量子計算的數學基礎 MA5501＊

Chapter 4．Simon＇s Algorithm

§4．1 Simon＇s Problem

§4．2 The Quantum Algorithm
§4．3 Classical Algorithms for Simon＇s Problem

§4．1 Simon＇s Problem

Simon＇s algorithm was the first quantum algorithm to show an ex－ ponential speed－up versus the best classical algorithm in solving a specific problem．This inspired the quantum algorithms based on the quantum Fourier transform，which is used in the most famous quantum algorithm：Shor＇s factoring algorithm．

§4．1 Simon＇s Problem

Simon＇s algorithm was the first quantum algorithm to show an ex－ ponential speed－up versus the best classical algorithm in solving a specific problem．This inspired the quantum algorithms based on the quantum Fourier transform，which is used in the most famous quantum algorithm：Shor＇s factoring algorithm．

Let $N=2^{n}$ ，and identify the set $\{0, \cdots, N-1\}$ with $\{0,1\}^{n}$ ．Let $j \oplus s$ be the n－bit string obtained by bitwise adding the n－bit strings j and $s \bmod 2$ ；that is，

$$
j \oplus s=\left(\left(j_{1} \oplus s_{1}\right)\left(j_{2} \oplus s_{2}\right) \cdots\left(j_{n} \oplus s_{n}\right)\right)_{2}
$$

if

$$
j=\left(j_{1} j_{2} \cdots j_{n}\right)_{2} \quad \text { and } \quad s=\left(s_{1} s_{2} \cdots s_{n}\right)_{2} .
$$

§4．1 Simon＇s Problem

Simon＇s problem：

－Formulation 1：For $N=2^{n}$ ，we are given $x=\left(x_{0}, \cdots, x_{N-1}\right)$ ， with $x_{i} \in\{0,1\}^{n}$ ，with the property that there is a unique but unknown nonzero $s \in\{0,1\}^{n}$ such that $x_{i}=x_{j}$ if and only if （ $i=j$ or $i=j \oplus s$ ）．Find s ．
－Formulation 2：If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is either an one－to－one or
a two－to－one function satisfying the property that there exists

Determine the class to which f belongs to．
Note that the input $x=\left\{x_{0}, \cdots, x_{N-1}\right\}$ now has variables x_{i} that
themselves are n－bit strings，and one query gives such a string com－

§4．1 Simon＇s Problem

Simon＇s problem：

－Formulation 1：For $N=2^{n}$ ，we are given $x=\left(x_{0}, \cdots, x_{N-1}\right)$ ， with $x_{i} \in\{0,1\}^{n}$ ，with the property that there is a unique but unknown nonzero $s \in\{0,1\}^{n}$ such that $x_{i}=x_{j}$ if and only if （ $i=j$ or $i=j \oplus s$ ）．Find s ．
－Formulation 2：If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is either an one－to－one or a two－to－one function satisfying the property that there exists $s \in\{0,1\}^{n}$ such that $f(i)=f(j)$ if and only if $i=j$ or $i=j \oplus s$ ． Determine the class to which f belongs to．

Note that the input $x=\left\{x_{0}, \cdots, x_{N-1}\right\}$ now has variables x_{i} that
themselves are n－bit strings，and one query gives such a string com－

§4．1 Simon＇s Problem

Simon＇s problem：

－Formulation 1：For $N=2^{n}$ ，we are given $x=\left(x_{0}, \cdots, x_{N-1}\right)$ ， with $x_{i} \in\{0,1\}^{n}$ ，with the property that there is a unique but unknown nonzero $s \in\{0,1\}^{n}$ such that $x_{i}=x_{j}$ if and only if （ $i=j$ or $i=j \oplus s$ ）．Find s ．
－Formulation 2：If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is either an one－to－one or a two－to－one function satisfying the property that there exists $s \in\{0,1\}^{n}$ such that $f(i)=f(j)$ if and only if $i=j$ or $i=j \oplus s$ ． Determine the class to which f belongs to．

Note that the input $x=\left\{x_{0}, \cdots, x_{N-1}\right\}$ now has variables x_{i} that themselves are n－bit strings，and one query gives such a string com－ pletely $|i\rangle\left|0^{n}\right\rangle \mapsto|i\rangle\left|x_{i}\right\rangle$ ．

§4．2 The Quantum Algorithm

Simon＇s algorithm starts in a state of 2^{n} zero qubits $\left|0^{n}\right\rangle\left|0^{n}\right\rangle$ and apply Hadamard transforms to the first n qubits，giving

$$
\frac{1}{\sqrt{2^{n}}} \sum_{i \in\{0,1\}^{n}}|i\rangle\left|0^{n}\right\rangle .
$$

A query turns this into

$$
\frac{1}{\sqrt{2^{n}}} \sum_{i \in\{0,1\}^{n}}|i\rangle\left|x_{i}\right\rangle .
$$

Now the algorithm measures the second n－qubit register in the com－
putational basis；this measurement is actually not necessary，but it facilitates analysis．
x_{i} and the first register will collapse to the superposition of the two
indices having that x_{i}－value：

§4．2 The Quantum Algorithm

Simon＇s algorithm starts in a state of 2^{n} zero qubits $\left|0^{n}\right\rangle\left|0^{n}\right\rangle$ and apply Hadamard transforms to the first n qubits，giving

$$
\frac{1}{\sqrt{2^{n}}} \sum_{i \in\{0,1\}^{n}}|i\rangle\left|0^{n}\right\rangle .
$$

A query turns this into

$$
\frac{1}{\sqrt{2^{n}}} \sum_{i \in\{0,1\}^{n}}|i\rangle\left|x_{i}\right\rangle .
$$

Now the algorithm measures the second n－qubit register in the com－ putational basis；this measurement is actually not necessary，but it facilitates analysis．
x_{i} and the first register will collapse to the superposition of the two
indices having that x_{i}－value：

§4．2 The Quantum Algorithm

Simon＇s algorithm starts in a state of 2^{n} zero qubits $\left|0^{n}\right\rangle\left|0^{n}\right\rangle$ and apply Hadamard transforms to the first n qubits，giving

$$
\frac{1}{\sqrt{2^{n}}} \sum_{i \in\{0,1\}^{n}}|i\rangle\left|0^{n}\right\rangle .
$$

A query turns this into

$$
\frac{1}{\sqrt{2^{n}}} \sum_{i \in\{0,1\}^{n}}|i\rangle\left|x_{i}\right\rangle .
$$

Now the algorithm measures the second n－qubit register in the com－ putational basis；this measurement is actually not necessary，but it facilitates analysis．The measurement outcome will be some value x_{i} and the first register will collapse to the superposition of the two indices having that x_{i}－value：

$$
\frac{1}{\sqrt{2}}(|i\rangle+|i \oplus s\rangle)\left|x_{i}\right\rangle
$$

§4．2 The Quantum Algorithm

We will now ignore the second register and apply Hadamard trans－ forms to the first n qubits．Using

$$
\mathrm{H}^{\otimes n}|i\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{j \in\{0,1\}^{n}}(-1)^{i \bullet j}|j\rangle,
$$

and the fact that $(i \oplus s) \bullet j=(i \bullet j) \oplus(s \bullet j)$（which is a direct consequence of $\left(i_{k} \oplus s_{k}\right) \cdot j_{k}=\left(i_{k} \cdot j_{k}\right) \oplus\left(s_{k} \cdot j_{k}\right)$ for all $\left.i_{k}, s_{k}, j_{k} \in\{0,1\}\right)$ ， we can write the resulting state as

$$
\begin{aligned}
& \mathrm{H}^{\otimes n}\left(\frac{1}{\sqrt{2}}(|i\rangle+|i \oplus s\rangle)\right) \\
& \quad=\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{j \in\{0,1\}^{n}}(-1)^{i \bullet j}|j\rangle+\sum_{j \in\{0,1\}^{n}}(-1)^{(i \oplus s) \bullet j}|j\rangle\right) \\
& \quad=\frac{1}{\sqrt{2^{n+1}}} \sum_{j \in\{0,1\}^{n}}(-1)^{i \bullet j}\left(1+(-1)^{s \bullet j}\right)|j\rangle .
\end{aligned}
$$

§4．2 The Quantum Algorithm

Note that $|j\rangle$ has nonzero amplitude if $s \bullet j=0 \bmod 2$ ．Measuring the state gives a uniformly random element from the set $\{j \mid s \bullet j=$ $0 \bmod 2\}$ ．Accordingly，we get a linear equation

$$
s \bullet j=0 \bmod 2
$$

that gives information about s ．We repeat this algorithm until we

The solutions to these equations will be 0^{n} and the correct s ，which
we can compute efficiently by a classical algorithm（Gaussian elimi－ nation modulo 2）．This can be done by means of a classical circuit of size roughly $\mathcal{O}\left(n^{3}\right)$ ．

§4．2 The Quantum Algorithm

Note that $|j\rangle$ has nonzero amplitude if $s \bullet j=0 \bmod 2$ ．Measuring the state gives a uniformly random element from the set $\{j \mid s \bullet j=$ $0 \bmod 2\}$ ．Accordingly，we get a linear equation

$$
s \bullet j=0 \bmod 2
$$

that gives information about s ．
have obtained $n-1$ independent linear equations involving s

The solutions to these equations will be 0^{n} and the correct s ，which
we can compute efficiently by a classical algorithm（Gaussian elimi－ nation modulo 2）．This can be done by means of a classical circuit of size roughly $\mathcal{O}\left(n^{3}\right)$ ．

§4．2 The Quantum Algorithm

Note that $|j\rangle$ has nonzero amplitude if $s \bullet j=0 \bmod 2$ ．Measuring the state gives a uniformly random element from the set $\{j \mid s \bullet j=$ 0 mod 2$\}$ ．Accordingly，we get a linear equation

$$
s \bullet j=0 \bmod 2
$$

that gives information about s ．We repeat this algorithm until we have obtained $n-1$ independent linear equations involving s

$$
\left[\begin{array}{cccc}
j_{n-1}^{(1)} & j_{n-2}^{(1)} & \cdots & j_{0}^{(1)} \\
j_{n-1}^{(2)} & j_{n-2}^{(2)} & \cdots & j_{0}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
j_{n-1}^{(n-1)} & j_{n-2}^{(n-1)} & \cdots & j_{0}^{(n-1)}
\end{array}\right]\left[\begin{array}{c}
s_{n-1} \\
s_{n-2} \\
\vdots \\
s_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \bmod 2 .
$$

The solutions to these equations will be 0^{n} and the correct s ，which we can compute efficiently by a classical algorithm（Gaussian elimi－ nation modulo 2）．This can be done by means of a classical circuit of size roughly $\mathcal{O}\left(n^{3}\right)$ ．

§4．2 The Quantum Algorithm

Note that $|j\rangle$ has nonzero amplitude if $s \bullet j=0 \bmod 2$ ．Measuring the state gives a uniformly random element from the set $\{j \mid s \bullet j=$ $0 \bmod 2\}$ ．Accordingly，we get a linear equation

$$
s \bullet j=0 \bmod 2
$$

that gives information about s ．We repeat this algorithm until we have obtained $n-1$ independent linear equations involving s

$$
\left[\begin{array}{cccc}
j_{n-1}^{(1)} & j_{n-2}^{(1)} & \cdots & j_{0}^{(1)} \\
j_{n-1}^{(2)} & j_{n-2}^{(2)} & \cdots & j_{0}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
j_{n-1}^{(n-1)} & j_{n-2}^{(n-1)} & \cdots & j_{0}^{(n-1)}
\end{array}\right]\left[\begin{array}{c}
s_{n-1} \\
s_{n-2} \\
\vdots \\
s_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \bmod 2 .
$$

The solutions to these equations will be 0^{n} and the correct s ，which we can compute efficiently by a classical algorithm（Gaussian elimi－ nation modulo 2 ）．This can be done by means of a classical circuit of size roughly $\mathcal{O}\left(n^{3}\right)$ ．

§4．2 The Quantum Algorithm

Note that if the j＇s you have generated at some point span a space of size 2^{k} ，for some $k<n-1$ ，then the probability that your next run of the algorithm produces a j that is linearly independent of the earlier ones，is $\left(2^{n}-2^{k}\right) / 2^{n} \geqslant 1 / 2$ ．Hence an expected number of $\mathcal{O}(n)$ runs of the algorithm suffices to find $n-1$ linearly independent j＇s． Simon＇s algorithm thus finds s using an expected number of $\mathcal{O}(n)$ x_{i}－queries and polynomially many other operations．

Figure 1：Quantum circuit for Simon＇s algorithm

§4．2 The Quantum Algorithm

Note that if the j＇s you have generated at some point span a space of size 2^{k} ，for some $k<n-1$ ，then the probability that your next run of the algorithm produces a j that is linearly independent of the earlier ones，is $\left(2^{n}-2^{k}\right) / 2^{n} \geqslant 1 / 2$ ．Hence an expected number of $\mathcal{O}(n)$ runs of the algorithm suffices to find $n-1$ linearly independent j＇s． Simon＇s algorithm thus finds s using an expected number of $\mathcal{O}(n)$ x_{i}－queries and polynomially many other operations．

Figure 1：Quantum circuit for Simon＇s algorithm

§4．2 The Quantum Algorithm

Note that if the j＇s you have generated at some point span a space of size 2^{k} ，for some $k<n-1$ ，then the probability that your next run of the algorithm produces a j that is linearly independent of the earlier ones，is $\left(2^{n}-2^{k}\right) / 2^{n} \geqslant 1 / 2$ ．Hence an expected number of $\mathcal{O}(n)$ runs of the algorithm suffices to find $n-1$ linearly independent j＇s． Simon＇s algorithm thus finds s using an expected number of $\mathcal{O}(n)$ x_{i}－queries and polynomially many other operations．

Figure 1：Quantum circuit for Simon＇s algorithm

§4．2 The Quantum Algorithm

Example

Let f be a periodic function of 2 qubits given by

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1} \oplus x_{2}, x_{1} \oplus x_{2}\right) \quad \forall x_{1}, x_{2} \in\{0,1\}
$$

The quantum circuit to solve the problem is：

Figure 2：Quantum circuit for Simon＇s algorithm in this example

§4．2 The Quantum Algorithm

Example（Cont＇d）

To check the four CNOT operations indeed provide the oracle U_{f} ， we note that by writing $|x\rangle=\left|x_{1} x_{2}\right\rangle$ and $|y\rangle=\left|y_{1}\right\rangle\left|y_{2}\right\rangle$ ，we have

> CNOT $_{2,4}$ CNOT $_{2,3}$ CNOT $_{1,4}$ CNOT $_{1,3}|x\rangle|y\rangle$
> $=$ CNOT $_{2,4}$ CNOT $_{2,3}$ CNOT $_{1,4}$ CNOT $_{1,3}\left|x_{1}\right\rangle\left|x_{2}\right\rangle\left|y_{1}\right\rangle\left|y_{2}\right\rangle$
> $=\mathbf{C N O T}_{2,4} \mathbf{C N O T}_{2,3}$ CNOT $_{1,4}\left|x_{1}\right\rangle\left|x_{2}\right\rangle\left|x_{1} \oplus y_{1}\right\rangle\left|y_{2}\right\rangle$
> $=$ CNOT $_{2,4}$ CNOT $_{2,3}\left|x_{1}\right\rangle\left|x_{2}\right\rangle\left|x_{1} \oplus y_{1}\right\rangle\left|x_{1} \oplus y_{2}\right\rangle$
> $=\mathbf{C N O T}_{2,4}\left|x_{1}\right\rangle\left|x_{2}\right\rangle\left|x_{1} \oplus x_{2} \oplus y_{1}\right\rangle\left|x_{1} \oplus y_{2}\right\rangle$
> $=\left|x_{1}\right\rangle\left|x_{2}\right\rangle\left|x_{1} \oplus x_{2} \oplus y_{1}\right\rangle\left|x_{1} \oplus x_{2} \oplus y_{2}\right\rangle=|x\rangle|y \oplus f(x)\rangle$
> $=Q_{f}|x\rangle|y\rangle$.

§4．3 Classical Algorithms for Simon＇s Problem

§4．3．1 Upper bound

Let us first sketch a classical randomized algorithm that solves Si － mon＇s problem using $\mathcal{O}\left(\sqrt{2^{n}}\right)$ queries．Our algorithm will make T randomly chosen distinct queries i_{1}, \cdots, i_{T} ，for some T to be de－ termined later．If there is a collision among those queries（that is， $x_{i_{k}}=x_{i_{\ell}}$ for some $k \neq \ell$ ），then we are done，because then we know $i_{k}=i_{\ell} \bmod s$ ，equivalently $s=i_{k} \oplus i_{\ell}$ ．
that we are likely to see a collision in case $s \neq 0^{n}$（there will not be
any collisions if $\left.s=0^{n}\right)$ ？
in our secuence that could be a collision，and the probability for a
fixed pair to form a collision is $1 / 2^{n-1}$ ；thus the expected number
of collisions in our sequence will be roughly $T^{2} / 2^{n}$ ．If we choose $T=\sqrt{2^{n}}$ ，we expect to have roughly 1 collision in our sequence． which is good enough to find s ．

§4．3 Classical Algorithms for Simon＇s Problem

§4．3．1 Upper bound

Let us first sketch a classical randomized algorithm that solves Si － mon＇s problem using $\mathcal{O}\left(\sqrt{2^{n}}\right)$ queries．Our algorithm will make T randomly chosen distinct queries i_{1}, \cdots, i_{T} ，for some T to be de－ termined later．If there is a collision among those queries（that is， $x_{i_{k}}=x_{i \ell}$ for some $k \neq \ell$ ），then we are done，because then we know $i_{k}=i_{\ell} \bmod s$ ，equivalently $s=i_{k} \oplus i_{\ell}$ ．How large should T be such that we are likely to see a collision in case $s \neq 0^{n}$（there will not be any collisions if $\left.s=0^{n}\right)$ ？There are $C_{2}^{T}=\frac{T(T-1)}{2} \approx T^{2} / 2$ pairs in our sequence that could be a collision，and the probability for a fixed pair to form a collision is $1 / 2^{n-1}$ ；thus the expected number of collisions in our sequence will be roughly $T^{2} / 2^{n}$ ．

§4．3 Classical Algorithms for Simon＇s Problem

§4．3．1 Upper bound

Let us first sketch a classical randomized algorithm that solves Si － mon＇s problem using $\mathcal{O}\left(\sqrt{2^{n}}\right)$ queries．Our algorithm will make T randomly chosen distinct queries i_{1}, \cdots, i_{T} ，for some T to be de－ termined later．If there is a collision among those queries（that is， $x_{i_{k}}=x_{i_{\ell}}$ for some $k \neq \ell$ ），then we are done，because then we know $i_{k}=i_{\ell} \bmod s$ ，equivalently $s=i_{k} \oplus i_{\ell}$ ．How large should T be such that we are likely to see a collision in case $s \neq 0^{n}$（there will not be any collisions if $\left.s=0^{n}\right)$ ？There are $C_{2}^{T}=\frac{T(T-1)}{2} \approx T^{2} / 2$ pairs in our sequence that could be a collision，and the probability for a fixed pair to form a collision is $1 / 2^{n-1}$ ；thus the expected number of collisions in our sequence will be roughly $T^{2} / 2^{n}$ ．If we choose $T=\sqrt{2^{n}}$ ，we expect to have roughly 1 collision in our sequence， which is good enough to find s ．

§4．3 Classical Algorithms for Simon＇s Problem

Of course，an expected value of 1 collision does not mean that we will have at least one collision with high probability，but a slightly more involved calculation shows the latter statement as well．

§4．3 Classical Algorithms for Simon＇s Problem

§4．3．2 Lower bound

Simon proved that any classical randomized algorithm that finds s with high probability needs to make $\Omega\left(\sqrt{2^{n}}\right)$ queries，so the above classical algorithm is essentially optimal．
bounded－error algorithms（let us stress again that this does not prove an exponential separation in the usual circuit model，because we are counting queries rather than ordinary operations here）．Simon＇s algorithm inspired Shor to his factoring algorithm
\square Given

Promise：there exists $s \in\{0,1\}^{n}$ such that

§4．3 Classical Algorithms for Simon＇s Problem

§4．3．2 Lower bound
Simon proved that any classical randomized algorithm that finds s with high probability needs to make $\Omega\left(\sqrt{2^{n}}\right)$ queries，so the above classical algorithm is essentially optimal．This was the first proven exponential separation between quantum algorithms and classical bounded－error algorithms（let us stress again that this does not prove an exponential separation in the usual circuit model，because we are counting queries rather than ordinary operations here）．Simon＇s algorithm inspired Shor to his factoring algorithm．

[^0]
§4．3 Classical Algorithms for Simon＇s Problem

§4．3．2 Lower bound
Simon proved that any classical randomized algorithm that finds s with high probability needs to make $\Omega\left(\sqrt{2^{n}}\right)$ queries，so the above classical algorithm is essentially optimal．This was the first proven exponential separation between quantum algorithms and classical bounded－error algorithms（let us stress again that this does not prove an exponential separation in the usual circuit model，because we are counting queries rather than ordinary operations here）．Simon＇s algorithm inspired Shor to his factoring algorithm．

We prove a lower bound for the decision version of Simon＇s problem：
Given：input $x=\left(x_{0}, \cdots, x_{N-1}\right)$ ，where $N=2^{n}$ and $x_{i} \in\{0,1\}^{n}$ ．
Promise：there exists $s \in\{0,1\}^{n}$ such that $x_{i}=x_{j}$ if and only if

$$
(i=j \text { or } i=j \oplus s)
$$

Task：decide whether $s=0^{n}$ ．

§4．3 Classical Algorithms for Simon＇s Problem

Consider the input distribution μ that is defined as follows．With probability $1 / 2, x$ is a uniformly random permutation of $\{0,1\}^{n}$ ；this corresponds to the case $s=0^{n}$ ．With probability $1 / 2$ ，we pick a nonzero string s at random，and for each pair $(i ; i \oplus s)$ ，we pick a unique value for $x_{i}=x_{i \oplus s}$ at random．If there exists a randomized T－query algorithm that achieves success probability $\geqslant 2 / 3$ under this input distribution μ ，then there also is deterministic T－query algo－ rithm that achieves success probability $\geqslant 2 / 3$ under μ（because the behavior of the randomized algorithm is an average over a number of deterministic algorithms）．Now consider a deterministic algorithm with error $\leqslant 1 / 3$ under μ ，that makes T queries to x ．We want to show that $T=\Omega\left(\sqrt{2^{n}}\right)$

§4．3 Classical Algorithms for Simon＇s Problem

Consider the input distribution μ that is defined as follows．With probability $1 / 2, x$ is a uniformly random permutation of $\{0,1\}^{n}$ ；this corresponds to the case $s=0^{n}$ ．With probability $1 / 2$ ，we pick a nonzero string s at random，and for each pair $(i ; i \oplus s)$ ，we pick a unique value for $x_{i}=x_{i \oplus s}$ at random．If there exists a randomized T－query algorithm that achieves success probability $\geqslant 2 / 3$ under this input distribution μ ，then there also is deterministic T－query algo－ rithm that achieves success probability $\geqslant 2 / 3$ under μ（because the behavior of the randomized algorithm is an average over a number of deterministic algorithms）．Now consider a deterministic algorithm
with error $\leqslant 1 / 3$ under μ ，that makes T queries to x ．We want to show that $T=\Omega\left(\sqrt{2^{n}}\right)$

§4．3 Classical Algorithms for Simon＇s Problem

Consider the input distribution μ that is defined as follows．With probability $1 / 2, x$ is a uniformly random permutation of $\{0,1\}^{n}$ ；this corresponds to the case $s=0^{n}$ ．With probability $1 / 2$ ，we pick a nonzero string s at random，and for each pair $(i ; i \oplus s)$ ，we pick a unique value for $x_{i}=x_{i \oplus s}$ at random．If there exists a randomized T－query algorithm that achieves success probability $\geqslant 2 / 3$ under this input distribution μ ，then there also is deterministic T－query algo－ rithm that achieves success probability $\geqslant 2 / 3$ under μ（because the behavior of the randomized algorithm is an average over a number of deterministic algorithms）．Now consider a deterministic algorithm with error $\leqslant 1 / 3$ under μ ，that makes T queries to x ．We want to show that $T=\Omega\left(\sqrt{2^{n}}\right)$ ．

§4．3 Classical Algorithms for Simon＇s Problem

First consider the case $s=0^{n}$ ．We can assume the algorithm never queries the same point twice．Then the T outcomes of the queries are T distinct n－bit strings，and each sequence of T strings is equally likely．
> the indices i_{1}, \cdots, i_{T}（this sequence depends on x ）and gets outputs Call a sequence of queries i_{1}, \cdots, i_{T} good if it shows a collision（that is，$x_{i,}=x_{i_{0}}$ ，for some $k \neq \ell$ ），and bad otherwise．If the sequence of queries of the algorithm is good，then we can find s ，since $i_{k} \oplus i_{\ell}=s$ ．On the other hand，if the sequence is bad，then each sequence of T distinct outcomes is equally likely－just as in the $s=0^{n}$ case！We will now show that the probability of the bad case is very close to 1 for small T ．

§4．3 Classical Algorithms for Simon＇s Problem

First consider the case $s=0^{n}$ ．We can assume the algorithm never queries the same point twice．Then the T outcomes of the queries are T distinct n－bit strings，and each sequence of T strings is equally likely．Now consider the case $s \neq 0^{n}$ ．Suppose the algorithm queries the indices i_{1}, \cdots, i_{T}（this sequence depends on x ）and gets outputs $x_{i_{1}}, \cdots, x_{i_{T}}$ ．Call a sequence of queries i_{1}, \cdots, i_{T} good if it shows a collision（that is，$x_{i_{k}}=x_{i_{\ell}}$ for some $k \neq \ell$ ），and bad otherwise．If the sequence of queries of the algorithm is good，then we can find s ，since $i_{k} \oplus i_{\ell}=s$ ．On the other hand，if the sequence is bad，then each sequence of T distinct outcomes is equally likely－just as in the $s=0^{n}$ case！

§4．3 Classical Algorithms for Simon＇s Problem

First consider the case $s=0^{n}$ ．We can assume the algorithm never queries the same point twice．Then the T outcomes of the queries are T distinct n－bit strings，and each sequence of T strings is equally likely．Now consider the case $s \neq 0^{n}$ ．Suppose the algorithm queries the indices i_{1}, \cdots, i_{T}（this sequence depends on x ）and gets outputs $x_{i_{1}}, \cdots, x_{i_{T}}$ ．Call a sequence of queries i_{1}, \cdots, i_{T} good if it shows a collision（that is，$x_{i_{k}}=x_{i \ell}$ for some $k \neq \ell$ ），and bad otherwise．If the sequence of queries of the algorithm is good，then we can find s ，since $i_{k} \oplus i_{\ell}=s$ ．On the other hand，if the sequence is bad，then each sequence of T distinct outcomes is equally likely－just as in the $s=0^{n}$ case！We will now show that the probability of the bad case is very close to 1 for small T ．

§4．3 Classical Algorithms for Simon＇s Problem

If i_{1}, \cdots, i_{k-1} is bad，then we have excluded at most C_{2}^{k-1} possible values of s（namely all values $i_{j} \oplus i_{j^{\prime}}$ for all distinct $j, j^{\prime} \in[k-1]$ ），and all other values of s are equally likely．The probability that the next
query i_{k} makes the sequence good，is the probability that $x_{i_{k}}=x_{i_{j}}$ for some $j<k$ ，equivalently，that the set $S=\left\{i_{k} \oplus i_{j} \mid j<k\right\}$ happens to contain the string s ．However，S has only $k-1$ members，while there are $2^{n}-1-C_{2}^{k-1}$ equally likely remaining possibilities for s ． This means that the probability that the sequence is still bad after query i_{k} is made，is very close to 1 ．In formulas：
here we used the fact that $(1-a)(1-b) \geqslant 1-(a+b)$ if $a, b \geqslant 0$ ．

§4．3 Classical Algorithms for Simon＇s Problem

If i_{1}, \cdots, i_{k-1} is bad，then we have excluded at most C_{2}^{k-1} possible values of s（namely all values $i_{j} \oplus i_{j^{\prime}}$ for all distinct $j, j^{\prime} \in[k-1]$ ），and all other values of s are equally likely．The probability that the next query i_{k} makes the sequence good，is the probability that $x_{i_{k}}=x_{i_{j}}$ for some $j<k$ ，equivalently，that the set $S=\left\{i_{k} \oplus i_{j} \mid j<k\right\}$ happens to contain the string s ． \qquad

This means that the probability that the sequence is still bad after query i_{k} is made，is very close to 1 ．In formulas：

§4．3 Classical Algorithms for Simon＇s Problem

If i_{1}, \cdots, i_{k-1} is bad，then we have excluded at most C_{2}^{k-1} possible values of s（namely all values $i_{j} \oplus i_{j^{\prime}}$ for all distinct $j, j^{\prime} \in[k-1]$ ），and all other values of s are equally likely．The probability that the next query i_{k} makes the sequence good，is the probability that $x_{i_{k}}=x_{i_{j}}$ for some $j<k$ ，equivalently，that the set $S=\left\{i_{k} \oplus i_{j} \mid j<k\right\}$ happens to contain the string s ．However，S has only $k-1$ members，while there are $2^{n}-1-C_{2}^{k-1}$ equally likely remaining possibilities for s ． This means that the probability that the sequence is still bad after query i_{k} is made，is very close to 1 ．In formulas：
here we used the fact that $(1-a)(1-b) \geqslant 1-(a+b)$ if $a, b \geqslant 0$ ．

§4．3 Classical Algorithms for Simon＇s Problem

If i_{1}, \cdots, i_{k-1} is bad，then we have excluded at most C_{2}^{k-1} possible values of s（namely all values $i_{j} \oplus i_{j^{\prime}}$ for all distinct $j, j^{\prime} \in[k-1]$ ），and all other values of s are equally likely．The probability that the next query i_{k} makes the sequence good，is the probability that $x_{i_{k}}=x_{i_{j}}$ for some $j<k$ ，equivalently，that the set $S=\left\{i_{k} \oplus i_{j} \mid j<k\right\}$ happens to contain the string s ．However，S has only $k-1$ members，while there are $2^{n}-1-C_{2}^{k-1}$ equally likely remaining possibilities for s ． This means that the probability that the sequence is still bad after query i_{k} is made，is very close to 1 ．In formulas：

$$
\begin{gathered}
\operatorname{Pr}\left[i_{1}, \cdots, i_{T} \text { is bad }\right]=\prod_{k=2}^{T} \operatorname{Pr}\left[i_{1}, \cdots, i_{k} \text { is bad } \mid i_{1}, \cdots i_{k-1} \text { is bad }\right] \\
\quad=\prod_{k=2}^{T}\left(1-\frac{k-1}{2^{n}-1-C_{2}^{k-1}}\right) \geqslant 1-\sum_{k=2}^{T} \frac{k-1}{2^{n}-1-C_{2}^{k-1}}
\end{gathered}
$$

here we used the fact that $(1-a)(1-b) \geqslant 1-(a+b)$ if $a, b \geqslant 0$ ．

§4．3 Classical Algorithms for Simon＇s Problem

Note that $2^{n}-1-C_{2}^{k-1} \approx 2^{n}$ as long as $k \ll \sqrt{2^{n}}$ and $\sum_{k=2}^{T}(k-1)=$ $\frac{T(T-1)}{2} \approx T^{2} / 2$ ．Hence we can approximate the last term in the formula by $1-T^{2} / 2^{n+1}$ if $k \ll \sqrt{2^{n}}$ ．
with probability nearly 1 （probability taken over the distribution μ ） the algorithm＇s sequence of queries is bad．If it gets a bad sequence， it cannot＂see＂the difference between the $s=0^{n}$ case and the $s \neq 0^{n}$ case，since both cases result in a uniformly random sequence of T distinct n－bit strings as answers to the T queries．This shows that T has to be $\sqrt{2^{n}}$ in order to enable the algorithm to get a good sequence of queries with high probability．

§4．3 Classical Algorithms for Simon＇s Problem

Note that $2^{n}-1-C_{2}^{k-1} \approx 2^{n}$ as long as $k \ll \sqrt{2^{n}}$ and $\sum_{k=2}^{T}(k-1)=$ $\frac{T(T-1)}{2} \approx T^{2} / 2$ ．Hence we can approximate the last term in the formula by $1-T^{2} / 2^{n+1}$ if $k \ll \sqrt{2^{n}}$ ．Accordingly，if $T \ll \sqrt{2^{n}}$ then with probability nearly 1 （probability taken over the distribution μ ） the algorithm＇s sequence of queries is bad．If it gets a bad sequence， it cannot＂see＂the difference between the $s=0^{n}$ case and the $s \neq 0^{n}$ case，since both cases result in a uniformly random sequence of T distinct n－bit strings as answers to the T queries．This shows that
T has to be $\sqrt{2^{n}}$ in order to enable the algorithm to get a good sequence of queries with high probability．

§4．3 Classical Algorithms for Simon＇s Problem

Note that $2^{n}-1-C_{2}^{k-1} \approx 2^{n}$ as long as $k \ll \sqrt{2^{n}}$ and $\sum_{k=2}^{T}(k-1)=$ $\frac{T(T-1)}{2} \approx T^{2} / 2$ ．Hence we can approximate the last term in the formula by $1-T^{2} / 2^{n+1}$ if $k \ll \sqrt{2^{n}}$ ．Accordingly，if $T \ll \sqrt{2^{n}}$ then with probability nearly 1 （probability taken over the distribution μ ） the algorithm＇s sequence of queries is bad．If it gets a bad sequence， it cannot＂see＂the difference between the $s=0^{n}$ case and the $s \neq 0^{n}$ case，since both cases result in a uniformly random sequence of T distinct n－bit strings as answers to the T queries．This shows that T has to be $\sqrt{2^{n}}$ in order to enable the algorithm to get a good sequence of queries with high probability．

[^0]: We prove a lower bound for t
 Given
 nromise：

