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Chapter 8. The HHL Algorithm

§8.1 The Linear System Problem
In this chapter we present the Harrow-Hassidim-Lloyd (HHL) al-
gorithm for solving large systems of linear equations. Such a system
is given by an N ˆ N matrix A with real or complex entries, and an
N-dimensional nonzero vector b. Assume for simplicity that N = 2n.
The linear-system problem is

LSP: find an N-dimensional vector x such that Ax = b.

Solving large systems of linear equations is extremely important in
many computational problems in industry, in science, in optimiza-
tion, in machine learning, etc. In many applications it suffices to
find a vector rx that is close to the actual solution x.
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Chapter 8. The HHL Algorithm

§8.1 The Linear System Problem
We will assume A is invertible (equivalently, has rank N) in order to
guarantee the existence of a unique solution vector x, which is then
just A´1b. This assumption is just for simplicity: if A does not have
full rank, then the methods below would still allow to invert it on
its support, replacing A´1 by the “Moore-Penrose pseudoinverse”.

The HHL algorithm can solve “well-behaved” large linear systems
very fast (under certain assumptions), but in a rather weak sense:
instead of outputting the N-dimensional solution vector x itself, its
goal is to output the n-qubit state

|xy =
1

}x}

N´1
ÿ

i=0

xi|i y

or some other n-qubit state close to |xy.
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Chapter 8. The HHL Algorithm

§8.1 The Linear System Problem
This state |xy has the solution vector as its vector of amplitudes, up
to normalization. This is called the quantum linear-system problem:

QLSP: find an n-qubit state |rxy such that }|xy ´ |rxy} ď ε

and Ax = b.

Note that the QLSP is an inherently quantum problem, since the
goal is to produce an n-qubit state whose amplitude-vector (up to
normalization and up to ε-error) is a solution to the linear system.
In general this is not as useful as just having the N-dimensional
vector x written out on a piece of paper, but in some cases where
we only want some partial information about x, it may suffice to just
(approximately) construct |xy.
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Chapter 8. The HHL Algorithm

§8.1 The Linear System Problem
We will assume without loss of generality that A is Hermitian: if A
is a non-hermitian N ˆ N matrix, then we consider the augmented
linear system (of size 2N) sA sx = sb , where with 0NˆN denoting the
N ˆ N zero matrix and 0Nˆ1 denoting the zero (column) vector in
RN,

sA ”

[
0NˆN A
A: 0NˆN

]
, sb =

[
b

0Nˆ1

]
.

Note that if x solves Ax = b (or equivalently, x = A´1b), then sx

takes the form sx =

[
0Nˆ1

x

]
.
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Chapter 8. The HHL Algorithm

§8.1 The Linear System Problem
Let us state the more restrictive assumptions that will make the
linear system “well-behaved” and suitable for the HHL algorithm:

1 We have a unitary that can prepare the vector b as an n-qubit
quantum state

|by =
1

}b}

N´1
ÿ

i=0

bi|i y

using a circuit of B 2-qubit gates. We also assume for simplicity
that }b} = 1.

2 The matrix A is s-sparse and we have sparse access to it. Such
sparsity is not essential to the algorithm, and could be replaced
by other properties that enable an efficient block-encoding of
A.
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Chapter 8. The HHL Algorithm

§8.1 The Linear System Problem
3 The matrix A is well-conditioned: the ratio between its largest

and smallest singular value is at most some κ. For simplicity,
assume the smallest singular value is not smaller than 1/κ while
the largest is not greater than 1. In other words, all eigenvalues
of A lie in the interval [´1,´1/κ] Y [1/κ, 1]. The smaller the
“condition number” κ is, the better it will be for the algorithm.
Let us assume our algorithm knows κ, or at least knows a
reasonable upper bound on κ.
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Let us start with some intuition. The solution vector x that we are
looking for is A´1b, so we would like to apply A´1 to b. Since A

is hermitian, A has spectral decomposition A =
N´1
ÿ

j=0

λjaja:
j ; then the

map A´1 is the same as the map aj ÞÑ
1

λj
aj: we just want to multiply

the eigenvector aj with the scalar 1/λj. The vector b can also be

written as a linear combination of the eigenvectors aj: b =
N´1
ř

j=0
βjaj

(we do NOT need to know the coefficients βj for what follows). We

want to apply A´1 to b to obtain A´1b =
N´1
ř

j=0
βj

1

λj
aj, normalized,

as an n-qubit quantum state.
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Unfortunately the maps A and A´1 are not unitary (unless |λj| = 1

for all j), so we cannot just apply A´1 as a quantum operation

to state |by to get state |xy. Fortunately U = e iA =
N´1
ř

j=0
e iλjaja:

j

is unitary, and has the same eigenvectors as A and A´1. We can
implement U and powers of U by Hamiltonian simulation, and then
use phase estimation to estimate the λj associated with eigenvector
|ajy with some small approximation error.

Conditioned on our estimate of λj we can then rotate an auxiliary
|0y-qubit to

d

1 ´
1

κ2λ2
j

|0y +
1

κλj
|1y

(this is a valid state because |κλj| ě 1).
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Next we undo the phase estimation to set the register that contained
the estimate back to |0y. Suppressing the auxiliary qubits containing
the temporary results of the phase estimation, we have now unitarily
mapped

|ajy|0y ÞÑ |ajy b

(
d

1 ´
1

κ2λ2
j

|0y +
1

κλj
|1y

)
.

If we prepare a copy of |by|0y =
N´1
ř

j=0
βj|ajy|0y and apply the above

unitary map to it, then we obtain
N´1
ÿ

j=0

βj|ajy

(
d

1 ´
1

κ2λ2
j

|0y +
1

κλj
|1y

)
= |ϕy|0y +

1

κ

N´1
ÿ

j=0

βj
1

λj
|ajy|1y ,

where we do not care about the (sub-normalized) state |ϕy.
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems

Note that because
N´1
ř

j=0
|βj/λj|2 ě

N´1
ř

j=0
|βj|2 = 1, the norm of the

part of the state ending in qubit |0y is at least 1/κ2. Accordingly,
we can now apply O(κ) rounds of amplitude amplification to amplify
this part of the state to have amplitude essentially 1. This prepares
state |xy, as intended. This rough sketch is the basic idea of HHL. It
leads to an algorithm that produces a state |rxy that is ε-close to |xy,
using roughly κ2s/ε queries to H and roughly κs(κn/ε + B) other
2-qubit gates.
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
§8.2.1 Illustration of the quantum circuits for HHL
The algorithm uses three quantum registers, all of them set to |0y at
the beginning of the algorithm. One register, which we will denote
with the sub-index nℓ, is used to store a binary representation of
the eigenvalues of A. A second register, denoted by nb, contains
the vector solution, and from now on N = 2nb . There is an extra
register, for the auxiliary qubits. These are qubits used as interme-
diate steps in the individual computations but will be ignored in the
following description since they are set to |0y at the beginning of
each computation and restored back to the |0y state at the end of
the individual operation.
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
The following is an outline of the HHL algorithm with a high-level
drawing of the corresponding circuit. For simplicity all computa-
tions are assumed to be exact in the ensuing description.

|0y

Eigen-
value

inversion
|0nℓy

QPE QPE:|0nay
Load
|by

F(x)
|0nby

Step 3 Step 5Step 2 Step 4Step 1 Step 6

Figure 1: The quantum circuit of the HHL algorithm
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Step 1: Load the data |by P CN; that is, perform the transformation

|0nby ÞÑ |by.

Step 2: Apply Quantum Phase Estimation (QPE) with

U = e iAt =
N´1
ÿ

j=0

e iλjt|ajyxaj |

for a certain t (here we take t = 1). The quantum state of the

register expressed in the eigenbasis of A is now
N´1
ř

j=0
βj|λjynℓ

|ajy;

that is,
QPE(U, |0nℓy|by) =

N´1
ÿ

j=0

βj|λjynℓ
|ajy .

Here we recall that |λjynℓ
is the nℓ-bit binary approximation of

λj satisfying |λjynℓ
= |[2nℓλj]y.
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Step 3: Add an auxiliary qubit and apply a rotation conditioned on

|λjynℓ
(multi-controlled rotation gates),

N´1
ÿ

j=0

βj|λjynℓ
|ajy

(
d

1 ´
1

κ2λ2
j

|0y +
1

κλj
|1y

)
,

where κ is (an upper bound of) the condition number of A.

Step 4: Apply QPE: (that is, undo QPE). Ignoring possible errors
from QPE, this results in

N´1
ÿ

j=0

βj|0
nℓy|ajy

(
d

1 ´
1

κ2λ2
j

|0y +
1

κλj
|1y

)
.

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 8. The HHL Algorithm
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Step 5: Measure the auxiliary qubit in the computational basis. If

the outcome is 1, the register is in the post-measurement state(
1

řN´1
j=0 |βj|2|λj|´2

) 1
2 N´1

ÿ

j=0

βj
λj

|0nℓy|ajy

which up to a normalisation factor corresponds to the solution.

Step 6: Apply an observable M to calculate F(x) ” xx |M |xy.
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Example
Consider solving the linear system Ax = b, where

A =

[
1 ´1/3

´1/3 1

]
and |by =

[
1
0

]
.

We will use nb = 1 qubit to represent |by and later the solution
|xy, nℓ = 2 qubits to store the binary representation of the eigenval-
ues, and 1 auxiliary qubit to store whether the conditioned rotation,
hence the algorithm, was successful.

For the purpose of illustrating the algorithm, we will cheat a bit
and calculate the eigenvalues of A to be able to choose t to obtain
an exact binary representation of the rescaled eigenvalues in the
nℓ-register. However, keep in mind that for the HHL algorithm
implementation one does not need knowledge of the eigenvalues.
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Example (cont.)
Recall that the QPE will output an nℓ-bit (2-bit in this case) binary
approximation to 2nλjt. Since the eigenvalues of A are λ1 = 2/3

and λ2 = 4/3, if we set t =
3π

4
the QPE will give a 2-bit binary

approximation to λ1t
2π

=
1

4
and λ2t

2π
=

1

2
, which is, respectively,

|01ynℓ
and |10ynℓ

.

The eigenvectors are, respectively,

|a1y =
1

?
2

[
1
1

]
and |a2y =

1
?
2

[
1

´1

]
.

Again, keep in mind that one does not need to compute the eigen-
vectors for the HHL implementation.
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§8.2 The Basic HHL Algorithm for Linear Systems
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Recall that the QPE will output an nℓ-bit (2-bit in this case) binary
approximation to 2nλjt. Since the eigenvalues of A are λ1 = 2/3

and λ2 = 4/3, if we set t =
3π

4
the QPE will give a 2-bit binary

approximation to λ1t
2π

=
1

4
and λ2t

2π
=

1

2
, which is, respectively,

|01ynℓ
and |10ynℓ

.

The eigenvectors are, respectively,

|a1y =
1

?
2

[
1
1

]
and |a2y =

1
?
2

[
1

´1

]
.

Again, keep in mind that one does not need to compute the eigen-
vectors for the HHL implementation.

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Example (cont.)
We can then write |by in the eigenbasis of A as

|by =
2

ÿ

j=1

1
?
2

|ajy .

Now we are ready to go through the different steps of the HHL
algorithm.
Step 1: State preparation in this example is trivial since |by = |0y.
Step 2: Applying QPE will yield

1
?
2

|01y|a1y +
1

?
2

|10y|a2y .
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Example (cont.)
Step 3: Conditioned rotation with κ = 8. Note, the constant κ

here needs to be chosen such that the product of κ and the
smallest eigenvalue 1

4
is bigger than 1 but as small as possible

so that when the auxiliary qubit is measured, the probability of
it being in the state |1y is large:

1
?
2

|01y|a1y

(
c

1 ´
1

82 ¨ 1/42
|0y+

1

8 ¨ 1/4
|1y

)
+

1
?
2

|10y|a2y

(
c

1 ´
1

82 ¨ 1/22
|0y+

1

8 ¨ 1/2
|1y

)
=

1
?
2

|01y|a1y

(?
3

2
|0y+

1

2
|1y

)
+

1
?
2

|10y|a2y

(?
15

4
|0y+

1

4
|1y

)
.
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Example (cont.)
Step 4: After applying QPE: the quantum computer is in the state

1
?
2

|00y|a1y

(?
3

2
|0y +

1

2
|1y

)
+

1
?
2

|00y|a2y

(?
15

4
|0y +

1

4
|1y

)
.

Step 5: On outcome 1 when measuring the auxiliary qubit, the
state is

1
a

5/32

(
1

?
2

|00y|a1y
1

2
|1y +

1
?
2

|00y|a2y
1

4
|1y

)
.

A quick calculation shows that
1

a

5/32

(
1

2
?
2

|a1y +
1

4
?
2

|a2y

)
=

x
}x}

,

where x =
[
9/8 3/8

]T is the solution.
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§8.2 The Basic HHL Algorithm for Linear Systems
Example (cont.)
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Chapter 8. The HHL Algorithm

§8.2 The Basic HHL Algorithm for Linear Systems
Example (cont.)
Step 6: Without using extra gates, we can compute the norm of

|xy: it is the probability of measuring 1 in the auxiliary qubit
from the previous step

P(|1y) =
(

1

2
?
2

)2
+
(

1

4
?
2

)2
=

5

32
.
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