnu8
n=1 is a Cauchy sequence in L2(R); thus the completeness of L2(R)

shows that t pfnu8
n=1 converges to some function F in L2(R).

Next we show that such a function F is independent of the sequence tfnu8
n=1 that is used

to approach f . Suppose that there is another sequence tgnu8
n=1 Ď L2

c(R) that also converges
to f in L2(R). Then the argument above shows that t pgnu8

n=1 converges to some function G
in L2(R). On the other hand, the sequence thnu8

n=1 defined by

hn =

"

fn if n is odd,
gn if n is even

also converges to f in L2(R); thus txhnu8
n=1 converges to some function H P L2(R). Never-

theless, since the odd terms of txhnu8
n=1 is a subsequence of t pfnu8

n=1 and the even terms of
txhnu8

n=1 is a subsequence of t pgnu8
n=1, we must have F = H = G. ˝

The lemma above induces the following

Definition 1.21. Let f P L2(R). The Fourier transform of f , still denoted by F [F ] and pf ,
is the L2-limit of the Fourier transform of (any) sequences tfnu8

n=1 in L2
c(R) that converges

to f in L2(R). In other words,

F [f ] = pf ” lim
nÑ8

pfn whenever tfnu8
n=1 Ď L1(R) X L2(R) and lim

nÑ8
fn = f,

where the two limits above are all in the L2-sense.

Theorem 1.22 (Plancherel’s identity).

xf, gy
L2(R)

=
1

2π

@

pf, pg
D

L2(R)
@ f, g P L2(R) . (1.1.15)

Proof. First we note that

}f}2L2(R) =
1

2π
} pf}2L2(R) @ f P L2(R) (1.1.16)



since by choosing tfnu8
n=1 Ď L2

c(R) with L2-limit f , by Lemma 1.19 we have

}f}2L2(R) = lim
nÑ8

}fn}2L2(R) = lim
nÑ8

1

2π
} pfn}2L2(R) =

1

2π
} pf}2L2(R) ,

where the last identity follows from the fact that t pfnu8
n=1 converges to pf in L2(R). Identity

(1.1.15) then follows from the polarization identity

xf, gy
L2(R)

=
1

4

[
}f + g}2L2(R) ´ }f ´ g}2L2(R) + i}f + ig}2L2(R) ´ i}f ´ ig}2L2(R)

]
. ˝

Theorem 1.23. Let f, g P L2(R).

1.
@

f, pg
D

L2(R)
=
@

pf, g
D

L2(R)
.

2. If g = pf , then f =
1

2π
pg. In other words, the operator 1

?
2π
p is the inverse of itself.

Remark 1.24. The Plancherel identity often refers to the following identity

}f}2L2(R) =
1

2π
} pf}2L2(R) @ f P L2(R) . (1.1.17)

In this lecture the Plancherel identity of the form (1.1.16) will be used extensively. Never-
theless, the Plancherel identity of the form (1.1.17) can be applied to show that

F

[ 8
ÿ

n=´8

cnϕn

]
=

8
ÿ

n=´8

cnxϕn @ tcnunPZ P ℓ2 and tϕnunPZ is orthonormal in L2(R) . (1.1.18)

In other words, under the conditions stated above the Fourier transform F commutes with
infinite sums. To see why (1.1.18) is true, we first note that the Plancherel identity (1.1.15)

shows that
!

xϕn
?
2π

)

nPZ
is an orthonormal set in L2(R). By setting

sk =
k
ÿ

n=´k

cnϕn ,

the Plancherel identity (1.1.17) implies that

} psk ´ psℓ}
2
L2(R) = 2π}sk ´ sℓ}

2
L2(R) = 2π

ÿ

mintk,ℓuă|n|ďmaxtk,ℓu

|cn|2 Ñ 0 as k, ℓ Ñ 8 . (1.1.19)

This shows that t pskukPN is a Cauchy sequence in L2(R); thus t pskukPN converges in L2(R).

Nevertheless, psk =
k
ř

n=´k

cnxϕn, so the fact that tcnunPZ P ℓ2 and that
!

xϕn
?
2π

)

nPZ
is an or-

thonormal basis in L2(R) implies that

lim
kÑ8

psk =
8
ÿ

n=´8

cnxϕn and the convergence is in L2(R) .

On the other hand, part 1 of Theorem 1.23 for all functions ϕ P L2(R) we have
B 8

ÿ

n=´8

cnxϕn, ϕ

F

L2(R)

= lim
kÑ8

x psk, ϕy
L2(R)

= lim
kÑ8

A

sk,
pϕ
E

L2(R)

=

B 8
ÿ

n=´8

cnϕn,
pϕ

F

L2(R)

=

B

F

[ 8
ÿ

n=´8

cnϕn

]
, ϕ

F

L2(R)

.

Since this identity holds for all ϕ P L2(R), we conclude (1.1.18).



Remark 1.25. There are ways to define the Fourier transform for more general “functions”
(termed tempered distributions). The key idea is to look at relationships between functions
and their Fourier transforms (such as the Parseval identity) and define the Fourier transform
in a way that preserves these relationships. For example, by Theorem 1.23, for all f, g P

L2(R) we have
ż

R
f(x)pg(x)dx =

ż

R

pf(x)g(x)dx (1.1.20)

Therefore, the Fourier transform of a general “function” f must satisfy (some variant of)
equation (1.1.20) whenever g is a function whose Fourier transform pg is well-defined and the
left-hand side of (1.1.20) makes sense. For instance, the function f(x) = eitx (with t P R) is
neither integrable nor square-integrable, but the integral on the left-hand side:

ż

R
f(x)pg(x)dx ”

ż

R
pg(x)eitxdx

is well-defined and equal (almost everywhere) to 2πg(t), provided that g P L1(R) and
pg P L1(R). In this case, the Fourier transform pf of f is defined as the “function” that
satisfies:

2πg(t) =

ż

R

pf(x)g(x)dx

for any g satisfying certain conditions. However, it is important to note that no actual
function satisfies this identity in the traditional sense. Eventually, the right-hand side
integral must also be interpreted symbolically, no longer representing the usual Lebesgue
integral. In other words, to define the Fourier transform of more general “functions,” we:

1. Generalize the concept of the integral of the product of two functions by treating the
integral

ż

R
f(x)g(x)dx

as a bilinear form of the pair (f, g). This bilinear form is identical to the integral of
fg whenever fg P L1(R).

2. The Fourier transform of a general function f is defined as something that satisfies
equation (1.1.20) whenever that identity makes sense.

This is essentially what the theory of tempered distributions is about, though we will not
delve into it further here.

The bottom line is: everything we derived for the Fourier transform of f with f P

L1(R) Y L2(R) is treated as identities that the Fourier transform of generalized functions
must satisfy.



1.2 Poisson Summation Formula
Theorem 1.26. If f P L1(R), then the series

8
ÿ

n=´8

f(t+ 2nπ) (1.2.1)

converges absolutely for almost all t in (0, 2π) and its sum belongs to L1(0, 2π) and is 2π-
periodic. If tanunPZ denotes the Fourier coefficient of the series, then an =

1

2π
pf(n) for all

n P Z.

Proof. By the Monotone Convergence Theorem,
ż 2π

0

8
ÿ

n=´8

ˇ

ˇf(t+ 2nπ)
ˇ

ˇdt =
8
ÿ

n=´8

ż 2π

0

ˇ

ˇf(t+ 2nπ)
ˇ

ˇdt =
8
ÿ

n=´8

ż 2(n+1)π

2nπ

ˇ

ˇf(t)
ˇ

ˇdt

=

ż

R

ˇ

ˇf(t)
ˇ

ˇdt = }f}L1(R) ă 8 ;

thus the series
8
ř

n=´8

|f(¨ + 2nπ)| belongs to L1(0, 2π) which shows that
8
ř

n=´8

f(t + 2nπ)

converges in L1(0, 2π) and also converges absolutely for a.a. t P (0, 2π).
By the definition of the Fourier coefficients,

am =
1

2π

ż 2π

0

8
ÿ

n=´8

f(t+ 2nπ)e´imtdt =
1

2π

8
ÿ

n=´8

ż 2π

0

f(t+ 2nπ)e´imtdt

=
1

2π

8
ÿ

n=´8

ż 2(n+1)π

2nπ

f(t)e´imtdt =
1

2π

ż

R
f(t)e´imtdt =

1

2π
pf(m)

which concludes the theorem. ˝

For f P L1(R), define F (t) =
8
ř

n=´8

f(t + 2nπ). Then Theorem 1.26 shows that F P

L1(0, 2π) and is 2π-periodic. If the Fourier series of F converges pointwise to F , then
8
ÿ

n=´8

f(t+ 2nπ) = F (t) =
8
ÿ

m=´8

1

2π
pf(m)eimt . (1.2.2)

In particular, letting t = 0 in (1.2.2) we obtain
8
ÿ

n=´8

f(2nπ) =
1

2π

8
ÿ

n=´8

pf(n) .

This identity is called the Poisson summation formula. The following theorem provides a
condition that (1.2.2) holds (if f is continuous).

Theorem 1.27. If there exists δ ą 0 such that
ˇ

ˇf(x)
ˇ

ˇ+
ˇ

ˇ pf(x)
ˇ

ˇ ď C(1 + |x|)´1´δ @x P R ,

then
8
ÿ

n=´8

q

pf(x+ 2nπ) =
1

2π

8
ÿ

n=´8

pf(n)einx @x P [0, 2π] . (1.2.3)

The proof of this theorem is left as an exercise.



1.3 Shannon Sampling Theorem
An analog signal is a piecewise continuous function of time defined on R, with the exception
of perhaps a countable number of jump discontinuities. Almost all analog signals of interest
in engineering have finite energy. By this we mean that the signal is square-integrable. The
norm of a signal f : R Ñ R defined by

}f}L2(R) =
( ż

R

ˇ

ˇf(t)
ˇ

ˇ

2
dt
) 1

2 (1.3.1)

represents the square root of the total energy content of the signal f . The spectrum of a
signal f is represented by its Fourier transform pf , where the variable of pf , usually denoted
by ω, is called the frequency. The frequency is measured by ν =

ω

2π
in terms of Hertz.

A signal f is called band-limited if its Fourier transform has a compact support; that is,

pf(ω) = 0 whenever |ω| ą ω0 (1.3.2)

for some ω0 ą 0. If ω0 ą 0 is the smallest value for which (1.3.2) holds, then it is called
the bandwidth of the signal. Even if an analog signal f is not band-limited, we can reduce
it to a band-limited signal by what is called an ideal low-pass filtering. To reduce f to a
band-limited signal fω0 with bandwidth less than or equal to ω0, we consider

xfω0(ω) =

"

pf(ω) if |ω| ď ω0,
0 if |ω| ą ω0

(1.3.3)

and we find the low-pass filter function fω0 by the inverse Fourier transform

fω0(t) =
1

2π

ż

R
eitωxfω0(ω)dω =

1

2π

ż ω0

´ω0

eitω pf(ω)dω.

Define the gate/window function

Πω0(ω) = 1[´ω0,ω0](ω) =

"

1 if |ω| ď ω0,
0 if |ω| ą ω0.

Then Πω0 P L1(R) X L2(R) whose inverse Fourier transform is given by

}Πω0(t) =
1

2π

ż

R
Πω0(ω)e

iωtdω =
sin(ω0t)

πt
.

Therefore, by Theorem 1.12 we obtain that

fω0(t) =
1

2π

ż

R
Πω0(ω)e

itω
pf(ω)dω = (f ˙ }Πω0)(t) =

ż

R

sin(ω0(τ ´ t))

π(t ´ τ)
f(τ)dτ .

This gives the sampling integral representation of a band-limited signal fω0 . Thus, fω0(t) can

be interpreted as the weighted average of f with the Fourier kernel sinω0(t´ ¨)

π(t´ ¨)
as weight.

In the field of digital signal processing, the sampling theorem is a fundamental bridge
between continuous-time signals (often called “analog signals”) and discrete-time signals



(often called “digital signals”). It establishes a sufficient condition for a sample rate（取
樣頻率）that permits a discrete sequence of samples to capture all the information from a
continuous-time signal of finite bandwidth. To be more precise, Shannon’s version of the
theorem states that “if an analog signal contains no frequencies higher than B hertz, it is
completely determined by giving its ordinates at a series of points spaced 1

2B
seconds apart.”

Theorem 1.28. Let f : R Ñ R be a continuous integrable function. If supp( pf) Ď [´ω0, ω0],

then f is fully determined by the sequence
!

f
(
πk

ω0

))8

k=´8
, and

f(t) =
8
ÿ

k=´8

f
(πk
ω0

)
sinc(ω0t ´ kπ) @ t P R , (1.3.4)

where the sinc function is given by

sinc(x) =

$

&

%

sinx
x

if x ‰ 0,

1 if x = 0.
(1.3.5)

Proof. Let f P L1(R) X C (R;R) such that supp( pf) Ď [´B,B]. Then pf P L1(R) (since it
must be bounded by Theorem 1.5); thus the Fourier inversion formula implies that

f(t) =
1

2π

ż

R

pf(ω)eixω dω =

ż ω0

´ω0

pf(ω)eixω dω @ t P R .

In particular,
f
(
kπ

ω0

)
=

1

2π

ż ω0

´ω0

pf(ω)e
ikπω
ω0 dω.

Treating pf as a function defined on [´ω0, ω0], the identity above shows that
!

π

ω0
f
(

´kπ

ω0

))8

k=´8

is the Fourier coefficients of pf .
Note that the boundedness of pf implies that pf P L2(´ω0, ω0). Therefore, if g P

L2(´ω0, ω0), the Parseval identity, together with the polarization identity, implies that

1

2ω0

ż ω0

´ω0

pf(ω)g(ω) dω =
8
ÿ

k=´8

π

ω0
f
(´kπ

ω0

)
pgk , (1.3.6)

where pgk =
1

2ω0

ż ω0

´ω0

g(t)e
´ ikπx

ω0 dx.

For each t P R, the Fourier coefficients of the function g(ω) = e´itω is given by

pgk =
1

2ω0

ż ω0

´ω0

e´itωe
´ ikπω

ω0 dω =
1

2ω0

ż ω0

´ω0

e
´i

(ω0t+kπ)
ω0

ω
dω = sinc(ω0t+ kπ);

thus the Fourier inversion formula and (1.3.6) imply that if x P R,

f(t) =
1

2π

ż

R

pf(ω)eitω dω =
1

2π

ż ω0

´ω0

pf(ω)g(ω) dx =
8
ÿ

k=´8

f
(´kπ

ω0

)
sinc(ω0t+ kπ)

=
8
ÿ

k=´8

f
(kπ
ω0

)
sinc(ω0t ´ kπ) .

The identity above shows that f is fully determined by the sequence
!

f
(
kπ

ω0

))8

k=´8
. ˝



Remark 1.29. Equation (1.3.4) is called the Whittaker–Shannon interpolation for-
mula.

Remark 1.30. The reconstruction formula (1.3.4) can be obtained formally as follows. In
the proof of the sampling theorem, since we have obtained that the Fourier coefficient of pf

is
!

π

ω0
f
(

´kπ

ω0

))8

k=´8
, so we have

pf(ω) =
8
ÿ

k=´8

π

ω0

f
(´kπ

ω0

)
e

ikπω
ω0 =

8
ÿ

k=´8

π

ω0

f
(kπ
ω0

)
e

´ ikπω
ω0 .

Taking the inverse Fourier transform,

f(t) =
1

2π

ż

R

8
ÿ

k=´8

π

ω0

f
(kπ
ω0

)
e

´ ikπω
ω0 eitω dω =

1

2ω0

ż

R

8
ÿ

k=´8

f
(kπ
ω0

)
e

´ ikπω
ω0 eitω dω ;

thus if we can switch the order of the infinite sum and the integration, we then immediately
obtain the reconstruction formula

f(t) =
1

2ω0

8
ÿ

k=´8

f
(kπ
ω0

) ż
R
e

´ ikπω
ω0 eitω dω =

8
ÿ

k=´8

f
(kπ
ω0

)
sinc(ω0t ´ kπ) .

In fact, this kind of “switch of order of the infinite sum and the integral” is usually valid
when the integral is due to the Fourier transform/inverse transform. In particular, later we
will take the Fourier transform of series of the form

8
ÿ

n=´8

cnϕ(x ´ n) =
8
ÿ

n=´8

cn(Tnϕ)(x)

where ϕ P L2(R) and tcnu8
n=´8 P ℓ2; that is,

8
ř

n=´8

|cn|2 ă 8, and directly switch the order

of summation and the Fourier transform as

F

[ 8
ÿ

n=´8

cn(Tnϕ)

]
=

8
ÿ

n=´8

cnF [Tnϕ] .

A rigorous proof of the identity above will be ignored.

1.4 Time-Frequency Analysis
In signal processing, time-frequency analysis comprises those techniques that study a signal
in both the time and frequency domains simultaneously, using various time-frequency repre-
sentations. The mathematical motivation for this study is that functions and their transform
representation are tightly connected, and they can be understood better by studying them
jointly, as a two-dimensional object, rather than separately. A simple example is that the
4-fold periodicity of the Fourier transform - and the fact that two-fold Fourier transform



reverses direction - can be interpreted by considering the Fourier transform as a 90° rota-
tion in the associated time-frequency plane: 4 such rotations yield the identity, and 2 such
rotations simply reverse direction (reflection through the origin).

The practical motivation for time-frequency analysis is that classical Fourier analysis is
quite inadequate for most applications. In the first place, the Fourier analysis assumes that
signals are infinite in time or periodic, while many signals in practice are of short duration,
and change substantially over their duration. For example, traditional musical instruments
do not produce infinite duration sinusoids, but instead begin with an attack, then gradually
decay. Moreover, to extract the spectral information pf(ω) from the analog signal f , the
Fourier transform takes an infinite amount of time, using both past and future information
of the signal just to evaluate the spectrum at a single frequency ω. Besides, the formula

(Ff)(ω) = pf(ω) =

ż

R
f(t)e´itωdt @ω P R (1.1.10)

does not even reflect frequencies that evolve with time. What is really needed is for one to
be able to determine the time intervals that yield the spectral information on any desirable
range of frequencies (or frequency band). In addition, since the frequency of a signal is
directly proportional to the length of its cycle, it follows that for high-frequency spectral
information, the time-interval should be relatively small to give better accuracy, and for low-
frequency spectral information, the time-interval should be relatively wide to give complete
information. In other words, it is important to have a flexible time-frequency window that
automatically narrows at high “center-frequency” and widens at low “center-frequency”. All
these issues are poorly represented by traditional methods, which motivates time-frequency
analysis.

In this lecture, concerning the time-frequency analysis we are going to study the following
subjects:

1. The Gabor Transform/Short-Time Fourier Transform (STFT): For a given
f P L2(R), we consider the following integral

G[f ](t, ω) =
ż

R
f(τ)gt,ω(τ)dτ ,

where gt,ω P L2(R) is a time-localization window function taking the form

gt,ω(τ) = ϕ(τ ´ t)eiωτ = (MωTtϕ)(τ) (1.4.1)

for some ϕ P L2(R) and is used for extracting local information from a Fourier trans-
form of a signal f .

We are going to study the basic properties of the Gabor transform and derive the
inversion formula

f(t) =
1

2π

ż

R

ż

R
eiωtG[f ](b, ω)ϕ(t ´ b)dωdb =

ż

R
F ´1

[
G[f ](b, ¨)

]
(t)(Tbϕ)(x)db.



2. The Wigner-Ville Distribution (WVD) and Transform (WVT): The cross
Wigner-Ville Distribution of f, g P L2(R) is the integral

Wf,g(t, ω) =

ż

R
f
(
t+

τ

2

)
g
(
t ´

τ

2

)
e´iωτ dτ . (1.4.2)

At the first glance it looks very similar to the STFT since with the substitution of
variable x = t+

τ

2
,

Wf,g(t, ω) = 2

ż

R
f(x)g(x ´ 2t)e´2i(x´t)ω dx = 2e2itω

ż

R
f(x)g(x ´ 2t)e´2ixω dx

and the last integral is indeed a STFT of f with window function g (at the point
(2t, 2ω)). When the windows function is the signal itself, it is called the Wigner-Ville
Transform of the signal. In other words, the Wigner-Ville Transform of f P L2(R) is
Wf,f (which is also denoted by Wf in the textbook). We note that WVT is a nonlinear
map of the input f .

The WVD is a great method to perform time-frequency analysis; however, the study
of the Wigner-Ville transform is beyond the scope of this course, so we will only talk
about this breifly.

3. The Wavelet Transform: A given function ψ P L2(R) satisfying the “admissibility”
condition

Cψ =

ż

R

| pψ(ω)|2

|ω|
dω ă 8 ,

is called a basic wavelet. The “integral wavelet transform” relative to the “basic
wavelet” ψ, denoted by Wψ (do not confuse with the Wigner-Ville transform), is an
integral operator on L2(R) defined by

Wψ[f ](a, b) = |a|´ 1
2

ż

R
f(x)ψ

(
t´ b

a

)
dt =

ż

R
f(t)(TbDaψ)(t)dt.

We are going to study the basic properties of the wavelet transform and derive the
inversion formula

f(t) =
1

Cψ

ż

R

ż

R
Wψ[f ](a, b)(TbDaψ)(t)

dbda

a2
. (1.4.3)

1.5 The Wavelet Series and Frames
For the purpose of localization, the basis wavelet is usually chosen to have compact support
or decay very fast, similar to the case of Fourier transform v.s. Fourier series, we might be
able to reconstruct f using only values of the wavelet transform at discrete points. Through-
out the lecture, any function ψ P L2(R) is associated with a bi-infinite sequence of functions
tψj,kuj,kPZ defined by

ψj,k(x) = 2j/2ψ(2jx ´ k) @ j, k P Z . (1.5.1)



We note that the index j measures the width of the window/support, and the parameter k
is used to represent translation of the window to cover the whole time domain.

Definition 1.31. A function ψ P L2(R) is called an orthogonal wavelet (or o.n. wavelet),
if the family tψj,kuj,kPZ, as defined in (1.5.1), is an orthonormal basis of L2(R); that is,

xψj,k, ψℓ,my
L2(R)

= δjℓδkm @ j, k, ℓ,m P Z (1.5.2)

and every function f P L2(R) can be written as

f(x) =
8
ÿ

j,k=´8

cj,kψj,k(x) , (1.5.3)

where cj,k = xf, ψj,ky
L2(R)

and the convergence of the series in (1.5.3) is in L2(R); that is,

lim
M1,N1,M2,N2Ñ8

›

›

›

›

f ´

N2
ÿ

j=´M2

N1
ÿ

k=´M1

cj,kψj,k

›

›

›

›

L2(R)
= 0 .

Any arbitrarily given ψ P L2(R) is most likely not an o.n. wavelet. For a given function
ψ P L2(R), the first few questions we would like to answer are

1. Is the linear span of tψj,kuj,kPZ dense in L2(R)?

2. If so, is there a effect way to express a function f P L2(R) in terms of “linear combi-
nations” of ψj,k’s?

3. Is the expression of a function f P L2(R) as a “linear combinations” of ψj,k’s unique?

The abstraction of the aforementioned questions leads to the concept of frames and frame
operators defined below.

Definition 1.32 (Frame). A sequence txnu in a separable Hilbert space (H, x¨, ¨y) (not
necessarily a basis of H) is called a frame if there exist two numbers A and B with
0 ă A ď B ă 8 such that

A}x}2 ď
ÿ

n

ˇ

ˇxx, xny
ˇ

ˇ

2
ď B}x}2 . (1.5.4)

The numbers A and B are called the frame bounds.

Definition 1.33 (Frame Operator). To each frame txnu there corresponds an operator T ,
called the frame operator, from H into itself defined by

Tx =
ÿ

n

xx, xnyxn @x P H. (1.5.5)

For a given frame txnu of a Hilbert space, it can be shown that the frame operator is
bounded, and eventually answer (partially) the questions above by the following



Theorem 1.34. Suppose txnu8
n=1 is a frame on a separable Hilbert space with frame bounds

A and B, and T is the corresponding frame operator. Then,

(a) T is invertible and B´1I ď T´1 ď A´1I.

(b) tT´1xnu8
n=1 is a frame, called the dual frame of txnu8

n=1, with frame bounds B´1 and
A´1.

(c) Every x P H can be expressed in the form

x =
8
ÿ

n=1

xx, T´1xnyxn =
8
ÿ

n=1

xx, xnyT´1xn . (1.5.6)

Later we will prove the following theorem which provides a sufficient condition of a given
ψ to generate a frame tψm,num,n in L2(R).

Theorem 1.35. Let ϕ P L2(R), and a0 ą 1. If

(i) there exist A, B ą 0 such that A ď

8
ÿ

m=´8

ˇ

ˇpϕ(am0 ω)
ˇ

ˇ

2
ď B for all 1 ď ω ď a0, and

(ii) sup
ωPR

8
ÿ

m=´8

ˇ

ˇpϕ(am0 )
ˇ

ˇ

ˇ

ˇpϕ(am0 ω + x)
ˇ

ˇ ď C(1 + |x|)´(1+δ) for some constants C and δ ą 0,

then there exists rb ą 0 such that the family tϕm,num,nPZ given by

ϕm,n = a
´m/2
0 ϕ(a´m

0 x ´ nb0) = (Dam0
Tnb0ϕ)(x)

forms a frame in L2(R) for any b0 P (0,rb).

Suppose that a function ψ P L2(R) generates a frame Ψ = tψj,kuj,kPZ in L2(R). Even
though in theory we have a representation formula (1.5.6) using the frame operator T

associated with Ψ, it is still not practical enough since it requires to compute the dual
frame tT´1ψm,num,nPZ. We hope, just like how we obtain Ψ, that the dual frame is a frame
simply generated by a function rψ P L2(R); that is,

T´1ψm,n = rψm,n @m,n P Z .

However, this requires a subtle design of the function ψ.

Definition 1.36. A function ψ P L2(R) is called an R-function if tψj,kuj,kPZ, as defined in
(1.5.1), is a Riesz basis of L2(R), in the sense that the linear span of tψj,kuj,kPZ is dense in
L2(R) and that there exist positive constants A and B, with 0 ă A ď B ă 8, such that

A
›

›tcj,kuj,kPZ
›

›

2

ℓ2
ď

›

›

›

›

8
ÿ

j,k=´8

cj,kψj,k

›

›

›

›

2

L2(R)
ď B

›

›tcj,kuj,kPZ
›

›

2

ℓ2
(1.5.7)



for all doubly bi-infinite square-summable sequences tcj,kuj,kPZ; that is,

›

›tcj,kuj,kPZ
›

›

2

ℓ2
”

8
ÿ

j,k=´8

|cj,k|2 ă 8 .

An R-function ψ P L2(R) is called an R-wavelet (or wavelet), if there exists a function
rψ P L2(R), such that tψj,kuj,kPZ and t rψj,kuj,kPZ, as defined in (1.5.1), are dual bases of L2(R).
If ψ is an R-wavelet, then rψ is called a dual wavelet corresponding to ψ.

Remark 1.37. A collection of functions tϕnunPZ in L2(R) is said to have Riesz bounds A
and B, where 0 ă A ď B ă 8, if

A
›

›tcnunPZ
›

›

2

ℓ2
ď

›

›

›

›

8
ÿ

n=´8

cnϕn

›

›

›

›

2

L2(R)
ď B

›

›tcnunPZ
›

›

2

ℓ2
@ tcnunPZ P ℓ2 . (1.5.8)

An orthonormal system in L2(R) indeed has Riesz bounds 1 and 1. Similar to (1.1.18), the
argument used to establish (1.1.18) can be applied to show that

F

[ 8
ÿ

n=´8

cnϕn

]
=

8
ÿ

n=´8

cnxϕn @ tcnunPZ P ℓ2 and tϕnunPZ satisfying (1.5.8) . (1.5.9)

The key difference in the argument is that one has to modify (1.1.19) using (1.5.8):

} psk ´ psℓ}
2
L2(R) = 2π}sk ´ sℓ}

2
L2(R) ď 2πB

ÿ

mintk,ℓuă|n|ďmaxtk,ℓu

|cn|2 Ñ 0 as k, ℓ Ñ 8 .

We also remark that using (1.5.9), if tϕnunPZ Ď L2(R) has Riesz bounds A and B, then
␣

xϕn
(

nPZ has Riesz bounds 2πA and 2πB because of the Plancherel identity.

Now, the question is how do we construct such kind of wavelet?

1.6 Multi-resolution Analysis and Construction of O.N.
Wavelets

A wavelet ψ in L2(R) is called a semi-orthogonal wavelet (or wavelet) if the family tψj,kuj,kPZ

it generates satisfies
xψj,k, ψℓ,my = 0 if j ‰ ℓ, j, k, ℓ,m P Z. (1.6.1)

Suppose that ψ is a semi-orthogonal wavelet and consider the family tψj,kuj,kPZ it generates.
For each j P Z, let Wj denote the closure of the linear span of tψj,kukPZ, namely:

Wj ” closure}¨}2

(␣
ψj,k

ˇ

ˇ k P Z
()
. (1.6.2)

Then it is clear that Wj K Wℓ if j ‰ ℓ, meaning that

xgj, gℓy = 0 if j ‰ ℓ, gj P Wj and gℓ P Wℓ. (1.6.3)



Moreover, by the fact that the linear span of tψj,kuj,kPZ is dense in L2(R), L2(R) can be
decomposed as a direct sum of the spaces Wj:

L2(R) =
à

jPZ
Wj = ¨ ¨ ¨ ‘ W´1 ‘ W0 ‘ W1 ‘ ¨ ¨ ¨ , (1.6.4)

in the sense that every function f P L2(R) has a unique decomposition:

f(x) =
8
ÿ

j=´8

gj(x) = ¨ ¨ ¨ + g´1(x) + g0(x) + g1(x) + ¨ ¨ ¨ , (1.6.5)

where gj =
8
ř

k=´8

xf, rψj,kyψj,k P Wj for all j P Z.

For each j P Z, let us consider the closed subspaces

Vj ”

j´1
à

ℓ=´8

Wℓ = ¨ ¨ ¨ ‘ Wj´2 ‘ Wj´1 (1.6.6)

of L2(R). These subspaces clearly have the following properties:

(10) ¨ ¨ ¨ Ĺ V´1 Ĺ V0 Ĺ V1 Ĺ ¨ ¨ ¨ or Vj Ĺ Vj+1 for all j P Z;

(20) closure}¨}2

(
Ť

jPZ
Vj

)
= L2(R);

(30)
Ş

jPZ
Vj = t0u;

(40) Vj+1 = Vj ‘ Wj for all j P Z; and

(50) For all j P Z, f P Vj if and only if d1/2f P Vj+1, where for λ ą 0 the dilation operator
dλ is given by (dλf)(x) = f(λ´1x).

Hence, in contrast to the subspaces Wj which satisfy

Wj X Wℓ = t0u if j ‰ ℓ,

the sequence of subspaces Vj is nested, as described by (10), and has the property that every
function f in L2(R) can be approximated as closely as desirable by its projections Pjf in Vj,
as described by (20). But on the other hand, by decreasing j, the projections Pjf could have
arbitrarily small energy, as guaranteed by (30). What is not described by (10)-(30) is the
most important intrinsic property of these spaces which is that more and more “variations”
of Pjf are removed as j Ñ ´8. In fact, these variations are peeled off, level by level in
decreasing order of the “rate of variations” (better known as “frequency bands”) and stored
in the complementary subspaces Wj as in (40). This process can be made very efficient by
an application of the property (50).

In fact, if the reference subspace V0, say, is generated by a single function ϕ P L2(R) in
the sense that

V0 ” closure}¨}2

(␣
ϕ0,k

ˇ

ˇ k P Z
()
, (1.6.7)



where
ϕj,k(x) = 2j/2ϕ(2jx ´ k) , (1.6.8)

then all the subspaces Vj are also generated by the same ϕ (just as the subspaces Wj are
generated by as ψ in (1.6.2)), namely:

Vj ” closure}¨}2

(␣
ϕj,k

ˇ

ˇ k P Z
()

@ j P Z . (1.6.9)

Hence, the “peeling-off” process from Vj to Wj´1, Wj´2, ¨ ¨ ¨ , Wj´ℓ can be accomplished
efficiently.

Definition 1.38. An MRA consists of a sequence tVm |m P Zu of embedded closed sub-
spaces of L2(R) that satisfy the following conditions:

(i) ¨ ¨ ¨ Ď V´2 Ď V´1 Ď V0 Ď V1 Ď V2 Ď ¨ ¨ ¨ Ď Vm Ď Vm+1 Ď ¨ ¨ ¨ ;

(ii)
8
Ť

m=´8

Vm is dense in L2(R); that is, closure}¨}2

( 8
Ť

m=´8

Vm

)
= L2(R).

(iii)
8
Ş

m=8

Vm = t0u.

(iv) f P Vm if and only if d1/2f P Vm+1 for all m P Z;

(v) there exists a function ϕ P V0 such that
␣

ϕ0,n = Tnϕ
ˇ

ˇn P Z
(

is an orthonormal basis
for V0; that is,

}f}2L2(R) =
8
ÿ

n=´8

ˇ

ˇxf, ϕny
ˇ

ˇ

2
@ f P V0 .

The function ϕ is called the scaling function or father wavelet. If tVmumPZ is a multi-
resolution of L2(R) and if V0 is the closed subspace generated by the integer translates of a
single function ϕ, then we say that ϕ generates the MRA.

Remark 1.39. To define scaling function, sometimes condition (v) is relaxed by assuming
that

␣

Tnϕ
ˇ

ˇn P Z
(

is a Riesz basis for V0. Nevertheless, in most of the applications we look
for ϕ such that tTnϕ |n P Zu is an orthonormal basis of V0, so we simply use Definition 1.38
(which is the one used in the textbook) for the scaling functions.

Theorem 1.40 (Orthonormalization Process). If ϕ P L2(R) and if tTnϕ |n P Zu is a Riesz
basis of V0, then

␣

Tnrϕ
ˇ

ˇn P Z
(

is an orthonormal basis of V0 with

p

rϕ(ω) =
pϕ(ω)

d

8
ř

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2

. (1.6.10)



Theorem 1.41. If tVnunPZ is an MRA with the scaling function ϕ, then there is an orthog-
onal wavelet ψ given by

ψ(x) =
8
ÿ

n=´8

(´1)´n´1c´n´1(D1/2Tnϕ)(x) , (1.6.11)

where the coefficients cn are given by

cn = xϕ, ϕ1,ny =
?
2

ż

R
ϕ(x)ϕ(2x ´ n)dx. (1.6.12)

We will also give some examples of constructing orthogonal wavelet based on the theo-
rems above.



Chapter 6

The Wavelet Transforms and Their
Basic Properties

6.2 Continuous Wavelet Transforms and Examples
Definition 6.1 (Wavelet). A wavelet is a function ψ P L2(R) which satisfies the admissibil-
ity condition

Cψ ”

ż

R

ˇ

ˇ pψ(ω)
ˇ

ˇ

2

|ω|
dω ă 8 , (6.2.1)

where pψ is the Fourier transform of ψ.

If ψ P L2(R), then ψa,b P L2(R) for all a and b since

}ψa,b}
2
L2(R) =

ż

R

1

|a|

ˇ

ˇ

ˇ

ˇ

ψ
(t ´ b

a

)ˇ
ˇ

ˇ

ˇ

2

dt =

ż

R

ˇ

ˇψ(x)
ˇ

ˇ

2
dx = }ψ}2L2(R) ă 8 .

The Fourier transform of ψa,b is given by

yψa,b(ω) =
(
M´bD 1

a

pψ
)
(ω) =

a

|a|e´ibω
pψ(aω) . (6.2.2)

Definition 6.2 (Continuous Wavelet Transform). If ψ P L2(R), and ψa,b is given by

ψa,b(t) =
1

a

|a|
ψ
(t ´ b

a

)
= (TbDaψ)(t) , (6.2.3)

then the integral transformation Wψ defined on L2(R) by

Wψ[f ](a, b) = xf, ψa,byL2(R)
=

ż

R
f(t)ψa,b(t)dt (6.2.4)

is called a continuous wavelet transform of f (relative to the wavelet ψ).

Using the Plancherel identity of the Fourier transform, it also follows from (6.2.4) that

Wψ[f ](a, b) = xf, ψa,byL2(R)
=

1

2π

@

pf,yψa,b
D

L2(R)
=

1

2π

ż

R

a

|a| pf(ω) pψ(aω)eibωdω

=
1

2π

ż

R
( pfD 1

a

pψ)(ω)eibωdω.

26



This means that for a fixed a Wψ[f ](a, ¨) is the inverse Fourier transform of the function
pfD 1

a

pψ so the Fourier inversion formula shows that

F
[
Wψ[f ](a, ¨)

]
(ω) =

ż

R
Wψ[f ](a, t)e

´itωdt = ( pfD 1
a

pψ)(ω) =
a

|a| pf(ω) pψ(aω) . (6.2.5)

Example 6.3 (The Haar Wavelet). The Haar wavelet (Haar 1910) is one of the classic
examples. It is defined by

ψ(t) =

$

’

’

’

&

’

’

’

%

1 if 0 ď t ă
1

2
,

´1 if 1

2
ď t ă 1,

0 otherwise.

(6.2.6)

The Haar wavelet has compact support. It is obvious that
ż

R
ψ(t)dt = 0 ,

ż

R

ˇ

ˇψ(t)
ˇ

ˇ

2
dt = 1 .

This wavelet is very well localized in the time domain, but it is not continuous. Its Fourier
transform pψ is calculated as follows: for ω ‰ 0 we have

pψ(ω) =

ż 1
2

0

e´iωt dt ´

ż 1

1
2

e´iωt dt =
e´iωt

´iω

ˇ

ˇ

ˇ

t= 1
2

t=0
´
e´iωt

´iω

ˇ

ˇ

ˇ

t=1

t= 1
2

=
i

ω

(
2e

´iω
2 ´ 1 ´ e´iω

)
=

´i

ω

(
1 ´ e

´iω
2

)2
=

´i

ω
exp

(
´
iω

2

)(
e

iω
4 ´ e

´iω
4

)2
= i exp

(
´
iω

2

)sin2(ω/4)

ω/4
(6.2.7)

and for ω = 0 we have pψ(0) = 0; thus

ż

R

ˇ

ˇ pψ(ω)
ˇ

ˇ

2

ω
dω = 16

ż

R
|ω|´3 sin4 ω

4
dω ă 8 .

Both ψ and pψ are plotted in Figure 6.1.

t

ψ(t)

1

0.5

1

´1

ˇ

ˇ pψ(ω)
ˇ

ˇ

ω

‚1

4π
‚

8π
‚

12π
‚

´4π
‚

´8π
‚

´12π
‚

Figure 6.1: The Haar wavelet and its Fourier transform

Theorem 6.4. If ψ is a wavelet and ϕ is a bounded integrable function, then the convolution
function ψ ˙ ϕ is a wavelet.



Proof. By Young’s inequality,

}ψ ˙ ϕ}L2(R) ď }ϕ}L1(R)}ψ}L2(R) ă 8 ,

so ψ ˙ ϕ P L2(R). Moreover, by the fact that }pϕ}L8(R) ď }ϕ}L1(R),
ż

R

{

ˇ

ˇψ ˙ ϕ(ω)
ˇ

ˇ

2

|ω|
dω =

ż

R

ˇ

ˇ pψ(ω)
ˇ

ˇ

2ˇ
ˇpϕ(ω)

ˇ

ˇ

2

|ω|
dω ď }ϕ}2L1(R)Cψ ă 8 .

Thus, the convolution function ψ ˙ ϕ is a wavelet. ˝

Example 6.5. This example illustrates how to generate other wavelets by using Theorem
6.4. For example, if we take the Haar wavelet and convolute it with the following function

ϕ(t) = 1[0,1](t) =

"

1 if 0 ď t ď 1,
0 otherwise,

we obtain a simple wavelet, as shown in Figure 6.2.

(ψ ˙ ϕ)(t)

t
1
2

1
2

3
2

´1
2

Figure 6.2: The wavelet ψ ˙ ϕ

Example 6.6. The convolution of the Haar wavelet with ϕ(t) = exp(´t2) generates a
smooth wavelet, as shown in Figure 6.3.

(ψ ˙ ϕ)(t)

t
´4 ´2 2 4

0.1

0.2

´0.1

´0.2

Figure 6.3: The wavelet ψ ˙ ϕ

Example 6.7 (The Mexican Hat Wavelet). The Mexican hat wavelet is defined by the
second derivative of a Gaussian function as

ψ(t) = (1 ´ t2) exp
(

´
t2

2

)
= ´

d2

dt2
exp

(
´
t2

2

)
= ψ1,0(t) ,

pψ(ω) = yψ1,0(ω) =
?
2πω2 exp

(
´
ω2

2

)
.

(6.2.8)



The Mexican hat wavelet ψ1,0 and its Fourier transform are shown in Figure 6.4(a)(b). This
wavelet has excellent localization in time and frequency domains and clearly satisfies the
admissibility condition.

ψ(t)

t

(a)

?
3´

?
3

pψ(ω)

ω

(b)

?
2´

?
2

Figure 6.4: (a) The Mexican hat wavelet ψ1,0 and (b) its Fourier transform yψ1,0

Two other wavelets, ψ 3
2
,´2 and ψ 1

4
,
?
2, from the mother wavelet (6.2.8) can be obtained.

These three wavelets, ψ1,0, ψ 3
2
,´2, and ψ 1

4
,
?
2, are shown in Figure 6.5(i), (ii), and (iii),

respectively.
ψa,b(t)

t

´1

´0.5

0

0.5

1

1.5

2

0 20´2´4´6´8

(i)(ii) (iii)

Figure 6.5: Three wavelets ψ1,0, ψ 3
2
,´2, ψ 1

4
,
?
2

Remark 6.8. If in addition ψ P L1(R) (which is usually the case if ψ has rapid decay),
then its Fourier transform pψ is bounded continuous. Since pψ is continuous, Cψ can be finite
only if pψ(0) = 0 or, equivalently,

ż

R
ψ(t)dt = 0. This means that ψ must be an oscillatory

function with zero mean.

6.3 Basic Properties of Wavelet Transforms
The following theorem gives several properties of continuous wavelet transforms.

Theorem 6.9. If ψ and ϕ are wavelets and f , g are functions which belong to L2(R), then

(i) (Linearity) For any scalars α and β,

Wψ[αf + βg] = αWψ[f ] + βWψ[g] .



(ii) (Translation) With Tc denoting the translation operator defined by (Tcf)(t) = f(t´ c),

Wψ[Tcf ](a, b) = Wψ[f ](a, b ´ c) and WTcψ[f ](a, b) = Wψ[f ](a, b+ ca) .

(iii) (Dilation) For c ą 0, with Dc denoting the (scaled) dilation operator defined by
(Dcf)(t) =

1
?
c
f
(
t

c

)
,

Wψ[Dcf ](a, b) =
1

?
c
Wψ[f ]

(a
c
,
b

c

)
and WDcψ[f ](a, b) =

1
?
c
Wψ[f ](ac, b) .

(iv) (Symmetry) For any a ‰ 0,

Wψ[f ](a, b) = Wf [ψ]
(
1,´

b

a

)
.

(v) (Parity) With P denoting the parity operator defined by (Pf)(t) = f(´t) (that is,
P = D´1),

WPψ[Pf ](a, b) = Wψ[f ](a,´b) .

(vi) (Anti-linearity) For any scalars α, β,

Wαψ+βϕ[f ] = αWψ[f ] + βWϕ[g] .

Proofs of the above properties are straightforward and are left as exercises.

Theorem 6.10 (Parseval’s Formula for Wavelet Transforms). If ψ P L2(R) is a wavelet
and Wψ[f ] is the wavelet transform of f (relative to ψ) defined by (6.2.4), then, for any
functions f , g P L2(R), we obtain

ż

R

ż

R
Wψ[f ](a, b)Wψ[g](a, b)

dbda

a2
= Cψxf, gy

L2(R)
, (6.3.1)

where Cψ is defined by (6.2.1).

Proof from the textbook. By Parseval’s relation (3.4.37) for the Fourier transforms, we have

Wψ[f ](a, b) = xf, ψa,byL2(R)
=

1

2π

@

pf,yψa,b
D

L2(R)
=

1

2π

@

pf, {TbDaψ
D

L2(R)

=
1

2π
x pf,M´bD 1

a

pψ
D

L2(R)
=

1

2π

ż

R

pf(ω)|a|
1
2 eibω pψ(aω)dω, (6.3.2)

and substituting g for f in the identity above,

Wψ[g](a, b) =
1

2π

ż

R
pg(σ)|a|

1
2 e´ibσ

pψ(aσ)dσ. (6.3.3)

Substituting (6.3.2) and (6.3.3) in the left-hand side of (6.3.1) gives
ż

R

ż

R
Wψ[f ](a, b)Wψ[g](a, b)

dbda

a2

=
1

(2π)2

ż

R

ż

R

ż

R

ż

R

pf(ω)|a|
1
2 pψ(aω)pg(σ)|a|

1
2 eib(ω´σ)

pψ(aσ)dσdω
dbda

a2

=
1

(2π)2

ż

R

ż

R

ż

R

ż

R

1

|a|
pf(ω) pψ(aω)pg(σ) pψ(aσ)eib(ω´σ)dσdωdbda. (6.3.4)



Note that

f(t) = F ´1[ pf ](t) =
1

2π

ż

R

( ż
R
f(s)e´isω

)
eiωtdsdω =

1

2π

ż

R

ż

R
f(s)eiω(t´s)dsdω ;

thus interchanging the order of integration from dωdb to dbdω in (6.3.4) we obtain that
ż

R

ż

R
Wψ[f ](a, b)Wψ[g](a, b)

dbda

a2

=
1

2π

ż

R

ż

R

1

|a|
pf(ω) pψ(aω)

(
1

2π

ż

R

ż

R
pg(σ) pψ(aσ)eib(ω´σ)dωdb

)
dσda

=
1

2π

ż

R

ż

R

1

|a|
pf(ω) pψ(aω)pg(ω) pψ(aω)dσda =

1

2π

ż

R

ż

R

pf(ω)pg(ω)

ˇ

ˇ pψ(aω)
ˇ

ˇ

2

|a|
dωda.

A further interchanging the order of integration and putting aω = x show that
ż

R

ż

R
Wψ[f ](a, b)Wψ[g](a, b)

dbda

a2
=

1

2π

ż

R

pf(ω)pg(ω)

(
ż

R

ˇ

ˇ pψ(aω)
ˇ

ˇ

2

|a|
da

)
dω

=
1

2π

ż

R

pf(ω)pg(ω)

(
ż

R

ˇ

ˇ pψ(x)
ˇ

ˇ

2

|x|
dx

)
dω =

Cψ
2π

ż

R

pf(ω)pg(ω)dω =
Cψ
2π

@

pf, pg
D

L2(R)
,

and the Plancherel identity is used to conclude the theorem. ˝

Remark 6.11. The proof above is not rigorous since the first interchange of the order of
integration (from dωdb to dbdω) cannot be valid since the integrand is indeed not integrable.
The second interchange of the order of integration (from dωda to dadω) is true due to the
fact that pf , pg and the admissibility condition.

Proof from another book. Define

F (ω) = |a|´ 1
2F [Wψ[f ](a, ¨)](ω) and G(ω) = |a|´ 1

2F [Wψ[g](a, ¨)](ω) .

Using (6.2.5),
F (ω) = pf(ω) pψ(aω) , G(ω) = pg(ω) pψ(aω) . (6.3.5)

Applying the Plancherel identity and using (6.2.2), we find that
ż

R

[
Wψ[f ](a, b)Wψ[g](a, b)

]
db =

@

Wψ[f ](a, ¨),Wψ[g](a, ¨)
D

L2(R)

=
1

2π

@

F [Wψ[f ](a, ¨)],F [Wψ[g](a, ¨)
D

=
|a|

2π
xF,Gy .

Hence, by substituting (6.3.5) into the above expression, integrating with respect to da/a2

on R, and recalling the definition of Cψ from (6.2.1), we obtain
ż

R

[ ż
R

[
Wψ[f ](a, b)Wψ[g](a, b)

]
db
]da
a2

=

ż

R

[ 1

2π|a|
xF,Gy

]
da

=
1

2π

ż

R

[ ż
R

pf(ω)pg(ω)
| pψ(aω)|2

|a|
dx

]
da =

1

2π

ż

R

ż

R

pf(ω)pg(ω)
| pψ(aω)|2

|a|
dadx

=
1

2π

ż

R

pf(ω)pg(ω)
( ż

R

| pψ(y)|2

|y|
dy

)
dx =

Cψ
2π

x pf, pgy
L2(R)

= Cψxf, gy
L2(R)

.



Note that the switch of the order of the integration in the second line is due to the Fubini
Theorem which requires that the integrand is integrable; nevertheless, the integrability of
the integrand can be shown using the Tonelli Theorem as long as the admissibility condition
(6.2.1) is satisfied. This completes the proof of the theorem. ˝

Remark 6.12. There is still one particular problem in the proof above: In order to apply
the Plancherel identity it is required that Wψ[f ](a, ¨) and Wψ[g](a, ¨) P L2(R) for a ‰ 0.
However, if Wψ[f ](a, ¨) P L2(R), then F [Wψ[f ](a, ¨)] P L2(R) but if this might not be true
since pf , pg, pψ P L2(R) only guarantees that F [Wψ[f ](a, ¨)], F [Wψ[g](a, ¨)] P L1(R).

Proof. We first prove that (6.3.1) holds for all f, g P L1(R)XL2(R). Let f, g P L1(R)XL2(R),
and as in the previous proof we define

F (ω) = |a|´ 1
2F [Wψ[f ](a, ¨)](ω) and G(ω) = |a|´ 1

2F [Wψ[g](a, ¨)](ω) .

Then for a ‰ 0, F,G P L2(R); thus Wψ[f ](a, ¨), Wψ[g](a, ¨) P L2(R). Therefore, the previous
proof goes through and we obtain that (6.3.1) holds for f, g P L1(R)XL2(R). In particular,

ż

R

ż

R

ˇ

ˇ

ˇ

1

|a|
Wψ[f ](a, b)

ˇ

ˇ

ˇ

2

dbda = Cψ}f}2L2(R) (6.3.6)

Now let f P L2(R). Choose tfnu8
n=1 Ď L1(R) X L2(R) such that tfnu8

n=1 converges to
f in L2(R). Then tfnu8

n=1 is a Cauchy sequence in L2(R) and the identity above, together
with the linearity of the wavelet transform, shows that
ż

R

ż

R

ˇ

ˇ

ˇ

1

|a|
Wψ[fn](a, b) ´

1

|a|
Wψ[fm](a, b)

ˇ

ˇ

ˇ

2

dbda = Cψ}fn ´ fm}2L2(R) Ñ 0 as n,m Ñ 8 .

This shows that the sequence thnu8
n=1 defined by

hn(a, b) =
1

|a|
Wψ[fn](a, b) =

1

|a|
xfn, ψa,byL2(R)

is a Cauchy sequence in L2(R2); thus thnu8
n=1 converges to some function in L2(R2). On the

other hand, the fact that fn Ñ f in L2(R) shows that thnu8
n=1 converges a.e. to the function

h(a, b) =
1

|a|
Wψ[f ](a, b). Therefore, thnu8

n=1 converges to g in L2(R2) and this shows that
ż

R

ż

R

ˇ

ˇ

ˇ

1

|a|
Wψ[f ](a, b)

ˇ

ˇ

ˇ

2

dbda = }h}2L2(R) = lim
nÑ8

}hn}2L2(R) = lim
nÑ8

ż

R

ż

R

ˇ

ˇ

ˇ

1

|a|
Wψ[fn](a, b)

ˇ

ˇ

ˇ

2

dbda

= Cψ lim
nÑ8

}fn}2L2(R) = Cψ}f}2L2(R) .

This establishes that (6.3.6) holds for all f P L2(R), and we completes the proof of the
theorem using the polarization identity. ˝

Theorem 6.13 (Inversion Formula). If f P L2(R), then f can be reconstructed by the
formula

f(t) =
1

Cψ

ż

R

ż

R
Wψ[f ](a, b)ψa,b(t)

dbda

a2
, (6.3.7)

where the equality holds almost everywhere.



Proof from the textbook. For any g P L2(R), we have, from Theorem 6.10, that

Cψxf, gy
L2(R)

=

ż

R

ż

R
Wψ[f ](a, b)Wψ[g](a, b)

dbda

a2

=

ż

R

ż

R
Wψ[f ](a, b)

( ż
R
g(t)ψa,b(t) dt

) dbda
a2

=

ż

R

(
ż

R

ż

R
Wψ[f ](a, b)ψa,b(t)

dbda

a2

)
g(t) dt.

Since g is an arbitrary element of L2(R), the inversion formula (6.3.7) follows. ˝

Remark 6.14. The problem in this proof again is that the interchange of the order of
integration cannot be guaranteed. Nevertheless, it is possible to show the validity of the
inversion formula for f P L1(R)XL2(R) with pf P L1(R). However, even if this case is proved,
we cannot prove the general result by the density argument since the convergence

lim
nÑ8

ż

R

ż

R
Wψ[fn](a, b)ψa,b(t)

dbda

a2
=

ż

R

ż

R
Wψ[f ](a, b)ψa,b(t)

dbda

a2
.

cannot be guaranteed.

Proof. For fixed positive constants ε, A, B satisfying ε ă A, we define an operator S(ε, A,B)

on L2(R) by

[S(ε, A,B)f ](t) =
1

Cψ

ż

εă|a|ăA

ż

|b|ăB

Wψ[f ](a, b)ψa,b(t)
dbda

a2
f P L2(R) .

Our goal is to show that S(ε, A,B)f Ñ f in L2(R) as ε Ñ 0+ and A,B Ñ 8.
To see the L2 convergence, we note that

›

›S(ε, A,B)f ´ f
›

›

L2(R) = sup
}g}L2(R)=1

ˇ

ˇ

ˇ

@

S(ε, A,B)f ´ f, g
D

L2(R)

ˇ

ˇ

ˇ

For g P L2(R),
@

S(ε, A,B)f, g
D

L2(R)
=

1

Cψ

ż

R

ż

εă|a|ăA

ż

|b|ăB

Wψ[f ](a, b)ψa,b(t)g(t)
dbda

a2
dt. (6.3.8)

We first show that the integral above is absolutely convergent. By the Tonelli Theorem,
ż

R

ż

εă|a|ăA

ż

|b|ăB

ˇ

ˇWψ[f ](a, b)
ˇ

ˇ

ˇ

ˇψa,b(t)
ˇ

ˇ

ˇ

ˇg(t)
ˇ

ˇ

dbda

a2
dt

=

ż

εă|a|ăA

ż

|b|ăB

ˇ

ˇWψ[f ](a, b)
ˇ

ˇ

(
ż

R

ˇ

ˇψa,b(t)
ˇ

ˇ

ˇ

ˇg(t)
ˇ

ˇdt

)
dbda

a2

=

[
ż

εă|a|ăA

ż

|b|ăB

ˇ

ˇWψ[f ](a, b)
ˇ

ˇ

(
ż

R

ˇ

ˇψa,b(t)
ˇ

ˇ

2
dt

)1
2 dbda

a2

]
}g}L2(R)

=

(
ż

εă|a|ăA

ż

|b|ăB

ˇ

ˇ

ˇ

1

|a|
Wψ[f ](a, b)

ˇ

ˇ

ˇ

2

dbda

)1
2
(
ż

εă|a|ăA

ż

|b|ăB

ż

R

ˇ

ˇψa,b(t)
ˇ

ˇ

2
dt
dbda

a2

)1
2

}g}L2(R)

=
a

Cψ}f}L2(R)}g}L2(R)

(
ż

εă|a|ăA

ż

|b|ăB

ż

R

ˇ

ˇψa,b(t)
ˇ

ˇ

2
dt
dbda

a2

)1
2



and further computation shows that
ż

εă|a|ăA

ż

|b|ăB

ż

R

ˇ

ˇψa,b(t)
ˇ

ˇ

2
dt
dbda

a2
= }ψ}2L2(R)

ż

εă|a|ăA

ż

|b|ăB

1

|a|2
dbda ă 8 .

Therefore, the integral on the RHS of (6.3.8) is absolutely convergent, so the Fubini Theorem
implies that

@

S(ε, A,B)f, g
D

L2(R)
=

1

Cψ

ż

R

ż

εă|a|ăA

ż

|b|ăB

Wψ[f ](a, b)ψa,b(t)g(t)
dbda

a2
dt

=
1

Cψ

ż

εă|a|ăA

ż

|b|ăB

Wψ[f ](a, b)

ż

R
ψa,b(t)g(t)dt

dbda

a2

=
1

Cψ

ż

εă|a|ăA

ż

|b|ăB

Wψ[f ](a, b)Wψ[g](a, b)
dbda

a2
;

thus (6.3.1) implies that
›

›S(ε, A,B)f ´ f
›

›

L2(R) = sup
}g}L2(R)=1

ˇ

ˇ

ˇ

@

S(ε, A,B)f ´ f, g
D

L2(R)

ˇ

ˇ

ˇ

= sup
}g}L2(R)=1

ˇ

ˇ

ˇ

ˇ

1

Cψ

ż

t(a,b)|εă|a|ăA,|b|ăBuA

Wψ[f ](a, b)Wψ[g](a, b)
d(a, b)

a2

ˇ

ˇ

ˇ

ˇ

ď
1

a

Cψ

ż

t(a,b)|εă|a|ăA,|b|ăBuA

ˇ

ˇ

ˇ

1

|a|
Wψ[f ](a, b)

ˇ

ˇ

ˇ

2

d(a, b) .

The fact that the function (a, b) ÞÑ
1

|a|
Wψ[f ](a, b) belongs to L2(R2) shows that

lim
εÑ0+,A,BÑ8

ż

t(a,b)|εă|a|ăA,|b|ăBuA

ˇ

ˇ

ˇ

1

|a|
Wψ[f ](a, b)

ˇ

ˇ

ˇ

2

d(a, b) = 0 .

This shows that lim
εÑ0+,A,BÑ8

›

›S(ε, A,B)f ´ f
›

›

L2(R) = 0 and the proof is complete. ˝

Remark 6.15. The proof above indeed shows that the RHS integral of (6.3.7) is obtained
by

lim
εÑ0+,BÑ8

ż

εă|a|

ż

|b|ăB

Wψ[f ](a, b)ψa,b(t)
dbda

a2
.

On the other hand, for f P L1(R)XL2(R) with pf P L1(R), the RHS integral of (6.3.7) means
the usual Lebesgue integral.

6.4 The Discrete Wavelet Transforms
It has been stated in the last section that the continuous wavelet transform (6.2.4) is a two-
parameter representation of a function. In many applications, especially in signal processing,
data are represented by a finite number of values, so it is important and often useful to
consider discrete versions of the continuous wavelet transform (6.2.4). Our goal in this
section is to answer the fundamental question whether we can reconstruct f from discrete



values of its wavelet transform Wψ[f ]. In particular, we would like to reconstruct f using
the discrete values of Wψ[f ] at a = am0 and b = nb0a

m
0 ; that is,

(Wψ[f ])(a
m
0 , nb0a

m
0 ) = a

´m
2

0

ż

R
f(t)ψ(a´m

0 t ´ nb0)dt,

where a0 ‰ 0, b0 are some given and fixed constants, and m, n are integers. Define

ψm,n(x) = a
´m/2
0 ψ(a´m

0 x ´ nb0) = (Dam0
Tnb0ψ)(x) , (6.4.1)

where we abuse the use of notation here and do not confuse with (6.2.3). Using (6.4.1), we
have

(Wψ[f ])(a
m
0 , nb0a

m
0 ) = xf, ψm,ny

L2(R)
.

The discrete wavelet transform represents a function by a countable set of wavelet coeffi-
cients, which correspond to points on a two dimensional grid or lattice of discrete points in
the scale-time domain indexed by m and n.

The answer to the fundamental question is positive if the wavelets form a complete
system in L2(R). The problem is whether there exists another function g P L2(R) such that

xf, ψm,ny
L2(R)

= xg, ψm,ny
L2(R)

for all m, n P Z implies f = g. In practice, the evaluation/measurement of xf, ψm,ny
L2(R)

might not be very accurate, so the best we can hope is that f and g are “close” if the two
sequences

␣

xf, ψm,ny
L2(R)

(

m,nPZ and
␣

xg, ψm,ny
L2(R)

(

m,nPZ are “close”. This property can be
guaranteed if there exists an A ą 0 independent of f , such that

A}f}2L2(R) ď

8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

ˇ

ˇ

2

since the inequality above implies that

A}f ´ g}2L2(R) ď

8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

´ xg, ψm,ny
L2(R)

ˇ

ˇ

2
.

On the other hand, we also want two sequences
␣

xf, ψm,ny
L2(R)

(

m,nPZ to be “close” if f and
g are “close”. This will be guaranteed if there exists a B ą 0 independent of f such that

8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

ˇ

ˇ

2
ď B}f}2L2(R)

since the inequality above implies that
8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

´ xg, ψm,ny
L2(R)

ˇ

ˇ

2
ď B}f ´ g}2L2(R) .

These two requirements are best studied in terms of the so-called frames.



6.4.1 Frames and frame operators

In the following, when the inner product of a Hilbert space is specified, } ¨ } is used to denote
the induced norm of the inner product.

Definition 6.16 (Frames). A collection of countably many vectors txnu in a Hilbert space
(H, x¨, ¨y) is called a frame if these exist constants A, B ą 0 such that

A}x}2 ď
ÿ

n

ˇ

ˇxx, xny
ˇ

ˇ

2
ď B}x}2 @x P H. (6.4.2)

The constants A and B are called frame bounds, and a frame satisfying (6.4.2) is called a
frame with frame bounds A and B. If A = B, then the frame is called tight. The frame is
called exact if no proper subset of txnu is also a frame.

The following example shows that tightness and exactness are not related.

Example 6.17. If tenu is an orthonormal basis of H, then

(i) te1, e1, e2, e2, e3, e3, ¨ ¨ ¨ u is a tight frame with frame bounds A = B = 2, but it is not
exact.

(ii) t
?
2e1, e2, e3, ¨ ¨ ¨ u is an exact frame but not tight since the frame bounds are easily

seen as A = 1 and B = 2.

(iii)
!

e1,
e2
?
2
,
e2
?
2
,
e3
?
3
,
e3
?
3
,
e3
?
3
, ¨ ¨ ¨

)

is a tight frame with the frame bound A = B = 1 but

not an orthonormal basis.

(iv)
!

e1,
e2
2
,
e3
3
, ¨ ¨ ¨

)

is a complete orthogonal sequence but is not a frame.

Theorem 6.18. Let txnu be a collection of countably many vectors in a Hilbert space
(H, x¨, ¨y). Then the following two statements are equivalent.

(a) The operator Tx =
ř

n

xx, xnyxn is a bounded linear operator on H with AI ď T ď BI,
where I is the identity operator on H.

(b) txnu is a frame with frame bounds A and B.

Proof. Before proceeding, we recall that the relation AI ď T ď BI means

xAIx, xy ď xTx, xy ď xBIx, xy @ x P H, (6.4.3)

and note that if the series
ř

n

xx, xnyxn converges (if it is an infinite sum) for some particular
x P H, then

A

ÿ

n

xx, xnyxn, y
E

=
ÿ

n

A

xx, xnyxn, y
E

=
ÿ

n

xx, xnyxxn, yy . (6.4.4)



“(a) ñ (b)” Suppose that (a) holds. Since T is defined onH, the series
ř

n

xx, xnyxn converges

to Tx for all x P H; thus (6.4.4) implies that

xTx, xy =
ÿ

n

xx, xnyxxn, xy =
ÿ

n

ˇ

ˇxx, xny
ˇ

ˇ

2
.

Using (6.4.3), we conclude that txnun is a frame with frame bounds A and B. This
shows that (a) implies (b).

“(b) ñ (a)” We next prove that (b) implies (a). Suppose (b) holds. First we claim that
Tx =

ř

n

xx, xnyxn converges for all x P H. To see this, it suffices to show the case

that txnu = txnu8
n=1 is an infinite sequence. Recall that in any Hilbert space H the

norm of any element x P H is given by

}x} = sup
}y}=1

ˇ

ˇxx, yy
ˇ

ˇ .

For a fixed x P H, we consider T
N
x =

N
ř

n=1

xx, xnyxn . For 0 ď M ă N , we have, by the
Cauchy-Schwarz inequality,

›

›T
N
x ´ T

M
x
›

›

2
= sup

}y}=1

ˇ

ˇxT
N
x ´ T

M
x, yy

ˇ

ˇ

2
= sup

}y}=1

ˇ

ˇ

ˇ

ˇ

ÿ

M+1ďnďN

xx, xnyxxn, yy

ˇ

ˇ

ˇ

ˇ

2

ď sup
}y}=1

(
ÿ

M+1ďnďN

ˇ

ˇxx, xny
ˇ

ˇ

2
)(

ÿ

M+1ďnďN

ˇ

ˇxxn, yy
ˇ

ˇ

2
)

ď sup
}y}=1

(
ÿ

M+1ďnďN

ˇ

ˇxx, xny
ˇ

ˇ

2
)
B}y}2

= B
(

ÿ

M+1ďnďN

ˇ

ˇxx, xny
ˇ

ˇ

2
)

Ñ 0 as M,N Ñ 8.

Thus, tT
N
xu8

N=1 is a Cauchy sequence in H and hence it is convergent as N Ñ 8.
Therefore, Tx ”

ř

n

xx, xnyxn converges for all x P H, and (6.4.4) implies that

xTx, yy =
ÿ

n

xx, xnyxxn, yy .

Following the preceding argument we obtain that

}Tx}2 = sup
}y}=1

ˇ

ˇxTx, yy
ˇ

ˇ

2
= sup

}y}=1

ˇ

ˇ

ˇ

ˇ

ÿ

n

xx, xnyxxn, yy

ˇ

ˇ

ˇ

ˇ

2

ď B
(
ÿ

n

ˇ

ˇxx, xny
ˇ

ˇ

2
)

ď B2}x}2

which implies that }T } ď B. This shows the boundedness of T . The relation AI ď

T ď BI follows from that xTx, xy =
ř

n

ˇ

ˇxx, xny
ˇ

ˇ

2 and the frame txnu has frame bounds
A and B. ˝

Definition 6.19 (Frame Operator). To each frame txnu in a Hilbert space there corresponds
an operator T , called the frame operator, from H into itself defined by

Tx =
ÿ

n

xx, xnyxn @x P H. (6.4.5)



We remark that the frame operator associated with a frame is self-adjoint because of
(6.4.4):

xTx, yy =
A

ÿ

n

xx, xnyxn, y
E

=
ÿ

n

A

xx, xnyxn, y
E

=
ÿ

n

xx, xnyxxn, yy

=
ÿ

n

xx, xnyxxn, yy =
ÿ

n

xy, xnyxxn, xy = xTy, xy = xx, Tyy .

Theorem 6.20. Suppose txnu is a frame on a Hilbert space (H, x¨, ¨y) with frame bounds A
and B, and T is the corresponding frame operator. Then,

(a) T is invertible and B´1I ď T´1 ď A´1I. Furthermore, T´1 is a positive operator and
hence it is self-adjoint.

(b) tT´1xnu is a frame with frame bounds B´1 and A´1.

(c) Every x P H can be expressed in the form

x =
ÿ

n

xx, T´1xnyxn =
ÿ

n

xx, xnyT´1xn . (6.4.6)

Proof. (a) Since the frame operator T satisfies the relation

AI ď T ď BI ;

it follows that
I ´ B´1T ď I ´ B´1AI =

(
1 ´

A

B

)
I

and hence
›

›I ´ B´1T
›

› ď

(
1 ´

A

B

)
}I} ă 1 .

Thus, B´1T is invertible and consequently so is T . In view of the fact that

xT´1x, xy = xT´1x, TT´1xy ě AxT´1x, T´1xy = A}T´1x}2 ‰ 0 whenever x ‰ 0 ,

we conclude that T´1 is a positive operator and hence it is self-adjoint. Finally, since
T is a bounded positive operator, it is possible to define T 1

2 (using the spectral de-
composition in functional analysis) and T 1

2 is also positive definite (hence self-adjoint)
and invertible. Therefore, by AI ď T ď BI, the fact that

A´1I ´ T´1 = A´1T´ 1
2 (T ´ AI)T´ 1

2 and T´1 ´ B´1I = B´1T´ 1
2 (BI ´ T )T´ 1

2

shows that
B´1I ď T´1 ď A´1I .

(b) Since T´1 is self-adjoint, we have
ÿ

n

xx, T´1xnyT´1xn = T´1
(
ÿ

n

xT´1x, xnyxn

)
= T´1

(
T (T´1x)

)
= T´1x. (6.4.7)



This gives

xT´1x, xy =
A

ÿ

n

xx, T´1xnyT´1xn, x
E

=
ÿ

n

xx, T´1xnyxT´1xn, xy .

Hence,
xT´1x, xy =

ÿ

n

xx, T´1xnyxx, T´1xny =
ÿ

n

ˇ

ˇxx, T´1xny
ˇ

ˇ

2
.

Using the result from (a); that is, B´1I ď T ď A´1I; it turns out that

B´1xIx, xy ď xT´1x, xy ď A´1xIx, xy

and hence
B´1}x}2 ď xT´1x, xy ď A´1}x}2 .

By Theorem 6.18 this shows that tT´1xnu is a frame with frame bounds B´1 and A´1.

(c) We replace x by T´1x in (6.4.5) to derive

x =
ÿ

n

xT´1x, xnyxn =
ÿ

n

xx, T´1xnyxn .

Similarly, replacing x by Tx in (6.4.7) gives

x =
ÿ

n

xTx, T´1xnyT´1xn =
ÿ

n

xx, xnyT´1xn .

This completes the proof. ˝

Definition 6.21. Let H be a separable Hilbert space, txnu be a frame in H, and T be the
corresponding frame operator of frame txnu. The frame tT´1xnu is called the dual frame
of txnu.

By writing T´1xn as rxn, according to formula (6.4.6), the reconstruction formula for x
has the form

x =
ÿ

n

xx, rxnyxn =
ÿ

n

xx, xnyrxn .

It is easy to verify that the dual frame of trxnu is the original frame txnu.

Theorem 6.22. Suppose txnu is a frame in a separable Hilbert space H with frame bounds
A and B. If there exists a sequence of scalars tcnu such that x =

ř

n

cnxn, then

ÿ

n

|cn|2 =
ÿ

n

|an|2 +
ÿ

n

|an ´ cn|2 ,

where an = xx, T´1xny so that x =
ř

n

anxn.



Proof. Note that xxn, T
´1xy = xT´1xn, xy = an. Substituting x =

ř

n

anxn in the first term

in the inner product xx, T´1xy gives

xx, T´1xy =
A

ÿ

n

anxn, T
´1x

E

=
ÿ

n

anxxn, T
´1xy =

ÿ

n

|an|2 .

Similarly, substituting x =
ř

n

cnxn into the first term in the inner product xx, T´1xy yields

xx, T´1xy =
A

ÿ

n

cnxn, T
´1x

E

=
ÿ

n

cnxxn, T
´1xy =

ÿ

n

cnan .

Consequently,
ÿ

n

|an|2 =
ÿ

n

cnan =
ÿ

n

cnan . (6.4.8)

Finally, we obtain, by using (6.4.8),
ÿ

n

|an|2 +
ÿ

n

|an ´ cn|2 =
ÿ

n

|an|2 +
ÿ

n

(
|an|2 ´ ancn ´ cnan + |cn|2

)
=
ÿ

n

|cn|2 .

This completes the proof. ˝

Theorem 6.23. Let txnu be a frame in a Hilbert space (H, x¨, ¨y). If txnu is exact, then
txnu and its dual frame tT´1xnu is biorthonormal; that is,

xxm, T
´1xny = δmn @m,n P Z . (6.4.9)

Proof. Suppose that txnu is a frame with frame bounds A and B. Let I denote the index
set, and m P I be a fixed index. Since txnu is an exact frame,

A ď
ÿ

n

ˇ

ˇxx, xny
ˇ

ˇ

2
ď B @x P H with }x} = 1

but the fact that txnunPIztmu is not a frame implies that for each k P N, there exists yk P H

with }yk} = 1 such that
1 ą k

ÿ

n‰m

ˇ

ˇxyk, xny
ˇ

ˇ

2
.

Adding ε
ˇ

ˇxyk, xmy
ˇ

ˇ

2 on both sides of the inequality above, we find that

1 + ε
ˇ

ˇxyk, xmy
ˇ

ˇ

2
ą (k ´ ε)

ÿ

n‰m

ˇ

ˇxyk, xny
ˇ

ˇ

2
+ ε

ÿ

n

ˇ

ˇxyk, xny
ˇ

ˇ

2

ě (k ´ ε)
ÿ

n‰m

ˇ

ˇxyk, xny
ˇ

ˇ

2
+ Aε. (6.4.10)

Letting ε = 1/A in (6.4.10) and applying the Cauchy-Schwartz inequality we obtain that

(Ak ´ 1)
ÿ

n‰m

ˇ

ˇxyk, xny
ˇ

ˇ

2
ă
ˇ

ˇxyk, xmy
ˇ

ˇ

2
ď }xm}2 ;

thus lim
kÑ8

ř

n‰m

ˇ

ˇxyk, xny
ˇ

ˇ

2
= 0 . On the other hand, (6.4.6) implies that

xyk, xmy =
ÿ

n

xyk, xnyxT´1xn, xmy



so that (
1 ´ xT´1xm, xmy

)
xyk, xmy =

ÿ

n‰m

xyk, xnyxT´1xn, xmy .

By Theorem 6.20 and the Cauchy-Schwartz inequality we have
ˇ

ˇ1 ´ xT´1xm, xmy
ˇ

ˇ

ˇ

ˇxyk, xmy
ˇ

ˇ ď

(
ÿ

n‰m

ˇ

ˇxyk, xny
ˇ

ˇ

2
) 1

2
(
ÿ

n‰m

ˇ

ˇxT´1xn, xmy
ˇ

ˇ

2
) 1

2

ď
1

?
A

(
ÿ

n‰m

ˇ

ˇxyk, xny
ˇ

ˇ

2
) 1

2
}xm} Ñ 0 as k Ñ 8 .

Letting ε = k in (6.4.10) shows that
ˇ

ˇxyk, xmy
ˇ

ˇ

2
ě A´

1

k
, so the inequality above shows that

xT´1xm, xmy = 1 . (6.4.11)

The rest of (6.4.9); that is, xxm, T
´1xny = 0 for n ‰ m, follows from the identity

xxm, T
´1xmy =

ÿ

n

xxm, T
´1xnyxxn, T

´1xmy =
ˇ

ˇxxm, T
´1xmy

ˇ

ˇ

2
+

ÿ

n‰m

ˇ

ˇxxm, T
´1xny

ˇ

ˇ

2

and the identity (6.4.11). ˝

6.4.2 A sufficient condition for a function generating a frame

As pointed out above, we want the family of functions tψm,num,nPZ to form a frame in L2(R).
Obviously, the double indexing of the functions is irrelevant. The following theorem gives
fairly general sufficient conditions for a sequence tψm,num,nPZ to constitute a frame in L2(R).

Theorem 6.24. Let ψ P L2(R), and a0 ą 1. If

(i) there exist A, B ą 0 such that A ď

8
ÿ

m=´8

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

2
ď B for all 1 ď ω ď a0, and

(ii) sup
ωPR

8
ÿ

m=´8

ˇ

ˇ pψ(am0 )
ˇ

ˇ

ˇ

ˇ pψ(am0 ω + x)
ˇ

ˇ ď C(1 + |x|)´(1+δ) for some constants C and δ ą 0,

then there exists rb ą 0 such that the family tψm,num,nPZ given by

ψm,n = a
´m/2
0 ψ(a´m

0 x ´ nb0) = (Dam0
Tnb0ψ)(x)

forms a frame in L2(R) for any b0 P (0,rb).

Proof. Before proceeding, we remark that (i) is equivalent to that there exist A, B ą 0 such
that

A ď

8
ÿ

m=´8

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

2
ď B @ω P Rzt0u (6.4.12)

due to the fact that a0 ą 1. Suppose f P L2(R). By the Plancherel identity (1.1.15),
8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

ˇ

ˇ

2
=

8
ÿ

m,n=´8

ˇ

ˇxf,Dam0
Tnb0ψy

L2(R)

ˇ

ˇ

2

=
8
ÿ

m,n=´8

1

2π

ˇ

ˇ

ˇ
x pf,Da´m

0
M´nb0

pψy
L2(R)

ˇ

ˇ

ˇ

2

=
1

2π

8
ÿ

m,n=´8

ˇ

ˇ

ˇ

ˇ

ż

R

pf(ω)a
m/2
0 eib0a

m
0 nω pψ(am0 ω)dω

ˇ

ˇ

ˇ

ˇ

2

.



Since, for any s ą 0, the integral
ż

R
g(t)dt can be written as

8
ÿ

ℓ=´8

ż s

0

g(t+ ℓs)dt

provided that g P L1(R), by taking s = 2π

b0am0
, we obtain

8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

ˇ

ˇ

2

=
1

2π

8
ÿ

m,n=´8

am0

ˇ

ˇ

ˇ

ˇ

8
ÿ

ℓ=´8

ż s

0

pf(ω + ℓs)e2πinω/s pψ(am0 (ω + ℓs))dω

ˇ

ˇ

ˇ

ˇ

2

=
1

2π

8
ÿ

m,n=´8

am0

ˇ

ˇ

ˇ

ˇ

ż s

0

e2πinω/s
( 8

ÿ

ℓ=´8

pf(ω + ℓs) pψ(am0 (ω + ℓs))

)
dω

ˇ

ˇ

ˇ

ˇ

2

=
1

2π

8
ÿ

m=´8

am0 s
2

8
ÿ

n=´8

ˇ

ˇ

ˇ

ˇ

1

s

ż s

0

e2πinω/s
( 8

ÿ

ℓ=´8

pf(ω + ℓs) pψ(am0 (ω + ℓs))

)
dω

ˇ

ˇ

ˇ

ˇ

2

, (6.4.13)

where we have used (a version of) Theorem 1.26 to conclude that the series

Fm(ω) ”

8
ÿ

ℓ=´8

pf(ω + ℓs) pψ(am0 (ω + ℓs))

converges in L1(0, s) so we can switch the order of infinite sum and the integration. Next
we show that Fm P L2(0, s) by showing that the series

Gm(ω) ”

8
ÿ

ℓ=´8

ˇ

ˇ pf(ω + ℓs)
ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇ

converges in L2(0, s). To see this, we apply the Monotone Convergence Theorem and find
ż s

0

ˇ

ˇGm(ω)
ˇ

ˇ

2
dω =

ż s

0

( 8
ÿ

ℓ=´8

ˇ

ˇ pf(ω + ℓs)
ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇ

)
Gm(ω)dω

=
8
ÿ

ℓ=´8

ż s

0

ˇ

ˇ pf(ω + ℓs)
ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇGm(ω)dω

=
8
ÿ

ℓ=´8

ż (ℓ+1)s

ℓs

ˇ

ˇ pf(ω)
ˇ

ˇ

ˇ

ˇ pψ(am0 ω)
ˇ

ˇGm(ω ´ ℓs)dω

=

ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

ˇ

ˇ pψ(am0 ω)
ˇ

ˇGm(ω)dω,

where the s-periodicity of Gm is used to conclude the last equality. Summing over m P Z,
we obtain that

8
ÿ

m=´8

ż s

0

ˇ

ˇGm(ω)
ˇ

ˇ

2
dω =

8
ÿ

ℓ=´8

8
ÿ

m=´8

ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

ˇ

ˇ pf(ω + ℓs)
ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇdω.



By applying Cauchy-Schwarz inequality twice,
8
ÿ

m=´8

ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

ˇ

ˇ pf(ω + ℓs)
ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇdω

ď

8
ÿ

m=´8

(
ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

2ˇ
ˇ pψ(am0 ω)

ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇdω

)1
2

ˆ

ˆ

(
ż

R

ˇ

ˇ pf(ω + ℓs)
ˇ

ˇ

2ˇ
ˇ pψ(am0 ω)

ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇdω

)1
2

ď

( 8
ÿ

m=´8

ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

2ˇ
ˇ pψ(am0 ω)

ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇdω

)1
2

ˆ

ˆ

( 8
ÿ

m=´8

ż

R

ˇ

ˇ pf(ω + ℓs)
ˇ

ˇ

2ˇ
ˇ pψ(am0 ω)

ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇdω

)1
2

,

and the Monotone Convergence Theorem again allow us to switch the order of infinite sum
and the integration so that

8
ÿ

m=´8

ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

ˇ

ˇ pf(ω + ℓs)
ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇdω

ď

(
ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

2
8
ÿ

m=´8

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇdω

)1
2

ˆ

ˆ

(
ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

2
8
ÿ

m=´8

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

ˇ

ˇ pψ(am0 (ω ´ ℓs))
ˇ

ˇdω

)1
2

.

Define β(ξ) = sup
ωPR

8
ř

m=´8

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

ˇ

ˇ pψ(am0 ω + ξ)
ˇ

ˇ. The inequality above leads to that

8
ÿ

m=´8

ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

ˇ

ˇ pf(ω + ℓs)
ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇdω

ď

(
ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

2
β(am0 ℓs)dω

)1
2
(
ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

2
β(´am0 ℓs)

ˇ

ˇdω

)1
2

ď }f}2L2(R)
[
β(am0 ℓs)β(´a

m
0 ℓs)

] 1
2 = }f}2L2(R)

[
β
(2πℓ
b0

)
β
(

´
2πℓ

b0

)] 1
2
. (6.4.14)

Since condition (ii) implies that
8
ř

ℓ=´8

[
β
(
2πℓ

b0

)
β
(

´
2πℓ

b0

)] 1
2

ă 8 , we find that

8
ÿ

m=´8

ż s

0

ˇ

ˇGm(ω)
ˇ

ˇ

2
dω ď }f}2L2(R)

8
ÿ

ℓ=´8

[
β
(2πℓ
b0

)
β
(

´
2πℓ

b0

)] 1
2

ă 8 .

Therefore, Gm P L2(0, s) for all m P Z; thus Fm P L2(0, s) for all m P Z as well.
We next repeat the steps above (but use the Domninated Convergence Theorem instead

of the Monotone Convergence Theorem) to show that tψm,num,nPZ is a frame. By the Parseval
identity,

8
ÿ

n=´8

ˇ

ˇ

ˇ

ˇ

1

s

ż s

0

e2πinω/s
( 8

ÿ

ℓ=´8

pf(ω + ℓs) pψ(am0 (ω + ℓs))

)
dω

ˇ

ˇ

ˇ

ˇ

2

=
1

s

ż s

0

ˇ

ˇFm(ω)
ˇ

ˇ

2
dω



so (6.4.13) and the Dominated Convergence Theorem implies that

8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

ˇ

ˇ

2
=

1

2π

8
ÿ

m=´8

am0 s

ż s

0

ˇ

ˇFm(ω)
ˇ

ˇ

2
dω =

1

b0

8
ÿ

m=´8

ż s

0

ˇ

ˇFm(ω)
ˇ

ˇ

2
dω

=
1

b0

8
ÿ

m,ℓ=´8

ż s

0

pf(ω + ℓs) pψ(am0 (ω + ℓs))Fm(ω)dω

=
1

b0

8
ÿ

m,ℓ=´8

ż (ℓ+1)s

ℓs

pf(ω) pψ(am0 ω)Fm(ω ´ ℓs)dω.

Since Fm is s-periodic, the identity above implies that

8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

ˇ

ˇ

2

=
1

b0

8
ÿ

m,ℓ=´8

ż (ℓ+1)s

ℓs

pf(ω) pψ(am0 ω)Fm(ω)dω =
1

b0

8
ÿ

m=´8

ż

R

pf(ω) pψ(am0 ω)Fm(ω)dω

=
1

b0

8
ÿ

m,ℓ=´8

ż

R

pf(ω) pψ(am0 ω)
pf(ω+ ℓs) pψ(am0 (ω + ℓs))dω

=
1

b0

8
ÿ

m=´8

ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

2ˇ
ˇ pψ(am0 ω)

ˇ

ˇ

2
dω +

1

b0

ÿ

m,ℓPZ
ℓ‰0

ż

R

pf(ω) pψ(am0 ω)
pf(ω+ ℓs) pψ(am0 (ω + ℓs))dω

=
1

b0

ż

R

ˇ

ˇf(ω)
ˇ

ˇ

2
8
ÿ

m=´8

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

2
dω +

1

b0

ÿ

m,ℓPZ
ℓ‰0

ż

R

pf(ω) pψ(am0 ω)
pf(ω+ ℓs) pψ(am0 (ω + ℓs))dω.

Therefore, using (6.4.14) we obtain that
ˇ

ˇ

ˇ

ˇ

8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

ˇ

ˇ

2
´

1

b0

ż

R

ˇ

ˇf(ω)
ˇ

ˇ

2
8
ÿ

m=´8

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

2
dω

ˇ

ˇ

ˇ

ˇ

ď
1

b0

ÿ

m,ℓPZ
ℓ‰0

ż

R

ˇ

ˇ pf(ω)
ˇ

ˇ

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

ˇ

ˇ pf(ω + ℓs)
ˇ

ˇ

ˇ

ˇ pψ(am0 (ω + ℓs))
ˇ

ˇdω

ď
1

b0
}f}2L2(R)

ÿ

ℓPZ
ℓ‰0

[
β
(2πℓ
b0

)
β
(

´
2πℓ

b0

)] 1
2
=

2

b0
}f}2L2(R)

8
ÿ

ℓ=1

[
β
(2πℓ
b0

)
β
(

´
2πℓ

b0

)] 1
2
.

Define

A(b0) =
1

b0

(
inf

ωPRzt0u

8
ÿ

m=´8

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

2
´ 2

8
ÿ

ℓ=1

[
β
(2πℓ
b0

)
β
(

´
2πℓ

b0

)] 1
2

)
,

B(b0) =
1

b0

(
sup

ωPRzt0u

8
ÿ

m=´8

ˇ

ˇ pψ(am0 ω)
ˇ

ˇ

2
+ 2

8
ÿ

ℓ=1

[
β
(2πℓ
b0

)
β
(

´
2πℓ

b0

)] 1
2

)
.

Then

A(b0)}f}2L2(R) ď

8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

ˇ

ˇ

2
ď B(b0)}f}2L2(R) ,



so using (6.4.12) the theorem is concluded provided we show that

lim
b0Ñ0

8
ÿ

ℓ=1

[
β
(2πℓ
b0

)
β
(

´
2πℓ

b0

)] 1
2
= 0 . (6.4.15)

Nevertheless, condition (ii) implies that β(ξ) ď C(1 + |ξ|)´1´δ; thus

8
ÿ

ℓ=1

[
β
(2πℓ
b0

)
β
(

´
2πℓ

b0

)] 1
2

ď C
8
ÿ

ℓ=1

(
1 +

2πℓ

b0

)´1´δ

ď C

ż 8

0

(
1 +

2πx

b0

)´1´δ

dx =
Cb0
2πδ

;

thus (6.4.15) is established. This completes the proof. ˝

Remark 6.25. Having established Theorem 6.24, we choose b0 in the form a´N
0 for some

N P N such that b0 P (0,rb). Let ϕ = ψ
N,0

or ϕ(x) = a
´N/2
0 ψ(a´N

0 x). Then for this choice of
b0, we have

(Dam0
Tnb0ψ)(x) = a

´m
2

0 ψ
(
a´m
0 x ´ na´N

0

)
= a

´m´N
2

0 a
´N

2
0 ψ

(
a´N
0 (a´m+N

0 x ´ n)
)

= a
´m´N

2
0 ϕ(a´m+N

0 x ´ n) = ϕm´N,n(x) ,

where ϕm,n(x) ” a
´m/2
0 ϕ(a´m

0 x ´ n). By the fact that
␣

Dam0
Tnb0ψ

(

m,nPZ is a frame, there
exist A, B ą 0 such that

A}f}2L2(R) ď
ÿ

m,nPZ

ˇ

ˇxf, ϕm´N,ny
L2(R)

ˇ

ˇ

2
ď B}f}2L2(R) .

Since
ř

m,nPZ

ˇ

ˇxf, ϕm´N,ny
L2(R)

ˇ

ˇ

2
=

ř

m,nPZ

ˇ

ˇxf, ϕm,ny
L2(R)

ˇ

ˇ

2, we conclude that tϕm,num,nPZ is also a

frame.

6.4.3 Riesz basis

A frame might have redundant vectors which makes the expression of a vector as the linear
combination of vectors in a frame not unique. What we really want is a basis. The last part
of this sub-section contributes to the Riesz basis.

Definition 6.26. Let H be a Hilbert space. A collection of vectors txnunPI is called a Riesz
basis of H if there exist a bounded linear bijection T : H Ñ H and an orthonormal basis
tenunPI of H such that Ten = xn for every n P I.

Theorem 6.27. Let txnu be a collection of countably many vectors in a separable Hilbert
space (H, x¨, ¨y). The following two statements are equivalent:

1. txnu is a Riesz basis of H.

2. The linear span of txnu is dense in H, and there exist A, B ą 0 such that

A
ÿ

n

|cn|2 ď

›

›

›

›

ÿ

n

cnxn

›

›

›

›

2

ď B
ÿ

n

|cn|2 whenever
ÿ

n

|cn|2 ă 8 . (6.4.16)



Proof. W.L.O.G. we assume that H is infinite dimensional, and we write txnu as txnu8
n=1.

“ñ” Since txnu8
n=1 is a Riesz basis of H, there exist a bounded invertible linear map T

and an orthonormal basis tenu8
n=1 of H satisfying Ten = xn for all n P N. By the

boundedness and invertibility of T , there exist A, B ą 0 such that

m}x} ď }Tx} ď M}x} @ x P H.

Note that the lower bound is due to the open mapping theorem. Since x =
8
ř

n=1

xx, enyen,
the Parseval identity implies that

m2
8
ÿ

n=1

|cn|2 ď

›

›

›

›

T
( 8
ÿ

n=1

cnen

)›
›

›

›

2

ď M2
8
ÿ

n=1

|cn|2 @ tcnu8
n=1 P ℓ2.

By the boundedness of T and the convergence of
8
ř

n=1

cnen in H for any given tcnu8
n=1 P

ℓ2, we conclude that
›

›

›

›

T
( 8
ÿ

n=1

cnen

)›
›

›

›

= lim
nÑ8

›

›

›

›

T
( n
ÿ

k=1

ckek

)›
›

›

›

= lim
nÑ8

›

›

›

›

n
ÿ

k=1

ckxk

›

›

›

›

=

›

›

›

›

8
ÿ

n=1

cnxn

›

›

›

›

.

Therefore, (6.4.16) holds for A = m2 and B =M2.

For the denseness of the linear span of txnu, we note that for each x P H, T´1x P H

can be expressed as
T´1x =

8
ÿ

n=1

@

T´1x, en
D

en ;

thus the boundedness of T shows that

x = T
( 8
ÿ

n=1

@

T´1x, en
D

en

)
=

8
ÿ

n=1

@

T´1x, en
D

Ten =
8
ÿ

n=1

@

T´1x, en
D

xn .

This shows that the linear span of txnu is dense in H.

“ð” Suppose that there exist A, B ą 0 such that (6.4.16) holds. Let tenu8
n=1 be an

orthonormal basis of H, and define T on (a subset of) H by

Tx =
8
ÿ

n=1

xx, enyxn whenever the RHS makes sense.

Using (6.4.16), we find that
8
ř

n=1

xx, enyxn converges for all x P H so that T : H Ñ H

is well-defined and by (6.4.16) again we have

A
8
ÿ

n=1

ˇ

ˇxx, eny
ˇ

ˇ

2
ď

›

›

›

›

8
ÿ

n=1

xx, enyxn

›

›

›

›

2

ď B
8
ÿ

n=1

ˇ

ˇxx, eny
ˇ

ˇ

2
@x P H.

By the Parseval identity, the inequality above is equivalent to that

A}x}2 ď }Tx}2 ď B}x}2 @x P H. (6.4.17)



Therefore, T is bounded and injective. Next we show that T is surjective by showing
that the image of T is dense in H since the image of T must be closed due to (6.4.17).

Suppose that the image of T is not dense in H. Then there exists non-zero z P H

such that xz, Txy = 0 for all x P H. In particular,

xz, xny = xz, Teny = 0 @n P N .

However, since the linear span of txnu is dense in H, the statement above implies that
z = 0 which is a contradiction. Therefore, we establish the existence of a bounded
surjective linear map T : H Ñ H with the property that Ten = xn for all n P N; thus
txnu8

n=1 is a Riesz basis of H. ˝

Theorem 6.28. Let txnu be a collection of countably many vectors in a Hilbert space
(H, x¨, ¨y). Then txnu is an exact frame in H if and only if txnu be a Riesz basis of H.

Proof. Let txnu be a collection of countably many vectors.

“ñ” Suppose that txnu is an exact frame with frame bounds A and B, and T is the
corresponding frame operator. Note that by Theorem 6.23 txnu and tT´1xnu are
bi-orthonormal; that is, xxm, T

´1xny = δmn.

We first show that for every x P H there exists a unique tcnu such that x =
ř

n

cnxn.

The existence of tcnu is clear since txnu is a frame so that Theorem 6.20 shows that

x =
ÿ

n

xx, T´1xnyxn @x P H.

For the uniqueness, we have to show that cm has to agree with xx, T´1xmy for all
m P N. To see this, we note that

xx, T´1xmy =
A

ÿ

n

cnxn, T
´1xm

E

=
ÿ

n

cnxxn, T
´1xmy =

ÿ

n

cnδnm = cm .

Therefore, txnu is a basis.

Next we show that

A2

B

ÿ

n

|cn|2 ď

›

›

›

›

ÿ

n

cnxn

›

›

›

›

2

ď
B2

A

ÿ

n

|cn|2 @ tcnu P ℓ2 . (6.4.18)

Nevertheless, the fact that txnu is a frame with frame bounds A and B as well as that
T is invertible implies that

A}T´1x}2 ď
ÿ

n

ˇ

ˇxT´1x, xny
ˇ

ˇ

2
ď B}T´1x}2 @x P H. (6.4.19)

Since B´1I ď T´1 ď A´1I and T´1 is self-adjoint,

1

B2
}x}2 ď

1

B
xx, T´1xy ď

1

B
}T´ 1

2x}2 ď xT´ 1
2x, T´1T´ 1

2xy = }T´1x}2



and similarly }T´1x}2 ď
1

A2
}x}2. Therefore, (6.4.19) shows that

A

B2
}x}2 ď

ÿ

n

ˇ

ˇxx, T´1xny
ˇ

ˇ

2
ď

B

A2
}x}2 @x P H,

or equivalently,

A2

B

ÿ

n

ˇ

ˇxx, T´1xny
ˇ

ˇ

2
ď }x}2 ď

B2

A

ÿ

n

ˇ

ˇxx, T´1xny
ˇ

ˇ

2
@x P H.

Inequality (6.4.18) then follows from the fact that x =
ř

n

cnxn if and only if cn =

xx, T´1xny for all n P N.

“ð” Suppose that txnu is a Riesz basis of H. Then, there exists an orthonormal basis tenu

and a bounded linear bijection T : H Ñ H such that Ten = xn for all n. For x P H,
we have

ÿ

n

ˇ

ˇxx, xny
ˇ

ˇ

2
=
ÿ

n

ˇ

ˇxx, Teny
ˇ

ˇ

2
=
ÿ

n

ˇ

ˇxT ˚x, eny
ˇ

ˇ

2
= }T ˚x}2 ,

where T ˚ is the adjoint of T . On the other hand, the fact that T is a bounded linear
bijection shows that (T ˚)´1 exists and is bounded. Moreover, we have

›

›(T ˚)´1
›

›

´1
}x} ď }T ˚x} ď }T ˚}}x} ;

thus the collection txnu is a frame (with frame bounds
›

›(T ˚)´1
›

›

´2 and }T ˚}2). The
collection txnu is obviously an exact frame because it ceases to be a basis whenever
any element is deleted from the collection.

This completes the proof. ˝

6.5 Orthonormal Wavelets
Since the discovery of wavelets, orthonormal wavelets with good time-frequency localization
are found to play an important role in wavelet theory and have a great variety of applications.
In general, the theory of wavelets begins with a single function ψ P L2(R), and a family of
functions tψm,num,nPZ is generated from this single function ψ by the operation of binary
dilations (that is, dilation by 2m) and dyadic translation of n2´m so that

ψm,n(x) = 2m/2ψ
(
2m

(
x ´

n

2m
))

= 2m/2ψ(2mx ´ n) , (6.5.1)

where the factor 2m/2 is introduced to ensure orthonormality so that }ψm,n}L2(R) = }ψ}L2(R)

for all m,n P Z.
A situation of interest in applications is to deal with an orthonormal family tψm,num,nPZ;

that is,
xψm,n, ψk,ℓyL2(R)

=

ż

R
ψm,n(t)ψk,ℓ(t)dt = δmkδnℓ , (6.5.2)

where m, n, k, ℓ P Z.
To show how the inner products behave in this formalism, we prove the following lemma.



Lemma 6.29. If ψ and ϕ P L2(R), then

xψm,k, ϕm,ℓyL2(R)
= xψn,k, ϕn,ℓyL2(R)

(6.5.3)

for all m, n, k, ℓ P Z.
Proof. By the substitution of variable x = 2n´mt, we have

xψm,k, ψm,ℓyL2(R)
=

ż

R
2mψ(2mx ´ k)ψ(2mx ´ ℓ)dx =

ż

R
2nψ(2nt ´ k)ψ(2nt ´ ℓ)dt

= xψn,k, ψn,ℓyL2(R)
. ˝

Definition 6.30 (Orthonormal Wavelet). A wavelet ψ P L2(R) is called orthonormal if the
family of functions tψm,num,nPZ defined by (6.5.1) is an orthonormal basis in L2(R).

As in the classical Fourier series, the wavelet series for a function f P L2(R) based on a
given orthonormal wavelet ψ is given by

f(x) =
8
ÿ

m,n=´8

cm,nψm,n(x) , (6.5.4)

where the wavelet coefficients cm,n are given by

cm,n = xf, ψm,ny
L2(R)

(6.5.5)

and the double wavelet series (6.5.4) converges to the function f in the L2-norm.

Example 6.31 (Discrete Haar Wavelet). The simplest example of an orthonormal wavelet
is the classic Haar wavelet (6.2.6). To prove this fact, we first show that tψm,num,nPZ is an
orthonormal set. With ψ defined by (6.2.6) and ψm,n defined by (6.5.1), we have

xψm,n, ψk,ℓyL2(R)
=

ż

R
2m/2ψ(2mx ´ n) ¨ 2k/2ψ(2kx ´ ℓ)dx

(2mx´n=t)
= 2k/22´m/2

ż

R
ψ(t)ψ(2k´m(t+ n) ´ ℓ)dt (6.5.6)

1. For m = k, this result gives

xψm,n, ψk,ℓyL2(R)
=

ż

R
ψ(t)ψ(t+ n ´ ℓ)dt = δ0(n´ℓ) = δnℓ ,

where ψ(t) ‰ 0 in 0 ď t ď 1 and ψ(t´ (ℓ´ n)) ‰ 0 in ℓ´ n ď t ă 1+ ℓ´ n, and these
intervals are disjoint from each other unless n = ℓ.

2. We now consider the case m ‰ k. In view of symmetry, it suffices to consider the case
m ă k. Putting r = k´m ą 0 in (6.5.6), we can complete the proof by showing that,
for k ‰ m,

xψm,n, ψk,ℓyL2(R)
= 2r/2

ż

R
ψ(t)ψ(2rt+ s)dt,

where s = 2rn´ ℓ P Z. In view of the definition of the Haar wavelet ψ, we must prove
that

ż 1
2

0

ψ(2rt+ s)dt ´

ż 1

1
2

ψ(2rt+ s)dt = 0 .



Invoking a simple change of variables 2rt + s = x, with a = s + 2r´1 and b = s + 2r

we find that
ż 1

2

0

ψ(2rt+ s)dt ´

ż 1

1
2

ψ(2rt+ s)dt =

ż a

s

ψ(x)dx ´

ż b

a

ψ(x)dx = 0 ,

where we have used the fact that |a´ s| = |b´ a| = 2r´1 ě 1 and the integral of ψ on
an interval with length not less than 1 is zero to conclude the last equality.

This completes the proof that the Haar wavelet ψ is an orthonormal set.
Next we show that tψm,num,nPZ is indeed a basis in L2(R). Using (6.5.1) the discrete

Haar wavelet is defined by

ψm,n(t) = 2m/2ψ(2mt ´ n) =

$

’

’

’

&

’

’

’

%

2m/2 if n

2m
ď t ă

n+ 1/2

2m
,

´2m/2 if n+ 1/2

2m
ď t ď

n+ 1

2m
,

0 otherwise.

Since tψm,num,nPZ is an orthonormal set, any function f P L2(R) can be expanded in the
wavelet series in the form

f =
8
ÿ

m,n=´8

xf, ψm,ny
L2(R)

ψm,n , (6.5.7)

as long as we can show that

}f}2L2(R) =
8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

ˇ

ˇ

2
@ f P L2(R) . (6.5.8)

To prove this, it suffices to show that (6.5.7)/(6.5.8) holds for the function

f(t) = 1[0,1)(t) =

"

1 if 0 ď t ă 1,

0 otherwise.

since this will show that (6.5.7)/(6.5.8) also holds for a collection of characteristic functions
␣

1[ n
2m

,n+1
2m

)

(

m,nPZ whose linear span is dense in L2(R). Evidently,

xf, ψm,ny
L2(R)

= 0 for m ě 0 or n ‰ 0 and xf, ψm,0yL2(R)
= 2

m
2 if m ă 0 .

Consequently,

8
ÿ

m,n=´8

ˇ

ˇxf, ψm,ny
L2(R)

ˇ

ˇ

2
=

´1
ÿ

m=´8

ˇ

ˇxf, ψm,0yL2(R)

ˇ

ˇ

2
=

8
ÿ

m=1

2´m = 1 = }f}2L2(R) .

This verifies (6.5.8).

Example 6.32 (The Discrete Shannon Wavelet). The Shannon function ψ whose Fourier
transform satisfies

pψ(ω) = 1I(ω) , (6.5.9)



where I = [´2π,´π) Y [π, 2π) is called the Shannon wavelet. This wavelet ψ can directly
be obtained from the inverse Fourier transform of pψ so that

ψ(t) =
1

2π

ż

R
eiωt pψ(ω)dω =

1

2π

[
ż ´π

´2π

eiωdω +

ż 2π

π

eiωdω

]
=

1

πt

(
sin 2πt ´ sin πt

)
=

sin(πt/2)
πt/2

cos 3πt
2

(6.5.10)

Both ψ and pψ are shown in Figure 6.6.

1 2 3´1´2´3
‚ ‚ ‚‚‚‚

ψ(t)

t

pψ(ω)

ω
´2π ´π π 2π

Figure 6.6: The Shannon wavelet and its Fourier transform

We define ψm,n(t) = 2´m/2ψ(2´mt´ n) = (D2mTnψ)(t) whose Fourier transform is given
by

zψm,n(ω) = (D2´mM´n
pψ)(ω) =

#

2
m
2 exp(´iωn2m) if 2mω P I,

0 otherwise.
(6.5.11)

Evidently, supp(zψm,n) X supp(yψk,ℓ) = H for m ‰ k. Hence, by the Plancherel identity
(1.1.15), it turns out that, for m ‰ k,

xψm,n, ψk,ℓyL2(R)
=

1

2π
xzψm,n,yψk,ℓyL2(R)

= 0 . (6.5.12)

For m = k, again by the Plancherel identity (1.1.15) we have

xψm,n, ψk,ℓyL2(R)
=

1

2π
xzψm,n, yψm,ℓyL2(R)

=
1

2π

ż

R

zψm,n(ω)yψm,ℓ(ω)dω

=
1

2π

ż

R
(D2mM´n

pψ)(ω)(D2mM´ℓ
pψ)(ω)dω

=
1

2π
¨ 2´m

ż

R
exp

(
´ iω2´m(n ´ ℓ)

)ˇ
ˇ pψ(2´mω)

ˇ

ˇ

2
dω

=
1

2π

ż

R
exp

(
´ i(n ´ ℓ)σ

)ˇ
ˇ pψ(σ)

ˇ

ˇ

2
dσ

=
1

2π

( ż 2π

´2π

´

ż π

´π

)
exp

(
´ i(n ´ ℓ)σ

)
dω = δnℓ . (6.5.13)

This shows that tψm,num,nPZ is an orthonormal set in L2(R).
Next we show that tψm,num,nPZ is an orthonormal basis in L2(R). Let Im =

␣

ω
ˇ

ˇ 2mω P I
(

.
Note that for a fixed m P Z,

␣

zψm,n
(

nPZ is an orthogonal basis of L2(Im). To see this, we first
note that L2(´2´mπ, 2´mπ) has a Fourier basis

␣

d2´men
(

nPZ, where en(x) = einx as defined in



Section 1.1. Since every f P L2(Im) corresponds to a unique function g P L2(´2´mπ, 2´mπ)

satisfying

g(x) =

#

f(x+ 2´mπ) if 0 ď x ă 2´mπ,

f(x ´ 2´mπ) if ´2´mπ ď x ă 0,

and g =
8
ř

n=´8

@

g, d2´men
D

L2(´2´mπ,2mπ)

d2´men in L2(´2´mπ, 2´mπ), the fact that

d2´men(x ˘ 2´mπ) = (´1)nd2´men(x)

shows that f =
8
ř

n=´8

@

f, d2´men
D

L2(Im)

d2´men in L2(Im), where

@

f, d2´men
D

L2(Im)

=
1

|Im|

ż

Im

f(x)d2´men(x)dx =
2m´1

π

ż

Im

f(x)e´in2mx dx.

Since d2´men = 2´m/2
{ψm,´n for all m,n P Z, we conclude that

␣

zψm,n
(

nPZ is an orthogonal
basis of L2(Im) and we have

f = 2´m
8
ÿ

n=´8

@

f,{ψm,´n
D

L2(Im)

{ψm,´n = 2´m
8
ÿ

n=´8

@

f,zψm,n
D

L2(Im)

zψm,n @ f P L2(Im) .

Now, every f P L2(R) can be expressed as

f = F ´1
[
F [f ]

]
= F ´1

[ 8
ÿ

m=´8

pf1Im
]
= F ´1

[ 8
ÿ

m=´8

2´m
8
ÿ

n=´8

x pf1Im ,zψm,ny
L2(Im)

zψm,n

]
= F ´1

[ 8
ÿ

m=´8

8
ÿ

n=´8

1

2π
x pf,zψm,ny

L2(R)
zψm,n

]
= F ´1

[ 8
ÿ

m=´8

8
ÿ

n=´8

xf, ψm,ny
L2(R)

zψm,n

]
=

8
ÿ

m=´8

8
ÿ

n=´8

xf, ψm,ny
L2(R)

ψm,n .

This shows that the linear span of tψm,num,nPZ is dense in L2(R); thus tψm,num,nPZ is an
orthonormal basis in L2(R).



Chapter 7

Multi-resolution Analysis and
Construction of Wavelets

Throughout the chapter, for simplicity we use x¨, ¨y instead of x¨, ¨y
L2(R)

.

7.2 Definition of MRA and Examples
Definition 7.1. An MRA consists of a sequence tVm |m P Zu of embedded closed subspaces
of L2(R) that satisfy the following conditions:

(i) ¨ ¨ ¨ Ď V´2 Ď V´1 Ď V0 Ď V1 Ď V2 Ď ¨ ¨ ¨ ; that is, Vm Ď Vm+1 for all m P Z;

(ii)
8
Ť

m=´8

Vm is dense in L2(R); that is, closure}¨}2

( 8
Ť

m=´8

Vm

)
= L2(R).

(iii)
8
Ş

m=8

Vm = t0u.

(iv) f P Vm if and only if d1/2f P Vm+1 for all m P Z;

(v) there exists a function ϕ P V0 such that
␣

ϕ0,n = Tnϕ
ˇ

ˇn P Z
(

is an orthonormal basis
for V0; that is,

}f}2L2(R) =
8
ÿ

n=´8

ˇ

ˇxf, ϕny
ˇ

ˇ

2
@ f P V0 .

The function ϕ is called the scaling function or father wavelet. If tVmumPZ is a multi-
resolution of L2(R) and if V0 is the closed subspace generated by the integer translates of a
single function ϕ, then we say that ϕ generates the MRA.

Sometimes, condition (v) is relaxed by assuming that
␣

Tnϕ
ˇ

ˇn P Z
(

is a Riesz basis for
V0; that is, for every f P V0, there exists a unique sequence tcnu8

n=´8 P ℓ2 such that

f(x) =
8
ÿ

n=´8

cn(Tnϕ)(x) =
8
ÿ

n=´8

cnϕ(x ´ n) .

with convergence in L2(R) and there exist two positive constants A and B independent of
f P V0 such that

A
8
ÿ

n=´8

|cn|2 ď }f}2L2(R) ď B
8
ÿ

n=´8

|cn|2 ,
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where 0 ă A ď B ă 8. In this case, we have an MRA with a Riesz basis.
Note that condition (v) implies that

␣

Tnϕ
ˇ

ˇn P Z
(

is a Riesz basis for V0 with frame
bounds A = B = 1.

Since ϕ0,n = Tnϕ P V0 for all n P Z. Further, if n P Z, it follows from (iv) that

ϕm,n(x) = (D2´mTnϕ)(x) = 2
m
2 ϕ(2mx ´ n), m P Z (7.2.1)

is an orthonormal basis for Vm.

Consequences of Definition 7.1.

1. A repeated application of condition (iv) implies that f P Vm if and only if d2´k P Vm+k

for all m, k P Z. In other words, f P Vm if and only if d2mf P V0 for all m P Z.

This shows that functions in Vm are obtained from those in V0 through a scaling 2´m.
If the scale m = 0 is associated with V0, then the scale 2´m is associated with Vm.
Thus, subspaces Vm are just scaled versions of the central space V0 which is invariant
under translation by integers; that is, TnV0 = V0 for all n P Z.

2. It follows from Definition 7.1 that an MRA is completely determined by the scaling
function ϕ, but not conversely. For a given ϕ P V0, we first define

V0 =

"

f =
8
ÿ

n=´8

cnϕ0,n =
8
ÿ

n=´8

cnTnϕ

ˇ

ˇ

ˇ

ˇ

tcnu8
n=´8 P ℓ2

*

.

Condition (v) implies that V0 has an orthonormal basis tϕ0,nunPZ. Then, V0 consists of
all functions f =

8
ř

n=´8

cnTnϕ with finite energy }f}2L2(R) =
8
ř

n=´8

|cn|2 ă 8. Similarly,

the space Vm has the orthonormal basis tϕm,nunPZ given by (7.2.1) so that fm is given
by

fm(x) =
8
ÿ

n=´8

cmnϕm,n(x) (7.2.2)

with the finite energy

}fm}2L2(R) =
8
ÿ

n=´8

|cmn|2 ă 8 .

Thus, fm represents a typical function in the space Vm. It builds in self-invariance and
scale invariance through the basis tϕm,nunPZ.

3. Conditions (ii) and (iii) can be expressed in terms of the orthogonal projections Pm

onto Vm; that is, for all f P L2(R),

lim
mÑ´8

Pmf = 0 and lim
mÑ8

Pmf = f . (7.2.3)

The projection Pmf can be considered as an approximation of f at the scale 2´m.
Therefore, the successive approximations of a given function f are defined as the



orthogonal projections Pm onto the space Vm:

Pmf =
8
ÿ

n=´8

xf, ϕm,nyϕm,n , (7.2.4)

where ϕm,n given by (7.2.1) is an orthonormal basis for Vm.

4. Since V0 Ď V1, the scaling function ϕ that leads to a basis for V0 also belongs to V1.
Since ϕ P V1 and tϕ1,nunPZ is an orthonormal basis for V1, ϕ can be expressed in the
form

ϕ(x) =
8
ÿ

n=´8

cnϕ1,n(x) =
?
2

8
ÿ

n=´8

cnϕ(2x ´ n) , (7.2.5)

where
cn = xϕ, ϕ1,ny and

8
ÿ

n=´8

|cn|2 = 1 .

Equation (7.2.5) is called the dilation equation. It involves both x and 2x and is often
referred to as the two-scale equation or refinement equation because it displays ϕ in
the refined space V1. The space V1 has the finer scale 2´1 and it contains ϕ which has
scale 1.

From the preceding facts MRA is described so that we can specify

(a) the subspaces Vm,

(b) the scaling function ϕ,

(c) the coefficient tcnu8
n=´8 in the dilation equation (7.2.5).

The real importance of an MRA lies in the simple fact that it enables us to construct an
orthonormal wavelet for L2(R). In order to prove this statement, we first assume that
tVmu8

m=´8 is an MRA. Since Vm Ď Vm+1, we define Wm as the orthogonal complement of
Vm in Vm+1 for every m P Z, so that we have

Vm+1 = Vm ‘ Wm =
(
Vm´1 ‘ Wm´1

)
‘ Wm = ¨ ¨ ¨ = V0 ‘ W0 ‘ W1 ‘ ¨ ¨ ¨ ‘ Wm

= V0 ‘

( m
à

k=0

Wk

)
(7.2.6)

and Vn K Wm for n ă m.

Since
8
Ť

m=´8

Vm is dense in L2(R), we may take the limit as m Ñ 8 to obtain

V0 ‘

( 8
à

m=0

Wm

)
= L2(R) .

Similarly, we may go in the other direction to write

V0 = V´1 ‘ W´1 = (V´2 ‘ W´2) ‘ W´1 = ¨ ¨ ¨ = V´m ‘ W´m ‘ ¨ ¨ ¨ ‘ W´1 .



We may again take the limit as m Ñ 8. Since
8
Ş

m=´8

Vm = t0u, it follows that lim
mÑ8

V´m =

t0u. Consequently, it turns out that
8
à

m=´8

Wm = L2(R) . (7.2.7)

Finally, the difference between the two successive approximations Pmf and Pm+1f is
given by the orthogonal projection Qmf of f onto the orthogonal complement Wm of Vm in
Vm+1 so that

Qmf = Pm+1f ´ Pmf .

It follows from conditions (i)-(v) in Definition 7.1 that the spaces Wm are also scaled versions
of W0 and, for f P L2(R),

f P Wm if and only if d2mf P W0 @m P Z (7.2.8)
since

f P Wm ô f P Vm+1 and f K Vm ô d2mf P V1 and d2mf K V0 ô d2mf P W0 .

Moreover, Wm’s are mutually orthogonal spaces generating all L2(R); that is,

Wm K Wk if m ‰ k and
à

mPZ
Wm = L2(R) , (7.2.9)

and are translation-invariant for the discrete translations n P Z; that is,

f P W0 if and only if Tnf P W0 ,

where the translation-invariant is due to the following equivalence:

f P W0 ô f P V1 and f K V0 ô f
L2

=
8
ÿ

k=´8

ckϕ1,k for some tcku8
k=´8 P ℓ2 and f K V0

ô Tnf
L2

=
8
ÿ

k=´8

ck´2nϕ1,k for some tcku8
k=´8 P ℓ2 and Tnf K V0

ô Tnf P V1 and Tnf K V0 ô Tnf P W0 .

Moreover, it can be shown that there exists a function ψ P W0 such that ψ0,n = Tnψ

constitutes an orthonormal basis for W0. It follows from (7.2.8) that

ψm,n(x) = 2m/2ψ(2mx ´ n) for n P Z (7.2.10)

constitute an orthonormal basis for Wm. Thus, the family tψm,num,nPZ represents an or-
thonormal basis of wavelets for L2(R).

Example 7.2 (Characteristic Function and Piecewise Constant Function). We assume that
ϕ = 1[0,1] is the characteristic function of the interval [0, 1]. Define spaces Vm by

Vm =

" 8
ÿ

k=´8

ckϕm,k

ˇ

ˇ

ˇ

ˇ

tcku8
k=´8 P ℓ2

*

,



where
ϕm,n(x) = 2m/2ϕ(2mx ´ n) .

The spaces Vm satisfy all the conditions of Definition 7.1, and so, tVmumPZ is an MRA.

The space Vm consists of functions in L2(R) which are constant on intervals
[
n

2m
,
n+ 1

2m

]
,

where n P Z. Obviously, Vm Ď Vm+1 because any function that is constant on intervals of
length 2´m is automatically constant on intervals of half that length. The space V0 contains
all functions f in L2(R) that are constant on n ď x ă n + 1. The function d1/2f in V1 is

then constant on n

2
ď x ă

n+ 1

2
. Intervals of length 2´m are usually referred to as dyadic

intervals. A sample function in spaces Vm is shown in Figure 7.1.

Figure 7.1: Piecewise constant functions in V´1; V0 and V1

As we shall see later, this MRA is related to the classic Haar wavelet.

7.3 Properties of Scaling Functions and Orthonormal
Wavelet Bases

Lemma 7.3. Let f, g P L2(R). Then the function
8
ÿ

k=´8

[T2kπ( pf pg)](¨) ”

8
ÿ

k=´8

pf(¨ + 2kπ)pg(¨ + 2kπ)

belongs to L1(0, 2π), and for all n P Z,

xf, Tngy =
1

2π

ż 2π

0

einω
[ 8

ÿ

k=´8

pf(ω + 2kπ)pg(ω + 2kπ)

]
dω. (7.3.1)

In other words,
␣

xf, T´ngy
(

nPZ is the Fourier coefficient of
8
ř

k=´8

[T2kπ( pf pg)].



Proof. Let f, g P L2(R) and n P Z be given. Then pf, pg P L2(R) so that pf pg P L1(R); thus

Theorem 1.26 shows that the series
8
ř

k=´8

[T2kπ( pf pg)] converges in L1(0, 2π). Therefore, the

fact that Tng P L2(R) and the Plancherel identity (1.1.15) show that

xf, Tngy =
1

2π
x pf,yTngy =

1

2π

ż

R

pf(ω)einωpg(ω)dω =
1

2π

8
ÿ

k=´8

ż 2(k+1)π

2kπ

pf(ω)pg(ω)einωdω

=
1

2π

8
ÿ

k=´8

ż 2π

0

pf(ω + 2kπ)pg(ω + 2kπ)einωdω

=
1

2π

ż 2π

0

einω
[ 8

ÿ

k=´8

pf(ω + 2kπ)pg(ω + 2kπ)

]
dω . ˝

Corollary 7.4. Let f, ϕ P L2(R), and
␣

ϕ0,n ” Tnϕ
ˇ

ˇn P Z
(

be an orthonormal sysmtem.
Then xf, ϕ0,ny = 0 for all n P Z (this can be expressed as f K V0, where V0 is the closure of
the linear span of the orthonormal system) if and only if

8
ÿ

k=´8

pf(ω + 2kπ)pϕ(ω + 2kπ) = 0 for a.a. ω P R. (7.3.2)

Proof. Let ϕ be the role of g in Lemma 7.3. Since ϕ0,n = Tnϕ, (7.3.1) shows that

xf, ϕ0,ny =
1

2π

ż 2π

0

[ 8
ÿ

k=´8

pf(ω + 2kπ)pϕ(ω + 2kπ)

]
einωdω.

Consequently, it follows from the completeness of
␣

einω
ˇ

ˇn P Z
(

(which holds for functions in
L1(0, 2π) as well since the Cesàro mean of the Fourier series of f converges to f in L1(0, 2π)

if f P L1(0, 2π)) that xf, ϕ0,ny = 0 for all n P Z if and only if (7.3.2) holds. ˝

Theorem 7.5. For any function ϕ P L2(R), the following conditions are equivalent.

(a) The system
␣

ϕ0,n ” Tnϕ
ˇ

ˇn P Z
(

is orthonormal.

(b)
8
ř

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2
= 1 for a.a. ω P R.

Proof. Letting f = g = ϕ in Lemma 7.3, we find that

xϕ0,n, ϕ0,my = xϕ0,0, ϕ0,m´ny =
1

2π

ż 2π

0

ei(m´n)ω
8
ÿ

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2
dω.

By the fact that 1

2π

ż 2π

0
ei(m´n)ωdω = δnm, the identity above implies that

ż 2π

0

ei(m´n)ω

[ 8
ÿ

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2
´ 1

]
dω = xϕ0,n, ϕ0,my ´ δmn @n,m P Z .

Thus, xϕ0,n, ϕ0,my = δnm if and only if
8
ř

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2
= 1 almost everywhere. ˝



Theorem 7.6. For any two functions ϕ, ψ P L2(R), the sets of functions
␣

ϕ0,n ” Tnϕ
ˇ

ˇn P

Z
(

and
␣

ψ0,m ” Tmψ
ˇ

ˇm P Z
(

are bi-orthogonal; that is,

xϕ0,n, ψ0,my = 0 @n,m P Z

if and only if
8
ÿ

k=´8

pϕ(ω + 2kπ) pψ(ω + 2kπ) = 0 for a.a. ω P R.

Proof. Letting f = ϕ and g = ψ in Lemma 7.3, we find that

xϕ0,n, ψ0,my = xϕ, ψ0,m´ny =
1

2π

ż 2π

0

ei(m´n)ω

[ 8
ÿ

k=´8

pϕ(ω + 2kπ) pψ(ω + 2kπ)

]
dω.

Thus, the same reason for proving Theorem 7.5, we conclude that

xϕ0,n, ψ0,my = 0 @n,m P Z

if and only if
8
ÿ

k=´8

pϕ(ω + 2kπ) pψ(ω + 2kπ) = 0 for a.a. ω P R. ˝

A somewhat weaker property than the property of orthonormality in the previous theo-
rem is the “Riesz (or unconditional) condition”, which we study in the following.

Theorem 7.7. For any function ϕ P L2(R) and constants 0 ă A ď B ă 8, the following
two statements are equivalent:

(i)
␣

Tkϕ = ϕ(¨ ´ k)
(

kPZ satisfies the Riesz condition with Riesz bounds A and B; that is,

A}tckukPZ}2ℓ2 ď

›

›

›

›

8
ÿ

k=´8

ckϕ(¨ ´ k)

›

›

›

›

2

L2(R)
ď B}tckukPZ}2ℓ2 @ tckukPZ P ℓ2 . (7.3.3)

(ii) The Fourier transform pϕ of ϕ satisfies

A ď

8
ÿ

k=´8

ˇ

ˇpϕ(x+ 2kπ)
ˇ

ˇ

2
ď B for a.a. x P R. (7.3.4)

Proof. Let ϕ P L2(R) and 0 ă A ď B ă 8 be given. For each n P Z, let en(x) = e´inx. Since
each sequence in ℓ2 corresponds to a unique function in L2(0, 2π) and vice versa, (7.3.3) is
equivalent to that

A}C}2L2(0,2π) ď

›

›

›

›

8
ÿ

k=´8

xC, eky
L2(0,2π)

Tkϕ

›

›

›

›

2

L2(R)
ď B}C}2L2(0,2π) @C P L2(0, 2π) , (7.3.5)

here we recall that xf, gy
L2(0,2π)

=
1

2π

ż 2π

0

f(x)g(x)dx. Moreover, for every function C P



L2(0, 2π), C(ω) =
8
ř

k=´8

xC, eky
L2(0,2π)

e´ikω for almost all ω P R; thus the fact that yTkϕ(ω) =

e´ikω
pϕ(ω) shows that

C(ω)pϕ(ω) =
8
ÿ

k=´8

xC, eky
L2(0,2π)

yTkϕ(ω) for a.a. ω P R

so that the monotone convergence theorem further implies that
ż

R

ˇ

ˇ

ˇ

ˇ

8
ÿ

k=´8

xC, eky
L2(0,2π)

yTkϕ(ω)

ˇ

ˇ

ˇ

ˇ

2

dω =

ż

R

ˇ

ˇC(ω)pϕ(ω)
ˇ

ˇ

2
dω =

8
ÿ

k=´8

ż 2(k+1)π

2kπ

ˇ

ˇC(ω)pϕ(ω)
ˇ

ˇ

2
dω

=
8
ÿ

k=´8

ż 2π

0

ˇ

ˇC(t)pϕ(t+ 2kπ)
ˇ

ˇ

2
dt

=

ż 2π

0

ˇ

ˇC(t)
ˇ

ˇ

2
8
ÿ

k=´8

ˇ

ˇpϕ(t+ 2kπ)
ˇ

ˇ

2
dt. (7.3.6)

“(i) ñ (ii)” Let C P L2(0, 2π) be given. Note that (7.3.5) implies that
8
ř

k=´8

xC, eky
L2(0,2π)

Tkϕ

converges in L2(R). By the Plancherel identity (1.1.16),
›

›

›

›

8
ÿ

k=´8

xC, eky
L2(0,2π)

Tkϕ

›

›

›

›

2

L2(R)
= lim

nÑ8

›

›

›

›

8
ÿ

k=´8

xC, eky
L2(0,2π)

Tkϕ

›

›

›

›

2

L2(R)

= lim
nÑ8

1

2π

›

›

›

›

n
ÿ

k=´n

xC, eky
L2(0,2π)

yTkϕ

›

›

›

›

2

L2(R)
=

1

2π

›

›

›

›

8
ÿ

k=´8

xC, eky
L2(0,2π)

yTkϕ

›

›

›

›

2

L2(R)
; (7.3.7)

and (7.3.6) further shows that
›

›

›

›

8
ÿ

k=´8

xC, eky
L2(0,2π)

Tkϕ

›

›

›

›

2

L2(R)
=

1

2π

ż 2π

0

ˇ

ˇC(t)
ˇ

ˇ

2
8
ÿ

k=´8

ˇ

ˇpϕ(t+ 2kπ)
ˇ

ˇ

2
dt.

Therefore, condition (7.3.5) and the Parseval identity show that

A}C}2L2(0,2π) ď
1

2π

ż 2π

0

ˇ

ˇC(t)
ˇ

ˇ

2
8
ÿ

k=´8

ˇ

ˇpϕ(t+ 2kπ)
ˇ

ˇ

2
dt ď B}C}2L2(0,2π) @C P L2(0, 2π) .

Let tgnu8
n=1 be an approximation of the identity. Replacing 1

2π
|C|2 by Txgn in the

inequality above and passing to the limit as n Ñ 8, we conclude (7.3.4).

“(ii) ñ (i)” Let C P L2(0, 2π). Then (7.3.4) and (7.3.6) imply that

A}C}2L2(0,2π) ď
1

2π

ż

R

ˇ

ˇ

ˇ

ˇ

8
ÿ

k=´8

xC, eky
L2(0,2π)

yTkϕ(ω)

ˇ

ˇ

ˇ

ˇ

2

dω ď B}C}2L2(0,2π) .

This shows the series
8
ř

k=´8

xC, eky
L2(0,2π)

yTkϕ converges in L2(R). The desired inequality

(7.3.5) then follows from (7.3.7). ˝



We next proceed to the construction of a mother wavelet by introducing a generating
function in L2(0, 2π). Before proceeding, we first establish the following

Lemma 7.8. For every f P V1, there exists pmf P L2(0, 2π) such that

pf(ω) = pmf

(ω
2

)
pϕ
(ω
2

)
. (7.3.8)

Indeed, pmf is given by

pmf (ω) =
1

?
2

8
ÿ

n=´8

xf, ϕ1,nye´inω . (7.3.9)

Proof. Let cn = xf, ϕ1,ny. Since f P V1,

f(x) =
8
ÿ

n=´8

cnϕ1,n(x) =
8
ÿ

n=´8

cn(D1/2Tnϕ)(x) ,

where
8
ř

n=´8

|cn|2 = }f}2L2(R) ă 8. Using (1.1.18), the Fourier transform of the identity above
gives

pf(ω) =
8
ÿ

n=´8

cn
(
D2M´n

pϕ
)
(ω) =

1
?
2

8
ÿ

n=´8

cne
´ inω

2 pϕ
(ω
2

)
. ˝

The mother wavelet ψ can be generated by the generating function pm P L2(0, 2π) in the
following lemma.

Lemma 7.9. The Fourier transform of the scaling function ϕ satisfies the following condi-
tions:

8
ÿ

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2
= 1 for a.a. ω P R (7.3.10)

pϕ(ω) = pm
(ω
2

)
pϕ
(ω
2

)
(7.3.11)

where
pm(ω) ” pmϕ(ω) =

1
?
2

8
ÿ

n=´8

xϕ, ϕ1,nye´inω (7.3.12)

is a 2π-periodic function and satisfies the so-called the orthogonality condition
ˇ

ˇ

pm(ω)
ˇ

ˇ

2
+
ˇ

ˇ

pm(ω + π)
ˇ

ˇ

2
= 1 for a.a. ω P R. (7.3.13)

Remark 7.10. The Fourier transform pϕ of the scaling function ϕ satisfies the functional
equation (7.3.11). The function pm is called the generating function of the MRA. This
function is often called the discrete Fourier transform of the sequence tcnu ” txϕ, ϕ1,nyu. In
signal processing, pm is called the transfer function of a discrete filter with impulse response
tcnu or the low-pass filter associated with the scaling function ϕ.

Proof. Condition (7.3.10) follows from Theorem 7.5, and (7.3.11) follows from Lemma 7.8
(with f being the scaling function ϕ in the lemma).



To verify the orthogonality condition (7.3.13), we substitute (7.3.11) in (7.3.10) so that
condition (7.3.10) becomes

1 =
8
ÿ

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2
=

8
ÿ

k=´8

ˇ

ˇ

ˇ
pm
(ω
2
+ kπ

)ˇ
ˇ

ˇ

2ˇ
ˇ

ˇ

pϕ
(ω
2
+ kπ

)ˇ
ˇ

ˇ

2

for a.a. ω P R .

This is true for almost all ω P R and hence, replacing ω by 2ω gives

1 =
8
ÿ

k=´8

ˇ

ˇ

pm(ω + kπ)
ˇ

ˇ

2ˇ
ˇpϕ(ω + kπ)

ˇ

ˇ

2 for a.a. ω P R .

We now split the above infinite sum over k into even and odd integers and use the 2π-periodic
property of the function pm to obtain that for almost all ω P R,

1 =
8
ÿ

k=´8

ˇ

ˇ

pm(ω + 2kπ)
ˇ

ˇ

2ˇ
ˇpϕ(ω + 2kπ)

ˇ

ˇ

2
+

8
ÿ

k=´8

ˇ

ˇ

pm(ω + (2k + 1)π)
ˇ

ˇ

2ˇ
ˇpϕ(ω + (2k + 1)π)

ˇ

ˇ

2

=
8
ÿ

k=´8

ˇ

ˇ

pm(ω)
ˇ

ˇ

2ˇ
ˇpϕ(ω + 2kπ)

ˇ

ˇ

2
+

8
ÿ

k=´8

ˇ

ˇ

pm(ω + π)
ˇ

ˇ

2ˇ
ˇpϕ(ω + (2k + 1)π)

ˇ

ˇ

2

=
ˇ

ˇ

pm(ω)
ˇ

ˇ

2
8
ÿ

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2
+
ˇ

ˇ

pm(ω + π)
ˇ

ˇ

2
8
ÿ

k=´8

ˇ

ˇpϕ(ω + π + 2kπ)
ˇ

ˇ

2
. (7.3.14)

Using (7.3.10),
8
ÿ

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2
=

8
ÿ

k=´8

ˇ

ˇpϕ(ω + π + 2kπ)
ˇ

ˇ

2
= 1 for a.a. ω P R ;

thus (7.3.14) leads to the desired condition (7.3.13). ˝

The following lemma is useful for reducing the computation in the follow up theorems.

Lemma 7.11. Let tVmumPZ be an MRA with the scaling function ϕ. Then for all f, g P V1,
8
ÿ

k=´8

pf(ω + 2kπ)pg(ω + 2kπ) =
(
pmf pmg

)(ω
2

)
+
(
pmf pmg

)(ω
2
+ π

)
for a.a. ω P R , (7.3.15)

where pmf and pmg are functions satisfying

pf(ω) = pmf

(ω
2

)
pϕ
(ω
2

)
, pg(ω) = pmg

(ω
2

)
pϕ
(ω
2

)
.

Proof. Using (7.3.8) and (7.3.11) (as well as the case with g replacing f),
8
ÿ

k=´8

pf(ω + 2kπ)pg(ω + 2kπ)

=
8
ÿ

k=´8

pmf

(ω
2
+ kπ

)
pϕ
(ω
2
+ kπ

)
pmg

(ω
2
+ kπ

)
pϕ
(ω
2
+ kπ

)
=

8
ÿ

k=´8

pmf

(ω
2
+ kπ

)
pmg

(ω
2
+ kπ

)ˇ
ˇ

ˇ

pϕ
(ω
2
+ kπ

)ˇ
ˇ

ˇ

2

.



Splitting the sum into even and odd integers k, by the 2π-periodicity of pmf and pm we obtain
the for almost all ω P R,

8
ÿ

k=´8

pf(ω + 2kπ)pg(ω + 2kπ)

=
8
ÿ

k=´8

pmf

(ω
2
+ 2kπ

)
pmg

(ω
2
+ 2kπ

)ˇ
ˇ

ˇ

pϕ
(ω
2
+ 2kπ

)ˇ
ˇ

ˇ

2

+
8
ÿ

k=´8

pmf

(ω
2
+ (2k + 1)π

)
pmg

(ω
2
+ (2k + 1)π

)ˇ
ˇ

ˇ

pϕ
(ω
2
+ (2k + 1)π

)ˇ
ˇ

ˇ

2

= pmf

(ω
2

)
pmg

(ω
2

) 8
ÿ

k=´8

ˇ

ˇ

ˇ

pϕ
(ω
2
+ 2kπ

)ˇ
ˇ

ˇ

2

+ pmf

(ω
2
+ π

)
pmg

(ω
2
+ π

) 8
ÿ

k=´8

ˇ

ˇ

ˇ

pϕ
(ω
2
+ (2k + 1)π

)ˇ
ˇ

ˇ

2

.

The desired identity (7.3.15) then follows from Theorem 7.5. ˝

We next prove the following major technical lemma.

Lemma 7.12. Let tVnunPZ be an MRA with the scaling function ϕ, and pm be the associated
generating function given by (7.3.12). Then the Fourier transform of any function f P W0

can be expressed in the form

pf(ω) = pν(ω)d2

[
M1

(
pϕT´π pm

)]
(ω) = pν(ω) exp

(
iω

2

)
pm
(
ω

2
+ π

)
pϕ
(
ω

2

)
, (7.3.16)

where pν is a 2π-periodic function satisfying

1

2π

ż 2π

0

ˇ

ˇ

pν(ω)
ˇ

ˇ

2
dω = }f}2L2(R) , (7.3.17)

and the factor d2
[
M1

(
pϕT´π pm

)]
is independent of f .

Proof. Since f P W0, it follows from V1 = V0 ‘ W0 that f P V1 and is orthogonal to V0. By
Lemma 7.8,

pf(ω) = pmf

(ω
2

)
pϕ
(ω
2

)
. (7.3.18)

where, with cn denoting xf, ϕ1,ny, the function pmf is given by

pmf (ω) =
1

?
2

8
ÿ

n=´8

cne
´inω .

Evidently, pmf is a 2π-periodic function which belongs to L2(0, 2π). Moreover, since f K V0,
by Corollary 7.4 and Lemma 7.11, we have

pmf

(ω
2

)
pm
(ω
2

)
+ pmf

(ω
2
+ π

)
pm
(ω
2
+ π

)
= 0 for a.a. ω P R.



Replacing ω by 2ω in the identity above gives

0 = pmf (ω)pm(ω) + pmf (ω + π)pm(ω + π) for a.a. ω P R,

or, equivalently,
ˇ

ˇ

ˇ

ˇ

ˇ

pmf (ω) pm(ω + π)

´pmf (ω + π) pm(ω)

ˇ

ˇ

ˇ

ˇ

ˇ

= 0 for a.a. ω P R.

This can be interpreted as the linear dependence of two vectors(
pmf (ω),´pmf (ω + π)

)
and

(
pm(ω + π), pm(ω)

)
for almost all ω P R. Since (7.3.13) implies that the vector

(
pm(ω + π), pm(ω)

)
is not a zero

vector for all ω P R, there exists a function pλ, depending on f , such that(
pmf (ω),´pmf (ω + π)

)
= pλ(ω)

(
pm(ω + π), pm(ω)

)
for a.a. ω P R. (7.3.19)

Using (7.3.19), the 2π-periodicity of pm and pmf implies that pλ is also 2π-periodic. Further-
more,

pλ(ω) + pλ(ω + π) = 0 for a.a. ω P R.

Thus, the function M´1
pλ (or the function y = e´iω

pλ(ω)) is π-periodic, so there exists a
2π-periodic function pν defined by

pλ(ω) = eiωpν(2ω) . (7.3.20)

A simple combination of (7.3.18), (7.3.19), and (7.3.20) gives the desired representation
(7.3.16).

Finally, by (7.3.13) the π-periodicity of
ˇ

ˇpλ
ˇ

ˇ implies that
ż 2π

0

ˇ

ˇ

pν(ω)
ˇ

ˇ

2
dω = 2

ż 2π

π

ˇ

ˇpλ(ω)
ˇ

ˇ

2
dω = 2

ż 2π

π

ˇ

ˇpλ(ω)
ˇ

ˇ

2
(
ˇ

ˇ

pm(ω)
ˇ

ˇ

2
+
ˇ

ˇ

pm(ω + π)
ˇ

ˇ

2
)
dω

= 2

[
ż π

0

ˇ

ˇpλ(ω + π)
ˇ

ˇ

2ˇ
ˇ

pm(ω + π)
ˇ

ˇ

2
dω +

ż 2π

π

ˇ

ˇpλ(ω)
ˇ

ˇ

2ˇ
ˇ

pm(ω + π)
ˇ

ˇ

2
dω

]
= 2

ż 2π

0

ˇ

ˇpλ(ω)
ˇ

ˇ

2ˇ
ˇ

pm(ω + π)
ˇ

ˇ

2
dω.

Using (7.3.19) and the Parseval identity,
ż 2π

0

ˇ

ˇ

pν(ω)
ˇ

ˇ

2
dω = 2

ż 2π

0

ˇ

ˇ

pmf (ω)
ˇ

ˇ

2
dω = 2π

8
ÿ

n=´8

|cn|2 = 2π}f}2L2(R) ă 8 .

This completes the proof of Lemma 7.12. ˝

Now, we return to the main problem of constructing a mother wavelet ψ(x). Suppose
that there is a function ψ such that tψ0,nunPZ is a basis for the space W0. Then, every
function f P W0 has a series representation

f(x) =
8
ÿ

n=´8

hnψ0,n(x) =
8
ÿ

n=´8

hnψ(x ´ n) , (7.3.21)



where hn = xf, ψ0,ny satisfies

}f}2L2(R) =
8
ÿ

n=´8

|hn|2 ă 8 .

Using (1.1.18), the application of the Fourier transform to (7.3.21) gives

pf(ω) =
( 8

ÿ

n=´8

hne
´inω

)
pψ(ω) = ph(ω) pψ(ω) , (7.3.22)

where the function ph is
ph(ω) =

8
ÿ

n=´8

hne
´inω ,

and it is a square integrable and 2π-periodic function in [0, 2π], and the Parseval identity
implies that

}f}2L2(R) =
8
ÿ

n=´8

|hn|2 =
1

2π

ż 2π

0

ˇ

ˇph(ω)
ˇ

ˇ

2
dω (7.3.23)

When (7.3.22) and (7.3.23) are compared with (7.3.16) and (7.3.17), by picking up the terms
independent of f we see that one possible choice of pψ should be

pψ(ω) = exp
(iω
2

)
pm
(ω
2
+ π

)
pϕ
(ω
2

)
” pmψ

(ω
2

)
pϕ
(ω
2

)
, (7.3.24)

where the function pmψ is given by

pmψ(ω) = pm(ω + π)eiω = pmϕ(ω + π)eiω .

In other words, we choose ψ so that for every f P W0 we have ph = pν. The function pmψ is
called the filter conjugate to pm and hence, pm and pmψ are called conjugate quadratic filters
in signal processing.

In the following, we show that the function ψ whose Fourier transform is given by (7.3.24)
is indeed an orthonormal wavelet. We start with the following

Lemma 7.13. Let tVmumPZ be an MRA with the scaling function ϕ and its associated
generating function

pm(ω) =
1

?
2

8
ÿ

n=´8

cne
´inω , cn = xϕ, ϕ1,ny .

Then the Fourier transform of a function ψ is given by

pψ(ω) = exp
(iω
2

)
pm
(ω
2
+ π

)
pϕ
(ω
2

)
(7.3.25)

if and only if ψ P V1 takes the form

ψ(x) =
8
ÿ

n=´8

(´1)´n´1c´n´1ϕ1,n(x) . (7.3.26)



Proof. By the fact that tcnunPZ P ℓ2, (1.1.18) implies that

F
[ 8

ÿ

n=´8

(´1)´n´1c´n´1ϕ1,n

]
=

8
ÿ

n=´8

(´1)´n´1c´n´1
yϕ1,n .

Therefore, by the injectivity of the Fourier transform and the fact that tϕ1,nunPZ is an
orthonormal basis for V1, it suffices to show that

8
ÿ

n=´8

(´1)´n´1c´n´1
yϕ1,n(ω) = exp

(iω
2

)
pm
(ω
2
+ π

)
pϕ
(ω
2

)
.

Nevertheless, the fact that ϕ1,n = D1/2Tnϕ implies that
8
ÿ

n=´8

(´1)´n´1c´n´1
yϕ1,n(ω) =

8
ÿ

n=´8

c´n´1(´1)´n´1(D2M´n
pϕ)(ω)

=
1

?
2

8
ÿ

n=´8

c´n´1e
´i(n+1)πe´inω

2 pϕ
(ω
2

)
=

1
?
2

8
ÿ

n=´8

cne
inπ+i(n+1)ω

2 pϕ
(ω
2

)
= exp

(iω
2

) 1
?
2

8
ÿ

n=´8

cne
´in(ω

2
+π)

pϕ
(ω
2

)
= exp

(iω
2

)
pm
(ω
2
+ π

)
pϕ
(ω
2

)
,

so the lemma is concluded. ˝

Lemma 7.14. Let tVmumPZ be an MRA with the scaling function ϕ and its associated
generating function pm, and ψ be the function whose Fourier transform is given by

pψ(ω) = exp
(iω
2

)
pm
(ω
2
+ π

)
pϕ
(ω
2

)
. (7.3.25)

Then the system
␣

ψ0,n

ˇ

ˇn P Z
(

is an orthonormal system in W0.

Proof. By Lemma 7.13, ψ P V1, so it suffices to show that tψ0,nunPZ is an orthonormal
system and ψ K V0. Since pψ is given by (7.3.25), by setting

pmψ(ω) = pm(ω + π)eiω

we have pψ(ω) = pmψ

(
ω

2

)
pϕ
(
ω

2

)
. Letting f = g = ψ in (7.3.15), we obtain

8
ÿ

k=´8

ˇ

ˇ pψ(ω + 2kπ)
ˇ

ˇ

2
=
ˇ

ˇ

ˇ
pmψ

(ω
2

)ˇ
ˇ

ˇ

2

+
ˇ

ˇ

ˇ
pmψ

(ω
2
+ π

)ˇ
ˇ

ˇ

2

=
ˇ

ˇ

ˇ
pm
(ω
2

)ˇ
ˇ

ˇ

2

+
ˇ

ˇ

ˇ
pm
(ω
2
+ π

)ˇ
ˇ

ˇ

2

,

and the orthogonality condition (7.3.13) further shows that
8
ÿ

k=´8

ˇ

ˇ pψ(ω + 2kπ)
ˇ

ˇ

2
= 1 for a.a. ω P R.

By Theorem 7.5, tψ0,nunPZ is an orthonormal system. Moreover, letting f = ψ and g = ϕ

in (7.3.15), we obtain
8
ÿ

k=´8

pψ(ω + 2kπ)pϕ(ω + 2kπ) =
(
pmψ pm

)(ω
2

)
+
(
pmψ pm

)(ω
2
+ π

)
= pm

(ω
2
+ π

)
ei

ω
2 ¨ pm

(ω
2

)
+ pm

(ω
2
+ 2π

)
ei(

ω
2
+π) ¨ pm

(ω
2
+ π

)
,



and the 2π-periodicity of pm shows that
8
ÿ

k=´8

pψ(ω + 2kπ)pϕ(ω + 2kπ) =
[
ei

ω
2 + ei(

ω
2
+π)

]
pm
(ω
2

)
pm
(ω
2
+ π

)
= 0 .

By Corollary 7.4, ψ K V0 for all n P Z. The translation invariant property then shows that
tψ0,nunPZ K V0; thus tψ0,nunPZ is an orthonormal system in W0. ˝

Lemma 7.15. Let ϑ P L2(R) be such that tϑ0,nunPZ is an orthonormal system in L2(R). If
f P L2(R) and pf = pν pϑ for some 2π-periodic function pν P L2(0, 2π), then

f P closure}¨}L2(R)

(
span(tϑ0,nunPZ)

)
;

that is, there exists thnu8
n=´8 P ℓ2 such that f =

8
ř

n=´8

hnϑ0,n .

In particular, if ψ is the function given in Lemma 7.14, then tψ0,nunPZ is an orthonormal
basis of W0.

Proof. Suppose that f P L2(R) satisfies pf = pν pϑ for some 2π-periodic function pν P L2(0, 2π).
Since pν P L2(0, 2π), there exists thnunPZ P ℓ2 such that

pν(ω) =
8
ÿ

n=´8

hne
´inω

and the convergence is in L2(0, 2π). Therefore,

pf(ω) =
8
ÿ

n=´8

hne
´inω

pϑ(ω) =
8
ÿ

n=´8

hn(M´n
pϑ)(ω) =

8
ÿ

n=´8

hnyTnϑ(ω) =
8
ÿ

n=´8

hnyϑ0,n(ω) .

Using (1.1.18) (with F ´1 and q replacing F and p, respectively), the fact that
!

yϑ0,n
?
2π

)

nPZ

is an orthonormal system (which is a direct consequence of the Plancherel identity (1.1.15))
and thnunPZ P ℓ2 imply that

f =
8
ÿ

n=´8

hnϑ0,n .

This shows that f P closure}¨}L2(R)

(
span(tϑ0,nunPZ)

)
.

Next we establish that tψ0,nunPZ is an orthonormal basis of W0. By Lemma 7.14, it
suffices to show that W0 Ď closure}¨}L2(R)

(
span(tϑ0,nunPZ)

)
. Nevertheless, by Lemma 7.12

every f P W0 corresponds to a 2π-periodic function pν P L2(0, 2π) such that pf = pν pψ; thus
the argument above then shows that W0 Ď closure}¨}L2(R)

(
span(tψ0,nunPZ)

)
. ˝

Remark 7.16. The key element to establish Lemma 7.15 is (1.1.18). Due to its similar
version (1.5.9), one can relaxed the condition that “tϑ0,nunPZ is an orthonormal system in
L2(R)” to that “tϑ0,nunPZ has Riesz bounds A and B for some positive A and B”.

The combination of Lemma 7.13, 7.14 and 7.15 leads to the main theorem of this section.



Theorem 7.17. If tVnunPZ is an MRA with the scaling function ϕ, then there is a mother
wavelet ψ given by

ψ(x) =
?
2

8
ÿ

n=´8

(´1)´n´1c´n´1ϕ(2x ´ n) =
8
ÿ

n=´8

(´1)´n´1c´n´1ϕ1,n(x) , (7.3.26)

where the coefficients cn are given by

cn = xϕ, ϕ1,ny =
?
2

ż

R
ϕ(x)ϕ(2x ´ n)dx.

That is, the system
␣

ψm,n
ˇ

ˇn P Z
(

is an orthonormal basis for Wm.

Example 7.18 (The Shannon Wavelet). We consider the Fourier transform pϕ of a scaling
function ϕ defined by pϕ(ω) = 1[´π,π](ω) so that

ϕ(x) =
1

2π

ż π

´π

eixω dω = sinc(πx) =

$

&

%

sinπx
πx

if x ‰ 0,

1 if x = 0.

This is also known as the Shannon sampling function. Clearly, the Shannon scaling function
does not have finite support. However, its Fourier transform has a finite support (band-
limited) in the frequency domain and has good frequency localization. Evidently, the system

ϕ0,k(x) = ϕ(x ´ k) = sinc(π(x ´ k)) k P Z

is orthonormal because

xϕ0,k, ϕ0,ℓyL2(R)
= xϕ0,k´ℓ, ϕ0,0y

L2(R)
= xTk´ℓϕ, ϕy

L2(R)
=

1

2π

@

{Tk´ℓϕ, pϕ
D

L2(R)

=
1

2π

ż π

´π

e´i(k´ℓ)ω dω = δkℓ .

In general, we define, for m = 0,

V0 =

" 8
ÿ

k=´8

cksinc(π(x ´ k))

ˇ

ˇ

ˇ

ˇ

8
ÿ

k=´8

|ck|2 ă 8

*

and, for other m ‰ 0, m P Z,

Vm =

" 8
ÿ

k=´8

ck2
m/2sinc(π(2mx ´ k))

ˇ

ˇ

ˇ

ˇ

8
ÿ

k=´8

|ck|2 ă 8

*

.

It is easy to check that all conditions of Definition 7.1 are satisfied. We next find out the
coefficients ck defined by

ck = xϕ, ϕ1,ky
L2(R)

=
@

ϕ,D 1
2
Tkϕ

D

L2(R)
=

1

2π
xpϕ, {D 1

2
Tkϕ

D

L2(R)

=
1

2π

ż π

´π

(D2M´k
pϕ)(ω) dω =

1

2
?
2π

ż π

´π

e´ ikω
2 pϕ

(ω
2

)
dω =

1

2
?
2π

ż π

´π

e´ ikω
2 dω

=

$

’

&

’

%

1
?
2

if k = 0,
?
2

kπ
sin kπ

2
if k ‰ 0.

=

$

’

’

’

&

’

’

’

%

1
?
2

if k = 0,

0 if k is even and k ‰ 0,
?
2

kπ
(´1)

k´1
2 if k is odd.



Consequently, we can use the formula (7.3.26) to find the Shannon mother wavelet

ψ(x) =
?
2

8
ÿ

n=´8

(´1)n´1c´n´1ϕ(2x ´ n)

=
?
2

[
1

?
2
ϕ(2x+ 1) +

ÿ

nPZ,n‰´1

(´1)n´1c´n´1ϕ(2x ´ n)

]

=
?
2

[
1

?
2
ϕ(2x+ 1) +

8
ÿ

ℓ=´8

(´1)2ℓ´1c´2ℓ´1ϕ(2x ´ 2ℓ)

]
= sinc

(
π(2x+ 1)

)
´

1

π

8
ÿ

ℓ=´8

2(´1)ℓ

(2ℓ+ 1)
sinc(2π(x ´ ℓ)) .

By Theorem 7.17, the system tψm,n |m,n P Zu is an orthonormal basis in L2(R). It is known
as the Shannon system.

Theorem 7.19. Let ϕ be a scaling function for an MRA, and ψ be the mother wavelet given
by Theorem 7.17. Then a function ϑ P W0 is an orthonormal wavelet for L2(R) if and only
if

pϑ(ω) = pν(ω) pψ(ω) (7.3.27)

for some 2π-periodic function pν such that
ˇ

ˇ

pν(ω)
ˇ

ˇ = 1.

Proof. First we recall Lemma 7.13 that the mother wavelet ψ satisfies

pψ(ω) = exp
(iω
2

)
pm
(ω
2
+ π

)
pϕ
(ω
2

)
. (7.3.25)

Suppose that g P W0 satisfying pg = pν pψ for some 2π-periodic pν P L2(0, 2π). By setting

pmg(ω) = pν(2ω)pm(ω + π)eiω ,

we have pg(ω) = pmg

(
ω

2

)
pϕ
(
ω

2

)
. By Lemma 7.11, the 2π-periodicity of pm and pν implies that

for almost all ω P R,
8
ÿ

k=´8

ˇ

ˇ

pg(ω + 2kπ)
ˇ

ˇ

2
= (pmg pmg)

(ω
2

)
+ (pmg pmg)

(ω
2
+ π

)
=
ˇ

ˇ

ˇ
pmg

(ω
2

)ˇ
ˇ

ˇ

2

+
ˇ

ˇ

ˇ
pmg

(ω
2
+ π

)ˇ
ˇ

ˇ

2

=
ˇ

ˇ

pν(ω)
ˇ

ˇ

2
ˇ

ˇ

ˇ
pm
(ω
2
+ π

)ˇ
ˇ

ˇ

2

+
ˇ

ˇ

pν(ω + 2π)
ˇ

ˇ

2
ˇ

ˇ

ˇ
pm
(ω
2
+ 2π

)ˇ
ˇ

ˇ

2

=
ˇ

ˇ

pν(ω)
ˇ

ˇ

2
[
ˇ

ˇ

ˇ
pm
(ω
2
+ π

)ˇ
ˇ

ˇ

2

+
ˇ

ˇ

ˇ
pm
(ω
2

)ˇ
ˇ

ˇ

2
]
,

and the orthogonality condition (7.3.13) further implies that
8
ÿ

k=´8

ˇ

ˇ

pg(ω + 2kπ)
ˇ

ˇ

2
=
ˇ

ˇ

pν(ω)
ˇ

ˇ

2 for a.a. ω P R . (7.3.28)

“ñ” Suppose that ϑ P W0 is an orthonormal wavelet. By Lemma 7.12, there must be a
2π-periodic function pν P L2(0, 2π) such that (7.3.27) holds. Letting g = ϑ in (7.3.28),
Theorem 7.5 implies that

1 =
8
ÿ

k=´8

ˇ

ˇpϑ(ω + 2kπ)
ˇ

ˇ

2
=
ˇ

ˇ

pν(ω)
ˇ

ˇ

2 for a.a. ω P R.



“ð” Suppose that for some pν satisfying
ˇ

ˇ

pν
ˇ

ˇ = 1 a.e. the function ϑ satisfies (7.3.27). Lemma
7.15 shows that ϑ P W0 Ď V1; thus letting g = ϑ in (7.3.28) shows that

8
ÿ

k=´8

ˇ

ˇpϑ(ω + 2kπ)
ˇ

ˇ

2
=
ˇ

ˇ

pν(ω)
ˇ

ˇ

2
= 1 for a.a. ω P R.

Theorem 7.5 then implies that tϑ0,nunPZ is an orthonormal system in W0.

Next we show that tϑ0,nunPZ is indeed an orthonormal basis of W0. Let f P W0 be
given. By Lemma 7.12 there exists a 2π-periodic function pµ P L2(0, 2π) satisfying

pf(ω) = pµ(ω) pψ(ω) =
pµ(ω)

pν(ω)
pϑ(ω) .

Since pµ

pν
is 2π periodic and belongs to L2(0, 2π), Lemma 7.15 implies that

f P closure}¨}L2(R)

(
span(tϑ0,nunPZ)

)
;

thus W Ď closure}¨}L2(R)

(
span(tϑ0,nunPZ)

)
. ˝

If the scaling function ϕ of an MRA is not an orthonormal basis of V0 but rather is a
Riesz basis, we can use the following orthonormalization process to generate an orthonormal
basis.

Theorem 7.20 (Orthonormalization Process). Let ϕ P L2(R) be such that tϕ0,nunPZ is a
Riesz basis of V0; that is, the linear span of tϕ0,nunPZ is dense in V0 and (by Theorem 7.7)

there exists two constants A, B ą 0 such that

0 ă A ď

8
ÿ

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2
ď B ă 8 . (7.3.29)

Then
␣

rϕ0,n

(

nPZ is an orthonormal basis of V0 with

p

rϕ(ω) =
pϕ(ω)

d

8
ř

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2

. (7.3.30)

Proof. It follows from (7.3.30) that
8
ÿ

k=´8

ˇ

ˇ

ˇ

p

rϕ(ω + 2kπ)
ˇ

ˇ

ˇ

2

= 1 .

Thus, the function rϕ satisfies condition (b) of Theorem 7.5, and this shows that trϕ0,nunPZ is
an orthonormal set in L2(R).

Next we show that trϕ0,nunPZ Ď V0. We consider a 2π-periodic function pν defined by

pν(ω) =
1

d

8
ř

k=´8

ˇ

ˇpϕ(ω + 2kπ)
ˇ

ˇ

2

.



Using (7.3.29), pν P L2(0, 2π). Since p

rϕ = pν pϕ, Lemma 7.15 and Remark 7.16 together imply
that

rϕ P closure}¨}L2(R)

(
span(tϕ0,nunPZ)

)
.

The fact that tϕ0,nunPZ is a Riesz basis of V0 shows that rϕ P V0; thus trϕ0,nunPZ Ď V0.

On the other hand, we also have pϕ =
1

pν

p

rϕ. Since 1

pν
is 2π-periodic and belongs to L2(0, 2π)

(due to (7.3.29)), Lemma 7.15 shows that

ϕ P closure}¨}L2(R)

(
span(trϕ0,nunPZ)

)
.

This further implies that

tϕ0,nunPZ Ď closure}¨}L2(R)

(
span(trϕ0,nunPZ)

)
. (7.3.31)

Since tϕ0,nunPZ is a Riesz basis, we have

L2(R) = closure}¨}L2(R)

(
span(tϕ0,nunPZ)

)
;

thus (7.3.31) shows that L2(R) = closure}¨}L2(R)

(
span(trϕ0,nunPZ)

)
. ˝

Finally, we provide a sufficient condition for a function being a qualified scaling function.

Theorem 7.21. Let ϕ be a bounded function with compact support, pϕ(0) = 1, and tϕ0,nunPZ

is an orthonormal system in L2(R). If it holds the two-scale equation

ϕ(x) =
8
ÿ

n=´8

xϕ, ϕ1,nyϕ1,n(x) , (7.2.5)

then Vm defined Vm = closure}¨}L2(R)

(
span

(
tϕm,nunPZ

))
forms an MRA tVmumPZ.

Proof. W.L.O.G, we assume that supp(ϕ) Ď [0, L] for some L P N. First we note that
ϕ P L2(R) since it is continuous with compact support. Due to the two-scale equation
(7.2.5), we have

Vm Ď Vm+1 @m P Z and f P Vm ô d1/2f P Vm+1 .

Therefore, it suffices to show (iii) and (iv) in the Definition of MRA; that is,

closure}¨}L2(R)

( 8
ď

m=´8

Vm

)
= L2(R) and

8
č

m=´8

Vm = t0u .

We first focus on showing that closure}¨}L2(R)

(
8
Ť

m=´8

Vm

)
= L2(R). Let Pm : L2(R) Ñ Vm

be the orthogonal projection defined by

Pmf =
8
ÿ

ℓ=´8

xf, ϕm,ℓyϕm,ℓ .

By the nature of the orthogonality,

}f}2L2(R) = }f ´ Pmf}2L2(R) + }Pmf}2L2(R) .



The identity above implies that to show that lim
mÑ8

›

›Pmf ´ f
›

›

L2(R) = 0, we only need to that
lim
mÑ8

}Pmf}L2(R) = }f}L2(R).

Claim: For all finite sequence thkunk=1 Ď C and ´8 ă a1 ă b1 ď a2 ă b2 ď ¨ ¨ ¨ ď ak ă bk ď

¨ ¨ ¨ ď an ă bn ă 8,
n
ÿ

k=1

hk1[ak,bk) P closure}¨}L2(R)

( 8
ď

m=´8

Vm

)
.

Proof of Claim: We first prove the case that n = 1 and h1 = 1. Let a = a1 and b = b1. For
each m P Z,

Pm1[a,b) =
8
ÿ

ℓ=´8

(
ż b

a

ϕm,ℓ(x)dx

)
ϕm,ℓ .

Therefore, the orthonormality of tϕm,ℓuℓPZ shows that for m " 1,

›

›Pm1[a,b)

›

›

2

L2(R) =
8
ÿ

ℓ=´8

ˇ

ˇ

ˇ

ˇ

ż b

a

ϕm,ℓ(x)dx

ˇ

ˇ

ˇ

ˇ

2

= 2´m
8
ÿ

ℓ=´8

ˇ

ˇ

ˇ

ˇ

ż 2mb´ℓ

2ma´ℓ

ϕ(x)dx

ˇ

ˇ

ˇ

ˇ

2

= 2´m

( [2ma]´L
ÿ

ℓ=´8

+

[2ma]
ÿ

ℓ=[2ma]´L+1

+

[2mb]´L
ÿ

ℓ=[2ma]+1

+

[2mb]
ÿ

ℓ=[2mb]´L+1

+
8
ÿ

ℓ=[2mb]+1

)ˇ
ˇ

ˇ

ˇ

ż 2mb´ℓ

2ma´ℓ

ϕ(x)dx

ˇ

ˇ

ˇ

ˇ

2

.

1. For ℓ ď [2ma] ´ L or ℓ ě [2mb] + 1, we have[
2ma ´ ℓ, 2mb ´ ℓ

]
X [0, L] = H .

Therefore, ( [2ma]´L
ÿ

ℓ=´8

+
8
ÿ

ℓ=[2mb]+1

)ˇ
ˇ

ˇ

ˇ

ż 2mb´ℓ

2ma´ℓ

ϕ(x)dx

ˇ

ˇ

ˇ

ˇ

2

= 0 .

2. Since
ˇ

ˇ

ˇ

ˇ

ż 2mb´ℓ

2ma´ℓ

ϕ(x)dx

ˇ

ˇ

ˇ

ˇ

ď }ϕ}L1(R), we have

( [2ma]
ÿ

ℓ=[2ma]´L+1

+

[2mb]
ÿ

ℓ=[2mb]´L+1

)ˇ
ˇ

ˇ

ˇ

ż 2mb´ℓ

2ma´ℓ

ϕ(x)dx

ˇ

ˇ

ˇ

ˇ

2

ď 2L}ϕ}2L1(R) ;

thus

lim
mÑ8

2´m

( [2ma]´1
ÿ

ℓ=[2ma]´L

+

[2mb]
ÿ

ℓ=[2mb]´L+1

)ˇ
ˇ

ˇ

ˇ

ż 2mb´ℓ

2ma´ℓ

ϕ(x)dx

ˇ

ˇ

ˇ

ˇ

2

= 0 .

3. For [2ma] + 1 ď ℓ ď [2mb] ´ L, we have

2ma ´ ℓ ď 2ma ´ [2ma] ´ 1 ă 0 and 2mb ´ ℓ ě 2mb ´ [2mb] + L ě L ;

thus the fact that supp(ϕ) Ď [0, L] implies that

[2mb]´L
ÿ

ℓ=[2ma]+1

ˇ

ˇ

ˇ

ˇ

ż 2mb´ℓ

2ma´ℓ

ϕ(x)dx

ˇ

ˇ

ˇ

ˇ

2

=

[2mb]´L
ÿ

ℓ=[2ma]

ˇ

ˇ

ˇ

ˇ

ż

R
ϕ(x)dx

ˇ

ˇ

ˇ

ˇ

2

=

[2mb]´L
ÿ

ℓ=[2ma]

ˇ

ˇpϕ(0)
ˇ

ˇ

2

= [2mb] ´ [2ma] ´ L.



Therefore,

lim
mÑ8

2´m

[2mb]´L
ÿ

ℓ=[2ma]

ˇ

ˇ

ˇ

ˇ

ż 2mb´ℓ

2ma´ℓ

ϕ(x)dx

ˇ

ˇ

ˇ

ˇ

2

= lim
mÑ8

2´m
(
[2mb] ´ [2ma] ´ L

)
= lim

mÑ8
2´m

[
2mb ´ 2ma+ ([2mb] ´ 2mb) + (2ma ´ [2ma]) ´ L

]
= b ´ a.

The discussion above shows that lim
mÑ8

›

›Pm1[a,b)

›

›

L2(R) = b ´ a = }1[a,b)}
2
L2(R).

Now if s =
n
ř

k=1

hk1[ak,bk), where thkunk=1 Ď C and ´8 ă a1 ă b1 ď a2 ă b2 ď ¨ ¨ ¨ ď an ă

bn ă 8, the linearity of Pm implies that

›

›Pms ´ s
›

›

L2(R) =

›

›

›

›

n
ÿ

k=1

hk

(
Pm1[ak,bk) ´ 1[ak,bk)

)›
›

›

›

L2(R)
ď

n
ÿ

k=1

|hk|

›

›

›

›

Pm1[ak,bk) ´ 1[ak,bk)

›

›

›

›

L2(R)

which converges to 0 as m Ñ 8 (because it is a finite sum). This concludes the claim.
Let f P L2(R) be given, and ε ą 0 be given. There exists finite sequence thkunk=1 Ď C

and 2n real numbers satisfying ´8 ă a1 ă b1 ď a2 ă b2 ď ¨ ¨ ¨ ď an ă bn ă 8 such that the
step function s =

8
ř

k=´8

hk1[ak,bk) satisfies

}f ´ s}L2(R) ă
ε

3
.

The orthogonality of Pm further shows that
›

›Pmf ´ Pms
›

›

L2(R) ď }f ´ s}L2(R) ă
ε

3
.

By Claim 1, there exists N ą 0 such that
›

›Pms ´ s
›

›

L2(R) ă
ε

3
whenever m ě N .

Therefore, if m ě N ,

}f ´ Pmf}L2(R) ď }f ´ s}L2(R) +
›

›Pms ´ s
›

›

L2(R) +
›

›Pmf ´ Pms
›

›

L2(R) ă ε,

and this shows that f P closure}¨}L2(R)

(
8
Ť

m=´8

Vm

)
.

Next we show that
8
Ş

m=´8

Vm = t0u or equivalently,

lim
mÑ´8

}Pmf}L2(R) = 0 @ f P L2(R) .

Let f P L2(R) and ε ą 0 be given. Choose g P Cc(R) be such that }f´g}L2(R) ă
ε

2
. Suppose

that supp(g) Ď [´R,R] and N P N satisfies 2N ě R. Then the fact that supp(ϕm,n) Ď

[2´mn, 2´m(n+ L)] implies that if m ď ´N ,

xg, ϕm,ny =

ż R

´R

g(x)ϕm,n(x) dx = 0 whenever n ď ´L ´ 1 or n ě 1 .



The discussion above shows that if m ď ´N ,

Pmg =
8
ÿ

n=´8

xg, ϕm,nyϕm,n =
0
ÿ

n=´L

xg, ϕm,nyϕm,n .

Therefore, using the estimate

ˇ

ˇxg, ϕm,ny
ˇ

ˇ =

ˇ

ˇ

ˇ

ˇ

ż

R
g(x)2

m
2 ϕ(2mx ´ n) dx

ˇ

ˇ

ˇ

ˇ

ď 2
m
2 }ϕ}L8(R)}g}L1(R) ,

we have for m ď ´N ,

}Pmg}2L2(R) =
0
ÿ

n=´L

ˇ

ˇxg, ϕm,ny
ˇ

ˇ

2
ď 2m(L+ 1)}ϕ}2L8(R)}g}2L1(R) .

Therefore, by choosing N even larger, we have for m ď ´N ,

}Pmf}L2(R) ď
›

›Pm(f ´ g)}L2(R) + }Pmg}L2(R) ď }f ´ g}L2(R) + }Pmg}L2(R) ă ε

which concludes that lim
mÑ0

}Pmf}L2(R) = 0 for all f P L2(R). ˝

7.4 Construction of Orthonormal Wavelets
We now use the properties of scaling functions and filters for constructing orthonormal
wavelets.

Example 7.22 (The Haar Wavelet). Example 7.2 shows that spaces of piecewise constant
functions constitute an MRA with the scaling function ϕ = 1[0,1). Moreover, ϕ satisfies the
dilation equation

ϕ(x) =
?
2

8
ÿ

n=´8

cnϕ(2x ´ n) , (7.4.1)

where the coefficients cn are given by

cn = xϕ, ϕ1,ny
L2(R)

=
?
2

ż

R
ϕ(x)ϕ(2x ´ n) dx. (7.4.2)

Evaluating this integral with ϕ = 1[0,1) gives cn as follows:

c0 = c1 =
1

?
2

and cn = 0 for n ‰ 0, 1.

Consequently, the dilation equation becomes

ϕ(x) = ϕ(2x) + ϕ(2x ´ 1) . (7.4.3)

This means that ϕ is a linear combination of the even and odd translates of d1/2ϕ and
satisfies a very simple two-scale relation (7.4.3), as shown in Figure 7.2.



Figure 7.2: Two-scale relation of ϕ(x) = ϕ(2x) + ϕ(2x ´ 1)

Thus, the Haar mother wavelet is obtained from (7.3.26) as a simple two-scale relation

ψ(x) = ϕ1,´1(x) ´ ϕ1,´2(x) = ϕ(2x+ 1) ´ ϕ(2x+ 2) = 1[´ 1
2
,0)(x) ´ 1[´1,´ 1

2
)(x)

=

$

’

’

’

&

’

’

’

%

1 if x P
[
´

1

2
, 0
)
,

´1 if x P
[
´1,´

1

2

)
,

0 otherwise.

(7.4.4)

This two-scale relation (7.4.4) of ψ is represented in Figure 7.3.

Figure 7.3: Two-scale relation of ψ(x) = ϕ(2x) + ϕ(2x ´ 1)

Alternatively, the Haar wavelet can be obtained from the Fourier transform of the scaling
function ϕ = 1[0,1) so that

pϕ(ω) = z1[0,1)(ω) = exp
(

´
iω

2

)
sinc

(ω
2

)
= exp

(
´
iω

4

)
cos

(ω
4

)
exp

(
´
iω

4

)
sinc

(ω
4

)
= pm

(ω
2

)
pϕ
(ω
2

)
, (7.4.5)

where the associated filter pm and its complex conjugate are given by

pm(ω) = exp
(

´
iω

2

)
cos

(ω
2

)
=

1

2
(1 + e´iω) , (7.4.6a)

pm(ω) = exp
(iω
2

)
cos

(ω
2

)
=

1

2
(1 + eiω) . (7.4.6b)

Thus, the Haar wavelet can be obtained form (7.3.24) or (7.3.27) and is given by

pψ(ω) = pν(ω) exp
( iω
2

)
pm
(ω
2
+ π

)
pϕ
(ω
2

)
= pν(ω) ¨ exp

(iω
2

)
¨
1

2

(
1 ´ e

iω
2

)
¨ pϕ

(ω
2

)
,



where pν(ω) = ´ exp(´iω) is chosen to find the exact result (7.4.4) since using this pν, we
obtain

pψ(ω) = ´ exp
(

´
iω

2

)
¨
1

2

(
1 ´ e

iω
2

)
¨ pϕ

(ω
2

)
=

1

2
pϕ
(ω
2

)
´

1

2
exp

(
´
iω

2

)
pϕ
(ω
2

)
=

1
?
2

[
(D2

pϕ)(ω) ´ (M´ 1
2
D2

pϕ)(ω)
]
=

1
?
2

[
zD 1

2
ϕ(ω) ´ {T 1

2
D 1

2
ϕ(ω)

]
so that the inverse Fourier transform gives the exact result (7.4.4) as

ψ(x) =
1

?
2

[
(D 1

2
ϕ)(x) ´ (T 1

2
D 1

2
ϕ)(x)

]
= ϕ(2x) ´ ϕ(2x ´ 1) .

On the other hand, using (7.3.24) also gives the Haar wavelet as

pψ(ω) = exp
( iω
2

)
pm
(ω
2
+ π

)
pϕ
(ω
2

)
= exp

( iω
2

)
¨
1

2

(
1 ´ e

iω
2

)
¨ exp

(
´
iω

4

)
sinc

(ω
4

)
= exp

(iω
2

)
¨
1

2

(
e

´iω
4 ´ e

iω
4

)
¨ sinc

(ω
4

)
= ´ exp

( iω
2

)
¨ sin ω

4
¨ sinc

(ω
4

)
=

[
i exp

(
´
iω

2

)sin2(ω/4)

ω/4

](
´exp(iω)

)
. (7.4.7)

This corresponds to the same Fourier transform (6.2.7) of the Haar wavelet (7.4.4) except for
the factor ´ exp(iω). This means that this factor induces a translation of the Haar wavelet
to the left by one unit. Thus, we have chosen pν(ω) = ´ exp(´iω) in (7.3.27) to find the
same value (7.4.4) for the classic Haar wavelet.

Example 7.23 (Cardinal B-splines and Spline Wavelets). When we talk about “cardinal
splines”, we mean “polynomial spline functions with equally spaced simple knots”. We first
consider the set Z of all integers as the “knot sequence”. Let πn denotes the collection of all
algebraic polynomials of degree at most n, and C n(R) denote the collection of all functions
f such that f , f 1, ¨ ¨ ¨ , f (n) are continuous everywhere, with the understanding that C ´1(R)
is the space of piecewise continuous functions.

For each positive integer m, the space Sm of cardinal splines of order m and with knot
sequence Z is the collection of all functions f P Cm´2(R) such that the restrictions of f to
any interval [k, k + 1), k P Z, are in πm´1; that is,

fæ[k,k+1)P πm´1 , k P Z .

The space S1 of piecewise constant functions is easy to understand. The most convenient
basis to use is

␣

B1(x ´ k)
ˇ

ˇ k P Z
(

, where B1 = 1[0,1) is the scaling function given in the
previous example. To give a basis of Sm, m ě 2, let us first consider the space Sm,N

consisting of the restrictions of functions f P Sm to the interval [´N,N ], where N is a
positive integer. In other words, we may consider Sm,N as the subspace of functions f P Sm

such that the restrictions

fæ(´8,´N+1) and fæ[N´1,8)



of f are polynomials in πm´1. This subspace is easy to characterize. Indeed, for an arbitrary
function f in Sm,N , by setting pm,j = fæ[j,j+1)P πm´1, j = ´N , ¨ ¨ ¨ , N ´ 1, we have, in view
of the fact that f P Cm´2,(

p
(ℓ)
m,j ´ p

(ℓ)
m,j´1

)
(j) = 0 , ℓ = 0, 1, ¨ ¨ ¨ ,m ´ 2; m ě 2 .

That is, by considering the “jumps” of f (m´1) at the knot sequence Z, namely:

cj = p
(m´1)
m,j (j+) ´ p

(m´1)
m,j´1(j

´) ” lim
xÑj+

p
(m´1)
m,j (x) ´ lim

xÑj0
p
(m´1)
m,j´1(x)

= lim
εÑ0+

[
f (m´1)(j + ε) ´ f (m´1)(j ´ ε)

]
, (7.4.8)

the adjacent polynomial pieces of f are related by the identity

pm,j(x) = pm,j´1(x) +
cj

(m ´ 1)!
(x ´ j)m´1 . (7.4.9)

Hence, by introducing the notation
#

x+ = maxt0, xu ,

xm´1
+ = (x+)

m´1 , m ě 2 ,
(7.4.10)

it follows from (7.4.9), that for all x P [´N,N ],

f(x) = fæ[´N,´N+1) (x) +
N´1
ÿ

j=´N+1

cj
(m ´ 1)!

(x ´ j)m´1
+ . (7.4.11)

This holds for every f P Sm,N , with the constants cj given by (7.4.8). Consequently, the
collection

␣

1, ¨ ¨ ¨ , xm´1, (x+N ´ 1)m´1
+ , ¨ ¨ ¨ , (x ´ N + 1)m´1

+

(

(7.4.12)

of m + 2N ´ 1 functions is a basis of Sm,N . This collection consists of both monomials
and “truncated powers”. Since we restrict our attention to the interval [´N,N ], it is also
possible to replace the monomials 1, ¨ ¨ ¨ , xm´1 in (7.4.12) by the truncated powers:

(x+N +m ´ 1)m´1
+ , ¨ ¨ ¨ , (x+N)m´1

+ . (7.4.13)

That is, the following set of truncated powers, which are generated by using integer translates
of a single function xm´1

+ , is also a basis of Sm,N :
␣

(x ´ k)m´1
+

ˇ

ˇ k = ´N ´ m+ 1, ¨ ¨ ¨ , N ´ 1
(

. (7.4.14)

This basis is more attractive than the basis in (7.4.12) for the following reasons. Firstly,
each function (x´ j)m´1

+ vanishes to the left of j; secondly all the basis functions in (7.4.14)
are generated by a single function xm´1

+ which is independent of N . Moreover, since

Sm =
8
ď

N=1

Sm,N ,



it follows that the basis in (7.4.14) can also be extended to be a “basis” T of the infinite
dimensional space Sm, simply by taking the union of the bases in (7.4.14); that is, we have

T =
␣

(x ´ k)m´1
+

ˇ

ˇ k P Z
(

. (7.4.15)

Since we are mainly concerned with the Hilbert space L2(R), we are especially interested
in cardinal splines that are in L2(R). Unfortunately, there is not a single function in T
that qualifies to be a function in L2(R), and in fact, each (x´ k)m´1

+ grows to infinity fairly
rapdily as x Ñ +8. To create L2(R) functions from TN , we must tame the polynomial
growth of (x ´ k)m´1

+ .Define the difference operator ∆ recursively by
#

(∆f)(x) = f(x) ´ f(x ´ 1) ,

(∆nf)(x) =
(
∆n´1(∆f)

)
(x) , n = 2, 3, ¨ ¨ ¨ .

(7.4.16)

Observe that just like the mth order differential operator, the mth order difference of any
polynomial of degree m ´ 1 or less is identically zero, that is,

∆mf = 0 , f P πm´1 . (7.4.17)

This motivates the definition of the sequence tMmu8
m=1: the function M1 ” 1[0,1), and

Mm(x) ”
1

(m ´ 1)!
∆mxm´1

+ @m ě 2 . (7.4.18)

x

y

x

y

x

y

Figure 7.4: The graph of functions Mm, m = 1, 2, 3, from left to right.

It is clear from the definition that Mm is a linear combination of the basis functions in
(7.4.15). In fact, it is easy to verify by induction that if ℓ P N, then for all m P N,

∆mxℓ+ =
m
ÿ

j=0

(´1)j
(
m

j

)
(x ´ j)ℓ+ ,

so we indeed have
Mm(x) =

1

(m ´ 1)!

m
ÿ

k=0

(´1)k
(
m

k

)
(x ´ k)m´1

+ . (7.4.19)

From (7.4.17), it follows that Mm(x) = 0 for all x ě m. Since Mm(x) clearly vanishes
for x ă 0, we have supp Mm Ď [0,m]. By working a little harder, we can even conclude that

supp(Mm) = [0,m] . (7.4.20)



So, Mm is certainly in L2(R). However, is the collection

B ”
␣

TkMm

(

kPZ (7.4.21)

of integer-translates of Mm a “basis” of Sm? Let us again return to Sm,N which, according
to (7.4.12) or (7.4.14), has dimension m + 2N ´ 1. Now, by using the support property
(7.4.20), each function in the collection

␣

TkMm

(N´1

k=´N´m+1
(7.4.22)

is non-trivial (at least one function in this collection is non-zero) on the interval [´N,N ]

and Mm(x´ k) vanishes identically on [´N,N ] for k ă ´N ´m+ 1 or k ą N ´ 1. Since it
can be shown that (7.4.22) is a linearly independent set, we have obtained another basis of
Sm,N . So, analogous to (7.4.15), if we take the union of the bases in (7.4.22), N = 1, 2, ¨ ¨ ¨ ,
we arrive at B in (7.4.21). One advantage of B over T in (7.4.15) is that we can now talk
about a spline series

f(x) =
8
ÿ

k=´8

ckMm(x ´ k) (7.4.23)

without worrying too much about convergence. Indeed, for each fixed x P R, since Mm has
compact support, all except for a finite number of terms in the infinite series (7.4.23) are
zero.

As mentioned earlier, we are mainly interested in those cardinal splines that belong to
L2(R), namely: Sm X L2(R). Let V m

0 denote its L2(R)-closure. That is, V m
0 is the smallest

closed subspace of L2(R) that contains Sm XL2(R). Since Mm has compact support, we see
that B Ď V m

0 . We can even show that B is a Riesz basis of V m
0 , so a scaling function ϕ for

V m
0 can be constructed using the orthonormalization process described by Theorem .

So far, we have only considered cardinal splines with knot sequence Z. More generally,
we will also consider the spaces Sjm of cardinal splines with knot sequences 2´jZ, j P Z. Since
a spline function with knot sequence 2´j1Z is also a spline function with knot sequence 2´j2Z
whenever j1 ă j2, we have a (doubly-infinite) nested sequence

¨ ¨ ¨ Ď S´1
m Ď S0

m Ď S1
m Ď ¨ ¨ ¨

of cardinal spline spaces, with S0
m = Sm. Analogous to the definition of V m

0 , we will let V m
j

denote the L2(R)-closure of Sjm X L2(R). Hence, we have a nested sequence

¨ ¨ ¨ Ď V m
´1 Ď V m

0 Ď V m
1 Ď ¨ ¨ ¨ (7.4.24)

of closed cardinal spline subspaces of L2(R). It will be clear that this nested sequence of
subspaces satisfies:

$

’

’

&

’

’

%

closure}¨}2

(
ď

jPZ

V m
j

)
= L2(R) ,

č

jPZ

V m
j = t0u .

(7.4.25)



Furthermore, it is clear that once we have shown that B is a Riesz basis of V m
0 , then for any

j P Z, the collection
␣

2j/2Mm(2
jx ´ k)

ˇ

ˇ k P Z
(

(7.4.26)

is also a Riesz basis of V m
j with the same Riesz bounds as those of B.

The cardinal B-splines (basis splines) consist of functions in Cm´1(R) with equally
spaced integer knots that coincide with polynomials of degree n on the intervals

[
2´mk, 2´m(k+

1)
]
. These B-splines of order n with compact support generate a linear space V0 in L2(R).

This leads to an MRA tVm |m P Zu by defining f P Vm if and only if d1/2f P Vm+1.
The cardinal B-splines Bm of order m are defined by the following convolution product

B1 = 1[0,1] and Bm = B1 ˙ B1 ˙ ¨ ¨ ¨ ˙ B1
looooooooooomooooooooooon

there are m B1’s

= B1 ˙ Bm´1 n ě 2 , (7.4.27)

where m factors are involved in the convolution product. Obviously,

Bm(x) =

ż

R
Bn´1(x ´ t)B1(t) dt =

ż 1

0

Bm´1(x ´ t) dt =

ż x

x´1

Bm´1(t) dt. (7.4.28)

Using the formula (7.4.28), we can obtain the explicit representation of splines B2, B3, and
B4 as follows:

B2(x) =

ż x

x´1

B1(t) dt =

ż x

x´1

1[0,1](t) dt.

Evidently, it turns out that

B2(x) = 0 if x ď 0 or x ě 2,

B2(x) =

ż x

0

dt = x if 0 ď x ď 1,

B2(x) =

ż 1

x´1

dt = 2 ´ x if 1 ď x ď 2.

Or, equivalently,
B2(x) = x1[0,1](x) + (2 ´ x)1[1,2](x) . (7.4.29)

Similarly, using
B3(x) =

ż x

x´1

B2(t) dt,

we find the explicit expression of B3:

B3(x) = 0 if x ď 0 or x ě 3,

B3(x) =

ż x

0

B2(t) dt =

ż x

0

t dt =
x2

2
if 0 ď x ď 1,

B3(x) =
( ż 1

x´1

+

ż x

1

)
B2(t) dt =

ż 1

x´1

t dt+

ż x

1

(2 ´ t) dt if 1 ď x ď 2,

=
1

2

[
1 ´ (x ´ 1)2

]
+ 2x ´ 2 ´

1

2
(x2 ´ 1) =

1

2
(6x ´ 2x2 ´ 3)

B3(x) =

ż 2

x´1

B2(t) dt =

ż 2

x´1

(2 ´ t) dt =
´1

2
(2 ´ t)2

ˇ

ˇ

ˇ

t=2

t=x´1
=

1

2
(3 ´ x)2 if 2 ď x ď 3.



Or, equivalently,

B3(x) =
x2

2
1[0,1](x) +

1

2
(6x ´ 2x2 ´ 3)1[1,2](x) +

1

2
(3 ´ x)21[2,3](x) . (7.4.30)

Finally, B4(x) =
ż x

x´1
B3(t) dt we have

B4(x) = 0 if x ď 0 or x ě 4,

B4(x) =

ż x

0

B3(t) dt =
1

6
x3 if 0 ď x ď 1,

B4(x) =

ż x

x´1

B3(t) dt =
1

6
(´3x3 + 12x2 ´ 12x+ 4) if 1 ď x ď 2,

B4(x) =

ż x

x´1

B3(t) dt =
1

6
(3x3 ´ 24x2 + 60x ´ 44) if 2 ď x ď 3,

B4(x) =

ż 3

x´1

B3(t) dt =
1

6
(4 ´ x)3 if 3 ď x ď 4.

Or, equivalently,

B4(x) =
1

6
x31[0,1)(x) +

1

6
(´3x3 + 12x2 ´ 12x+ 4)1[1,2)(x)

+
1

6
(3x3 ´ 24x2 + 60x ´ 44)1[2,3)(x) +

1

6
(4 ´ x)31[3,4](x) .

(7.4.31)

In general, we have the following

Theorem 7.24. The mth order cardinal B-spline Bm satisfies the following properties:

(i) For every f P C (R),
ż

R
f(x)Bm(x)dx =

ż 1

0

¨ ¨ ¨

ż 1

0

f(x1 + x2 + ¨ ¨ ¨ + xm)dx1 ¨ ¨ ¨ dxm . (7.4.32)

(ii) For every g P Cm(R),
ż

R
g(m)(x)Bm(x)dx =

m
ÿ

k=0

(´1)m´k
(
m

k

)
g(k) . (7.4.33)

(iii) Bm(x) =Mm(x) for all x P R; that is,

Bm(x) =
1

(m ´ 1)!

m
ÿ

k=0

(´1)k
(
m

k

)
(x ´ k)m´1

+ .

(iv) supp(Bm) = [0,m].

(v) Bm(x) ą 0 for all x P (0,m).

(vi)
8
ř

k=´8

Bm(x ´ k) = 1 for all x P R.



(vii) B 1
m(x) = (∆Bm´1)(x) ” Bm´1(x) ´ Bm´1(x ´ 1) for all x P R.

(viii) The cardinal B-splines Bm and Bm´1 are related by the identity:

Bm(x) =
x

m ´ 1
Bm´1(x) +

m ´ x

m ´ 1
Bm´1(x ´ 1) @x P R . (7.4.34)

(ix) Bm is symmetric with respect to the center of its support, namely:

Bm

(m
2
+ x

)
= Bm

(m
2

´ x
)

@x P R .

Proof. (i) Assertion (7.4.32) certainly holds for m = 1. Suppose it also holds for m´ 1 (for
some m ě 2), then by the definition of Bm in (7.4.28) and this induction hypothesis,
we have

ż

R
f(t)Bm(t)dt =

ż

R
f(t)

ż 1

0

Bm´1(t ´ xm)dxmdt =

ż 1

0

ż

R
f(t)Bm´1(t ´ xm)dtdxm

=

ż 1

0

ż

R
f(t+ xm)Bm´1(t)dtdxm

=

ż 1

0

( ż 1

0

¨ ¨ ¨

ż 1

0

f(x1 + ¨ ¨ ¨xm´1 + xm)dx1 ¨ ¨ ¨ dxm´1

)
dxm .

It follows from induction that (7.4.32) holds for all m.

(ii) Assertion (7.4.33) holds for m = 1. Suppose that it also holds for m ´ 1 (for some
m ě 2). Then by part (i) we obtain that

ż

R
g(m)(t)Bm(t)dt =

ż 1

0

¨ ¨ ¨

ż 1

0

g(m)(x1 + ¨ ¨ ¨ + xm)dxm ¨ ¨ ¨ dx1

=

ż 1

0

¨ ¨ ¨

ż 1

0

g(m´1)(x1 + ¨ ¨ ¨ + xm´1 + 1)dxm´1 ¨ ¨ ¨ dx1

´

ż 1

0

¨ ¨ ¨

ż 1

0

g(m´1)(x1 + ¨ ¨ ¨ + xm´1)dxm´1 ¨ ¨ ¨ dx1

=

ż

R
g(m´1)(t+ 1)Bm´1(t)dt ´

ż

R
g(m´1)(t)Bm´1(t)dt

=
m´1
ÿ

k=0

(´1)m´1´k
(
m´ 1

k

)
g(k + 1) ´

m´1
ÿ

k=0

(´1)m´1´k
(
m´ 1

k

)
g(k) .

Since
m´1
ÿ

k=0

(´1)m´1´k
(
m´ 1

k

)
g(k + 1) =

m
ÿ

k=1

(´1)m´k
(
m´ 1

k ´ 1

)
g(k) ,



we find that
m´1
ÿ

k=0

(´1)m´1´k
(
m´ 1

k

)
g(k + 1) ´

m´1
ÿ

k=0

(´1)m´1´k
(
m´ 1

k

)
g(k)

=
m
ÿ

k=1

(´1)m´k
(
m´ 1

k ´ 1

)
g(k) ´

m´1
ÿ

k=0

(´1)m´1´k
(
m´ 1

k

)
g(k)

= g(m) +
m´1
ÿ

k=1

(´1)m´k
(
m´ 1

k ´ 1

)
g(k) + (´1)mg(0) +

m´1
ÿ

k=1

(´1)m´k
(
m´ 1

k

)
g(k)

= g(m) + (´1)mg(0) +
m´1
ÿ

k=1

(´1)m´k
[(

m´ 1

k ´ 1

)
+

(
m´ 1

k

)]
g(k)

= g(m) + (´1)mg(0) +
m´1
ÿ

k=1

(´1)m´k
(
m

k

)
g(k) =

m
ÿ

k=0

(´1)m´k
(
m

k

)
g(k) .

It follows from induction that (7.4.33) holds for all m P N.

(iii) Clearly B1(x) =M1(x) = 1[0,1)(x) for all x P R. Assume that Bm´1(x) =Mm´1(x) for
all x P R (for some m ě 2). Then

Bm(x) =

ż 1

0

Bm´1(x ´ t)dt =

ż 1

0

Mm´1(x ´ t)dt

=
1

(m ´ 1)!

m´1
ÿ

k=0

(´1)k
(
m´ 1

k

) ż 1

0

(x ´ t ´ k)m´1
+ dt.

Since

ż 1

0

(x ´ t ´ k)m´1
+ dt =

$

’

’

’

’

&

’

’

’

’

%

ż 1

0
(x ´ t ´ k)m´1dt if x ´ k ě 1,

ż x´k

0
(x ´ t ´ k)m´1dt if 0 ď x ´ k ă 1,

0 if x ´ k ă 0,

we have
ż 1

0

(x ´ t ´ k)m´1
+ dt =

1

m

[
(x ´ k)m+ ´ (x ´ k ´ 1)m+

]
.

Therefore,

Bm(x) =
1

(m ´ 1)!

m´1
ÿ

k=0

(´1)k
(
m´ 1

k

) ż 1

0

(x ´ t ´ k)m´1
+ dt

=
1

(m ´ 1)!

m´1
ÿ

k=0

(´1)k
(
m´ 1

k

)
1

m

[
(x ´ k)m+ ´ (x ´ k ´ 1)m+

]
=

1

m!

[m´1
ÿ

k=0

(´1)k
(
m´ 1

k

)
(x ´ k)m+ +

m
ÿ

k=1

(´1)k
(
m´ 1

k ´ 1

)
(x ´ k)m+

]
=

1

m!

m
ÿ

k=1

(´1)k
(
m

k

)
(x ´ k)m+ =Mm(x) .

By induction, Bm(x) =Mm(x) for all x P R and m P N.



(vii) Using (7.4.28) again, the Fundamental Theorem of Calculus shows that

B 1
m(x) =

d

dx

ż x

x´1

Bm´1(t)dt = ´Bm´1(x ´ 1) + Bm´1(x) = (∆Bm´1)(x) .

(viii) To verify the identity in (viii), we use the definition of Mm in (7.4.18) instead. Of
course, we have already shown in (iii) that Bm =Mm. The idea is to represent as the
product of a monomial and a truncated power, namely:

xm´1
+ = x ¨ xm´2

+

and then apply the following “Leibniz Rule” for differences:[
∆n(fg)

]
(x) =

n
ÿ

k=0

(
n

k

)
(∆kf)(x)(∆n´kg)(x ´ k) . (7.4.35)

This identity for differences can be easily established by induction. It is almost exactly
the same as the Leibniz Rule for derivatives. Now, if we set f(x) = x and g(x) = xm´2

+

in (7.4.35) and recall that ∆kf = 0 for k ě 2 from (7.4.17), we then have

Bm(x) =Mm(x) =
1

(m ´ 1)!
∆mxm´1

+ =
1

(m ´ 1)!

[
x∆mxm´2

+ +m∆m´1(x ´ 1)m´2
+

]
=

1

(m ´ 1)!

[
x
(
∆m´1xm´2

+ ´ ∆m´1(x ´ 1)m´2
+

)
+m∆m´1(x ´ 1)m´2

+

]
=

x

m ´ 1
Bm´1(x) +

m ´ x

m ´ 1
Bm´1(x ´ 1)

Assertions (iv), (v), (vi) and (ix) can also be easily derived by induction, using the
definition of Bm in (7.4.28). This completes the proof of Theorem 7.24. ˝

In order to obtain the two-scale relation for the B-splines of order n, we apply the Fourier
transform of (7.4.27) so that

xB1(ω) = exp
(

´
iω

2

)
sinc

(ω
2

)
. (7.4.36)

Using (7.4.5) and (7.4.6a) we can also express (7.4.36) in terms of z = exp
(

´
iω

2

)
as

xB1(ω) =
1

2
(1 + z)xB1

(ω
2

)
. (7.4.37)

Application of the convolution theorem of the Fourier transform to (7.4.27) gives

xBn(ω) =
[
xB1(ω)

]n
= xB1(ω)zBn´1(ω) =

(1 + z

2

)n[
xB1

(ω
2

)]n
=

(1 + z

2

)n
xBn

(ω
2

)
= xMn

(ω
2

)
xBn

(ω
2

)
,

where the associated filter xMn is given by

xMn

(ω
2

)
=

(1 + z

2

)n
=

1

2n
(
1 + e´ iω

2

)n
=

1

2n

n
ÿ

k=0

(
n

k

)
exp

(
´
ikω

2

)
”

1
?
2

8
ÿ

k=´8

cn,k exp
(

´
ikω

2

)
, (7.4.38)



where the coefficients cn,k are given by

cn,k =

$

&

%

?
2

2n

(
n

k

)
if 0 ď k ď n,

0 otherwise.
(7.4.39)

Therefore, the spline function in the time domain is

Bn(x) =
?
2

8
ÿ

k=´8

cn,kBn(2x ´ k) =
n
ÿ

k=0

21´n

(
n

k

)
Bn(2x ´ k) . (7.4.40)

This may be referred to as the two-scale relation for the B-splines of order n.
We next show that the cardinal B-spline basis

B =
␣

TkBm

ˇ

ˇ k P Z
(

(7.4.41)

is a Riesz (or unconditional) basis of V m
0 in the sense of Definition 6.26 (or Theorem 6.27).

By Theorem 7.7, this is equivalent to investigating the existence of lower and upper bounds
A, B in (7.3.4). From (7.4.27), we see that so that xBm = xB1

m
, so that

ˇ

ˇ xBm(ω)
ˇ

ˇ

2
=

ˇ

ˇ

ˇ

ˇ

1 ´ e´iω

iω

ˇ

ˇ

ˇ

ˇ

2m

=

ˇ

ˇ

ˇ

ˇ

sin(ω/2)
ω/2

ˇ

ˇ

ˇ

ˇ

2m

.

Hence, replacing ω by 2ω, we have
8
ÿ

k=´8

ˇ

ˇ xBm(2ω + 2kπ)
ˇ

ˇ

2
=

8
ÿ

k=´8

sin2m(ω + kπ)

(ω + kπ)2m
= sin2m ω

8
ÿ

k=´8

1

(ω + kπ)2m
. (7.4.42)

By the residue theorem, for ω ‰ kπ for all k P Z,

lim
NÑ8

¿

CN

π cot(πz)
(ω + zπ)2

dz = 2πi

[ 8
ÿ

k=´8

1

(ω + kπ)2
+

d

dz

ˇ

ˇ

ˇ

z=´π/ω

cot(πz)
π

]
,

where CN is the square contour with four corners
(
˘(N + 0.5),˘(N + 0.5)

)
. The choice of

CN leads to that
lim
NÑ8

¿

CN

π cot(πz)
(ω + zπ)2

dz = 0 ,

so we conclude that
8
ÿ

k=´8

1

(ω + kπ)2
= ´

d

dz

ˇ

ˇ

ˇ

z=´π/ω

cot(πz)
π

= csc2 ω whenever ω R
␣

kπ
ˇ

ˇ k P Z
(

.

Taking another 2m ´ 2 derivative w.r.t. ω yields that
8
ÿ

k=´8

1

(ω + kπ)2m
=

1

(2m ´ 1)!

d2m´2

dx2m´2
csc2 ω. (7.4.43)

Therefore, substituting (7.4.43) into (7.4.42), we obtain
8
ÿ

k=´8

ˇ

ˇ xBm(2ω + 2kπ)
ˇ

ˇ

2
=

sin2m ω

(2m ´ 1)!

d2m´2

dx2m´2
csc2 ω. (7.4.44)

This shows that the first order B-spline B1 defined by (7.4.27) is a scaling function that
generates the classic Haar wavelet.
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