量子計算的數學基礎 MA5501

Homework Assignment 3

Due May. 15. 2023

Problem 1. Grover's algorithm can be tweaked to work with probability 1 if we know the number of solutions exactly. Let $n \in \mathbb{N}$, $N = 2^n$, and $f : \{0, 1\}^n \to \{0, 1\}$ be a Boolean function. Suppose that there is exactly one $x \in \{0, 1\}^n$ satisfying f(x) = 1 (thus the Hamming weight t = 1).

1. Define a new function $g: \{0,1\}^{n+1} \to \{0,1\}$ by

$$g(j_1 \cdots j_n j_{n+1}) = \begin{cases} 1 & \text{if } f(j_1 j_2 \cdots j_n) = 1 \text{ and } j_{n+1} = 0; \\ 0 & \text{otherwise.} \end{cases}$$

Show how you can implement the following (n + 1)-qubit unitary

$$S_g: |a\rangle \mapsto (-1)^{g(a)} |a\rangle$$

based on the implementation of U_f satisfying

$$U_f: |a\rangle |b\rangle \mapsto |a\rangle |b \oplus f(a)\rangle \qquad \forall a \in \{0,1\}^n, b \in \{0,1\}.$$

- 2. Let $\gamma \in [0, 2\pi)$ and let $R_y(2\gamma)$ be the reflection about y-axis with angle 2γ so that $R_y(2\gamma)$ has the matrix representation $\begin{bmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{bmatrix}$. Let $\mathcal{A} = H^{\otimes n} \otimes R_y(2\gamma)$ be an (n+1)-qubit unitary. What is the probability (as a function of γ) that measuring the state $\mathcal{A}|0^{n+1}\rangle$ in the computational basis gives a solution $j \in \{0, 1\}^{n+1}$ for g (that is, such that g(j) = 1)?
- 3. Give a quantum algorithm that finds the unique solution with probability 1 using $\mathcal{O}(\sqrt{N})$ queries to f.

Problem 2. Let $n \in \mathbb{N}$, $N = 2^n$, $f : \{0, 1\}^n \to \{0, 1\}$ be a Boolean function, and t is the Hamming weight of f; that is, $t = \#\{x \in \{0, 1\}^n \mid f(x) = 1\}$. Suppose that we know that $t \in \{1, 2, \dots, s\}$ for some known $s \ll N$. Give a quantum algorithm that finds a solution with probability 1, using $\mathcal{O}(\sqrt{sN})$ queries to f.

Problem 3. In this problem we talked about modified Grover algorithm for unknown cardinality of $f^{-1}(\{1\})$, where $f : \{0,1\}^n \to \{0,1\}$ is the function for which we look for objects whose function value is 1. We assume that $S = f^{-1}(\{1\})$ is non-empty and $t \equiv \#S \ll N$ (in fact, it requires that $t \leq \frac{3}{4}N$ for the following quantum algorithm to work). Let $J = \lfloor \sqrt{N} \rfloor + 1$. Randomly select $j \in \{0, 1, \dots, J-1\}$ with equal probability 1/J. Apply *j*-times the Grover iterate $\mathcal{G} = \mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n} U_{f,\pm}$ to $|\psi_0\rangle$ to transform the state $|\psi_0\rangle$ to the state

$$|\psi_j\rangle = \mathcal{G}^j |\psi_0\rangle$$

Here R is the reflection about zero state, and U_f is the (n + 1)-qubit oracle satisfying

$$U_f|x\rangle|y\rangle = |x\rangle|y \oplus f(x)\rangle, \qquad \forall x \in \{0,1\}^n, y \in \{0,1\}.$$

Measure the final quantum state and obtain $x \in \{0, 1\}^n$.

- 1. Show that the probability of obtaining $x \in S$ is not less than $\frac{1}{4}$.
- 2. Figure out an algorithm for general that gives an $x \in S$ with probability not less than $\frac{1}{4}$ if t is not necessary satisfying $t \leq \frac{3}{4}N$.

Hint of 1: Let $\sin^2 \theta = \frac{t}{N}$. Then (show that) $\frac{1}{\sin 2\theta} \leq J$ and then apply the result in Problem 5 of the midterm exam.

Problem 4. In this problem you are asked to provide matlab[®] codes for the last step in the Shor algorithm. Let $N \in \mathbb{N}$ be a (large) number taking the form N = pq, where p, q are prime numbers, and $L \in \mathbb{N}$ satisfy $N^2 < 2^L \leq 2N^2$. Let $x \in \mathbb{Z}_N^*$ be given (so you also have the function $f(a) = x^a \mod N$). Suppose that the quantum part of the Shor algorithm provides $b \in \{0, 1\}^L$ upon measurement (so b is also given). Write a program to produces irreducible fractions $\frac{n}{m}$ satisfying

$$\left|\frac{b}{2^{L}} - \frac{n}{m}\right| < \frac{1}{2m^{2}}$$
 and $m < 2^{L/2}$

and check whether the denominator of these irreducible fractions are the period of the function $f(a) = x^a \mod N$ (for given x).

Problem 5. Let \mathbb{V} be the vector space spanned by three monomials 1, x and x^2 , and let $\langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ be an inner product on \mathbb{V} given by

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x) \, dx \, .$$

- 1. Use the Gram-Schmidt process to find an orthonormal basis of \mathbb{V} .
- 2. Let $L: \mathbb{V} \to \mathbb{R}$ be defined by

$$L(p) = p'(0)$$

where p' is the derivative of p. Show that $L \in \mathbb{V}^*$.

3. Find $q \in \mathbb{V}$ satisfying $L(p) = \langle q, p \rangle$ for all $p \in \mathbb{V}$.

Problem 6. For matrices $A = [a_{k\ell}]$ and $B = [b_{k\ell}]$ of the same size $m \times n$, define the Hadamard product of A and B, denoted by $A \odot B$, as an $m \times n$ matrix whose (k, ℓ) -entry is give by $a_{k\ell}b_{k\ell}$; that is,

$$C = A \odot B, \quad C = [c_{k\ell}], \quad c_{k\ell} = a_{k\ell} b_{k\ell}. \tag{0.1}$$

In matlab[®], the Hadamard product of A and B can be computed by $A \odot B = A * B$. In the following, we will always use * to denote the Hadamard product.

Let H_n be the **unnormalized** Hadamard matrix whose (k, ℓ) -entry is given by $(-1)^{(k-1)} \bullet (\ell-1)$, and \mathbf{r}_j be the (j+1)-th row of H_n . Define $\varphi : \{0,1\}^n \to \{\mathbf{r}_0, \mathbf{r}_1, \cdots, \mathbf{r}_{2^n-1}\}$ by

$$\varphi(j_1, j_2, \cdots, j_n) = \boldsymbol{r}_j$$
 if $j = (j_1 j_2 \cdots j_n)_2$.

For example, for the case n = 2 the map φ is given by

Show that $\varphi : (\{0,1\}^n, \oplus) \to (\{r_0, r_1, \cdots, r_{2^n-1}\}, .*)$ is a group isomorphism, where \oplus is the element-wise addition in \mathbb{Z}_2 ; that is,

$$(x_1, x_2, \cdots, x_n) \oplus (y_1, y_2, \cdots, y_n) = (x_1 \oplus y_1, x_2 \oplus y_2, \cdots, x_n \oplus y_n).$$

In other words, show that $\varphi: \{0,1\}^n \to \{r_0, r_1, \cdots, r_{2^n-1}\}$ defined above is a bijection and

$$\varphi\big((k_1,\cdots,k_n)\oplus(\ell_1,\cdots,\ell_n)\big)=\boldsymbol{r}_k*\boldsymbol{r}_\ell\qquad\forall\,k=(k_1k_2\cdots k_n)_2\text{ and }\ell=(\ell_1\ell_2\cdots\ell_n)_2.$$

For example, in the example above (\star) implies that

$$\varphi((0,1)\oplus(1,1))=\varphi(1,0)=\boldsymbol{r}_2$$

while

$$\varphi(0,1).*\varphi(1,1) = \mathbf{r}_1.*\mathbf{r}_3 = \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}.*\begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix} = \mathbf{r}_2$$

so that $\varphi((0,1) \oplus (1,1)) = \varphi(0,1) \cdot \ast \varphi(1,1).$