# Vector Analysis MA2014－＊Midterm Exam 2 

National Central University，Dec． 52018

Problem 1．（15\％）Evaluate $\int_{[0, a] \times[0, b]} e^{\max \left\{b^{2} x^{2}, a^{2} y^{2}\right\}} d(x, y)$ ，where $a, b$ are positive numbers．
Problem 2．Complete the following．
1．$(15 \%)$ Sketch the solid whose volume is given by the sum of the iterated integrals

$$
\int_{0}^{6} \int_{\frac{z}{2}}^{3} \int_{\frac{z}{2}}^{y} d x d y d z+\int_{0}^{6} \int_{3}^{\frac{12-z}{2}} \int_{\frac{z}{2}}^{6-y} d x d y d z
$$

2．（ $15 \%$ ）Write the volume as a single iterated integral in the order $d y d z d x$ and find the volume of the solid．

Problem 3．Let $T$ be the trapezoid with vertices $(1,1),(2,2),(2,0)$ and $(4,0)$ ．Evaluate the integral $\int_{T} e^{(y-x) /(y+x)} d(x, y)$

1．$(15 \%)$ by transforming to polar coordinates，and
2．（ $10 \%$ ）by using the transformation $u=y-x$ and $v=y+x$ ．
Problem 4．（15\％）Show that if $\lambda>\frac{1}{2}$ ，there does not exist a real－valued continuous function $u$ such that for all $x$ in the closed interval $[0,1], u(x)=1+\lambda \int_{x}^{1} u(y) u(y-x) d y$ ．

Problem 5．（15\％）Find the volume of the region of points $(x, y, z)$ such that $\left(x^{2}+y^{2}+z^{2}+8\right)^{2} \leqslant$ $36\left(x^{2}+y^{2}\right)$ ．

## 挑戰題：

Problem 6．$(10 \%)$ Let $A$ be the area of the region in the first quadrant bounded by the line $y=\frac{1}{2} x$ ， the $x$－axis，and the ellipse $\frac{1}{9} x^{2}+y^{2}=1$ ．Find the positive number $m$ such that $A$ is equal to the area of the region in the first quadrant bounded by the line $y=m x$ ，the $y$－axis，and the ellipse $\frac{1}{9} x^{2}+y^{2}=1$ ．

