Problem 1．Grover＇s algorithm can be tweaked to work with probability 1 if we know the number of solutions exactly．Let $n \in \mathbb{N}, N=2^{n}$ ，and $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function．Suppose that there is exactly one $x \in\{0,1\}^{n}$ satisfying $f(x)=1$（thus the Hamming weight $t=1$ ）．

1．Define a new function $g:\{0,1\}^{n+1} \rightarrow\{0,1\}$ by

$$
g\left(j_{1} \cdots j_{n} j_{n+1}\right)= \begin{cases}1 & \text { if } f\left(j_{1} j_{2} \cdots j_{n}\right)=1 \text { and } j_{n+1}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Show how you can implement the following $(n+1)$－qubit unitary

$$
S_{g}:|a\rangle \mapsto(-1)^{g(a)}|a\rangle
$$

based on the implementation of U_{f} satisfying

$$
U_{f}:|a\rangle|b\rangle \mapsto|a\rangle|b \oplus f(a)\rangle \quad \forall a \in\{0,1\}^{n}, b \in\{0,1\}
$$

2．Let $\gamma \in[0,2 \pi)$ and let $\mathrm{R}_{y}(2 \gamma)$ be the reflection about y－axis with angle 2γ so that $\mathrm{R}_{y}(2 \gamma)$ has the matrix representation $\left[\begin{array}{cc}\cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma\end{array}\right]$ ．Let $\mathcal{A}=\mathrm{H}^{\otimes n} \otimes \mathrm{R}_{y}(2 \gamma)$ be an $(n+1)$－qubit unitary．What is the probability（as a function of γ ）that measuring the state $\mathcal{A}\left|0^{n+1}\right\rangle$ in the computational basis gives a solution $j \in\{0,1\}^{n+1}$ for g（that is，such that $g(j)=1$ ）？

3．Give a quantum algorithm that finds the unique solution with probability 1 using $\mathcal{O}(\sqrt{N})$ queries to f ．

Problem 2．Let $n \in \mathbb{N}, N=2^{n}, f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function，and t is the Hamming weight of f ；that is，$t=\#\left\{x \in\{0,1\}^{n} \mid f(x)=1\right\}$ ．Suppose that we know that $t \in\{1,2, \cdots, s\}$ for some known $s \ll N$ ．Give a quantum algorithm that finds a solution with probability 1 ，using $\mathcal{O}(\sqrt{s N})$ queries to f ．

Problem 3．In this problem we talked about modified Grover algorithm for unknown cardinality of $f^{-1}(\{1\})$ ，where $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is the function for which we look for objects whose function value is 1 ．We assume that $S=f^{-1}(\{1\})$ is non－empty and $t \equiv \# S \ll N$（in fact，it requires that $t \leqslant \frac{3}{4} N$ for the following quantum algorithm to work）．Let $J=\lfloor\sqrt{N}\rfloor+1$ ．Randomly select $j \in\{0,1, \cdots, J-1\}$ with equal probability $1 / J$ ．Apply j－times the Grover iterate $\mathcal{G}=\mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n} U_{f, \pm}$ to $\left|\psi_{0}\right\rangle$ to transform the state $\left|\psi_{0}\right\rangle$ to the state

$$
\left|\psi_{j}\right\rangle=\mathcal{G}^{j}\left|\psi_{0}\right\rangle .
$$

Here R is the reflection about zero state，and U_{f} is the $(n+1)$－qubit oracle satisfying

$$
U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus f(x)\rangle, \quad \forall x \in\{0,1\}^{n}, y \in\{0,1\}
$$

Measure the final quantum state and obtain $x \in\{0,1\}^{n}$ ．

1. Show that the probability of obtaining $x \in S$ is not less than $\frac{1}{4}$.
2. Figure out an algorithm for general that gives an $x \in S$ with probability not less than $\frac{1}{4}$ if t is not necessary satisfying $t \leqslant \frac{3}{4} N$.

Hint of 1: Let $\sin ^{2} \theta=\frac{t}{N}$. Then (show that) $\frac{1}{\sin 2 \theta} \leqslant J$ and then apply the result in Problem 5 of the midterm exam.

Problem 4. In this problem you are asked to provide matlab ${ }^{\circledR}$ codes for the last step in the Shor algorithm. Let $N \in \mathbb{N}$ be a (large) number taking the form $N=p q$, where p, q are prime numbers, and $L \in \mathbb{N}$ satisfy $N^{2}<2^{L} \leqslant 2 N^{2}$. Let $x \in \mathbb{Z}_{N}^{*}$ be given (so you also have the function $f(a)=x^{a} \bmod$ $N)$. Suppose that the quantum part of the Shor algorithm provides $b \in\{0,1\}^{L}$ upon measurement (so b is also given). Write a program to produces irreducible fractions $\frac{n}{m}$ satisfying

$$
\left|\frac{b}{2^{L}}-\frac{n}{m}\right|<\frac{1}{2 m^{2}} \quad \text { and } \quad m<2^{L / 2}
$$

and check whether the denominator of these irreducible fractions are the period of the function $f(a)=x^{a} \bmod N($ for given $x)$.

Problem 5. Let \mathbb{V} be the vector space spanned by three monomials $1, x$ and x^{2}, and let $\langle\cdot, \cdot\rangle$: $\mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ be an inner product on \mathbb{V} given by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

1. Use the Gram-Schmidt process to find an orthonormal basis of \mathbb{V}.
2. Let $L: \mathbb{V} \rightarrow \mathbb{R}$ be defined by

$$
L(p)=p^{\prime}(0)
$$

where p^{\prime} is the derivative of p. Show that $L \in \mathbb{V}^{*}$.
3. Find $q \in \mathbb{V}$ satisfying $L(p)=\langle q, p\rangle$ for all $p \in \mathbb{V}$.

Problem 6. For matrices $A=\left[a_{k \ell}\right]$ and $B=\left[b_{k \ell}\right]$ of the same size $m \times n$, define the Hadamard product of A and B, denoted by $A \odot B$, as an $m \times n$ matrix whose (k, ℓ)-entry is give by $a_{k \ell} b_{k \ell}$; that is,

$$
\begin{equation*}
C=A \odot B, \quad C=\left[c_{k \ell}\right], \quad c_{k \ell}=a_{k \ell} b_{k \ell} . \tag{0.1}
\end{equation*}
$$

In matlab ${ }^{\circledR}$, the Hadamard product of A and B can be computed by $A \odot B=A . * B$. In the following, we will always use .* to denote the Hadamard product.

Let H_{n} be the unnormalized Hadamard matrix whose (k, ℓ)-entry is given by $(-1)^{(k-1) \bullet(\ell-1)}$, and \boldsymbol{r}_{j} be the $(j+1)$-th row of H_{n}. Define $\varphi:\{0,1\}^{n} \rightarrow\left\{\boldsymbol{r}_{0}, \boldsymbol{r}_{1}, \cdots, \boldsymbol{r}_{2^{n}-1}\right\}$ by

$$
\varphi\left(j_{1}, j_{2}, \cdots, j_{n}\right)=\boldsymbol{r}_{j} \quad \text { if } j=\left(j_{1} j_{2} \cdots j_{n}\right)_{2}
$$

For example, for the case $n=2$ the map φ is given by

$$
\varphi:\left\{\begin{array}{rll}
(0,0) & \mapsto & \boldsymbol{r}_{0}= \\
(0,1) & \mapsto & \boldsymbol{r}_{1}= \\
(1,0) & \mapsto & \boldsymbol{r}_{2}= \\
(1,1) & \mapsto & \boldsymbol{r}_{3}=
\end{array}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \equiv \mathrm{H}_{2} .\right.
$$

Show that $\varphi:\left(\{0,1\}^{n}, \oplus\right) \rightarrow\left(\left\{\boldsymbol{r}_{0}, \boldsymbol{r}_{1}, \cdots, \boldsymbol{r}_{2^{n}-1}\right\}, . *\right)$ is a group isomorphism, where \oplus is the elementwise addition in \mathbb{Z}_{2}; that is,

$$
\left(x_{1}, x_{2}, \cdots, x_{n}\right) \oplus\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\left(x_{1} \oplus y_{1}, x_{2} \oplus y_{2}, \cdots, x_{n} \oplus y_{n}\right) .
$$

In other words, show that $\varphi:\{0,1\}^{n} \rightarrow\left\{\boldsymbol{r}_{0}, \boldsymbol{r}_{1}, \cdots, \boldsymbol{r}_{2^{n}-1}\right\}$ defined above is a bijection and

$$
\varphi\left(\left(k_{1}, \cdots, k_{n}\right) \oplus\left(\ell_{1}, \cdots, \ell_{n}\right)\right)=\boldsymbol{r}_{k} . * \boldsymbol{r}_{\ell} \quad \forall k=\left(k_{1} k_{2} \cdots k_{n}\right)_{2} \text { and } \ell=\left(\ell_{1} \ell_{2} \cdots \ell_{n}\right)_{2} .
$$

For example, in the example above (\star) implies that

$$
\varphi((0,1) \oplus(1,1))=\varphi(1,0)=\boldsymbol{r}_{2}
$$

while

$$
\varphi(0,1) . * \varphi(1,1)=\boldsymbol{r}_{1} * \boldsymbol{r}_{3}=\left[\begin{array}{llll}
1 & -1 & 1 & -1
\end{array}\right] . *\left[\begin{array}{llll}
1 & -1 & -1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & -1 & -1
\end{array}\right]=\boldsymbol{r}_{2}
$$

so that $\varphi((0,1) \oplus(1,1))=\varphi(0,1) . * \varphi(1,1)$.

